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Video is a unique multimedia data type, in that it comes with
distinguished spatio-temporal constraints. Content-based video re-
trieval thus requires methods for video sequence-to-sequence match-
ing, incorporating the temporal ordering inherent in a video se-
quence, without losing sight of the visual nature of the information
in the sequence. Such methods will require reliable measures of
similarity between the video sequences. In this paper, we formulate
the problem of video sequence-to-sequence matching as a pattern-
matching problem and propose the vstring edit distance as a suitable
distance measure for video sequences. c© 1999 Academic Press

1. INTRODUCTION
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In general, content-based video retrieval is concerned with
indexing and retrieval of video information based on the ac
contents of the video sequence. The first stage of this proce
the initial partitioning (segmentation) of the video data into
constituent scenes and the identification of the various ed
effects in the video [3, 18]. The next stage involves the ana
of the individual scenes to provide further information for fin
grained access to the digital video. One such analysis re
in the generation or selection of representations for each v
scene. A typical representation used here is the video key fr
Others are compact representations, such as video mosaic
layered representations [24], and super resolution frames
Further stages of the retrieval process could involve the cl
fication or clustering of the partitioned video, based on cer
characteristics of the scenes, such as motion complexity o
activity in the scene [2, 12]. From these, it could then beco
possible to address the more difficult problem of semantic ac
to the video content [12].

So far, however, the problem of matching video sequen
for possible similarity has attracted little attention. The curr
methods are generally based on the use of the above repre
tions (such as the key frame) as an image, and then using i
matching methods to compare the scenes [13, 23]. The pro
∗ This work was supported in part by RGC Grant CUHK H164/97E, UG
Direct Grant (Project 1D 2050192), RGC Hong Kong CUHK 4176/97E and I
Hong Kong AF/17/95.
†Corresponding author.
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frames or surrogates have been used to identify probable sc
that may be similar to an input query, a human observer is
required to manually verify if the returned sequences are a
ally similar to the query sequence. Considering the large num
of sequences in typical video databases, effective and effi
methods are still required to perform such verifications autom
ically. Such methods will certainly call for reliable measures
the similarity or difference between video sequences.

The spatio-temporal constraints that accompany video
types are one of the unique characteristics of video informa
The importance of the temporal constraints has led to re
efforts to incorporate them in video retrieval. The question
how to capture such important video characteristics for us
content-based retrieval. For instance, motion cues between
cent frames have been proposed for video retrieval [12, 19,
Others have tried to model the temporal information direc
by treating the video data in its natural form—as an orde
sequence of frames [1, 7, 33]. This leads directly to video
quence similarity matching, whereby video is treated as a t
porally ordered sequence, rather than as a mere collectio
images. Video sequence matching is primarily motivated by
practical need to incorporate the inherent temporal constra
in video sequences in content-based retrieval. Results from
an endeavor will be equally of interest in other application
eas, such as music and audio retrieval, medical imaging
biomedical monitoring [32], crime investigation (copyright i
fringement), and TV broadcasting. With the new popularity
applications involving content-based access to digital vid
video sequence matching stands to play a more important
in various areas in modern-day computing.

The method used to address the video sequence simila
matching problem generally depends on the technique us
represent the sequences. For instance, if the video inform
in a given sequence is treated as a time series signal, then
from time series analysis can be used to compare two such
nals. Chang and Lee [9] used the bounding box approac
model transitions between frames and defined some simil
measures based on the bounding box representation. An
method with which the information in a video sequence can
captured is the string representation. Here, the video sequ
as described by a sequence of feature values is transforme
1077-3142/99 $30.00
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a sequence of symbols. For a given feature, this will invo
the initial transformation of the real-valued feature values i
some discrete classes. Each symbol in the string will repre
a class, and the set of all symbols will form the alphabet. Th
the total number of symbols (the alphabet size) will depend
the number of classes used. We call such a representation o
video sequence avideo string, or vstringfor short. Yazdani and
Ozsoyoglu [33] defined some statistics based on the length
image sequences and used them for image sequence mat
Adjeroh, King, and Lee [1] described the general problems
video sequence similarity matching and proposed thevstring
as an appropriate representation for the video sequence w
the objective is similarity matching. In this paper, we propo
a similarity measure for video sequences based on the vs
representation.

Syntactic/structural pattern recognition is an area that
pioneered by Fu [6, 14, 15] and has found applications in
ture analysis, shape recognition [29], and image retrieval [9
Extensions into the 3D and higher dimensions have also b
proposed [8, 14]. In general, the main objective is to model
physical structure of the objects in an image. Though these
lead to a string representation, the vstring representation is
ferent in terms of the basic primitives from which it is generat
Rather than the physical objects, the index feature values f
the basis for the vstring representation. The vstring models
basic transitionsbetweenimage sequences, with no special e
phasis on the spatial or structural relationship between obj
within the images. Like in ordinary strings, the vstring is a s
quence of symbols. The symbols in the vstring are, howe
generally multivalued, rather than the simple presence/abs
symbols encountered in other strings. Moreover, to accoun
the various visual cues with which the video information c
be analyzed, vstrings are typically multidimensional. Further
model the special functions involved in digital video, new e
operations are required for the vstring. One advantage of
vstring representation is that, with appropriate modificatio
the problem of video sequence similarity matching in multim
dia information retrieval can be turned into the more famil
problem of approximate string matching. Techniques for
proximate string matching can then be used for video simila
comparison. However, the major problem of computational co
plexity for traditional approximate string matching will also ha
to be addressed for the video string representation. Fast m
ods for general pattern matching is an area that has long
investigated, especially for exact pattern matching [20]. Equ
lently, fast algorithms have been proposed for approximate st
matching [21, 22, 30]. A general review of fast pattern match
algorithms is presented in [10].

In this paper, we focus on devising a suitable similarity m
sure for video sequences. The next section describes the ge
problem of video sequence matching, the vstring representa
and the concept of string pattern matching. In Section 3,

vstring edit distance is proposed as a distance measure for v
sequences. Section 4 presents an alternative method to com
E, AND KING
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the vstring distance. Normalizations for the vstring distance
described in Section 5. Experimental results are presente
Section 6.

2. VIDEO SEQUENCE MATCHING AND STRING
PATTERN MATCHING

DEFINITION 1. A video sequenceis a set of temporally or-
dered scenes. Ascene(or shot) is a set of frames between tw
adjacent scene breaks, as may be caused by camera oper
(such as a cut), or by special effect operations—such as a
or dissolve. The number of frames in a scene depends on
specific contents of the scene. A videoframeis simply a single
image. A frame can be divided into different subparts. Whe
frame is so divided, we use the termsubframeto denote any of
the subparts. We assume that whenever a frame is divided
subframes are all equal in area.

Given a query video sequence and a database of video
quences, thevideo sequence-searching problemis to find one or
all the occurrences of the query video sequence in the data
The problem then is to search the entire video database fo
requested query video sequence, producing a list of the posi
in the database sequence where a match starts (or ends).
the problem is exact matching of the sequences, it is not diffi
to compute some simple statistics with which the matching
be performed. Exact matching is, however, not very suitabl
multimedia information systems, especially those involving
sual data. A more useful variant of the problem is that of vid
sequencesimilarity searchingwhich will in turn depend on the
methods for video sequencesimilarity matching.

2.1. The Problem

Since we are often more interested in similarity (rather th
exact) matching, there is need for some measure to indicat
degree of similarity between two sequences. Let given two vi
sequencesA andB be represented by theirp-feature values a
each of the temporal indicest andr ,

A = [a1(t),a2(t), . . . ,ap(t)]T,

B = [b1(r ), b2(r ), . . . ,bp(r )]T,
(1)

wherer = 0, 1, 2, . . . ,n; t = 0, 1, 2, . . . ,m, xT stands for trans-
pose ofx. Given some possible variations in thep features from
Aand/orB, the problem is to find a mappingf : A× B× θ→<,
such thatf is independent ofn,m the sequence lengths and st
robust under the variations, as captured byθ . We should be able
to normalize the resulting values off to some given ranges, fo
instance [0 1], such that the degree of similarity increases
formly from the minimum value (perfect mismatch) to the ma
imum value (perfect match). Different measures can be use
achieve the required mapping. The measure could be a dist
ideo
pute
function or a similarity function and need not necessarily be a
metric. Whether the two sequences are similar (matches) or not
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DISTANCE MEASURE F

will then depend on some predefined threshold of similarity. T
threshold can be chosen based on the application, or it ma
stipulated by the user.

Conceptually,A can represent the entire database, whileB
is just a short query sequence. Here, we would be intereste
knowing if there exists any subsequence ofA that is similar to
B. The problem of exact video sequence matching is thus ea
handled by an appropriate choice of the threshold. Three b
types of matching can be identified in video sequence match

(i) scene-to-scene matching: check if two scenes are simila
(ii) scene-to-sequence matching: check if a scene similar to

the query scene occurs in the database sequence;
(iii) sequence-to-sequence matching: check if a sequence

similar to a query sequence occurs in the database sequ
The query can contain more than one scene.

The case of sequence-to-scene matching is handled by si
assuming that the database sequence is the longer of the
sequences. This has no effect on the actual matching pro
We observe that (ii) is a generalization of (i) and will ma
use of the methods for (i). Similarly, (iii) is a generalizatio
of (ii) and its solution will depend on the solutions to (ii). Th
basic problem, thus, is finding solutions to (i): the scene-to-sc
matching problem.

2.2. The vString Representation

The vstring describes the sequence of feature values from
video as a sequence of symbols. Each symbol in the string
resents a class and the set of all symbols form the alphabet.
a nonuniform distribution of the feature values, an equiproba
classification will require knowledge of the probability distrib
tion of the feature values. If we assume an equiprobable distr
tion for the feature values (i.e., all the symbols in the alphabe
equally probable), a simple method that can be used to trans
the features into vstrings is the simple uniform quantization

Let 6 be the symbol alphabet,fv be a feature value, an
max fv and min fv be the respective maximum and minimu
values for a given index feature. The quantization step siz
given by

1 = max fv −min fv
|6| . (2)

The quantization level to which a givenfv belongs is then ob-
tained using:

q( fv)= i if ( i − 1) ·1 ≤ fv < i ·1; i = 1, 2, . . . , |6|. (3)

If a feature value belongs to thei th quantization level, we assig
the i th symbol to it. For multiple features, we may have diffe
ent classifications, leading to multiple alphabets, with poss
different cardinality. In such a case, we will have multidime
sional video strings, with the strings from each feature formin

dimension. Usually, symbols in traditional text strings are tak
as presence/absence symbols—that is, the symbols either ap
OR VIDEO SEQUENCES 27
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or do not appear in the string, and two different symbols are
sumed not to have much else in common. For the vstring, w
the symbols are taken from an alphabet obtained from the c
sification of real-valued features, it is safe to assume that ne
classes are related. That is, a feature value that belongs to th
class is nearer to another feature value that belongs to the se
class than to one that belongs to the last class (assuming
than two classes). This implies that the symbols in the vi
string will be multivalued. This modification is needed to im
prove the accuracy of the similarity measurement using vstr
and will have some important implications in defining distanc
between video strings. For some other types of classifica
(e.g., semantic classification of the sequences) the symbols
be treated as the traditional presence/absence symbols.

The advantage of the vstring representation is that it is fa
general—we can represent different types of video scene c
sifications using string sequences. For instance, we can e
classify, based on some semantic descriptions or using qu
tative features from the video [1], motion vectors, angles, co
etc. More importantly, the vstring representation provides
intuitive method to model various characteristics and phen
ena observed in a video sequence—such as repetitions, rev
fast forward, and video scene breaks. Example 1 taken from
shows how the basic video scene transitions such as fast forw
slow motion, reverse, and partial reverse can be modeled b
vstring representation.

EXAMPLE 1. (sVstring representation for different video trans
ions). The symbolsa, b, c, etc. represent the different class
to which the feature values are grouped. A video frame is re
sented by a symbol. The special marker$ stands for video scen
break:

Original sequence: aaabbbcccdddeee$vvvxxxyyy;

Fast forward:
skip= 1: speed=×2: aabccdee$vxxy
skip= 2: speed=×3: abcde$vxy
skip= 3: speed=×4: abce$vy

Slow motion:
speed= 1

2 original speed: aaa aaa bbb bbb ccc ccc ddd ddd
eee eee$vvv vvv xxx xxx yyy yyy

speed= 1
4 original speed: aaa aaa aaa aaa bbb bbb bbb

bbb. . . eee eee eee eee$vvv
vvv vvv vvv. . .

Reverse: yyy xxx vvv$eee ddd ccc bbb aaa

Partial reverse (due to video editing):
Case 1: bbbcccanddddeeetransposed: aaa dddeee bbbccc

$ vvvxxxyyy
Case 2: bbbandvvvtransposed: aaa $vvv$cccdddee

e$ bbb $ xxxyyy
en
pear

Note. Spaces between symbols are inserted only for clarity.
For partial reverse, the first, second, and fourth scene breaks
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in Case 2 are required since the edit operation involved
different scenes. In Case 1, the editing involved only frame
the same scene. Fast reverse is very similar to fast forward

2.3. String Pattern Matching and Edit Distances

Given a database stringA and a query string (the pattern)B,
the string pattern matching problem is to find the first occure
(or all occurences) ofB in A. Approximate pattern matching
a variant of the pattern matching problem in whichk-symbol
differences can be allowed in the match. That is, a symbol
be in A but not in B, or a symbol can be inB but not in A,
and A and B can differ in certain positions, but the number
positions where they differ should not be more thank. The dis-
tance between two strings is traditionally calculated using
string edit distance.

DEFINITION 2. Given two stringsA : a1a2 · · ·an andB : b1b2

· · ·bm, over an alphabet6, a set of allowed edit operations, a
a unit cost for each operation, theedit distanceis the minimum
number of edit operations required to transform one string
the other.

2.3.1. Edit Operation

DEFINITION 3. Anedit operation, usually written as (x→ y),
is a pair (x, y) 6= (ε, ε), of strings where|x| ≤1 and |y| ≤1
(ε represents the zero-length empty symbol). When we a
the edit operation (x→ y) on an input stringSI to obtain an
output stringSO, we say the input stringSI is transformed into
the output stringSO, via the edit operation (x→ y). Or simply
thatx is transformed intoy. That is, there exist some stringsS1

andS2, such thatSI = S1x S2 andSO= S1yS2.

With the above definition,x andy are constrained to be sin
gle symbols. Three basic types of edit operations are u
ins—insertion of a symbol, (ε→a); del—deletion of a sym-
bol, (a→ ε); andsubs—substitution of one symbol for anoth
(a→ b). To any given edit operation (x→ y), a costc(x→ y)
is assigned. The value of the cost is determined by use
weighting function.

2.3.2. Edit Sequences and Edit Distance

DEFINITION 4. An edit sequence(or edit path) is an ordere
set of edit operations that transforms one string into anothe

To transform a stringA into another stringB, one will typ-
ically need to apply different edit operations:SE = s1s2 · · · sl ,
wheresi ∈ {ins, del, subs}. The cost of a given edit sequen
is determined by the cost of the individual edit operations
make up the sequence:

c(SE) =
l∑

i=1

c(si ), si ∈ {ins, del, subs}. (4)
The cost is independent of the order in which the constituent
operations are applied. Given two strings,A and B, there may
E, AND KING
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be more than one edit sequence that transforms stringA into
string B. Let SA→B represent the set of all edit sequences t
transformA into B. The edit distanceD(A, B) is determined by
using the edit sequence with the minimum cost, that is,

D(A, B) = min{c(SE) | SE ∈ SA→B}. (5)

We can constrain the cost for each edit operationc(x→ y) to
be a distance metric by ensuring the following conditions
always met:

(i) c(x→ y)≥ 0 (nonnegative);
(ii) c(x→ x)= 0 (reflectivity);
(iii) c(x→ y)= c(y→ x) (symmetry);
(iv) c(x→ y)≤ c(x→ z)+ c(z→ y) (triangular

inequality).

With the above constraints and since the edit distance
always select the path with the minimum cost, it is easy to pr
the following lemma.

LEMMA 1. If c(x→ y) is a metric, the edit distance D(A, B)
between strings A and B is also a metric. That is, D(A, B)≥
0; D(A, A)= 0; D(A, B)= D(B, A); D(A, B)≤ D(A,C)+
D(C, B).

We note that the requirement for a metric is only for con
nience, but not a necessity. For instance, with symmetric co
we will not need to worry about which string is used as the qu
string or the database string. On the other hand, the require
for triangular inequality is often not met in most multimedia r
trieval environments. The edit distance betweenA : a1a2 · · ·an

andB : b1b2 · · ·bm is usually determined by use of some rec
rence relations [26, 31]:

initializations:

D0,0 = 0,

Di,0 = Di−1,0+ αdel(ai ),

D0, j = D0, j−1+ αins(bj );

main recurrence:

Di, j = min


Di−1, j + αdel(ai ) (deletion),

Di−1, j−1+ αsubs(ai , bj ) (substitution),

Di, j−1+ αins(bj ) (insertion),

where 1≤ i ≤ |A| =n; 1≤ j ≤ |B| =m; αdel, αins, andαsubsare
the respective cost of deletion, insertion, and substitution
operations. Example 2 below shows the edit distance betw
two strings, for two different cost functions,α.

EXAMPLE 2. Edit distance between two sets of strings
ing two different cost functions:α= [αdel αins αsubs]= [1 1 1];
andα= [1 1 2]. Table 1 shows the computation procedure. T
edithighlighted path (underlined and bold) represents one of the pos-
sible minimum cost edit sequences. For (a), the path corresponds
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TABLE 1
Edit Distance between Two Sets of Strings and for Two Different Cost Functions

A= [1, 2, 1, 2, 2, 2], B= [2, 1, 2, 1, 1, 1];
α= [1 1 1]; D(A, B)= 4

B
D ε 2 1 2 1 1 1

ε 0 1 2 3 4 5 6
1 1 1 1 2 3 4 5
2 2 1 2 1 2 3 4

A 1 3 2 1 2 1 2 3
2 4 3 2 1 2 2 3
2 5 4 3 2 2 3 3
2 6 5 4 3 3 3 4

(a)

A= [1, 2, 1, 2, 2, 2], B= [2, 1, 2, 1, 1, 1];
α= [1 1 2]; D(A, B)= 6

B
D ε 2 1 2 1 1 1

ε 0 1 2 3 4 5 6
1 1 2 1 2 3 4 5
2 2 1 2 1 2 3 4

A 1 3 2 1 2 1 2 3
2 4 3 2 1 2 3 4
2 5 4 3 2 3 4 5
2 6 5 4 3 4 5 6

(b)

A= [2, 3, 1, 2], B= [1, 2, 3, 1, 3, 1, 3];
α= [1 1 1]; D(A, B)= 4

B
D ε 1 2 3 1 3 1 3

ε 0 1 2 3 4 5 6 7
2 1 1 1 2 3 4 5 6

A 3 2 2 2 1 2 3 4 5
1 3 2 3 2 1 2 3 4
2 4 3 2 3 2 2 3 4

(c)

A= [2, 3, 1, 2], B= [1, 2, 3, 1, 3, 1, 3];
α= [1 1 2]; D(A, B)= 5

B
D ε 1 2 3 1 3 1 3

ε 0 1 2 3 4 5 6 7
2 1 2 1 2 3 4 5 6

A 3 2 3 2 1 2 3 4 5
1 3 2 3 2 1 2 3 4
2 4 3 2 3 2 3 4 5

(d)
u

t

se-

it-
dis-
d for
oth
and

ity

en
we

same
es is
to the alignment:

|1|2|1|2|2|2| |
| |2|1|2|1|1|1|

This represents 1 deletion, 2 substitutions, and 1 insertion,
responding to the following edit operations: delete(1) in A, s
stitute(2, 1), substitute(2, 1), insert(1) in A. The highlighted e
path in (c) corresponds to the alignment:

| |2|3|1|2| | |
|1|2|3|1|3|1|3|

This corresponds to the operations: insert(1) in A, substi
(2, 3), insert(1) in A, insert(3) in A.
The above recurrence implies that anO(mn) time is required
for the edit distance. Some other measures used to evaluat
cor-
b-

dit

ute

similarity between strings include the longest common sub
quence (LCS), counting, and scoring functions.

3. THE VIDEO STRING EDIT DISTANCE

Motivated by the traditional methods used in the video ed
ing process—assemble and insert editing [11], and the edit
tance used in string pattern matching, we propose a metho
matching video sequences. The technique is suitable for b
frame-by-frame sequence representation and comparison
for shot-by-shot comparisons. We call the resulting similar
indicator thevstring edit distance.

Thevstringedit distance is based on an intuitive idea. Giv
two video sequences (now represented by their vstrings),
assume that at some initial state the two sequences were the
(with no difference) and that the current state of the sequenc
e the
a result of zero or more video editing operations. Here, by video
editing, we refer to the process of arranging individual frames,
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shots, or sequences into an appropriate order [11]. In add
to the possible temporal rearrangements, our notion of v
editing also includes possible changes in the actualcontentof
the frames making up the shots. The string edit distance
been used in various applications, such as spell checking
DNA sequence matching. When the problem is content-b
access to digital video using the vstrings, the traditional st
edit distance is, however, inadequate to capture the simil
between the vstrings. The limitations can be illustrated wi
simple hypothetical example.

EXAMPLE 3. Assume we have three sequences all of the s
length. Assume further that each has been transformed in
respective vstring: v1, 11111; v2, 33333; v3, 88888, using
alphabet size of 8:6={1, 2, 3, . . . ,8}. Practically, this will cor-
respond to an all-black frame sequence, frame sequences
some shades of grey; and an all-white frame sequence.
the traditional string edit distance, all the sequences wil
equally distant (an edit distance of 5, using a unit cost for e
edit operation). In terms of visual content, however, v1 will
observed as being much closer to v2 than to v3. The traditi
string edit distance as described previously cannot capture
content-dependent details.

It is then obvious that traditional string edit distances will
inadequate to cope with video strings. First, the above conte
quirement implies that the symbols in the video string will ha
some meaning (rather than traditional presence/absence
bols used in text or DNA strings). This further implies that vid
string edit distances will have to contend with the values attac
to the symbols in the alphabet. The value typically depends o
classification method adopted and the particular features
which the vstring is derived. Second, the three basic edit o
ations (ins, del, subs) will not be adequate in modeling certa
characteristics found in the vstring, such as repetitions. Fur
the cost of a video string edit operation will typically be affec
by the parameters of the edit operation. For instance, the co
some operations will depend on the number of symbols in t
input and output strings. We therefore need to make appr
ate considerations with respect to the special nature of vstr
the unique characteristics of video sequences, and the diff
types of transitions that may occur in such sequences.

3.1. vString Edit Operations

Video sequences often involve special video edit operat
(such as those used to produce special effect transitions)
cial video functionalities (such as fast forward/reverse), or s
form of frame skipping (used to improve the speed of proc
ing). To account for the differences that may arise from th
unique aspects of video, new edit operations are required in
puting the edit distance between two video sequences. Fo
vstring distance, we need to make a slight modification to

definition of an edit operation. We relax the constraint (|x| ≤1,
|y| ≤1) on the length of the strings involved in the edit operatio
E, AND KING
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DEFINITION 5. ThevString edit operation, written as (x→ y),
is a pair (x, y) 6= (ε, ε) of strings, where|x| ≥0 and|y| ≥0. That
is, rather than mere single symbols,x, y (the input and output of
the operation) there could be strings with more than one sym

This modification becomes important when we consider so
new edit operations required for video strings, especially th
that act on blocks of symbols, such as theblock-swapor fusion
operation. For the vstring, we extend the traditional edit dista
by defining some new edit operations, namelyswap/transposi-
tion, break, and fusion/fissionoperations. Generally, for a give
alphabet6, the vstring edit operationOp can be represented a
Op={ ab O}; i.e., insertion: a= ε, b∈6; deletion: a∈6, b= ε;
substitution:a, b∈6; swap:a, b∈6∗; fusion:a, b∈6∗; break:
a, b∈ℵ, whereℵ= {ε, $}, ℵ∩6=Ø, 6 is the vstring alpha-
bet, and6∗ stands for any combination of symbols in6. We can
then use the new edit operations and adopt an approach sim
to that used for traditional edit distances to define a correspo
ing distance measure between video strings. The three new
operations are described below.

SWAP. Interchange two symbols (or blocks of symbol) in
one of the strings:abcde→adcbe,abdc→adbc (transpose
b and d); abdc→ cbda (transposea and c). We note that in
video, apart from the temporal positioning, the actual conte
of the frames in the sequence are also important in assessin
similarity between sequences. Thus, the transposition opera
will be useful in handling the special transitions such as a p
tial reverse, primarily caused by video editing (see Example
Though the temporal ordering may not be the same in th
cases, the contents of the scene may still be viewed as sim
by the human observer, since the frames basically contain
same information.

The swap/transposition edit operation can be characterize
the size of the strings to be swapped, the number of symbols
arating them in the database string, and the number of sym
separating them in the query string. This is illustrated by

A: S1 1d S2

B: S2 1q S1

S1 and S2 are the strings (not necessarily single symbols,
|S1| ≥1, |S2| ≥1) to be swapped,1d is the number of symbols
separating them in the database string, and1q is the correspond-
ing size of the separation in the query string. Depending on
values of1d and1q, we can define three variants of the sw
edit operation:

1-swap:1d=1q=1; the swap operation can be applied
any of the sequences (the database or the query) at the same
This is also called atranspositionoperation.
1d-swap:1d <1q; the swap operation will be applied to th

database string.
n.
1q-swap:1q <1d; the swap operation will be applied to the

query string.
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In all cases, swapping is performed oneitherthe database or th
query string (but not both), depending on the one that will re
in the minimum cost. The formulation above is fairly general. F
instance, in [21]|S1| = |S2| =1 in all cases, and transposition
only valid for adjacent symbols (1d=1q= 1 ). With the above
formulation, however, we can introduce a new edit operat
needed for video strings—theblock-swapoperation. Unlike the
usual swap or transposition edit operation, here we can s
blocks of symbols in one single operation, rather than throug
repeated use of the swap operation. Appendix A shows ho
compute the cost for the swap edit operation.

FUSION/FISSION. Fusion merges a consecutive stream of
same symbol into a single symbol:aaa→a; fission converts
a single symbol into a stream of symbols all of the same ty
a→aaa. This is needed to deal with the repetitive nature
symbols in a video string. A single symbol can be split in
many symbols of the same type (fission). Similarly, consecutive
symbols of the same type can be merged into a single sym
( fusion).

Let [aa · · ·a] ( p symbols) be represented asap. The fusion/
fission operation then performs a simple transformation:ap→
at , t = f (p)= 1, 2, . . .. Thus, f (p) determines the extent o
the fusion/fision operation. For example, iff (p)= | pr |, with
r = 3, the following will result from the application of the fusio
operator:aa→a; aaa→a; aaaa→aa; a6→aa; a7→a3=
aaa. The choice of the parameterr can be made based on th
application, or based on the length of the database and q
sequences. Typically,t ≤dn/me, since in the extreme case, th
pattern (query string) will be made up ofm identical symbols;
i.e., B= b1b2 · · ·bm= bm. The fusion/fission operation is, thu
a form of normalization or scaling1 on the original strings. It also
provides a natural way for handling special video frame tran
tions, such as fast forward and slow motion, which are usu
achieved by frame dropping or frame repetition. The cost of s
an operation may be different from that of the repetitive use
the insert or delete operations.

By simply makingt > p, we obtain the fission (split) oper
ation. In general, however,t < p, and in practice we can ac
complish both the fusion and fission operations by use of o
the fusion operator. That is, before any symbol is used in
edit operation, we look ahead to check if it can be fused w
the adjacent symbols. On the other hand, we can presca
database and query strings and apply the fusion operator w
the adjacent symbols meet the criteria for a fusion. The s
bols resulting from such a fusion operation are then marked
the purpose of cost and distance computations. Thus, unlike

other edit operations which only need to be applied dynamica
on only one of the strings, the fusion operation can be app

1 Though scaling as used here is related to the notion ofscaled matching
introduced by Amiret al.[5], our definition of scaling is different. Here, scaling i
only within the symbols in a string, while in [5], scaling was defined on the en
string, i.e. forA=a1a2 · · ·an, As=as

1as
2 · · ·as

n 6= (AA· · · A)= A concatenated
s times, wheres is the scaling factor.
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to both strings and this can be done offline, before starting
comparison. In the subsequent sections, we shall use only fu
for the fusion/fission operation.

BREAK. Break inserts or deletes a scene break between tw
adjacent symbols: insert break, ab→a$b; delete break,
a$b→ab ($stands for a scene break). This is a special edit
operation that allows the insertion or deletion of video sce
breaks at any point in the sequence. Because of the signific
of scene breaks in video sequences, they may not be very a
rately modeled as an ordinary concatenation, or by mere in
tion and deletion operations.

3.2. The vString Edit Distance

The bases for the vstring representation are the feature
ues, which are real (continuous) numbers, representing num
cal quantities in the video, such as color, angles, or motion.
vstrings, on the other hand, have discrete values, but dep
on the original feature values. We call the continuous feat
values thebase/primary representation, and refer to the vstring
as thesymbolic/secondary representation. For the vstrings, we
consider the differences due to both the base representation
the symbolic representation. We refer to the former as the b
or primary edit distance, and the latter as the secondary or s
bolic edit distance. This combination also provides a natu
way for handling the fact that the video string could be multid
mensional and that symbols in a vstring could be multivalu
Methods for multidimensional pattern matching [16] can th
be used to compute the corresponding multidimensional s
bolic edit distance, while traditional multidimensional distan
metrics can be used on the multidimensional feature values
for the base representation.

DEFINITION 6. For a given symbol, in the vstring, itssymbol
valueis a specially assigned numerical value based on the ac
feature values. Let6i be the symbol value of thei -th symbol in
the alphabet6. Sincei = 1, 2, . . . , |6|, the assignment is simply
performed by using6i = i .

We use the actual feature values to derive the vstrings,
we use the symbol values for computing the base distance.
symbol value thus directly depends on the feature value. We s
use feature values and symbol values interchangeably, un
otherwise stated.

3.2.1. vString Symbolic Edit Distance

Using the new operations, we can derive a general dista
measure for video strings as follows: LetOp be the set of
edit operations:Op={insertion, deletion, substitution, swap, fu-
sion, break}, and letαp be another set containing the respe
tive cost of each edit operation:αp={αins, αdel, αsub, αswa, αfus,

αbre}. Also, let SE denote a sequence of edit operations wh

transformsA into B: SE = {a1

b1
O1,

a2
b2

O2, . . . ,
al
bl

Ol },whereai
bi

Oi

indicates thatai → bi by edit operationO, (O ∈Op), at edit step
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i ; ai andbi are the two symbols2 involved in i th edit operation
We can then determine the symbolic edit distance betweeA
andB, based on the cost of using this particular edit seque

c(SE) =
∑

Oi=insertion

αinsd
(ai

bi
Oi
)+ ∑

Oi=deletion

αdeld
(ai

bi
Oi
)

+
∑

Oi=substitution

αsubd
(ai

bi
Oi
)+ ∑

Oi=swap

αswad
(ai

bi
Oi
)

+
∑

Oi=fusion

αfusd
(ai

bi
Oi
)+ ∑

Oi=break

αbred
(ai

bi
Oi
)
,

(6)

whered(a
bOl ) is a distance function whose result depends

marily on the edit operationOl . The result could also be mad
to depend ona andb. If the distance is independent ofa and
b, the symbolic distance defaults to the traditional edit dista
incorporating the new edit operations. Since we will typica
have different sequences of edit operations that can trans
A into B, we will equally have a set of such edit sequenc
SA→B={S1

E, S2
E, . . . , Sq

E}, whereSi
E is thei th edit sequence tha

transformsA into B. The symbolic edit distance betweenA and
B, ds(A, B) is then given by the minimum cost edit sequenc

ds(A, B) = min{c(SE) | SE ∈ SA→B}. (7)

By choosing different cost functions, different values will
obtained for the edit distance. As with ordinary edit distan
if the distance functiond(a

bOl ) is a metric, the edit distanc
ds(A, B) between stringsA andB will also be a metric.

3.2.2. vString Base Edit Distance

The symbolic edit distance is a simple extension from
traditional edit distance, but with consideration of the spe
vstring edit operations. On its own, it cannot capture impor
differences in visual content. The base edit distance, on the
hand, uses the feature values and, thus, can capture imp
content information. The base edit distance can be calculate
ing the minimum cost edit sequence used to obtain the sym
edit distance. That is, computing the base edit distance need
be performedafter computation of the symbolic edit distanc
Thus, computation of the base edit distance will not add to
complexity of the symbolic edit distance, since, at worst, o
O(m) additional computations will be required.

On the other hand, the minimum-cost edit path for the s
bolic distance may not necessarily lead to a minimum cost
for the base distance. Thus, we need to search for the m
mum cost path for the base distance, though using a sim
procedure. This will, however, lead to an additional com

tational cost inO(nm). Let SA→Bmin represent the minimum
cost edit sequence that transformsA into B using the base

2 They could also be symbol blocks for certain edit operations, for insta
in the fusion or the swap edit operation.

can
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edit distance.SA→Bmin is an ordered sequence of edit operation
SA→Bmin ={a1

b1
O1,

a2
b2

O2, . . . ,
al
bl

Ol }. We define the base distanc
betweenA and B based on the above minimum cost edit s
quence:

db(A, B) =
l∑

i=1

dp
(ai

bi
Oi
)
. (8)

More generally, we can express the base distance using the
eral Minkowsky metric:

db(A, B) =
[

l∑
i=1

[
dp
(ai

bi
Oi
)]p

]1/p

, (9)

wheredp(ai
bi

Oi ) is a distance function that uses the feature valu
to compute the primary distance between symbols. Since
symbol (feature) values are used, the result depends not
on the specific edit operation, but also on the symbols involv
We usedp to denote the primary distance betwensymbolsin the
vstring, whiledb denotes the base (primary) distance betwe
vstrings.

DEFINITION 7. Let fv(x) be thesymbol value for symbol
x. Let X : x1x2 · · · xz be a string. Theaverage symbol valuefor
string X is defined as

f̃ v(X) = 1

z

z∑
i=1

fv(xi ). (10)

An analogous definition can also be made using the orig
feature values. The average is then transformed into a sym
value using the alphabet size. We use Definition 7 to derive
primary distance between symbolsdp(·). For each of the vstring
edit operations,dp is defined as

dp(a, b) =



KI + | fv(b)− f̃ v(B)| (insertion)

KD + | fv(a)− f̃ v(A)| (deletion)

| fv(a)− fv(b)| (substitution)

KW + | fv(a)− fv(b)| (swap)

KF + | fv(a)− fv(b)| (fusion),

(11)

whereKW, KB, KD, KF , andKI are constants.
If a andb are symbol-blocks, rather than single symbols, i

a=a1a2 · · ·as, b= b1b2 · · ·bs, then we define the base distan
for the block-swap edit operation as

dp(a, b) = Kw +
s∑

i=1

| fv(ai )− fv(bi )| (block-swap). (12)

The above definition for is quite general. The constants
ncebe assigned the value of zero when desired. For instance, we
may not need to assign any other special cost after the fusion
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DISTANCE MEASURE F

(or fission) operation, since we will need to apply other edit
erations on the symbols. The base distance for theinsertionor
deletionoperation depends on the symbols involved. The i
is that, if for instance we insert a symbol into a stringX, the
distance should be small if the inserted symbol is similar to
average symbol inX. We should have a larger distance if th
inserted symbol is very different from the rest of the symbols
X. The substitution operation has no further cost attached
since it does not require extra operations on the symbols.
break operation is not explicitly indicated in (11). Typically,db

andds will be used together; thus, the symbol distance will a
account for the break operation. However, if (11) is to be u
independently, the break operation will need to be indicated
plicitly. As always, the cost of the special edit operations sho
be no larger than the equivalent cost of using the traditional
operations to perform the required transformation. Appendi
shows how to compute the extra cost involved in using the s
operation.

A comment is in order on distances involving the fusion o
eration. The distance computation uses the fusion part on
eithera or b is the result of a fusion operation. For example
the substitution operation involves a symbol that is the resu
a previous fusion operation, an extra costKF is incurred. Ob-
viously, if the computation branches into the fusion part; th
(a, b) 6= (ε, ε). If a= ε, then fv(a) is replaced withf̃ v(B), Con-
versely, ifb= ε, fv(b) is replaced withf̃ v(A). The constants can
be chosen based on the specific application. However, we sh
haveKF ≤ KD, KF ≤ KI for the fusion operation to be meanin
ful. (See sections on normalization and experiments.) Also,
implies that, apart from the additional fusion cost,KF , no other
attention is paid to the actual input strings involved in the fus
operation. In a later section, we present an alternative me
that computes the distance with consideration of the input/ou
strings.

3.2.3. vString Edit Distance

The finalvstring edit distance Dv(A, B) is obtained by com-
bining the symbolic edit distance and the base edit dista
through a weighting function,

Dv(A, B) = β · ds(A, B)+ (1− β) · db(A, B), (13)

whereβ is a weighting function (0≤β ≤ 1) which biases the
weight to either the symbolic or the base distances. The
tancesds anddb are suitably normalized. The appropriate cho
for the weighting function is still an issue that has to be cons
ered, but it can generally be application dependent or it ca
given as an option for the user to decide. The vstring edit
tance described above may/or may not be a metric. Howe
the following lemma holds.
LEMMA 2. If ds and db are metric distances, then the vstring
edit distance Dv(A, B) between two video strings A and B is als
R VIDEO SEQUENCES 33
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a metric. That is, Dv(A, A) = 0, Dv(A, B) ≥ 0, Dv(A, B) =
Dv(B, A), Dv(A, B) ≤ Dv(A,C)+ Dv(C, B).

4. ALTERNATIVE DISTANCE COMPUTATION FOR
MATCHING WITH THE FUSION OPERATION

We can apply the fusion operation offline on both the qu
and the database strings before performing the matching, w
keeping information on the parameters of the operation (p and
t). The vstring distance can then be computed by manipula
the parameters and by use of the internal representation o
modified vstrings. We assume thatt is fixed att = 1, while p
can vary. Thus, internally, we use the length difference betw
the input and output strings as part of the internal representa
That is, for the simple transformation performed by the fus
operation,ax→ay, we represent the result asa|x−y|.

EXAMPLE 4. Table 2 shows the internal representation for
results of the fusion operation on sample input strings.

To compute the cost of the fusion operation, we use the ab
internal representation by making the following consideratio

1. The fusion operation can be realized by repetitive insert
or deletion.

2. Matching with fusion should result in smaller distance
as compared with the distances obtained without fusion (i.e.
use of, say, repeated deletion).

3. The larger the difference between the length of the in
and output strings (x andy), the larger the cost. The differenc
also depends on thep andt parameters.

The first two considerations imply that the cost of the fusi
operation can be made a function of the cost for insertion an
deletion. The last point was not considered by Eq. (11). Be
we give an alternative method for computing the distance, ba
on the internal representation.

Let: A : a1a2 · · ·an andB : b1b2 · · ·bm be the initial vstrings.
Let Af : cn1

1 cn2
2 · · · cnn f

n f
andBf : dm1

1 dm2
2 · · ·d

mm f
mf be their corre-

sponding international representations, whereci is thei th sym-
bol in A f , ni is the difference between the lengths of input a
output strings from whichci was formed, andn f = |Af | is the
length of the new string; and similarly forBf . Also, let K f be
the new cost for the fusion operation using the alternative co
putation,K f ≤ KD, K f ≤ KI . TheK f used here is not neces
sarily equal to theKF in (11). In the last section, the distanc

TABLE 2
Results of the Fusion Operation and Their Internal

Representation ( p = 3, t = 1)

String1 String2 String3

Original string aabbbc aabbbbc aaaabbbbbccc
o

String after fusion abc abbc aabbc
Internation representaion a1b2c0 a1b2b0c0 a2a0b2b1c2
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betweenAf andBf was computed using only the values forci

anddj , while ignoring the length difference between the inp
and output strings. A better measure of the distance shoul
clude information on the parameters of the fusion operation.
the discussion here, we assumeK f = KD and p = 3, t = 1.

We observe thatf̃ v(A) and f̃ v(B) can be computed direct
from the internal representationAf and Bf , respectively. We
use the following equivalent definition for the average sym
value for the original stringA, using the internal representio
Af :

f̃ v(A) = f̃ v(Af ) =
∑n f

i=1(ni + 1)ci∑n f

i=1(ni + 1)
. (14)

To obtain the distance between two symbolscni
i from Af and

d
mj

j from Bf , we need to consider five cases:

CaseI. Simple case of repeatitive substitution:

ni = mj , ci 6= ε, dj 6= ε,
d
(
cni

i , d
mj

j

) = (ni + 1)| fv(ci )− fv(dj )|. (15)

CaseII. Trivial case of insertion:

ni 6= mj , ci = ε, dj 6= ε,
d
(
cni

i , d
mj

j

) = (m1+ 1)(K f + | fv(dj )− f̃ v(Bf )|). (16)

CaseIII: Trivial case of deletion:

ni 6= mj , ci 6= ε, dj = ε,
(17)

d
(
cni

i , d
mj

j

) = (ni + 1)(K f + | fv(ci )− f̃ v(Af )|).

CaseIV. More difficult case of insertion or deletion:

ni 6= mj , ci = dj ,

d
(
cni

i , d
mj

j

)
(18)

=
{|ni −mj | · (K f + | fv(ci )− f̃ v(Af )|), if ni > mj ,

|ni −mj | · (K f + | fv(di )− f̃ v(Bf )|), if ni < mj .

CaseV. Most difficult case, requring substitution and inse
tion and/or deletion:

ni 6= mj , ci 6= dj , ci 6= ε, dj 6= ε,
d
(
cni

i , d
mj

j

) = (1+min{ni ,mj }) · (| fv(ci )− fv(dj )|)
(19){ |n −m | · (K + | f (c )− f̃ (A )|), if n > m ,
+ i j f v i v f i j

|ni −mj | · (K f + | fv(di )− f̃ v(Bf )|), if ni < mj .
E, AND KING
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TABLE 3
Example Parameter Values for Different Cases of the Fusion

Operation ( p = 3, t = 1)

Original After
Case Description strings fusion ci , dj ni ,mj

I ni = mj ; ci 6= ε; dj 6= ε A : aaa Af : a2 ci = a ni = 2
B : bbb Bf : b2 dj = b mj = 2

II ni 6= mj ; ci = ε; dj 6= ε A : ε A f : ε ci = ε ni = −1
B : bbb Bf : b2 dj = b mj = 2

III ni 6= mj ; ci 6= ε; dj = ε A : aaa Af : a2 ci = a ni = 2
B : ε Bf : ε dj = ε mj = −1

IV ni 6= mj ; ci = dj A : aaa Af : a2 ci = a ni = 2
B : aa Bf : a1 dj = a mj = 1

V ni 6= mj ; ci 6= dj ; A : aaa Af : a2 ci = a ni = 2
ci 6= ε; dj 6= ε; B : bb Bf : b1 dj = b mj = 1

The above cases are sumarized in Table 3 with exam
strings. In the table, values of−1 were used in the internal repre
sentation of the null symbol. This is simply to distinguish it fro
other symbols which could have zero in their internal represe
tion. From (15) and (16), this will have no effect on the distan

Notice that the above distance computation always select
minimum cost path. With the above method, the fusion cost
no longer appear as an explict edit cost, but will be embedde
the other operations. More importantly, we can also use the a
relations for the symbolic distance. We recall that the symb
distance treats the symbols as binary (presence/absence)
bols. Thus, to use the alternative computation for the sym
distance we make use of the definitions:

fv(ci )− fv(dj ) =
{

0, if ci = di ,

1, if ci 6= di ;
(20a)

fv(x)− f̃ v(X) = 0. (20b)

Since the time required for string matching is in O(nm), the
main advantage in using the alternative computation is the
proved speedup in the matching process. Typically,n f ≤ n and
mf ≤ m, implying that shorter strings are manipulated by t
alternative method. The above internal representation is u
to keep the presentation simple. The representation is ne
optimal in space nor in time. Thus, there is room for some
provement, for instance by increasing the value ofp. A better
approach could be to enforce a constraint,ci 6= ci+1, in which
no two adjacent symbols in the internal representation will
the same. Here, a given symbolci in Af can be internally rep-
resented ascxi ,yi

i , wherexi and yi now explicitly express the
length of the input and output symbols. An alternative com
tation using the new representation can be derived and us
compute the edit distances. It is interesting to observe the
nificance of the alternative distance computation. The inte
representation is essentially a form of encoding on the vi

strings. This means that the method can equally be applied on
encoded sequences, such as run-length encoded sequences.
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5. NORMALIZATIONS

For the normalizations below, we assume equal costs for
three traditional edit operations. With unequal costs, differ
normalizations may be needed. For the vstring symbol dista
ds, the major normalization required is that against differen
in sequence lengths. We use two normalizations on the sym
edit distance:

NORM1: ds1 = ds − ||A| − |B||
min{|A|, |B|} (21)

NORM2: ds2 = ds

max{|A|, |B|} . (22)

NORM1 emphasizes theexistenceof similar subsequences be
tween the database and the query, while minimizing the ef
of length differences. The smaller the distance between the
quences, the longer the similar subsequence(s)—hence, the
the overall similarity. Matching withNORM1 will thus result in
better recall, but less precision. Hypothetically, retrieval ba
only onNORM1 could return a one-frame sequence for a 10
frame query, where the 1000 frames are all copies of the s
frame.

NORM2 accounts for bothcontent-similarityand length dif-
ferences. The results are more precise (in terms of both vis
content and sequence duration), butNORM2 could miss out pos-
sibly similar sequences (say, in terms of visual content) pu
on account of length differences.

With the vstring base distance, we perform a transforma
into symbols with the actual feature values, but use the sym
values for matching. Therefore, the symbol value depends
the alphabet size. The vstrings thus needs to be normalize
different alphabet sizes. For thei th symbol in an alphabet6,
the symbol value is given by6i = 1, 2, . . . , |6|. We normalize
the symbol values asfv(6i )=6i /(|6| −1). Thus, the symbo
values fall in the range of 1/(|6| −1) to 1+ 1/(|6| −1) and not
necessarily from 0 to 1.

Like the symbol distance, the base distance is also norma
against differences in sequence lengths. The major issue h
that, unlike the symbol distance, the primary distance betw
two symbols will not necessarily be 1 but will depend on th
symbol values. Thus, we need to adjust the sequence len
(and their differences) accordingly. For the base distancedb, the
corresponding normalizations are:

NORM1: db1 = db − ||A| − |B|| · (| f̃ v(A)− f̃ v(B)| + KI )

min{|A|, |B|} ·max{ f̃ v(A), f̃ v(B)} ,

(23)

KI = 1

|6| − 1
,

NORM2: db2 = db

min{|A|, |B|} ·max{ f̃ v(A), f̃ v(B)} . (24)
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KI is used to remove the additional cost incurred by the ex
deletions or insertions that will be needed on sequences
are of differing lengths.KI = KD are the same as the constan
used in see Section 3. The constants decrease with increa
alphabet size. This is logical since the distance will typica
increase with increasing alphabet size. Thus, if used as defi
above, the constants will also serve to reduce the effect of
alphabet size.

In subsequent sections, we assumeds anddb are in the nor-
malized form, unless otherwise stated.

6. EXPERIMENTS

To check the effectiveness of the proposed distance mea
we carried out some tests using real video sequences. Th
periments were carried out in a MATLAB environment, runnin
on UltraSparc workstations. Two color features from the fram
(the average color and the standard deviation) were used a
indexing features. Each frame in the sequence was subdiv
into η subframes, and for each subframe two different vstrin
were formed using the two features. The vstring edit distan
(ds anddb,) were then computed independently for each feat
and for each subframe, after which the results were combin
For the experiments, we used the unit cost for each edit op
tion: η= 9, except for the case of studying the effect ofη; and
|6| =4, except when studying the effect of|6|. For all exper-
iments, we used the actual feature values to derive the vstr
and then used the symbol values to calculate the base dista

First, we studied the behavior of the vstring base and sym
distances under the two methods of normalization (NORM1 and
NORM2) for different settings of the alphabet size|6|, and num-
ber of subframes,η. Information about such behavior is require
for parameter setting and for fine-tuning the results. For insta
we need to determine appropriate scaling factors and weight
combining sayds anddb (orNORM1andNORM2) results. We took
different sequences and selected 12 scenes from each sequ
For each sequence, the vstring distance between the 12 sc
was computed. The scenes were selected to include both sim
and nonsimilar scenes in the sequence.

Figure 1 shows the variation of the distances with the alpha
size for different distance normalizations. For bothNORM1 and
NORM2 the symbol distanceds (Figs. 1a and b) was found to b
very sensitive to|6|, increasing quite rapidly with the alphabe
size. This is expected since the probability of having a match
creases with increasing alphabet size. On the other hand, the
distance (Figs. 1c and d) is more stable; though it also chan
with |6|, the change is much less when compared with the c
of ds. This is a more preferable behavior since the underly
similarity (or distance) between two scenes should not be gre
affected by small changes in the alphabet size. The figure
shows that, underNORM2, db decreases with increasing alphab
size. Though less obvious, this is due to the effect ofKI andKD
(KI = KD = 1/(|6| −1)). For two given sequences, the length
difference is constant, but the additional cost due to the extra
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FIG. 1. Variation of vstring edit distances with alphabet size, for two

insertion/deletion needed to transform one sequence into
other is inversely proportional to|6|. As expected, for a given
alphabet size the distances obtained usingNORM2 are always
greater than those fromNORM1. Similarly, the symbol distance
are generally greater than the base distances. The same
tions are shown on a log scale, indicating that for a givenη the
vstring distances tend to change more linearly with the log
|6|, rather than with|6|.

Figure 2 shows the variation of the distances for varying nu
ber of subframes,η, for different values of|6|. We expected the
distance to increase with increasingη, since increasing the num
er of subframes should imply that more specific information
eing used to match the sequences. However, it was obse
istance normalizations: (a, b) symbolic edit distances; (c, d) base edit dista

the

aria-

of

m-

that for a given alphabet size the distances were generally
ble for different values ofη. Thoughdb increased slightly with
increasingη, the increase is negligible (typically less than 0.
for the values of|6| tested). The implication is that, with respe
to the color features used—(the average color and the stan
deviation),η is not a critical issue. We do not think that this w
be the case in general; it could be different for other featu
such as motion. Judging from the results shown in the figure
can conveniently use any value forη (we suggestη≥ 9) without
affecting the results. This is an important consideration (e
cially for speed), since more time will be required to compute

is

rved
combined distance (from theη vstrings for each feature used)
asη gets large. On the other hand, for a givenη, ds increases
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FIG. 2. Variation of vstring base and symbol edit distances with num

for both NORM1 andNORM2 while db increases forNORM1, but
decreases forNORM2 as|6| increases. This mirrors the observ
tions from Fig. 1, but for different values ofη.

To evaluate the vstring distance measure, we then comp
the results returned by the proposed methods by visually c
paring different video sequences for similarity. First, we us
the same sequences used in studying the behavior of the
tances (i.e. the 12 specially selected scenes for each seque
For each sequence each of the 12 scenes was matched a
the other 11 scenes in the sequence. Figure 3 shows the r
sentative frames (selected periodically from each scene) for
of the sequences. The sequence is taken from a news vid

relatively simple video), and thus, it is easy to visually compa
the scenes.
ber of subframes for different alphabet sizes using two distance normalizat

-
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m-

ed
dis-
nce).
ainst
pre-

one
o (a

The distance results are shown in Tables 4 and 5 forNORM1.
Table 4 shows the vstring distance matrix for the 12 scenes, w
Table 5 gives the ranking of the scenes based on their similari
using the vstring distance. The indicated distances are the c
bined distances obtained fromds and db, usingβ = 0.5. For
|6| =4 we multiplieddb with an initial scaling factor of 1.75
before combing withds. This was informed by the average va
ues ofds anddb for a given|6| for the different normalizations
It can be seen that the length differences have no effect on th
sults. Equivalent results forNORM2 are shown in Tables 6 and 7
No further scaling was used onds anddb, since their values are
comparable at|6| =4. TheNORM2 results are, however, ver

remuch influenced by the differences in scene lengths. (Compare
the ranking of v1 versus v11 and v12 in Table 3 with those in
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FIG. 3. Representative frames for 12speciallyselected scenes for one of the video sequences used in testing. Scenes are selected such that, both s
nonsimilar sequences will be included. The scene lengths are given in the tables. The indicated scenes are taken from a news video—a relatively simsequence
and, thus, easy to compare.
FIG. 4. Three representative frames for 24randomlyselected scenes from six different video sequences. From each sequence, four scenes were selected randomly,
without regard to their similarity. The scenes are arranged (and can be grouped) according to their original source:ADVERT-1,V1–V4;NEWS, V5–V8;COMMERCIAL-FILM-1,
V9–V12; COMMERCIAL-FIRM-2, V13–V16; ADVERT-2, V17–V20; DOCUMENTARY, V21–V24. The scene lengths are given in the tables (see text).
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TABLE 4
vString Distance Matrix for the Video Sequences

(Using NORM1) Shown in Fig. 3

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
Lena 155 386 563 53 85 38 121 46 110 414 434 1

v1 0 0 0 0 0 0 0 0 0 0 0 0
v2 0.09 0 0 0 0 0 0 0 0 0 0 0
v3 0.11 0.06 0 0 0 0 0 0 0 0 0 0
v4 0.59 0.61 0.590 0 0 0 0 0 0 0 0
v5 0.66 0.66 0.64 0.120 0 0 0 0 0 0 0
v6 0.56 0.60 0.57 0.12 0.160 0 0 0 0 0 0
v7 0.04 0.13 0.10 0.66 0.69 0.630 0 0 0 0 0
v8 0.61 0.69 0.68 0.57 0.54 0.56 0.630 0 0 0 0
v9 0.63 0.62 0.59 0.33 0.36 0.31 0.67 0.35 0 0 0

v10 0.09 0.04 0.05 0.54 0.61 0.51 0.09 0.62 0.57 0 0
v11 0.66 0.65 0.64 0.29 0.30 0.28 0.66 0.46 0.32 0.64 0
v12 0.73 0.70 0.68 0.31 0.34 0.33 0.75 0.51 0.38 0.67 0.03

a Len stands for length of the video sequence.

Table 5. Visually, v11 and v12 look similar, but differ in scene d
ration). Typically for bothds anddb, NORM2distances are always
greater than the correspondingNORM1 distances.3 While NORM1
provides results that are visually more intuitive, the advant
of using NORM2 is that any two sequences that it proposes
similar (the first few positions in the ranking) will be similar i
bothdurationandvisual content. NORM2 thus provides a more
accurate result, but at the risk of missing out some scenes
are visually similar, but which differ only in scene duration.4

The technique was then used on a more difficult set of vid
sequences. Here, four scenes were randomly selected from
different video sequences (for a total of 24 scenes). (The sc
were not involved in the previous test with 12 scenes). E
of the 24 scenes were then matched against the remainin
scenes in the set. This is a controlled simulation of the pract
situation where one will wish to search for a given video sce
in a video database, which typically contains video sequen
from different sources. Figure 4 shows the representative fra
for each scene. The scenes are arranged (and can be gro
according to their original source:ADVERT-1, V1–V4; NEWS, V5–
V8; COMMERCIAL-FILM-1, V9–V12; COMMERCIAL-FIRM-2, V13–V16;
ADVERT-2, V17–V20; DOCUMENTARY, V21–V24. Scenes belonging
to the same group are not necessarily similar.
The results are shown in Tables 8 and 9. We take visual si
ilarity to be more important than length differences, and th

3 Some values in Table 4 (NORM2) are smaller than the corresponding value
in Table 2 (NORM1) due to the scaling factor used on the results fromNORM1.

4 A comment is in order on the use ofNORM1 andNORM2 results. We can sim-
ply take a weighted average of the results from the two normalization metho
This will, however, lose information about the cause of any differences—if t
sequences are not similar. SinceNORM1 could lead to no misses (with respect to
visual content as compared to results fromNORM2), a better method for com-
bining the two results could be to useNORM1 results for the initial selection of
probable (visually)similar scenes and then to useNORM2 results to verify if the
scenes are also similar in duration.
, AND KING
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TABLE 5
Ranking of the Video Sequences in Descending Order

of Similarity—Based on the Vstring Distance

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
Len 155 386 563 53 85 38 121 46 110 414 434 13

Rank
1 1 2 3 4 5 6 7 8 9 10 11 12
2 7 10 10 5 4 4 1 9 6 2 12 11
3 10 3 2 6 6 5 10 11 11 3 6 4
4 2 1 7 11 11 11 3 12 4 1 4 6
5 3 7 1 12 12 9 2 5 8 7 5 5
6 6 6 6 9 9 12 8 6 5 6 9 9
7 4 4 9 10 8 10 6 4 12 4 8 8
8 8 9 4 8 10 1 4 1 10 9 10 10
9 9 11 5 1 3 8 11 10 3 5 3 3

10 5 5 11 3 1 3 9 7 2 8 2 2
11 11 8 8 2 2 2 5 3 1 11 1 1
12 12 12 12 7 7 7 12 2 7 12 7 7

TABLE 6
vString Distance Matrix (Using NORM2) for the Video

Sequences Shown in Fig. 3

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
Len 155 386 563 53 85 38 121 46 110 414 434 13

v1 0 0 0 0 0 0 0 0 0 0 0 0
v2 0.45 0 0 0 0 0 0 0 0 0 0 0
v3 0.54 0.25 0 0 0 0 0 0 0 0 0 0
v4 0.71 0.78 0.79 0 0 0 0 0 0 0 0 0
v5 0.67 0.77 0.79 0.330 0 0 0 0 0 0 0
v6 0.73 0.79 0.79 0.29 0.480 0 0 0 0 0 0
v7 0.17 0.52 0.57 0.70 0.66 0.730 0 0 0 0 0
v8 0.73 0.82 0.83 0.51 0.62 0.53 0.710 0 0 0 0
v9 0.61 0.74 0.77 0.55 0.41 0.61 0.58 0.59 0 0 0 0

v10 0.47 0.07 0.22 0.77 0.76 0.78 0.52 0.81 0.74 0 0
v11 0.74 0.56 0.60 0.75 0.71 0.77 0.76 0.81 0.69 0.53 0
v12 0.63 0.76 0.79 0.59 0.48 0.66 0.63 0.71 0.40 0.76 0.55

TABLE 7
Ranking of the Video Sequences in Descending Order

of Similarity Using NORM2 Distance

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
Len 155 386 563 53 85 38 121 46 110 414 434 13

Rank
1 1 2 3 4 5 6 7 8 9 10 11 12
2 7 10 10 6 4 4 1 4 12 2 10 9
3 2 3 2 5 9 5 10 6 5 3 12 5
4 10 1 1 8 12 8 2 9 4 1 2 11
5 3 7 7 9 6 9 3 5 7 7 3 4
6 9 11 11 12 8 12 9 12 8 11 9 7
7 12 9 9 7 7 1 12 7 1 9 5 1
8 5 12 12 1 1 7 5 1 6 12 1 6
9 4 5 5 11 11 11 4 11 11 5 4 8

10 6 4 4 10 10 10 8 10 10 4 7 10

11 8 6 6 2 2 2 6 2 2 6 6 2
12 11 8 8 3 3 3 11 3 3 8 8 3
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DISTANCE MEASURE F

only NORM1 results are indicated. We acknowledge the fact
the distance values returned by the proposed distance me
may not always correspond to what a human observer may a
to the scenes; our experiments were based only on color fea
In retrieval involving visual data, however, the ranking of t
results are often taken to be more important. We can see
the tables that the rankings returned by the distance measu
quite reliable—the visually similar scenes are always ran
in the first few positions. The tables thus show that the vst
edit distance provides a good measure of the similarity betw
video sequences.

7. CONCLUDING REMARKS

An edit distance based method has been presented for
suring the similarity between video sequences. The vstring
distance incorporates two basic components that account fo
visual similarity between video scenes and for the tempo
constraints in the video. Experimental results have shown
the vstring edit distance is able to rank different video sce
consistently according to their similarity. The vstring edit d
tance thus provides a reliable measure of the distance bet
video sequences. It can form the basis for applications wher
trieval requires a consideration of the spatio-temporal constra
in the video, beyond the current method of simple image-ba
retrieval using key frames.

With the proposed measure, the distance between any
vstrings depends very much on the cost of the edit operat
and on the number of edit operations. When the cost of e
edit operation is assumed to be the same, for instance unity
problem of choosing a threshold for similarity is reduced to j
deciding thek-differences that are to be allowed in the mat
As one may have noted from the previous discussions, a uni
cost for each edit operation may not accurately model the
portance of each operation in the video sequence. For instan
deletion operation (analogous to removing one frame in a v
scene) should not carry the same weight as a break operatio
instance inserting a scene break) which divides one scene
two different scenes. Parametric edit distances try to put t
issues into consideration in determining the suitable cost fu
tions for each edit operation and in the choice of thresholds.
the case of traditional string edit distance, some methods
been proposed for the basic edit operations—insertion, dele
and substitution [5, 17]. Parametric video edit distance op
tions can borrow ideas from these proposals for their realiza
with special attention to the new edit operations.

One major problem with the vstring approach is the h
dependence on the robustness of features used to deriv
vstrings. For instance, the edit distance relies more on the
derlying index features for spatial information in the fram
Moreover, if the index features are not invariant under cer

changes in the video sequence, such as illumination or pa
occlusion, edit distances that are computed based on the vs
OR VIDEO SEQUENCES 43
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representation may not be very reliable. The other problem
the computational time and space that may be needed, e
cially when the database and the query sequences are both
Ideas from fast algorithms for traditional string patterns [2
30] can be used to speed up the vstring distance computa
One can still identify other issues that deserve some atten
in using the proposed vstring edit distance, such as mul
mensional vstring edit distance and context-dependent edit
functions.

APPENDIX A: EDIT COST FOR THE
SWAP OPERATION

The swap operation can be realized by a sequence of inse
deletion, or substitution operations. For the special operation
be useful, however, the cost should be less than the cost of u
the traditional edit operations. Consider the schematic be
symbol blockS1 is to be swapped with symbol blockS2:

A: S1 1d S2

B: S2 1q S1

SWAP PROCEDURE. 1= min{1d,1q}: If 1=1d, perform
swap onA; if 1=1q, perform swap onB. Letsb= swap block
size and1bs= separation block size. That is, sb= |S1| = |S2|
and1bs=1. The cost of the block-swapαbswapwill be:

αbswap= (sb +1bs)αdel+ (sb +1bs)αins

= (sb +1bs)(αdel+ αins).

If sequential swap is used—i.e., no block swap operations
allowed, the swap block size will be 1, since only single sy
bols are swapped. The sequential swap will be performed o
for each symbol in the swap block—a total ofsb times. Let
1ss= size of separation block for sequential swap,αseqswap=
cost of sequential swap operation. Since we are still conside
the same string and the same swap operands, we should h

1+1ss+ 1= |S1| +1bs+ |S2|, or 1ss= 2(sb− 1)+1bs;

that is,

αseqswap= (1+1ss)(αdel+ αins)sb

= (2sb +1bs− 1)(αdel+ αins)sb.

Note thatsb and1bs refer to their respective values for the bloc
swap operation. Clearlyαseqswap≥αbswap. Equality holds only
rtial
tring
when sb, the swap block size is 1, in which case any of the
methods (block swap or sequential swap) can be used.
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APPENDIX B: SYMBOLS LIST

A, B Sequence of symbols, or video sequences
represented as vstrings,

n Number of symbols inA
m Number of symbols inB
6 Symbol alphabet
a, b Symbols in6
ε Null symbol
SE Sequence of edit operations
c(s) Cost of edit operations
c(SE) Cost of usingSE

SA→B Set of all edit sequences that transformA into B
SA→Bmin Sequence inSA→B with minimum cost
D(A, B) Edit distance betweenA andB
α Cost function for the edit operations
fv Numerical value of an index feature
q( fv) Quantization level forfv
Op Set of all edit operations
$ Symbol for video scene break
6i Symbol value for thei th symbol in the

alphabet6
αp Set of respective costs for each edit operation

in Op

d( a
b Ol ) Distance between symbolsa andb using edit

operationOl

ds(A, B) Symbolic edit distance betweenA andB
db(A, B) Base distance betweenA andB
dp( ai

bi
Oi ) Base distance between symbols, using the

feature values
f̃ v(X) Average symbol value for stringX
Dv(A, B) vString edit distance betweenA andB
β Weighting function fords anddb

A f Internal representation forA after fusion
operation

kp k-Difference threshold for normalized vstring
distances

η Number of subframes for each video frame
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