MMDS 2012 Stanford University

Large Scale Machine Learning for Query Document Matching in Web Search*

Hang Li Huawei Technologies

* Work was done at Microsoft Research, with former colleagues and interns

Talk Outline

- Motivation
- Regularized Latent Semantic Indexing
- Group Matrix Factorization
- Matching in Latent Space
- Conclusion

Same Search Intent, Different Query Representations Example = "Distance between Sun and Earth"

- "how far" earth sun
- "how far" sun
- "how far" sun earth
- average distance earth sun
- average distance from earth to sun
- average distance from the earth to the sun
- distance between earth & sun
- distance between earth and sun
- distance between earth and the sun

- distance from earth to the sun
- distance from sun to earth
- distance from sun to the earth
- distance from the earth to the sun
- distance from the sun to earth
- distance from the sun to the earth
- distance of earth from sun
- distance between earth sun

- how far away is the sun from earth
- how far away is the sun from the earth
- how far earth from sun
- how far earth is from the sun
- how far from earth is the sun
- how far from earth to sun
- how far from the earth to the sun
- distance between sun and earth

Same Search Intent, Different Query Representations Example = "Youtube"

- yutube
- ytube
- youtubo
- youtube om
- youtube
- youtub com
- youtub
- you tube
- you tube videos
- www youtube
- yotube
- ww youtube com
- utube videos
- u tube com
- u tube
- outube

yuotube youtubr youtuber youtube music videos youtube com you tube music videos you tube com yourtube you tub www you tube com www youtube com www you tube www.utube utube com

- utub
- my tube our tube

yuo tube yu tube youtubecom youtube videos youtube co yout tube your tube you tube video clips wwww youtube com www youtube co www.utube.com www u tube utube u tube videos toutube toutube

Semantic Matching Project: Solving Document Mismatch in Web Search

Matching at Different Levels

Query Understanding

michael jordan berkele

Document Understanding

Homepage of Michael Jordan

Michael Jordan is Professor in the Department of Electrical Engineering

Online Matching

Michael I. Jordan's Home Page

Models of visuomotor and other learning (Univ. of California, Berkeley, USA) www.cs.berkeley.edu/~jordan · Cached page · Mark as spam

Michael Jordan | EECS at UC Berkeley

Michael Jordan Professor Research Areas Artificial Intelligence (AI) Biosystems & Computational Biology (BIO) Control, Intelligent Systems, and Robotics (CIR) www.eecs.berkeley.edu/Faculty/Homepages/jordan.html · Cached page · Mark as spam

Publications

Jordan. In M.-H. Chen, D. Dey, P. Mueller, D. Sun, and K. Ye (Eds.), Frontiers of ... Technical Report 661, Department of Statistics, University of California, Berkeley, 2004. www.cs.berkeley.edu/~jordan/publications.html · Cached page · Mark as spam

Ranking

Matching can be conducted at different levels

Related Work

- Studied in long history of IR
- Query expansion, pseudo relevance feedback
- Latent Semantic Indexing, Probabilistic Latent Semantic Indexing, Latent Dirichlet Allocation
- • •
- New problem setting
 - Large amount of data available
 - New machine learning techniques

Matching vs Ranking

In search, first matching and then ranking

	Matching	Ranking
Prediction	Matching degree between query and document	Ranking list of documents
Model	f(q, d)	f(q,d1), f(q,d2), f(q,dn)
Challenge	Mismatch	Correct ranking on top

Matching between Heterogeneous Data is Everywhere

- Matching between user and product (collaborative filtering)
- Matching between text and image (image annotation)
- Matching between people (dating)
- Matching between languages (machine translation)
- Matching between receptor and ligand (drug design)

Regularized Latent Semantic Indexing

Joint Work with Quan Wang, Jun Xu, and Nick Craswell SIGIR 2011

Regularized Latent Semantic Indexing

- Motivation
 - Matching between query and document at topic level
 - Scale up to large datasets (vs. existing methods)
- Approach
 - Matrix Factorization
 - Regularization on topics and documents (vs. Sparse Coding)
 - Learning problem can be easily decomposed
- Results
 - l_1 on topics leads to sparse topics and l_2 on documents leads to accurate matching
 - Comparable with existing methods in topic discovery and search relevance
 - But can easily scale up to large document sets

Regularized Latent Semantic Indexing

Query and Document Matching in Topic Space

RLSI Algorithm

Scalability Comparison

algorithm	max dataset applied (#docs; #words)	# topics	# processors used
PLDA and PLDA+ (by Google)	Wiki-200T(2,112,618; 200,000)	1000	2, 048
AD-LDA	NY Times (300,000; 102,660) PubMed (8,200,000; 141,043)	200	16
RLSI	B01 (1,562,807; 7,014,881) Bing News (940,702; 500,033) Wiki-All (3,239,884; 6,043,069) MSWeb Data (2,635,158; 2,371,146)	500~1000	single machine, 24 cores

Experimental Results on Topic Discovery

Topics discovered by RLSI are equally readable compared with LDA, PLSI, LSI

	Table 6: Topics discovered by KL51, LDA, PL51, and L51 from AP dataset.												
	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9	Topic 10			
	opec	africa	aid	school	noriega	percent	plane	israeli	nuclear	bush			
	oil	south	virus	student	panama	billion	crash	palestinian	soviet	dukakis			
RLSI	cent	african	infect	teacher	panamanian	rate	flight	israel	treaty	campaign			
AvgComp = 0.0075	barrel	angola	test	educate	delval	0	air	arab	missile	quayle			
	price	apartheid	patient	college	canal	trade	airline	plo	weapon	bentsen			
	soviet	school	dukakis	party	year	water	price	court	air	iran			
	nuclear	student	democrat	govern	new	year	year	charge	plane	iranian			
LDA	union	year	campaign	minister	time	fish	market	case	flight	ship			
AvgComp = 1	state	educate	bush	elect	television	animal	trade	judge	crash	iraq			
	treaty	university	jackson	nation	film	0	percent	attorney	airline	navy			
	company	israeli	year	year	bush	court	soviet	year	plane	year			
	million	iran	state	state	dukakis	charge	treaty	state	flight	state			
PLSI	share	israel	new	new	democrat	attorney	missile	new	airline	new			
AvgComp = 0.9534	billion	palestinian	nation	nation	campaign	judge	nuclear	nation	crash	people			
	stock	arab	govern	0	republican	trial	gorbachev	govern	air	nation			
	soviet	567	0	earthquake	drug	0	israel	yen	urgent	student			
	percent	234	yen	quake	school	dukakis	israeli	dukakis	oil	school			
LSI	police	0	dollar	richter	test	bush	student	bush	opec	noriega			
AvgComp = 1	govern	percent	percent	scale	court	jackson	palestinian	dollar	dukakis	panama			
	state	12	tokyo	damage	dukakis	dem	africa	jackson	cent	teacher			

Experimental Results on Web Search

Group Matrix Factorization

Joint Work with Quan Wang, Zheng Cao, and Jun Xu SIGIR 2012

Group Matrix Factorization

- Motivation
 - Matching between query and document at topic level
 - Having even better scalability
- Approach
 - Matrix Factorization (RLSI and NMF)
 - Assuming documents have been classified into classes
 - Class specific topics and shared topics
- Results
 - Comparable with existing methods in topic discovery and search relevance
 - Can scale up to even large document sets

Group Matrix Factorization

Group Matrix Factorization (cont')

$$\min_{\{\boldsymbol{u}_{k}^{(0)}\},\{\boldsymbol{v}_{n}^{(p)}\},\{\boldsymbol{v}_{n}^{(p)}\}} \sum_{p=1}^{P} \sum_{n=1}^{N_{p}} \mathcal{L}(\boldsymbol{d}_{n}^{(p)} \| \tilde{\boldsymbol{U}}_{p} \boldsymbol{v}_{n}^{(p)}) + \theta_{1} \sum_{k=1}^{K_{s}} \mathcal{R}_{1}(\boldsymbol{u}_{k}^{(0)}) \\
+ \theta_{2} \sum_{p=1}^{P} \sum_{k=1}^{K_{c}} \mathcal{R}_{2}(\boldsymbol{u}_{k}^{(p)}) + \theta_{3} \sum_{p=1}^{P} \sum_{n=1}^{N_{p}} \mathcal{R}_{3}(\boldsymbol{v}_{n}^{(p)}) \\
s.t. \quad \boldsymbol{u}_{k}^{(0)} \in C_{1}, \quad k = 1, \cdots, K_{s}, \\
\boldsymbol{u}_{k}^{(p)} \in C_{2}, \quad k = 1, \cdots, K_{c}, p = 1, \cdots, P, \\
\boldsymbol{v}_{n}^{(p)} \in C_{3}, \quad n = 1, \cdots, N_{p}, p = 1, \cdots, P,$$

Group Regularized Latent Semantic Indexing

G-RLSI Algorithm

Efficiency Comparison

Figure 2: Execution time of RLSI and GRLSI on Wikipedia.

Figure 3: Execution time of NMF and GNMF on Wikipedia.

Figure 4: Execution time of RLSI and GRLSI on Web-I.

Figure 5: Execution time of NMF and GNMF on Web-I.

Experimental Results on Topic Discovery

	Tuble 10, Toples discovered by Grubbi (top) and Gruppi (bottom) on Windpedia.											
	Sha	ared topics			Arts			Geography			Politics	
	commune	state	political	album	rock	groups	province	municipality	communes	elections	states	kingdom
	communes	highways	party	albums	american	musical	state	municipalities	commune	election	congressional	political
	department	route	colour	singers	musicians	music	village	gmina	department	weapon	delegations	parties
Γ	places	highway	india	musicians	singers	rappers	villages	voivodeship	france	party	elections	country
ΓS	france	india	canada	track	country	metal	highways	population	departments	parties	united	party
GR	populated	brazil	australia	listing	english	heavy	united	germany	places	political	senate	fascism
_	municipality	oregan	parties	рор	рор	created	states	spain	county	results	tennessee	submarine
	places	new	language	album	groups	rappers	village	district	department	elections	war	military
	populated	york	japanese	albums	rock	musicians	villages	germany	commune	election	world	country
	village	city	films	track	american	american	england	districts	communes	results	poland	units
Ľ	azerbaijan	zealand	cast	listing	musical	singers	india	town	france	members	weapons	formations
Ξ	population	jersey	chinese	released	metal	singles	population	administrative	departments	parties	conflict	army
B	municipality	routes	english	band	musicians	wiley	central	towns	home	held	union	infantry
-	census	south	spanish	records	pop	blues	within	cities	western	general	force	established

Table 10: Topics discovered by GRLSI (top) and GNMF (bottom) on Wikipedia.

Table 11: Topics discovered by GRLSI (top) and GNMF (bottom) on Web-I.

	Shared topics		Arts/literature			Business/healthcare			Computers/internet			
	video	business	games	poems	harry	book	dental	healthcare	care	chat	facebook	web
	phone	services	game	poetry	potter	chapter	dentist	practice	medical	teen	people	hosting
	mobile	company	cheats	poem	books	summary	care	test	health	online	connect	design
Ι	tv	service	xbox	poets	rowling	books	dentistry	management	equipment	people	sign	website
LS	cell	products	ign	love	series	analysis	dentists	exam	ppo	friends	web	domain
GR	phones	management	pc	poet	children	author	health	patient	supplies	join	password	internet
	iphone	jobs	updates	american	deathly	study	teeth	jobs	company	video	friends	services
	WWW	products	day	poems	harry	books	dentist	healthcare	medical	google	facebook	design
	http	product	october	quotes	potter	children	dentists	management	equipment	maps	people	web
	org	quality	september	shakespear	rowling	read	dentistry	patient	supplies	blog	connect	website
Ľ	website	buy	july	william	series	reading	dr	hospital	surgical	gmail	sign	development
Μ	net	accessories	june	poetry	deathly	list	dental	solutions	patient	map	friends	marketing
S	html	store	august	poets	hallows	readers	cosmetic	nursing	hospital	engine	password	graphic
_	web	supplies	april	poem	stone	fiction	teeth	hospitals	device	web	share	logo

Experimental Results on Web Search

Table 12: Relevance performance of RLSI families on Web-II.

Method	MAP	NDCG@1	NDCG@3	NDCG@5	NDCG@10
BM25	0.3006	0.3043	0.3490	0.3910	0.4805
BM25+RLSI	0.3050	0.3076	0.3539	0.3943	0.4858
BM25+CRLSI	0.3027	0.3051	0.3509	0.3927	0.4840
BM25+GRLSI	0.3039	0.3066	0.3520	0.3934	0.4855

Table 13: Relevance performance of NMF families on Web-II.

Method	MAP	NDCG@1	NDCG@3	NDCG@5	NDCG@10
BM25	0.3006	0.3043	0.3490	0.3910	0.4805
BM25+NMF	0.3057	0.3091	0.3546	0.3960	0.4895
BM25+CNMF	0.3033	0.3055	0.3512	0.3934	0.4869
BM25+GNMF	0.3046	0.3080	0.3530	0.3955	0.4887

Matching in Latent Space

Joint Work with Wei Wu, Zhengdong Lv Under review

Matching in Latent Space

- Motivation
 - Matching between query and document in latent space
- Assumption
 - Queries have similarity
 - Document have similarity
 - Click-through data represent "similarity" relations between queries and documents
- Approach
 - Projection to latent space
 - Regularization or constraints
- Results
 - Significantly enhance accuracy of query document matching

Matching in Latent Space

Example: Projecting Keywords and Images into Latent Space

Partial Least Square (PLS)

- Setting
 - Two spaces: $\mathcal{X} \subset \mathbb{R}^m$ and $\mathcal{Y} \subset \mathbb{R}^n$.
- Input
 - − Training data: $\{(x_i, y_i, r_i)\}_{1 \le i \le N}, r_i \in \{+1, -1\}$
- Output
 - Similarity function f(x, y)
- Assumption
 - Two linear (and orthonormal) transformations L_{χ} and L_{y}
 - Dot product as similarity function $\langle L_{\chi}^{T}x, L_{y}^{T}y \rangle = x^{T}L_{\chi}L_{y}^{T}y$
- Optimization

$$argmax_{L_{\mathcal{X}},L_{\mathcal{Y}}} \sum_{r_{i}=+1} x_{i}^{T}L_{\mathcal{X}} L_{\mathcal{Y}}^{T} y_{i} - \sum_{r_{i}=-1} x_{i}^{T}L_{\mathcal{X}} L_{\mathcal{Y}}^{T} y_{i}$$

subject to $L_{\mathcal{X}}^{T}L_{\mathcal{X}} = I_{k\times k}, L_{\mathcal{Y}}^{T}L_{\mathcal{Y}} = I_{k\times k}$

Solution of Partial Least Square

- Non-convex optimization
- Can prove that global optimal solution exists
- Global optimal can be found by solving SVD (Singular Value Decomposition)
- SVD of Matrix $M_s M_D = U \Sigma V^T$

Regularized Mapping to Latent Space (RMLS)

- Setting
 - Two spaces: $\mathcal{X} \subset \mathbb{R}^m$ and $\mathcal{Y} \subset \mathbb{R}^n$.
- Input
 - − Training data: $\{(x_i, y_i, r_i)\}_{1 \le i \le N}, r_i \in \{+1, -1\}$
- Output
 - Similarity function f(x, y)
- Assumption
 - L1 and L2 regularization on L_{χ} and L_{y} (sparse transfromations)
 - Dot product as similarity function $\langle L_{\chi}^{T}x, L_{y}^{T}y \rangle = x^{T}L_{\chi}L_{y}^{T}y$
- Optimization

$$\begin{aligned} \arg \max_{L_{\mathcal{X}}, L_{\mathcal{Y}}} & \sum_{r_i = +1} x_i^T L_{\mathcal{X}} L_{\mathcal{Y}}^T y_i - \sum_{r_i = -1} x_i^T L_{\mathcal{X}} L_{\mathcal{Y}}^T y_i \\ \text{subject to } |lx| \leq \vartheta x, \ |ly| \leq \vartheta y, \ \| \ lx \| \leq \lambda x, \ \| \ ly \| \leq \lambda y, \end{aligned}$$

Solution of Regularized Mapping to Latent Space

- Coordinate Descent
- Repeat
 - Fix Lx, updateLy
 - Fix Ly, updateLx
- Update can be parallelized by rows

Comparison

	PLS	RMLS
Assumption	Orthogonal	L1 and L2 Regularization
Optimization Method	Singular Value Decomposition	Coordinate Descent
Optimality	Global optimum	Local optimum
Efficiency	Low	High
Scalability	Low	High

Experimental Results

Enterprise Search					Web Search				
	NDCG@1	NDCG@3	NDCG@5			NDCG@1	NDCG@3	NDCG@5	
MPLS _{Com}	0.715	0.733	0.747		MPLS _{Com}	0.681	0.731	0.739	
MPLS _{Conca}	0.700	0.728	0.742		MPLS _{Conca}	0.676	0.728	0.736	
MPLS _{Word}	0.688	0.718	0.739		MPLS _{Word}	0.674	0.726	0.732	
MPLS _{Bipar}	0.659	0.684	0.705		MPLS _{Bipar}	0.612	0.680	0.693	
BM25	0.653	0.657	0.663		BM25	0.637	0.690	0.690	
RW	0.654	0.683	0.700		RW	0.655	0.704	0.704	
RW+BM25	0.664	0.688	0.705		RW+BM25	0.671	0.718	0.716	
LSI	0.656	0.676	0.695		LSI	0.588	0.665	0.676	
LSI+BM25	0.692	0.701	0.712		LSI+BM25	0.649	0.705	0.706	

- RMLS and PLS work better than BM25, Random Walk, Latent Semantic Indexing
- RMLS works equally well as PLS, with higher learning efficiency and scalability

Conclusion

Conclusion

- Large scale topic modeling techniques
 - Regularized Latent Semantic Indexing
 - Group Matrix Factorization
- Large scale matching techniques
 - Matching in Latent Space
- Comparable with existing methods in terms of accuracy, much better in terms of efficiency and scalability
- Useful for web search

Publications of the Project

- Quan Wang, Zheng Cao, Jun Xu, Hang Li, Group Matrix Factorization for Scalable Topic Modeling, In Proceedings of the 35th Annual International ACM SIGIR Conference (SIGIR'12), to appear, 2012.
- Xiaobing Xue, Yu Tao, Daxin Jiang and Hang Li, Automatically Mining Question Reformulation Patterns from Search Log Data, In Proceedings of the 50th Annual Meeting of Association for Computational Linguistics (ACL'12), to appear, 2012.
- Fan Bu, Hang Li, Xiaoyan Zhu, String Re-Writing Kernel, In Proceedings of the 50th Annual Meeting of Association for Computational Linguistics (ACL'12), to appear, 2012.
- Chen Wang, Keping Bi, Yunhua Hu, Hang Li, and Guihong Cao. Extracting Search-Focused Key N-Grams for Relevance Ranking in Web Search. In Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM'12), 343-352, 2012.
- Wei Wu, Jun Xu, Hang Li, and Satoshi Oyama, Learning A Robust Relevance Model for Search Using Kernel Methods, Journal of Machine Learning Research, 12, 1429-1458. 2011.
- Quan Wang, Jun Xu, Hang Li, Nick Craswell, Regularized Latent Semantic Indexing, In Proceedings of the 34th Annual International ACM SIGIR Conference (SIGIR'11), 685-694, 2011.
- Ziqi Wang, Gu Xu, Hang Li and Ming Zhang, A Fast and Accurate Method for Approximate String Search, In Proceedings of the 49th Annual Meeting of Association for Computational Linguistics: Human Language Technologies (ACL-HLT'11), 52-61, 2011.
- Jun Xu, Hang Li, Chaoliang Zhong, Relevance Ranking Using Kernels, In Proceedings of the 6th Asian Information Retrieval Societies Symposium (AIRS'10), Best Paper Award, 1-12, 2010.
- Jiafeng Guo, Gu Xu, Hang Li, Xueqi Cheng. A Unified and Discriminative Model for Query Refinement. In Proceedings of the 31st Annual International ACM SIGIR Conference (SIGIR'08), 379-386, 2008.
- Wei Wu, Zhengdong Lv, Hang Li, Regularized Mapping to Latent Structures and Its Application to Web Search, under review.

Thank You!

Contact: hangli.hl@huawei.com