
Learning to Recommend

MA, Hao

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong

December 2009

Thesis/Assessment Committee Members

Professor Jeffrey Xu YU (Chair)

Professor Irwin KING (Thesis Supervisor)

Professor Michael R. LYU (Thesis Supervisor)

Professor Yufei TAO (Committee Member)

Professor Qiang YANG (External Examiner)

Abstract of thesis entitled:
Learning to Recommend

Submitted by MA, Hao
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in December 2009

Recommender Systems are becoming increasingly indispensable

nowadays since they focus on solving the information overload
problem, by providing users with more proactive and personal-
ized information services. Typically, recommender systems are

based on Collaborative Filtering, which is a technique that au-
tomatically predicts the interest of an active user by collecting

rating information from other similar users or items. Due to
their potential commercial values and the associated great re-

search challenges, Recommender systems have been extensively
studied by both academia and industry recently.

However, the data sparsity problem of the involved user-item
matrix seriously affects the recommendation quality. Many ex-
isting approaches to recommender systems cannot easily deal

with users who have made very few ratings. The objective of
this thesis is to study how to build effective and efficient ap-

proaches to improve the recommendation performance.
In this thesis, we first propose two collaborative filtering

methods which only utilize the user-item matrix for recommen-
dations. The first method is a neighborhood-based collabora-
tive filtering method which designs an effective missing data

prediction algorithm to improve recommendation quality, while
the second one is a model-based collaborative filtering method

i

which employs matrix factorization technique to make the rec-
ommendation more accurate.

In view of the exponential growth of information generated by
online users, social contextual information analysis is becoming

important for many Web applications. Hence, based on the
assumption that users can be easily influenced by the friends
they trust and prefer their friends’ recommendations, we propose

two recommendation algorithms by incorporating users’ social
trust information. These two methods are based on probabilistic

matrix factorization. The complexity analysis indicates that our
approaches can be applied to very large datasets since they scale

linearly with the number of observations, while the experimental
results show that our methods perform better than the state-of-

the-art approaches.
As one of the social relations, “distrust” also performs an

important role in online Web sites. We also observe that dis-

trust information can also be incorporated to improve recom-
mendation quality. Hence, the last part of this thesis studies

the problem on how to improve recommender system by consid-
ering explicit distrust information among users. We make the

assumption that users’ distrust relations can be interpreted as
the “dissimilar” relations since user ui distrusts user ud indicates
that user ui disagrees with most of the opinions issued by user

ud. Based on this intuition, the distrust relations between users
can be easily modeled by adding the regularization term into the

objective functions of the user-item matrix factorization. The
experiments on the Epinions dataset indicate that distrust in-

formation is at least as important as trust information.

ii

 �����
 �� �
 �� �
 �	 �

��� �
 � �

����
 ��

 ������
 ���������	

 �!"
 #$%&'()*+,-./012345678%&9:;<=>?@A1BC6DEFGHIJKJLMN678OPQRSTU1DEFGVWXYZ@[1S\]^_%&`abcde,-1fghiKjklmno,-1pqSrXbst1uvwxyz{wx6DEFGHI|}v~y�_~�����1z{S

 ��6,-
-����1�a��BC�s���DE��S��1DE���P%��1)fg�R1,-fgS#�6���1��Vz{� ¡¢£¤¥¦1DE§�K¨©DE1/%S

 ���ª«'¬�]WX,-
-����1YZ@[§�S®¯]§�°XWX±²1YZ@[§�6\.§�¡¢�¯.¥¦1lm³´�a1��K'µDE��¶®·]§�VWX¸U1YZ@[1§�6\]§�¹,���g9^_º»DE£$��S

 ¼½#¾=¿,-ÀÁ1�a1Â�Ã¤6ÄÅdÆ123gÇ*��*+¹,È|ÉÊz{S#�6WX,-�ËÌÍ%|*+ÎÏ��1ÐÑ6���

iii

 ÒÓÔÕÖ×ØÙÚÛÜ ÝÞßàÞáâãäåæâçèéêëìãäíêÔÕÖîïðñòóôõö÷øçèëùúûòüýþìãäíêÿ��Ù��ò�â����	
�	�������ÔÕâíê���â�÷éê����ë
 ���äÛ� !	 Ý"Þßà !#$%&�'(�ò)*âë��
�'+,� Ý"ÞßàâÞá'ÿÙØ-.çè/0ë12	345â67�89:ÔÕÖ�äéê;ÙÙÚâ Ý"ÞßàÞáöÔ<çè=>ëìäéê(×Ø�?â@ABÙÚ

��不信任用戶��表明了用戶��不同意用戶��的大多數觀點。

基於這個直覺，用戶之間不信任的關係可以被建模為矩陣分解目標方程的

正則項。使用 Epinions數據集的實驗結果顯示在推薦系統中，
Ý"Þßà !C ÝÞßà !�D)*ë

iv

Acknowledgement

I would like to express my sincere gratitude and appreciation to
my supervisors, Prof. Irwin King and Prof. Michael R. Lyu.
I gain too much from their guidance not only on knowledge

and attitude in doing research, but also on the presentation,
teaching, and English writing skills. I will always be grateful for

their supervision, encouragement and support at all levels.
I am grateful to my thesis committee members, Prof. Jeffrey

Xu Yu and Prof. Yufei Tao for their helpful comments and
suggestions about this thesis. My special thanks to Prof. Qiang
Yang who kindly served as the external committee for this thesis.

I would like to thank my mentors, Dr. Raman Chandrasekar, Dr.
Chao Liu and Dr. Yi-Min Wang, for their guidance, support,

insightful opinions and valuable suggestions when I was visiting
Microsoft Research Redmond as research intern.

I thank Haixuan Yang, Jianke Zhu, Zibin Zheng, Tom Chao
Zhou and Shikui Tu for their effort and constructive discussions

in conducting the research work in this thesis. I also thank my
colleagues in the machine learning and web intelligence group,
Kaizhu Huang, Zenglin Xu, Allen Lin, Haiqin Yang, Hongbo

Deng, Xin Xin. I also appreciate the help from my office-
mates and friends, Xinyu Chen, Xiaoqi Li, Yangfan Zhou, Wujie

Zheng, Junjie Xiong, Tu Zhou, Yingni She and many others.
Last but not least, I want to thank my wife, my sister, my

brother-in-law and my parents. Without their deep love and
constant support, this thesis would never have been completed.

v

To my lovely wife and my beloved parents.

vi

Contents

Abstract i

Acknowledgement v

1 Introduction 1

1.1 Overview . 1
1.2 Thesis Contributions 6

1.3 Thesis Organization 8

2 Background Review 12

2.1 Traditional Recommender Systems 13
2.1.1 Memory-based Methods 13

2.1.2 Model-based Methods 17
2.2 Netflix Prize Competition 21

2.3 Social-based Recommender Systems 22

3 Effective Missing Data Prediction 24

3.1 Similarity Computation 25
3.1.1 Pearson Correlation Coefficient 25
3.1.2 Significance Weighting 26

3.2 Collaborative Filtering Framework 27
3.2.1 Similar Neighbors Selection 29

3.2.2 Missing Data Prediction 30
3.2.3 Prediction for Active Users 32

3.2.4 Parameter Discussion 32

vii

3.3 Empirical Analysis 33
3.3.1 Dataset 34

3.3.2 Metrics 35
3.3.3 Comparison 35

3.3.4 Impact of Missing Data Prediction 37
3.3.5 Impact of Parameters 38

3.4 Summary . 42

4 Recommend with Global Consistency 43

4.1 Framework . 44

4.1.1 Problem Definition 44
4.1.2 How is user-item matrix X generated? . . 45

4.1.3 Sensitivity Analysis 47
4.1.4 Optimization Problem 48

4.1.5 Problem Simplification and Solution . . . 48
4.2 Consistency with Global Information 52
4.3 Experiments . 54

4.3.1 Description of Dataset 55
4.3.2 Metrics 55

4.3.3 Performance Comparisons 56
4.4 Summary . 60

5 Social Recommendation 62

5.1 Recommendation Framework 62

5.1.1 Recommendation with Social Trust Network 62
5.1.2 Recommendation with Social Tags 72

5.2 Experimental Analysis 72

5.2.1 Metrics 74
5.2.2 Compared Methods 75

5.2.3 Epinions Dataset 75
5.2.4 MovieLens Dataset 84

5.3 Summary . 88

viii

6 Recommend with Social Trust Ensemble 91

6.1 Recommendation with Social

Trust Ensemble 91
6.1.1 Problem Description 92

6.1.2 User Features Learning 93
6.1.3 Recommendations by Trusted Friends . . . 95
6.1.4 Social Trust Ensemble 98

6.1.5 Complexity Analysis 101
6.2 Empirical Analysis 101

6.2.1 Dataset Description 102
6.2.2 Metrics 103

6.2.3 Comparison 104
6.2.4 Performance on Different Users 105

6.2.5 Impact of Parameter α 107
6.2.6 Training Efficiency Analysis 109

6.3 Summary . 110

7 Recommend with Social Distrust 112

7.1 Recommendation Framework 112

7.1.1 Problem Definition 113
7.1.2 Matrix Factorization for Recommendation 114

7.1.3 Recommendation with Distrust Relations . 116
7.1.4 Recommendation with Trust Relations . . 119

7.1.5 Prediction 121
7.1.6 Complexity Analysis 121

7.2 Experimental Analysis 122

7.2.1 Dataset Description 122
7.2.2 Metrics 124

7.2.3 Comparison 126
7.2.4 Impact of Parameters α and β 131

7.3 Summary . 132

ix

8 Conclusion and Future Work 133

8.1 Conclusion . 133

8.2 Future Work . 134

Bibliography 136

x

List of Figures

1.1 Recommendations from Amazon 2

3.1 (a) The user-item matrix (m× n) before missing
data prediction. (b) The user-item matrix (m×n)

after missing data prediction. 28
3.2 MAE Comparison of EMDP and PEMD (A smaller

MAE value means a better performance). 38
3.3 Impact of Gamma on MAE and Matrix Density . 39

3.4 Impact of Lambda on MAE 39
3.5 Impact of Eta and Theta on MAE and Density . 41

4.1 An illustration showing the problem of SNGSC
and SVD without controlling the global statistics.
The means predicted by models are far away from

the true means. 53
4.2 Performance Increase on RMSE (EachMovie) . . . 58

4.3 Performance Increase on MAE (EachMovie) . . . 59

5.1 Example for Toy Data 64

5.2 Graphical Model for Social Trust Recommendation 68
5.3 Graphical Model for Recommendation with User

Tags . 73

5.4 Graphical Model for Recommendation with Item
Tags . 73

xi

5.5 Power-Law Distributions of the Epinions Dataset.
(a) Items per User Distribution. (b) Trust Graph

Outdegree Distribution. (c) Trust Graph Inde-
gree Distribution. 76

5.6 Impact of Parameter λC (Dimensionality = 10) . 80
5.7 Performance Comparison on Different Users . . . 81
5.8 Efficiency Analysis 83

5.9 Performance Comparison on Items with Different
of Tags . 86

5.10 Tag Distributions of Testing Data on Different
Amount of Training Data 87

6.1 Example for Trust based Recommendation 92
6.2 Graphical Models 94

6.3 Performance Comparison on Different Users . . . 106
6.4 Impact of Parameter α (Dimensionality = 10) . . 108
6.5 Efficiency Analysis (90% as Training Data) 109

7.1 A Toy Example 114
7.2 Power-Law Distributions of the Epinions Dataset.

(a) Items per User Distribution. (b) Trust Graph
Outdegree Distribution. (c) Distrust Graph Out-

degree Distribution. 125
7.3 RWT Performance Increase (5D) 127

7.4 RWT Performance Increase (10D) 128
7.5 Efficiency Analysis (10% as Training Data). (a)

RMSEs of PMF and SoRec Change with Itera-

tions. (b) RMSEs of RWD and RWT Change
with Iterations (α = 0.001, β = 0.00001). 129

7.6 Impact of Parameter α 130

xii

List of Tables

3.1 The relationship between parameters with other
CF approaches 33

3.2 Statistics of Dataset MovieLens 35

3.3 MAE comparison with other approaches (A smaller
MAE value means a better performance). 36

3.4 MAE comparison with state-of-the-arts algorithms
(A smaller MAE value means a better perfor-

mance). 36

4.1 User-Item Matrix 45
4.2 Predicted User-Item Matrix 45

4.3 Comparison with other popular algorithms. The
reported values are the mean RMSE and MAE

on the EachMovie Dataset achieved by ten runs
from dividing the data into 80%, 50%, and 20%

for training data, respectively. 57
4.4 Comparison with variants of SNGSC in a setting

with 80% for training and 20% for testing on the
EachMovie dataset. (1) SNGSC-1: SNGSC with-
out the global consistency (η = 0); (2) SNGSC-

2: SNGSC without the nonnegative constraint (a
modified version of SVD with global consistency);

and (3) SNGSC-3: SNGSC with nonnegative con-
straints on both U and V (a modified version of

NMF with global consistency). 60

xiii

4.5 Comparison with variants of SNGSC in a 20% for
training 80% for testing setting on the EachMovie

dataset. 60

5.1 Statistics of User-Item Rating Matrix of Epinions 77

5.2 Statistics of Social Trust Network of Epinions . . 77
5.3 MAE comparison with other approaches on Epin-

ions dataset (A smaller MAE value means a bet-

ter performance) 78
5.4 RMSE comparison with other approaches on Epin-

ions dataset (A smaller RMSE value means a bet-
ter performance) 78

5.5 MAE comparison with other approaches on Movie-
Lens dataset (A smaller MAE value means a bet-

ter performance) 85
5.6 RMSE comparison with other approaches on Movie-

Lens dataset (A smaller RMSE value means a

better performance) 85

6.1 Statistics of User-Item Rating Matrix of Epinions 102

6.2 Statistics of Social Trust Network of Epinions . . 102
6.3 Performance Comparisons (A Smaller MAE or

RMSE Value Means a Better Performance) 105

7.1 Statistics of User-Item Rating Matrix of Epinions 123

7.2 Statistics of Trust Network of Epinions 123
7.3 Statistics of Distrust Network of Epinions 124
7.4 RMSE Comparison with other popular algorithms.

The reported values are the RMSE on the Epin-
ions Dataset achieved from dividing the data into

5%, 10%, and 20% for training data, respectively. 127

xiv

Chapter 1

Introduction

1.1 Overview

As the exponential growth of information generated on the World
Wide Web, the Information Filtering techniques like Recom-

mender Systems have become more and more important and
popular. Recommender systems form a specific type of infor-
mation filtering technique that attempts to suggest informa-

tion items (movies, books, music, news, Web pages, images,
etc.) that are likely to interest the users. Typically, recom-

mender systems are based on Collaborative Filtering, which is a
technique that automatically predicts the interest of an active

user by collecting rating information from other similar users or
items. The underlying assumption of collaborative filtering is
that the active user will prefer those items which other similar

users prefer [68]. Based on this simple but effective intuition,
collaborative filtering has been widely employed in some large,

well-known commercial systems, including product recommen-
dation at Amazon1, movie recommendation at Netflix2, etc.

Due to the potential commercial values and the great research
challenges, recommendation techniques have drawn much atten-

tion in data mining [9, 59], information retrieval [7, 26, 45, 50,

1http://www.amazon.com
2http://www.netflix.com

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Recommendations from Amazon

58, 131] and machine learning [75, 94, 98, 99, 100, 133] com-

munities. Recommendation algorithms suggesting personalized
recommendations greatly increase the likelihood of customers

making their purchases online. Fig. 1.1 shows some recommen-
dation examples from Amazon.

A number of algorithms have been proposed to improve both
the recommendation quality and the scalability problems. These

collaborative filtering algorithms can be divided into two main
categories: neighborhood-based (or memory-based) and model-

CHAPTER 1. INTRODUCTION 3

based approaches [16, 102]. Different methods make different
assumptions. The neighborhood-based recommendation algo-

rithms assume that those who agreed in the past tend to agree
again in the future. They usually fall into two classes: user-

based approaches [16, 44] and item-based approaches [28, 102].
To predict a rating for an item from a user, user-based methods
find other similar users and leverage their ratings to the item for

prediction, while item-based methods use the ratings to other
similar items from the user instead [21]. In addition to the

neighborhood-based approach, the model-based approaches em-
ploy the observed user-item ratings to train a predefined model.

Algorithms in this category include clustering methods [124],
Bayesian model [128], aspect model [48], etc.

Although recommendation algorithms have been widely used
in recommendation systems [65, 95], the problem of inaccurate
recommendation results still exists in both neighborhood-based

methods and model-based methods. The fundamental problem
of these approaches is the data sparsity of the user-item matrix.

The density of available ratings in commercial recommender sys-
tems is often less than 1% [102] or even much less. In such cir-

cumstance, neighborhood-based [53, 65, 68, 119] collaborative
filtering algorithms fail to find similar users, since the methods
of computing similarities, such as the Pearson Correlation Coef-

ficient (PCC) or the Cosine method, assume that two users have
rated at least some items in common. Moreover, almost all of

model-based [47, 48, 99, 107] collaborative filtering algorithms
cannot handle users who rated only a few items.

Many recent algorithms have been proposed to alleviate the
data sparsity problem. In [119], Wang et al. proposed a gener-

ative probabilistic framework to exploit more of the data avail-
able in the user-item matrix by fusing all ratings with a predic-
tive value for a recommendation to be made. Xue et al. [124]

proposed a framework for collaborative filtering which combines

CHAPTER 1. INTRODUCTION 4

the strengths of memory-based approaches and model-based ap-
proaches by introducing a smoothing-based method, and solved

the data sparsity problem by predicting all the missing data in
a user-item matrix. Although the simulation showed that this

approach can achieve better performance than other collabora-
tive filtering algorithms, the cluster-based smoothing algorithm
limited the diversity of users in each cluster and predicting all

the missing data in the user-item matrix could bring negative
influence for the recommendation of active users.

Based on the above analysis, in order to improve the recom-
mendation quality, we need to solve the data sparsity problem.

In this thesis, we propose five effective and efficient methods to
make the recommendations more accurate.

The first two algorithms purely based on user-item matrix,
and do not include any other data sources. The first algo-
rithm [68] is a memory-based collaborative filtering algorithm

which focuses on recommending products or items based on the
past behavior of similar users. Notable similarity computation

algorithms include Pearson Correlation Coefficient (PCC) [95]
and Vector Space Similarity (VSS) algorithm [17]. PCC-based

collaborative filtering generally can achieve higher performance
than the other popular algorithm VSS, since it considers the dif-
ferences of user rating styles. In order to generate more accurate

recommendations, Amazon also extended this method to calcu-
late the implicit relations between items or products, which is

called item-based method. Item-based methods share the same
idea with user-based methods. The only difference is user-based

methods try to find the similar users for an active user but item-
based methods try to find the similar items for each item. The

second algorithm [72] is a model-based collaborative filtering al-
gorithm which employs semi-nonnegative matrix factorization
techniques to improve recommendation quality.

Different with the first two algorithms, the rest three ap-

CHAPTER 1. INTRODUCTION 5

proaches [69, 70, 74] incorporates social relations between users.
These relations are normally assigned by online users explicitly.

Actually, thanks to the popularity of the Web 2.0 applications,
recommender systems are now associated with various kinds of

social context information, including users’ social trust network,
social distrust network, tags issued by users or associated with
items, etc. This contextual information contains abundant ad-

ditional information about the interests of users or properties of
items, hence providing a huge opportunity to improve the recom-

mendation quality. For example, in users’ social trust network,
users tend to share their similar interests with the friends they

trust. In reality, we always turn to friends we trust for movie,
music or book recommendations, and our tastes and characters

can be easily affected by the company we keep.
Traditional recommender systems assume that users are in-

dependent and identically distributed. This assumption ignores

the social trust relationships among the users. But the fact is,
offline, social recommendation is an everyday occurrence. For

example, when you ask a trusted friend for a recommendation
of a movie to watch or a good restaurant to dine, you are essen-

tially soliciting a verbal social recommendation. In [110], Sinha
et al. have demonstrated that, given a choice between recom-
mendations from trusted friends and those from recommender

systems, in terms of quality and usefulness, trusted friends’ rec-
ommendations are preferred, even though the recommendations

given by the recommender systems have a high novelty factor.
Trusted friends are seen as more qualified to make good and

useful recommendations compared to traditional recommender
systems [8]. From this point of view, the traditional recom-

mender systems that ignore the social network structure of the
users may no longer be suitable.

CHAPTER 1. INTRODUCTION 6

1.2 Thesis Contributions

The main contributions of this thesis can be described as follows:

(1) Effective Missing Data Prediction

In order to extract implicit social relations between users,
we first use PCC-based significance weighting to compute

similarities between users, which overcomes the potential
decrease of similarity accuracy. We also extend this method

to calculate similarities between items. Second, we pro-
pose an effective missing data prediction algorithm which

exploits the information both from users and items. More-
over, this algorithm will predict the missing data of a user-
item matrix if and only if we think it will bring positive

influence for the recommendation of active users instead of
predicting every missing data of the user-item matrix. The

simulation shows our novel approach achieves better per-
formance than other state-of-the-art collaborative filtering

approaches.

(2) Recommend with Global Consistency We propose a

semi-nonnegative matrix factorization method with global
statistical consistency. The major contribution of our work
is twofold: (1) We endow a new understanding on the gen-

eration or latent compositions of the user-item rating ma-
trix. Under the new interpretation, our work can be formu-

lated as the semi-nonnegative matrix factorization problem.
(2) Moreover, we propose a novel method of imposing the

consistency between the statistics given by the predicted
values and the statistics given by the data. We further

develop an optimization algorithm to determine the model
complexity automatically. The complexity of our method
is linear with the number of the observed ratings, hence it

is scalable to very large datasets.

CHAPTER 1. INTRODUCTION 7

(3) Social Recommendation

We propose a framework to integrate social contextual in-
formation and the user-item rating matrix, based on a prob-

abilistic factor analysis. We connect these different data
resources through the shared user latent feature space (or

item latent feature space), that is, the user latent feature
space in the social contextual information is the same as in
the user-item rating matrix. By performing factor analysis

based on probabilistic matrix factorization, the low-rank
user latent feature space and item latent feature space are

learned in order to make recommendations. The experi-
mental results on the Epinions3 and Movielens4 datasets

show that our method outperforms the state-of-the-art col-
laborative filtering algorithms, especially when active users
have very few ratings. Moreover, the complexity analysis

indicates that our approach can be applied to very large
datasets since it scales linearly with the number of obser-

vations.

(4) Recommend with Social Trust Ensemble

Aiming at modeling the recommender systems more accu-

rately and realistically, we endow a novel understanding to
all the ratings in the user-item matrix R. We interpret

the rating Rij in the user-item matrix as the representa-
tion mixed by both the user ui’s taste and his/her trusted
friends tastes on the item vj. This assumption naturally

employs both the user-item matrix and the users’ social
trust network for the recommendations.

In terms of the users’ own tastes, we factorize the user-item

matrix and learn two low-dimensional matrices, which are
user-specific latent matrix and item-specific latent matrix.

3http://www.epinions.com
4http://www.grouplens.org/node/73

CHAPTER 1. INTRODUCTION 8

For the social trust graph, based on the intuition that users
always prefer the items recommended by the friends they

trust, we infer and formulate the recommendation prob-
lem purely based on their trusted friends’ favors. Then, by

employing a probabilistic framework, we fuse the users and
their trusted friends’ tastes together by an ensemble param-
eter. Finally, by performing a simple gradient descent on

the objective function, we learn the latent low-dimensional
user-specific and item-specific matrices for the prediction

of users’ favors on different items.

(5) Recommend with Social Distrust

We elaborate how user distrust information can benefit the

recommender systems. Users’ distrust relations can be in-
terpreted as the “dissimilar” relations since user ui distrusts
user ud indicates that user ui disagrees with most of the

opinions issued by user ud. Different with distrust, users’
trust relations can be modeled as the “similar” relations due

to the reason that user ui trusts user ut means that user
ui agrees with most of the opinions issued by ut. Based

on the above intuitions, the distrust and trust relations
between users can be easily modeled by adding the regular-

ization terms into the objective functions of the user-item
matrix factorization. By performing a simple gradient de-
scent on the objective function, we can learn the latent

low-dimensional user-specific and item-specific matrices for
the prediction of users’ favors on different items.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2

CHAPTER 1. INTRODUCTION 9

In this chapter, we briefly review some background knowl-
edge and related work in the field of recommender systems.

• Chapter 3

This chapter focuses the neighborhood-based collaborative

filtering problems on two crucial factors: (1) similarity com-
putation between users or items and (2) missing data pre-

diction algorithms. First, we use the enhanced Pearson
Correlation Coefficient (PCC) algorithm by adding one pa-

rameter which overcomes the potential decrease of accuracy
when computing the similarity of users (implicit social re-
lations) or items. Second, we propose an effective missing

data prediction algorithm, in which information of both
users and items is taken into account. In this algorithm,

we set the similarity threshold for users and items respec-
tively, and the prediction algorithm will determine whether

predicting the missing data or not. We also address how
to predict the missing data by employing a combination of
user and item information. Finally, empirical studies on

dataset MovieLens have shown that our newly proposed
method is more robust against data sparsity.

• Chapter 4

In this chapter, we propose a Semi-Nonnegative Matrix

Factorization with Global Statistical Consistency (SNGSC)
approach for collaborative filtering. First, we endow a new

understanding on the latent compositions of the ratings,
which is based on the following assumptions: (1) there are

totally a number of d types of items; (2) on each type of
items, every user has a confidence value indicating the taste
of this user on the type; (3) each item also has a qual-

ity value on each type. Based on these assumptions, we
formulate the collaborative filtering algorithm as the Semi-

Nonnegative Matrix Factorization problem, and propose an

CHAPTER 1. INTRODUCTION 10

optimization formulation with sensitive analysis. Second,
based on the observation that the statistics of the predicted

ratings are not consistent with the statistics of the train-
ing data, we propose to impose the consistency between

them. This consideration generates very good performance
when the dataset is spare. Furthermore, we develop an al-
gorithm to determine the model complexity automatically.

The complexity of our method is linear with the number
of the observed ratings, which can be applied to very large

datasets.

• Chapter 5

In this chapter, based on the assumption that users’ deci-
sions can be easily influenced by the friends they trust, we

propose a factor analysis approach based on probabilistic
matrix factorization to alleviate the data sparsity and poor

prediction accuracy problems by incorporating social trust
information. This method is quite general, and we also
can extend this approach to improve recommender systems

with social tags that are issued by users.

• Chapter 6

Although the users’ social trust network is integrated into
the recommender systems by factorizing the social trust

graph in Chapter 4, the real world recommendation pro-
cesses are not reflected in the model. This drawback not

only causes lack of interpretability in the model, but also
affects the recommendation qualities. A more novel and

realistic approach is needed to model the trust-aware rec-
ommendation problem. In this chapter, aiming at model-
ing recommender systems more accurately and realistically,

we propose a novel probabilistic factor analysis framework,
which naturally fuses the users’ tastes and their trusted

friends’ favors together. In this framework, we coin the

CHAPTER 1. INTRODUCTION 11

term Social Trust Ensemble to represent the formulation of
the social trust restrictions on the recommender systems.

• Chapter 7

In this chapter, we prove that not only social trust informa-
tion can be used to improve recommender systems, social

distrust information is also a very important source. We
model users’ distrust relations as the “dissimilar” relations
based on the intuition that distrust can be interpreted as

disagree in most circumstances. We also extend this idea
to model trust relations as the “similar” relations. The ex-

perimental results show that the distrust relations among
users are as important as the trust relations.

• Chapter 8

The last chapter summarizes this thesis and addresses some
future directions that can be further explored.

In order to make each of these chapters self-contained, some

critical contents, e.g., model definitions or motivations having
appeared in previous chapters, may be briefly reiterated in some

chapters.

2 End of chapter.

Chapter 2

Background Review

Generally speaking, the concept of Recommendation is very
broad. Lots of research problems can be classified as recommen-

dation problems, including search ranking [18, 19, 22, 67, 92],
query suggestion [5, 25, 32, 34, 37, 52, 71, 123], tag recommen-
dation [41, 108, 112, 132], Web service recommendation [129],

marketing candidates selection [29, 30, 73, 97, 111], question an-
swering [52], etc. However, in this thesis, we only focus on Rec-

ommender Systems, which form a specific type of information
filtering technique that attempts to present information items

(movies, music, books, news, images, web pages, etc.) that are
likely of interest to the user.

Recommender systems have become an important research

area since the appearance of the first papers on collaborative fil-
tering in the mid-1990s [46, 95, 106]. They are becoming increas-

ingly indispensable nowadays since they focus on solving the in-
formation overload problem by providing users with more proac-

tive and personalized information services. In this chapter, we
briefly review some backgrounds about recommender systems,

including (1) traditional recommender systems which are mainly
based on collaborative filtering techniques, and (2) social-based
recommender systems which have drawn lots of attention re-

cently.

12

CHAPTER 2. BACKGROUND REVIEW 13

2.1 Traditional Recommender Systems

As reported in [2], although the roots of recommender sys-
tems can be traced back to the extensive work in cognitive sci-

ence [96], approximation theory [91], information retrieval [101],
forecasting theories [4], and also have links to management sci-
ence [80] and to consumer choice modeling in marketing [64],

recommender systems emerged as an independent research area
in the mid-1990s when researchers started focusing on recom-

mendation problems that explicitly rely on the ratings structure.
The missing ratings of the not-yet-rated items can be estimated

in many different ways using methods from machine learning,
approximation theory, and various heuristics [2].

Normally, recommender systems can be classified into two

categories:

• Content-based filtering: The user will be recommended

items similar to the ones the user preferred in the past;

• Collaborative filtering: The user will be recommended items

that people with similar tastes and preferences liked in the
past.

In this chapter, we mainly focus on collaborative filtering
since this method is the most popular and effective method,
which is widely analyzed in both industry and academia. Ac-

cording to [17], algorithms for collaborative filtering can be grouped
into two general classes: memory-based (or neighborhood-based)

and model-based.

2.1.1 Memory-based Methods

The memory-based approaches [17, 27, 39, 44, 53, 57, 65, 81, 95,

102] are the most popular prediction methods and are widely
adopted in commercial collaborative filtering systems [65, 95].

CHAPTER 2. BACKGROUND REVIEW 14

The most analyzed examples of memory-based collaborative
filtering include user-based approaches [17, 44, 53, 124] and item-

based approaches [28, 65, 102].
[44] presented an algorithmic framework for performing col-

laborative filtering and new algorithmic elements that increase
the accuracy of collaborative prediction algorithms. This work
also presented a set of recommendations on selection of the right

collaborative filtering algorithmic components. [65] reviewed the
famous Amazon item-to-item collaborative filtering method.

User-based approaches predict the ratings of active users based
on the ratings of similar users found, and item-based approaches

predict the ratings of active users based on the information of
similar items computed. User-based and item-based approaches

often use PCC (Pearson Correlation Coefficient) algorithm [95]
and VSS (Vector Space Similarity) algorithm [17] as the simi-
larity computation methods. PCC-based collaborative filtering

generally can achieve higher performance than the other popular
algorithm VSS, since it considers the differences of user rating

styles.
Given a recommendation system consists of M users and N

items, the relationship between users and items is denoted by
an M × N matrix, called the user-item matrix. Every entry in
this matrix rm,n represents the score value, r, that user m rates

an item n, where r ∈ {1, 2, ..., rmax}. If user m does not rate the
item n, then rm,n = 0.

User-based collaborative filtering engaging PCC was used in
a number of recommendation systems [106], since it can be eas-

ily implemented and can achieve high accuracy when comparing
with other similarity computation methods. In user-based col-

laborative filtering, PCC is employed to define the similarity
between two users a and u based on the items they rated in
common:

CHAPTER 2. BACKGROUND REVIEW 15

Sim(a, u) =

∑

i∈I(a)∩I(u)

(ra,i − ra) · (ru,i − ru)

√ ∑

i∈I(a)∩I(u)

(ra,i − ra)2 ·
√ ∑

i∈I(a)∩I(u)

(ru,i − ru)2

,

(2.1)
where Sim(a, u) denotes the similarity between user a and user

u, and i belongs to the subset of items which user a and user u
both rated. ra,i is the rate user a gave item i, and ra represents

the average rate of user a. From this definition, user similarity
Sim(a, u) is ranging from [−1, 1], and a larger value means users
a and u are more similar.

Item-based methods such as [28, 102] are similar to user-based
approaches, and the difference is that item-based methods em-

ploy the similarity between the items instead of users. The basic
idea in similarity computation between two items i and j is to

first isolate the users who have rated both of these items and
then apply a similarity computation technique to determine the

similarity Sim(i, j) [102]. The PCC-based similarity computa-
tion between two items i and j can be described as:

Sim(i, j) =

∑

u∈U(i)∩U(j)

(ru,i − ri) · (ru,j − rj)

√ ∑

u∈U(i)∩U(j)

(ru,i − ri)2 ·
√ ∑

u∈U(i)∩U(j)

(ru,j − rj)2

,

(2.2)

where Sim(i, j) is the similarity between item i and item j, and
u belongs to the subset of users who both rated item i and item

j. ru,i is the rate user u gave item i, and ri represents the average
rate of item i. Like user similarity, item similarity Sim(i, j) is

also ranging from [−1, 1].

CHAPTER 2. BACKGROUND REVIEW 16

In the VSS approach, the two users a and u are treated as two
vectors in m-dimensional space. Then, the similarity between

two vectors can be measured by computing the cosine of the
angle between them:

Sim(a, u) = cos(−→a ,−→u) =
−→a · −→u

||−→a ||2 × ||−→u ||2

=

∑

i∈I(a)∩I(u)

ra,i · ru,i

√ ∑

i∈I(a)∩I(u)

r2
a,i ·
√ ∑

i∈I(a)∩I(u)

r2
u,i

, (2.3)

where −→a · −→u denotes the dot-product between the vectors −→a
and −→u .

Once the similarities are calculated, we can easily calculate
the values of missing rating ru,i for user u and item i by aggre-

gating the ratings of some other (usually, the N most similar)
users for the same item i:

ru,i = aggru′∈U ′ru′,i, (2.4)

where U ′ denotes the set of N users that are the most similar
to user u and who have rated item i. Some examples of the

aggregation function are [2]:

ru,i =
1

N

∑

u′∈U ′

ru′,i, (2.5)

ru,i =
1∑

u′∈U ′ |Sim(u, u′)|
∑

u′∈U ′

Sim(u, u′) × ru′,i, (2.6)

ru,i = ru +
1∑

u′∈U ′ |Sim(u, u′)|
∑

u′∈U ′

Sim(u, u′) × (ru′,i − ru′),

(2.7)

CHAPTER 2. BACKGROUND REVIEW 17

where ru is the average rating of user u.

2.1.2 Model-based Methods

In contrast to the memory-based approaches, the model-based

approaches [13, 20, 36, 40, 75, 86, 119] to collaborative filtering
use the observed user-item ratings to train a compact model that

explains the given data, so that ratings could be predicted via
the model instead of directly manipulating the original rating
database as the memory-based approaches do [66]. [13] pro-

posed a collaborative filtering method in a machine learning
framework, where various machine learning techniques coupled

with feature extraction techniques (such as singular value de-
composition) can be used. [20] introduced a peer-to-peer pro-

tocol for collaborative filtering which protects the privacy of
individual data. This work also presented a new collaborative
filtering algorithm based on factor analysis which appears to be

the most accurate method for collaborative filtering. The new
algorithm has other advantages in speed and storage over pre-

vious algorithms. It is based on a careful probabilistic model of
user choice, and on a probabilistically sound approach to dealing

with missing data.
There have been several other model-based collaborative rec-

ommendation approaches proposed in the literature. Algorithms
in this category include the aspect models [47, 48, 107], Bayesian
model [24], relevance models [120, 121], latent class models [49,

54, 76, 107, 104], matrix factorization models [14, 40, 94, 103]
and clustering models [6, 35, 56, 87, 116, 117]. [47] proposed

an algorithm based on a generalization of probabilistic latent
semantic analysis to continuous-valued response variables. [24]

proposed a Bayesian approach for the problem of predicting the
missing ratings from the observed ratings. This approach in-
corporates similarity by assuming the set of judges can be par-

CHAPTER 2. BACKGROUND REVIEW 18

titioned into groups which share the same ratings probability
distribution. This leads to a predictive distribution of miss-

ing ratings based on the posterior distribution of the group-
ings and associated ratings probabilities. Markov chain Monte

Carlo methods and a hybrid search algorithm are used to obtain
predictions of the missing ratings. [121] presented a probabilis-
tic user-to-item relevance framework that introduces the con-

cept of relevance into the related problem of collaborative filter-
ing. Experimental results complement the theoretical insights

with improved recommendation accuracy. The unified model
is more robust to data sparsity, because the different types of

ratings are used in concert. [54] conducted a broad and system-
atic study on different mixture models for collaborative filter-

ing. It discussed general issues related to using a mixture model
for collaborative filtering, and proposed three properties that a
graphical model is expected to satisfy. Using these properties,

this work thoroughly examined five different mixture models,
including Bayesian Clustering (BC), Aspect Model (AM), Flex-

ible Mixture Model (FMM), Joint Mixture Model (JMM), and
the Decoupled Model (DM). Experiments over two datasets of

movie ratings under different configurations show that in gen-
eral, whether a model satisfies the proposed properties tends
to be correlated with its performance. In particular, the De-

coupled Model, which satisfies all the three desired properties,
outperforms the other mixture models as well as many other

existing approaches for collaborative filtering. [56] presented an
algorithm for collaborative filtering based on hierarchical clus-

tering, which tried to balance both robustness and accuracy of
predictions, especially when few data were available.

More recently, a significant amount of research has been done
in trying to model the recommendation process using more com-
plex probabilistic models. For instance, Shani et al. [105] view

the recommendation process as a sequential decision problem

CHAPTER 2. BACKGROUND REVIEW 19

and propose using Markov decision processes for generating rec-
ommendations. [75] proposed a combination method of multino-

mial mixture and aspect models using generative semantics of
Latent Dirichlet Allocation. Similarly, Si and Jin [107] also use

probabilistic latent semantic analysis to propose a flexible mix-
ture model that allows modeling the classes of users and items
explicitly with two sets of latent variables. Furthermore, Kumar

et al. [62] use a simple probabilistic model to demonstrate that
collaborative filtering is valuable with relatively little data on

each user, and that, in certain restricted settings, simple collab-
orative filtering algorithms are almost as effective as the best

possible algorithms in terms of utility [2].
Recently, due to the efficiency in dealing with large datasets,

several low-dimensional matrix approximation methods [94, 98,
99, 113] have been proposed for collaborative filtering. These
methods focus on fitting a factor model to the data, and use it

in order to make further predictions.
Low-rank matrix approximations based on minimizing the

sum-squared errors can be easily solved using Singular Value
Decomposition (SVD), and a simple and efficient Expectation

Maximization (EM) algorithm for solving weighted low-rank ap-
proximation is proposed in [113]. In [114], Srebro et al. proposed
a matrix factorization method to constrain the norms of U and

V instead of their dimensionality. Salakhutdinov et al. pre-
sented a probabilistic linear model with Gaussian observation

noise in [99]. In [98], the Gaussian-Wishart priors are placed on
the user and item hyperparameters. Although low-dimensional

methods are proved to be very effective and efficient, these meth-
ods still suffer several disadvantages that are unveiled. In the

SVD method, as well as other well-known methods such as the
weighted low-rank approximation method [113], Probabilistic
Principal Component Analysis (PPCA) [115], Probabilistic Ma-

trix Factorization (PMF) [99] and Constrained Probabilistic Ma-

CHAPTER 2. BACKGROUND REVIEW 20

trix Factorization [99], the latent features are uninterpretable,
and there is no range constraint bound on the latent features

vectors. The lack of interpretability results in the improper
modeling of the latent factors, hence downgrades the recommen-

dation accuracy. In [127], a nonnegative constraint is imposed
on both user-specific features U and item-specific features V
(Nonnegative Matrix Factorization).

Actually, the fundamental problem to low-rank matrix fac-
torization is to learn two latent feature spaces of users U and

items V . The most fundamental technique is Regularized Ma-
trix Factorization.

Regularized Matrix Factorization

Consider an m × n user-item rating matrix R, the matrix fac-

torization method employs a rank-l matrix X = UTV to fit
it, where U ∈ R

l×m and V ∈ R
l×n. From the above defini-

tion, we can see that the low-dimensional matrices U and V are
unknown, and need to be estimated. Moreover, this feature rep-

resentations have clear physical meanings. In this linear factor
model, each factor is a preference vector, and a user’s prefer-

ences correspond to a linear combination of these factor vectors,
with user-specific coefficients. More specifically, each row of U
performs as a “feature vector”, and each row of V is a linear

predictor, predicting the entries in the corresponding column of
R based on the “features” in U .

To find matrices U and V , we can solve the following opti-
mization problem:

min
U,V

L(R, U, V) =
1

2

m∑

i=1

n∑

j=1

IR
ij (Rij − UT

i Vj)
2

+
λU

2
‖U‖2

F +
λV

2
‖V ‖2

F , (2.8)

where IR
ij is the indicator function that is equal to 1 if user ui

CHAPTER 2. BACKGROUND REVIEW 21

rated item vj and equal to 0 otherwise, and ‖ · ‖2
F denotes the

Frobenius norm.

A local minimum of the objective function given by Eq. (2.8)
can be found by performing gradient descent in Ui, Vj ,

∂L
∂Ui

=

n∑

j=1

IR
ij (U

T
i Vj − Rij)Vj + λUUi,

∂L
∂Vj

=

m∑

i=1

IR
ij (U

T
i Vj − Rij)Ui + λV Vj. (2.9)

2.2 Netflix Prize Competition

The Netflix Prize competition is an important event related
to recommendation technologies. It is started and supported

by Netflix, a company providing online movie rental services.
In October 2006, this company released a large movie rating

dataset containing about 100 million ratings from over 480 thou-
sand randomly selected customers on nearly 18 thousand movie
items. In Netflix Prize competition, RMSE (Root Mean Square

Error)is adopted for performance evaluation and the algorithms
in the competition are allowed to output real valued ratings.

Lots of new concepts and methods have been proposed during
this contest [10, 11, 12, 60, 61, 98, 99, 125, 126, 134].

In [60], Koren proposed a model to combine the latent fac-
tor model, which directly profile both users and products, and

neighborhood model, which analyze similarities between prod-
ucts or users. The factor and neighborhood models is smoothly
merged, thereby building a more accurate combined model. The

accuracy improvements are achieved by extending the models to
exploit both explicit and implicit feedback by the users. The ex-

periments show that on Netflix data, the proposed method are
better than those previously published on this dataset. Most

CHAPTER 2. BACKGROUND REVIEW 22

recently, [61], Koren proposed another collaborative filtering
method based on the intuition that customer preferences for

products are drifting over time. The proposed model can track
the time changing behavior throughout the life span of the data.

The experiments results show that this method is better than
other state-of-the-art methods.

2.3 Social-based Recommender Systems

Recall that all the above methods for recommender systems are
based on the assumption that users are independent and iden-

tically distributed, and ignores the social trust relationships be-
tween users, which is not consistent with the reality that we
normally ask trusted friends for recommendations.

In the most recent research work conducted in [109], by an-
alyzing the who talks to whom social network on the MSN in-

stant messenger1 over 10 million people with their related search
records on the Live Search Engine2, Singla and Richardson re-

vealed that people who chat with each other (using instant mes-
saging) are more likely to share interests (their Web searches are
the same or topically similar). Therefore, to improve the rec-

ommendation accuracy, in modern recommender systems, both
social network structure and user-item rating matrix should be

taken into consideration.
Based on this intuition, many researchers have recently started

to analyze trust-based recommender systems.
Trust is type of social relations, and a wide range of re-

search [1, 3] of turst begins from sociologist Gambetta’s defi-
nition of trust [33]. Trust models have been applied to a wide
range of contexts, ranging from onlin reputation systems to dy-

namic networks [23] and mobile environments [93]; a survey of

1http://www.msn.com
2http://www.live.com

CHAPTER 2. BACKGROUND REVIEW 23

trust in online service provision can be found in [55].
Recently, trust modeling has been extensively studied in rec-

ommender systems [3, 8, 15, 38, 51, 77, 78, 82, 83, 84, 85, 89,
90, 122, 118].

Andersen et al. in [3] developed a set of five natural axioms
that a trust-based recommendation system might be expected to
satisfy, and then proved that no system can simultaneously sat-

isfy all the axioms. Apparently, this work is out of the scope of
this paper since we focus on how to employ both social trust net-

work and user-item matrix to provide more accurate and realistic
recommendations. In [77], a trust-aware collaborative filtering

method for recommender systems is proposed. In this work,
the collaborative filtering process is informed by the reputation

of users which is computed by propagating trust. Trust values
are computed in addition to similarity measures between users.
The experiments on a large real dataset show that this work

increases the coverage (number of ratings that are predictable)
while not reducing the accuracy (the error of predictions). Bedi

et al. [8] proposed a trust-based recommender system for the Se-
mantic Web. This system runs on a server with the knowledge

distributed over the network in the form of ontologies, and uses
the Web of trust to generate the recommendations.

These methods are all neighborhood-based methods which

employ only heuristic algorithms to generate recommendations.
There are several problems with this approach, however. The

relationship between the trust network and the user-item matrix
have not been studied systematically. Moreover, these methods

are not scalable to very large datasets since they may need to
calculate the pairwise user similarities and pairwise user trust

scores. In this thesis, we propose three effective and efficient
model-based methods to help solve these problems.

2 End of chapter.

Chapter 3

Effective Missing Data

Prediction

This chapter focuses the memory-based collaborative filtering
problems on two crucial factors: (1) similarity computation

between users or items and (2) missing data prediction algo-
rithms. First, we use the enhanced Pearson Correlation Coef-
ficient (PCC) algorithm by adding one parameter which over-

comes the potential decrease of accuracy when computing the
similarity of users or items. Second, we propose an effective

missing data prediction algorithm, in which information of both
users and items is taken into account. In this algorithm, we

set the similarity threshold for users and items respectively, and
the prediction algorithm will determine whether predicting the

missing data or not. We also address how to predict the missing
data by employing a combination of user and item information.
Finally, empirical studies on dataset MovieLens have shown that

our newly proposed method outperforms other state-of-the-art
collaborative filtering algorithms and it is more robust against

data sparsity.

24

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 25

3.1 Similarity Computation

This section briefly introduces the similarity computation meth-
ods in traditional user-based and item-based collaborative filter-

ing [17, 28, 44, 102] as well as the method proposed in this chap-
ter. Given a recommendation system consists of M users and
N items, the relationship between users and items is denoted by

an M × N matrix, called the user-item matrix. Every entry in
this matrix rm,n represents the score value, r, that user m rates

an item n, where r ∈ {1, 2, ..., rmax}. If user m does not rate the
item n, then rm,n = 0.

3.1.1 Pearson Correlation Coefficient

User-based collaborative filtering engaging PCC was used in a
number of recommendation systems [106], since it can be eas-
ily implemented and can achieve high accuracy when comparing

with other similarity computation methods. In user-based col-
laborative filtering, PCC is employed to define the similarity

between two users a and u based on the items they rated in
common:

Sim(a, u) =

∑

i∈I(a)∩I(u)

(ra,i − ra) · (ru,i − ru)

√ ∑

i∈I(a)∩I(u)

(ra,i − ra)2 ·
√ ∑

i∈I(a)∩I(u)

(ru,i − ru)2

,

(3.1)

where Sim(a, u) denotes the similarity between user a and user
u, and i belongs to the subset of items which user a and user u
both rated. ra,i is the rate user a gave item i, and ra represents

the average rate of user a. From this definition, user similarity
Sim(a, u) is ranging from [−1, 1], and a larger value means users

a and u are more similar.
Item-based methods such as [28, 102] are similar to user-based

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 26

approaches, and the difference is that item-based methods em-
ploy the similarity between the items instead of users. The basic

idea in similarity computation between two items i and j is to
first isolate the users who have rated both of these items and

then apply a similarity computation technique to determine the
similarity Sim(i, j) [102]. The PCC-based similarity computa-
tion between two items i and j can be described as:

Sim(i, j) =

∑

u∈U(i)∩U(j)

(ru,i − ri) · (ru,j − rj)

√ ∑

u∈U(i)∩U(j)

(ru,i − ri)2 ·
√ ∑

u∈U(i)∩U(j)

(ru,j − rj)2

,

(3.2)
where Sim(i, j) is the similarity between item i and item j, and

u belongs to the subset of users who both rated item i and item
j. ru,i is the rate user u gave item i, and ri represents the average
rate of item i. Like user similarity, item similarity Sim(i, j) is

also ranging from [−1, 1].

3.1.2 Significance Weighting

PCC-based collaborative filtering generally can achieve higher

performance than other popular algorithms like VSS [17], since
it considers the factor of the differences of user rating styles.

However PCC will overestimate the similarities of users who
happen to have rated a few items identically, but may not have
similar overall preferences [79]. Herlocker et al. [43, 44] proposed

to add a correlation significance weighting factor that would
devalue similarity weights that were based on a small number of

co-rated items. Herlocker’s latest research work [79] proposed
to use the following modified similarity computation equation:

Sim′(a, u) =
Max(|Ia ∩ Iu|, γ)

γ
· Sim(a, u). (3.3)

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 27

This equation overcomes the problem when only few items
are rated in common but in case that when |Ia ∩ Iu| is much

higher than γ, the similarity Sim′(a, u) will be larger than 1,
and even surpass 2 or 3 in worse cases. We use the following

equation to solve this problem:

Sim′(a, u) =
Min(|Ia ∩ Iu|, γ)

γ
· Sim(a, u), (3.4)

where |Ia ∩ Iu| is the number of items which user a and user u

rated in common. This change bounds the similarity Sim′(a, u)
to the interval [0, 1]. Then the similarity between items could

be defined as:

Sim′(i, j) =
Min(|Ui ∩ Uj|, δ)

δ
· Sim(i, j), (3.5)

where |Ui ∩ Uj| is the number of users who rated both item i
and item j.

3.2 Collaborative Filtering Framework

In pratice, the user-item matrix of commercial recommendation

system is very sparse and the density of available ratings is often
less than 1% [102]. Sparse matrix directly leads to the predic-
tion inaccuracy in traditional user-based or item-based collabo-

rative filtering. Some work applies data smoothing methods to
fill the missing values of the user-item matrix. In [124], Xue et

al. proposed a cluster-based smoothing method which clusters
the users using K-means first, and then predicts all the missing

data based on the ratings of Top-N most similar users in the
similar clusters. The simulation shows this method could gener-
ate better results than other collaborative filtering algorithms.

But cluster-based method limits the diversity of users in each
cluster, and the clustering results of K-means relies on the pre-

selected K users. Furthermore, if a user does not have enough

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 28

1i 2i 4i3i 5i 6i 7i ni8i

1u

2u

3u

4u

5u

mu

1,1r 4,1r

2,2r 8,2r

6,3r

4,4r nr ,4

3,5r 7,5r

6u

9i

9,6r

nmr ,

1i 2i 4i3i 5i 6i 7i ni8i

1u

2u

3u

4u

5u

mu

1,1r 4,1r

2,2r 8,2r

6,3r

4,4r nr ,4

3,5r 7,5r

6u

9i

9,6r

2,mr nmr ,

3,1̂r 6,1̂r 8,1̂r 9,1̂r

4,2̂r 5,2̂r 7,2̂r nr ,2̂

1,3̂r 3,3̂r 4,3̂r 5,3̂r 8,3̂r 9,3̂r

1,4̂r 2,4̂r 5,4̂r 6,4̂r 7,4̂r 9,4̂r

1,5̂r 2,5̂r 5,5̂r 8,5̂r 9,5̂r nr ,5̂

1,6̂r 2,6̂r 4,6̂r 5,6̂r 6,6̂r 7,6̂r nr ,6̂

1,m̂r 4,m̂r 6,m̂r 8,m̂r 9,m̂r2,mr

Figure 3.1: (a) The user-item matrix (m×n) before missing data prediction.
(b) The user-item matrix (m × n) after missing data prediction.

similar users, then Top-N algorithm generates a lot of dissimilar

users which definitely will decrease the prediction accuracy of
the active users.

According to the analysis above, we propose a novel effective
missing data prediction algorithm which predicts the missing
data when it fits the criteria we set. Otherwise, we will not pre-

dict the missing data and keep the value of the missing data to
be zero. As illustrated in Fig. 3.1(a), before we predict the miss-

ing data, the user-item matrix is a very sparse matrix and every
user only rates few items with ru,i; at the same time, other un-

rated data are covered with shade. Using this sparse matrix to
predict ratings for active users always results in giving bad rec-

ommendations to the active users. In our approach, we evaluate
every shaded block (missing data) using the available informa-
tion in Fig. 3.1(a). For every shaded block, if our algorithm

achieves confidence in the prediction, then we give this shaded
block a predicted rating value r̂u,i. Otherwise, we set the value

of this missing data to zero, as seen in Fig. 3.1(b).
Accordingly, the collaborative filtering is simplified into two

simple questions. The first is “Under what circumstance does
our algorithm have confidence to predict the shaded block?”

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 29

and the second is “How to predict?”. The following will answer
these two questions.

3.2.1 Similar Neighbors Selection

Similar neighbors selection is a very important step in predict-
ing missing data. If selected neighbors are dissimilar with the

current user, then the prediction of missing data of this user
is inaccurate and will finally affect the prediction results of the
active users. In order to overcome the flaws of Top-N neighbors

selection algorithms, we introduce a threshold η. If the similar-
ity between the neighbor and the current user is larger than η,

then this neighbor is selected as the similar user.
For every missing data ru,i, a set of similar users S(u) towards

user u can be generated according to:

S(u) = {ua|Sim′(ua, u) > η, ua 6= u}, (3.6)

where Sim′(ua, u) is computed using Eq. (3.4). At the same

time, for every missing data ru,i, a set of similar items S(i)
towards item i can be generated according to:

S(i) = {ik|Sim′(ik, i) > θ, ik 6= i}, (3.7)

where θ is the item similarity threshold, and Sim′(ik, i) is com-
puted by Eq. (3.5). The selection of η and θ is an important step

since a very big value will always cause the shortage of similar
users or items, and a relative small value will bring too many

similar users or items.
According to Eq.(3.6) and Eq.(3.7), we define that our algo-

rithm will lack enough confidence to predict the missing data
ru,i if and only if S(u) = ∅ ∧ S(i) = ∅, which means that user
u does not have similar users and item i does not have similar

items either. Then our algorithm sets the value of this missing
data to zero. Otherwise, it will predict the missing data ru,i

following the algorithm described in Section 3.2.2.

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 30

3.2.2 Missing Data Prediction

User-based collaborative filtering predicts the missing data us-

ing the ratings of similar users and item-based collaborative
filtering predicts the missing data using the ratings of similar

items. Actually, although users have their own rating style, if
an item is a very popular item and has obtained a very high aver-

age rating from other users, then the active user will have a high
probability to give this item a good rating too. Hence, predict-

ing missing data only using user-based approaches or only using
item-based approaches will potentially ignore valuable informa-
tion that will make the prediction more accurate. We propose to

systematically combine user-based and item-based approaches,
and take advantage of user correlations and item correlations in

the user-item matrix.
Given the missing data ru,i, according to Eq. (3.6) and Eq. (3.7),

if S(u) 6= ∅ ∧ S(i) 6= ∅, the prediction of missing data P (ru,i) is
defined as:

P (ru,i) = λ × (u +

∑

ua∈S(u)

Sim′(ua, u) · (rua,i − ua)

∑

ua∈S(u)

Sim′(ua, u)
) +

(1 − λ) × (i +

∑

ik∈S(i)

Sim′(ik, i) · (ru,ik − ik)

∑

ik∈S(i)

Sim′(ik, i)
), (3.8)

where λ is the parameter in the range of [0, 1]. The use of

parameter λ allows us to determine how the prediction relies on
user-based prediction and item-based prediction. λ = 1 states

that P (ru,i) depends completely upon ratings from user-based
prediction and λ = 0 states that P (ru,i) depends completely

upon ratings from item-based prediction.

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 31

In practice, some users do not have similar users and the
similarities between these users and all other users are less than

the threshold η. Top-N algorithms will ignore this problem and
still choose the top n most similar users to predict the missing

data. This will definitely decrease the prediction quality of the
missing data. In order to predict the missing data as accurate
as possible, in case some users do not have similar users, we use

the information of similar items instead of users to predict the
missing data, and vice versa, as seen in Eq. (3.9) and Eq. (3.10).

This consideration inspires us to fully utilize the information of
user-item matrix as follows:

If S(u) 6= ∅ ∧ S(i) = ∅, the prediction of missing data P (ru,i)
is defined as:

P (ru,i) = u +

∑

ua∈S(u)

Sim′(ua, u) · (rua,i − ua)

∑

ua∈S(u)

Sim′(ua, u)
. (3.9)

If S(u) = ∅ ∧ S(i) 6= ∅, the prediction of missing data P (ru,i)
is defined as:

P (ru,i) = i +

∑

ik∈S(i)

Sim′(ik, i) · (ru,ik − ik)

∑

ik∈S(i)

Sim′(ik, i)
. (3.10)

The last possibility is given the missing data ru,i, user u does
not have similar users and at the same time, item i also does not

have similar items. In this situation, we choose not to predict
the missing data; otherwise, it will bring negative influence to

the prediction of the missing data ru,i. That is:
If S(u) = ∅ ∧ S(i) = ∅, the prediction of missing data P (ru,i)

is defined as:

P (ru,i) = 0. (3.11)

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 32

This consideration is different from all other existing predic-
tion or smoothing methods. They always try to predict all the

missing data in the user-item matrix, which will predict some
missing data with bad quality.

3.2.3 Prediction for Active Users

After the missing data is predicted in the user-item matrix, the
next step is to predict the ratings for the active users. The

prediction process is almost the same as predicting the missing
data, and the only difference is in the case for a given active
user a; namely, if S(a) = ∅∧S(i) = ∅, then predicts the missing

data using the following equation:

P (ra,i) = λ × ra + (1 − λ) × ri. (3.12)

In other situations, if (1) S(u) 6= ∅ ∧ S(i) 6= ∅, (2) S(u) 6=
∅ ∧ S(i) = ∅ or (3) S(u) = ∅ ∧ S(i) 6= ∅, we use Eq. (3.8),
Eq. (3.9) and Eq. (3.10) to predict ra,i, respectively.

3.2.4 Parameter Discussion

The thresholds γ and δ introduced in Section 3.1 are employed
to avoid overestimating the users similarity and items similarity,
when there are only few ratings in common. If we set γ and δ too

high, most of the similarities between users or items need to be
multiplied with the significance weight, and it is not the results

we expect. However, if we set γ and δ too low, it is also not
reasonable because the overestimate problem still exists. Tuning

these parameters is important to achieving a good prediction
results.

The thresholds η and θ introduced in Section 3.2.1 also play

an important role in our collaborative filtering algorithm. If η
and θ are set too high, less missing data need to be predicted; if

they are set too low, a lot of missing data need to be predicted.

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 33

Table 3.1: The relationship between parameters with other CF approaches

Lambda Eta Theta Related CF Approaches

1 1 1 User-based CF without missing data prediction

0 1 1 Item-based CF without missing data prediction

1 0 0 User-based CF with all the missing data predicted

0 0 0 Item-based CF with all the missing data predicted

In the case when η = 1 and θ = 1, our approach will not predict
any missing data, and this algorithm becomes the general col-

laborative filtering without data smoothing. In the case when
η = 0 and θ = 0, our approach will predict all the missing data,

and this algorithm converges to the Top-N neighbors selection
algorithms, except the number N here includes all the neigh-

bors. In order to simplify our model, we set η = θ in all the
simulations.

Finally, parameter λ introduced in Section 3.2.2 is the last pa-

rameter we need to tune, and it is also the most important one.
λ determines how closely the rating prediction relies on user in-

formation or item information. As discussed before, λ = 1 states
that P (ru,i) depends completely upon ratings from user-based

prediction and λ = 0 states that P (ru,i) depends completely
upon ratings from item-based prediction. This physical inter-

pretation also helps us to tune λ accordingly.
With the changes of parameters, several other famous collab-

orative filtering methods become special cases in our approach

as illustrated in Table 3.1.

3.3 Empirical Analysis

We conduct several experiments to measure the recommenda-

tion quality of our new approach for collaborative filtering with
other methods, and address the experiments as the following

questions:

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 34

1. How does our approach compare with traditional user-based
and item-based collaborative filtering methods?

2. What is the performance comparison between our effec-
tive missing data prediction approach and other algorithms

which predict every missing data?

3. How does significance weighting affect the accuracy of pre-
diction?

4. How do the thresholds η and θ affect the accuracy of pre-
diction? How many missing data are predicted by our al-

gorithm, and what is the comparison of our algorithm with
the algorithms that predict all the missing data or no miss-

ing data?

5. How does the parameter λ affect the accuracy of prediction?

6. How does our approach compare with the published state-
of-the-art collaborative filtering algorithms?

In the following, Section 3.3.3 gives answers to questions 1

and 6, Section 3.3.4 addresses question 2, and Section 3.3.5 de-
scribes experiment for the questions 3 to 5.

3.3.1 Dataset

Two datasets from movie rating are applied in our experiments:
MovieLens1 and EachMovie2. We only report the simulation

results of MovieLens due to the space limitation. Similar results
can be observed from the EachMovie application.

MovieLens is a famous Web-based research recommender sys-

tem. It contains 100,000 ratings (1-5 scales) rated by 943 users

1http://www.cs.umn.edu/Research/GroupLens/.
2http://www.research.digital.com/SRC/EachMovie/. It is retired by

Hewlett-Packard (HP), but a postprocessed copy can be found on
http://guir.berkeley.edu/projects/swami/.

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 35

Table 3.2: Statistics of Dataset MovieLens
Statistics User Item

Min. Num. of Ratings 20 1

Max. Num. of Ratings 737 583

Avg. Num. of Ratings 106.04 59.45

on 1682 movies, and each user at least rated 20 movies. The
density of the user-item matrix is:

100000

943 × 1682
= 6.30%.

The statistics of dataset MovieLens is summarized in Table 3.2.
We extract a subset of 500 users from the dataset, and divide

it into two parts: select 300 users as the training users (100,
200, 300 users respectively), and the rest 200 users as the active

(testing) users. As to the active users, we vary the number of
rated items provided by the active users from 5, 10, to 20, and

give the name Given5, Given10 and Given20, respectively.

3.3.2 Metrics

We use the Mean Absolute Error (MAE) metrics to measure the

prediction quality of our proposed approach with other collabo-
rative filtering methods. MAE is defined as:

MAE =

∑
u,i |ru,i − r̂u,i|

N
, (3.13)

where ru,i denotes the rating that user u gave to item i, and r̂u,i

denotes the rating that user u gave to item i which is predicted

by our approach, and N denotes the number of tested ratings.

3.3.3 Comparison

In order to show the performance increase of our effective miss-

ing data prediction (EMDP) algorithm, we compare our algo-

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 36

Table 3.3: MAE comparison with other approaches (A smaller MAE value
means a better performance).

Training Users Methods Given5 Given10 Given20

EMDP 0.784 0.765 0.755

MovieLens 300 UPCC 0.838 0.814 0.802

IPCC 0.870 0.838 0.813

EMDP 0.796 0.770 0.761

MovieLens 200 UPCC 0.843 0.822 0.807

IPCC 0.855 0.834 0.812

EMDP 0.811 0.778 0.769

MovieLens 100 UPCC 0.876 0.847 0.811

IPCC 0.890 0.850 0.824

Table 3.4: MAE comparison with state-of-the-arts algorithms (A smaller
MAE value means a better performance).

Num. of Training Users 100 200 300

Given Ratings 5 10 20 5 10 20 5 10 20

EMDP 0.8070.7690.7650.7930.7600.7510.7880.7540.746

SF 0.847 0.774 0.792 0.827 0.773 0.783 0.804 0.761 0.769

SCBPCC 0.848 0.819 0.789 0.831 0.813 0.784 0.822 0.810 0.778

AM 0.963 0.922 0.887 0.849 0.837 0.815 0.820 0.822 0.796

PD 0.849 0.817 0.808 0.836 0.815 0.792 0.827 0.815 0.789

PCC 0.874 0.836 0.818 0.859 0.829 0.813 0.849 0.841 0.820

rithm with some traditional algorithms: user-based algorithm
using PCC (UPCC) and item-based algorithm using PCC (IPCC).

The parameters or thresholds for the experiments are empiri-
cally set as follows: λ = 0.7, γ = 30, δ = 25, η = θ = 0.4.

In Table 3.3, we observe that our new approach significantly
improves the recommendation quality of collaborative filtering,

and outperforms UPCC and IPCC consistently.
Next, in order to compare our approach with other state-of-

the-arts algorithms, we follow the exact evaluation procedures

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 37

which were described in [119, 124] by extracting a subset of 500
users with more than 40 ratings. Table 3.4 summarizes our ex-

perimental results. We compare with the following algorithms:
Similarity Fusion (SF) [119], Smoothing and Cluster-Based PCC

(SCBPCC) [124], the Aspect Model (AM) [48], Personality Di-
agnosis (PD) [88] and the user-based PCC [17]. Our method
outperforms all other competitive algorithms in various config-

urations.

3.3.4 Impact of Missing Data Prediction

Our algorithm incorporates the option not to predict the miss-

ing data if it does not meet the criteria set in Section 3.2.1 and
Section 3.2.2. In addition, it alleviates the potential negative

influences from bad prediction on the missing data. To demon-
strate the effectiveness of our approach, we first conduct a set of
simulations on our effective missing data prediction approach.

The number of training users is 300, where we set γ = 30, δ = 25,
η = θ = 0.5, and vary λ from zero to one with a step value of

0.05. We then plot the graph with the ratings of active users of
Given5, Given10 and Given20, respectively. As to the method

in predicting every missing data (PEMD), we use the same algo-
rithm, and keep the configurations the same as EMDP except for

Eq. (3.11). In PEMD, when S(u) = ∅ and S(i) = ∅, we predict
the missing data ru,i using the nearest neighbors of the missing
data instead of setting the value to zero. In this experiment,

we set the number of nearest neighbors to 10. The intention of
this experiment is to compare the performance of our EMDP

algorithm with PEMD under the same configurations. In other
words, we intend to determine the effectiveness of our missing

data prediction algorithm, and whether our approach is better
than the approach which will predict every missing data or not.

In Fig. 3.2, the star, up triangle, and diamond in solid line

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

Lambda

M
A

E

EMDP−Given20
PEMD−Given20
EMDP−Given10
PEMD−Given10
EMDP−Given5
PEMD−Given5

Figure 3.2: MAE Comparison of EMDP and PEMD (A smaller MAE value
means a better performance).

represent the EMDP algorithm in Given20, Given10 and Given5
ratings respectively, and the circle, down triangle, and square in
dashed line represent the PEMD algorithm in Given20, Given10

and Given5 ratings respectively. All the solid lines are below
the respectively comparative dashed lines, indicating our effec-

tive missing data prediction algorithm performs better than the
algorithm which predict every missing data, and predicting miss-

ing data selectively is indeed a more effective method.

3.3.5 Impact of Parameters

γ and δ in Significance Weighting

Significance weighting makes the similarity computation more
reasonable in practice and devalues some similarities which look

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 39

0 10 20 30 40 50

0.7464

0.7466

0.7468

0.747

0.7472

0.7474

0.7476

0.7478

0.748

Gamma

MA
E

Given20

0 10 20 30 40 50
0.7538

0.754

0.7542

0.7544

0.7546

0.7548

0.755

0.7552

0.7554

0.7556

0.7558

Gamma

MA
E

Given10

0 10 20 30 40 50
0.775

0.7755

0.776

0.7765

0.777

0.7775

0.778

0.7785

0.779

Gamma

MA
E

Given5

0 10 20 30 40 50
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Gamma

De
ns

ity

(a) (b) (c) (d)

Figure 3.3: Impact of Gamma on MAE and Matrix Density

0 0.2 0.4 0.6 0.8 1
0.74

0.76

0.78

0.8

0.82

0.84

Lambda

M
A

E

Training Users = 300

Given20
Given10
Given5

0 0.2 0.4 0.6 0.8 1
0.74

0.76

0.78

0.8

0.82

0.84

Lambda

M
A

E

Training Users = 200

Given20
Given10
Given5

0 0.2 0.4 0.6 0.8 1
0.76

0.78

0.8

0.82

0.84

0.86

Lambda

M
A

E

Training Users = 100

Given20
Given10
Given5

(a) (b) (c)

Figure 3.4: Impact of Lambda on MAE

similar but are actually not, and the simulation results in Fig. 3.3
shows the significance weighting will promote the collaborative

filtering performance.
In this experiment, we first evaluate the influence of γ, and

select 300 training users, then set λ = 0.7, η = θ = 0.5, δ = 26.
We vary the range of γ from 0 to 50 with a step value of 2.

Fig. 3.3(a),(b),(c) shows how γ affects MAE when given ratings
20, 10, 5 respectively, and Fig. 3.3(d) shows that the value of γ

also impacts the density of the user-item matrix in the process
of missing data prediction. The density of the user-item matrix
will decrease according to the increase of the value of γ. More

experiments show that δ has the same features and impacts on
MAE and matrix density as γ; however, we do not include the

simulation results due to the space limitation.

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 40

Impact of λ

Parameter λ balances the information from users and items. It

takes advantages from these two types of collaborative filtering
methods. If λ = 1, we only extract information from users, and

if λ = 0, we only mine valuable information from items. In other
cases, we fuse information from users and items to predict the

missing data and furthermore, to predict for active users.
Fig. 3.4 shows the impacts of λ on MAE. In this experiment,

we test 300 training users, 200 training users and 100 training
users and report the experiment results in Fig. 3.4(a), Fig. 3.4(b)
and Fig. 3.4(c) respectively. The initial values of other parame-

ters or thresholds are: η = θ = 0.5, γ = 30, δ = 25.
Observed from Fig. 3.4, we draw the conclusion that the value

of λ impacts the recommendation results significantly, which
demonstrates that combining the user-based method with the

item-based method will greatly improve the recommendation
accuracy. Another interesting observation is when following the
increase of the number of ratings given (from 5 to 10, and from

10 to 20), the value of arg minλ(MAE) of each curve in Fig. 3.4
shifts from 0.3 to 0.8 smoothly. This implies the information for

users is more important than that for items if more ratings for
active users are given. On the other hand, the information for

items would be more important if less ratings for active users
are available; however, less ratings for active users will lead to

more inaccuracy of the recommendation results.

Impact of η and θ

η and θ also play a very important role in our collaborative
filtering approach. As discussed in Section 3.2, η and θ directly

determine how many missing data need to be predicted. If η and
θ are set too high, most of the missing data cannot be predicted

since many users will not have similar users, and many items will

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 41

0 0.2 0.4 0.6 0.8 1
0.74

0.76

0.78

0.8

0.82

0.84

Eta and Theta

M
A

E

Training Users = 300

Given20
Given10
Given5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Eta and Theta

D
e

n
s
it
y

Training Users = 300

0 0.2 0.4 0.6 0.8 1
0.74

0.76

0.78

0.8

0.82

0.84

Eta and Theta
M

A
E

Training Users = 200

Given20
Given10
Given5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Eta and Theta

D
e

n
s
it
y

Training Users = 200

0 0.2 0.4 0.6 0.8 1
0.76

0.78

0.8

0.82

0.84

Eta and Theta

M
A

E

Training Users = 100

Given20
Given10
Given5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Eta and Theta

D
e

n
s
it
y

Training Users = 100
(a) (b) (c)

(d) (f) (g)

Figure 3.5: Impact of Eta and Theta on MAE and Density

not have similar items either. On the other hand, if η and θ are
set too low, every user or item will obtain too many similar users
or items, which causes the computation inaccuracy and increases

the computing cost. Accordingly, selecting proper values for η
and θ is as critical as determining the value for λ. In order to

simplify our model, we set η = θ as employed in our experiments.
In the next experiment, we select 500 users from MovieLens

dataset and extract 300 users for training users and other 200
as the active users. The initial values for every parameter and

threshold are: λ = 0.7, γ = 30, δ = 25. We vary the values of
η and θ from 0 to 1 with a step value of 0.05. For each training
user set (100, 200, 300 users respectively), we compute the MAE

and density of the user-item matrix. The results are showed in
Fig. 3.5.

CHAPTER 3. EFFECTIVE MISSING DATA PREDICTION 42

As showed in Fig. 3.5(a), given 300 training users and given
20 ratings for every active user, this algorithm will achieve the

best performance around η = θ = 0.50, and the related den-
sity of user-item matrix in Fig. 3.5(d) is 92.64% which shows

that 7.36% missing data of this user-item matrix are not pre-
dicted. In this experiment, the number of data that was not
predicted is 0.0736 × 500 × 1000 = 36800. We observe that

around η = θ = 0.70, this algorithm already achieves a very
good MAE value which is almost the same as the best MAE val-

ues in Fig. 3.5(b). The related matrix density is 29.00%, which
illustrates that more than 70% data of user-item matrix are not

predicted. Nevertheless, the algorithm can already achieve sat-
isfactory performance.

3.4 Summary

In this chapter, we propose an effective missing data prediction
algorithm for collaborative filtering. By judging whether a user

(an item) has other similar users (items), our approach deter-
mines whether to predict the missing data and how to predict the
missing data by using information of users, items or both. Tradi-

tional user-based collaborative filtering and item-based collabo-
rative filtering approaches are two subsets of our new approach.

Empirical analysis shows that our proposed EMDP algorithm
for collaborative filtering outperforms other state-of-the-art col-

laborative filtering approaches.

2 End of chapter.

Chapter 4

Recommend with Global

Consistency

Recently, due to its efficiency in handling very large datasets,
low-dimensional factor models have become one of the most pop-

ular approaches in the model-based collaborative filtering algo-
rithms. The premise behind a low-dimensional factor model is
that there is only a small number of factors influencing the pref-

erences, and that a user’s preference vector is determined by
how each factor applies to that user [94].

Although these methods can effectively predict missing val-
ues, several disadvantages are unveiled, which will potentially

decrease the prediction accuracy. First, in low-rank factor-based
approaches, both item factor vectors and user-specific coeffi-

cients are understood as latent factors which have no physical
meanings, and hence uninterpretable. Moreover, the lack of in-
terpretability will result in the improper modeling of the latent

factors. For example, these latent factors in [98, 99] are set to
be in the Euclidean space, while they are nonnegative in [127].

Second, due to the sparsity of the user-item rating matrix (the
density of available ratings in commercial recommender systems

is often less than 1% [102]), many matrix factorization methods
fail to provide accurate recommendations. In the sparse user-
item rating matrix, the ratings for training the user features are

43

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 44

rare, hence the learned user features and the coefficients cannot
accurately reflect the taste of users, which will result in the bad

prediction accuracy.
In this chapter, aiming at providing solutions for the issues

analyzed above, we propose a Semi-Nonnegative Matrix Factor-
ization with Global Statistical Consistency (SNGSC) approach
for collaborative filtering.

4.1 Framework

4.1.1 Problem Definition

Without loss of generality, in this chapter, we use the movie
recommender systems as the example. In a collaborative pre-

diction movie recommendation system, the inputs to the system
are user ratings on the movies the users have already seen. Pre-
diction of user preferences on the movies they have not yet seen

are then based on patterns in the partially observed rating ma-
trix X ∈ Rn×m

+ , where n is the number of users, and m is the

number of movies. The value Xij indicates the score of item
j rated by user i. This approach contrasts with feature-based

approach where predictions are made based on features of the
movies (e.g. genre, year, actors, external reviews) and the users

(e.g. age, gender, explicitly specified preferences, social trust
networks [69, 74]). Users “collaborate” by sharing their ratings
instead of relying on external information [94].

Table 4.1 and Table 4.2 are the toy examples on the problem
we study. As illustrated in Table 4.1, each user (from u1 to

u6) rated some items (from i1 to i8) on a 5-point integer scale
to express the extent of favor of each item. The problem we

study in this chapter is how to predict the missing values of the
user-item matrix effectively and efficiently.

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 45

Table 4.1: User-Item Matrix

i1 i2 i3 i4 i5 i6 i7 i8

u1 5 2 3 4

u2 4 3 5

u3 4 2 2 4

u4

u5 5 1 2 4 3

u6 4 3 2 4 3 5

Table 4.2: Predicted User-Item Matrix

i1 i2 i3 i4 i5 i6 i7 i8

u1 5 2 2.5 3 4.8 4 2.2 4.8

u2 4 3 2.4 2.9 5 4.1 2.6 4.7

u3 4 1.7 2 3.2 3.9 3.0 2 4

u4 4.8 2.1 2.7 2.6 4.7 3.8 2.4 4.9

u5 5 1 2 3.4 4 3 1.5 4.6

u6 4 3 2.9 2 4 3.4 3 5

4.1.2 How is user-item matrix X generated?

The n × m matrix X contains the ratings of users on items.
X is generated by the users who rate the movies according to
their overall feeling about the movies that they have seen. By

anatomizing their overall feeling, we give a detailed analysis on
the rating process as follows.

Each user has a different taste on different type of genre,
actors, or something else. But with the only given rating matrix,

the information for genre or actors is unknown, so we assume
there are d different unknown types of objects, which are named

as latent types. We further assume that user i has confidence
Uik (Uik ∈ R+) on k-th type, and Uik is also the taste of user i

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 46

in ranking objects of type k; on the other hand, on k-th type,
each item j has a “true” quality value Vjk (Vjk ∈ R). So to user

i, item j should be rated by user i as Uik ∗ Vjk. As a result, on
k-th type, if both the quality of object j and the taste of user i

are high, then user i will rate object j with a high score.
These d latent types may have cross-effects on each other. For

example, War type movies may also belong to classic Hollywood

sub-category. Considering the cross-effects, we assume a sym-
metric non-negative matrix Σd×d, in which Σkl = Σlk denotes

the cross-effect between type k and l, and Σkk = λk. Ideally,
we hope that the d latent types are independent, and their sig-

nificance can be ordered, i.e., nonnegative significance values
λ1 ≥ λ2 ≥ . . . ≥ λd can be assigned to the d latent types.

Consequently, on type k, user i rates item j with a score

d∑

l=1

Uik ∗ Vjl ∗ Σkl,

where the quality Vjl of item j on type l is transferred to quality
Vjl ∗ Σkl by Σkl. Note that, if Σd×d is diagonal, then it becomes∑d

l=1 λk ∗ Uik ∗ Vjk. Accumulating all the different unknown
types, we obtain that

d∑

k=1

d∑

l=1

Uik ∗ Vjl ∗ Σkl = (UΣV T)ij,

where Uk is the vector consisting of Uik, Vk is the vector consist-
ing of Vjk, and U = (U1, U2, . . . , Ud) and V = (V1, V2, . . . , Vd).

We consider factorizations of the form X ≈ UΣV T , where U ∈
Rn×d

+ , Σ ∈ Rd×d
+ , and V ∈ Rm×d.

Remark. According to the physical meaning of U and V , U
is nonnegative while V should be unrestricted. For example, a
movie may be very bad so that everyone dislikes it, and hence

the quality of this movie can be scored as −1. The confidence

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 47

is the ability of a user to rate a movie, and so should not be
negative. To explain it further, if the confidence of a user is

also set as −1, then the product of -1 and -1 will be 1, which
means that a user with low confidence rates a bad movie with

a high score, which is not true in reality. On the contrary, the
setting Ui ∈ Rn

+ avoids such unreasonable cases, leading to the
advantage of the interpretability of U .

4.1.3 Sensitivity Analysis

We find U , Σ, and V so that P = UΣV T approximates X well.

But it is not preferable that small changes (due to computing
errors or error propagated from observation errors in X) in these

three matrices result in a big change in their product. Since the
derivatives with respect to the variables U , Σ, and V mean the

change rate, we examine the square sum of the corresponding
derivatives. Let the notation || · ||F denote the Frobenius norm.

By
∂(BA)ij

∂Bmn
= δim(A)nj, we have

∑

ijmn

(
∂(UΣV T)ij

∂Umk

)2

=
∑

ijmk

(
δim(ΣV T)kj

)2

=
∑

ijk

(
(ΣV T)kj

)2

= n
∑

jk

(
(ΣV T)kj

)2

= n||ΣV T ||2F . (4.1)

Similarly we have

∑

ijmn

(
∂(UΣV T)ij

∂Vmk

)2

= m||UΣ||2F , (4.2)

∑

ijmn

(
∂(UΣV T)ij

∂Σmk

)2

= d||U ||2F ||V ||2F . (4.3)

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 48

4.1.4 Optimization Problem

Considering both the approximation X ≈ UΣV T and the sensi-

tivity analysis, a factorization problem can be cast as an opti-
mization problem.

min
U,Σ,V

∑

(i,j)∈OI

(Xij − (UΣV T)ij)
2

+ λ
(
n||ΣV T ||2F + m||UΣ||2F + d||U ||2F ||V ||2F

)
,

s.t. U ≥ 0,

Σ ≥ 0. (4.4)

where λ is a hyperparameter that controls the balance between

the approximation and the sensitivity, and OI denote the set of
observed index pairs.

4.1.5 Problem Simplification and Solution

Let Ui’s and Vi’s be the columns of U and V respectively. With-

out loss of generality, we set ||Uk||F = 1, ||Vk||F = 1 for 1 ≤ k ≤
d. As a result, ||U ||2F = d, ||V ||2F = d. For the purpose of simpli-

fying the solution, we further assume that Σd×d is diagonal, i.e.,
Σd×d = diag(λ1, λ2, . . . , λd). Consequently,

||ΣV T ||2F =
d∑

k=1

λ2
k,

and

||UΣ||2F =

d∑

k=1

λ2
k.

In order to simplify the notation, we denote UΣ as U , then

Σ disappears, and the conditions λ1 ≥ λ2 ≥ . . . ≥ λd can be
changed to ||U1||F ≥ ||U2||F ≥ . . . ≥ ||Ud||F . Based on the
above simplification, Eq. (4.4) can be reformulated as follows.

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 49

Given an n × m nonnegative matrix X, solve

min
Uk,Vk

∑

(i,j)∈OI

(
Xij −

d∑

k=1

(UkV
T
k)ij

)2

+ λn
d∑

k=1

||Uk||2F + λm
d∑

k=1

||Vk||2F + λd3,

s.t. Uk ≥ 0,

||Uk||F ≥ ||Uk+1||F ,

||Vk||F = 1. (4.5)

In order to obtain the most informative latent features and
find the dimension d, we fit the incomplete matrix X step by step

in such a way that when Uk and Vk are learned, Uj (j ≤ k − 1)
and Vj (j ≤ k− 1) are fixed, and we only learn Uk and Vk based

on the residual R. R is defined as

R = X −
k−1∑

j=1

UjV
T
j

on OI, and R = 0 on others for convenience. The process con-
tinues until there is no useful information retained in R. When

the process stops, the dimension can be determined. So we only
focus on the following problem:

min
Uk,Vk

∑

(i,j)∈OI

(
Rij − (UkV

T
k)ij

)2

+ λn||Uk||2F + λm||Vk||2F ,

s.t. Uk ≥ 0,

||Uk−1||F ≥ ||Uk||F ,

||Vk||F = 1. (4.6)

Note that the elements in R may be negative. If we ignore the

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 50

variant λk, the Lagrangian of the above problem is

J =
∑

(i,j)∈OI

(
Rij − (UkV

T
k)ij

)2

+ λ(m + n)||Uk||2F
+ µk(U

T
k Uk − UT

k−1Uk−1)

+ νk(V
T
k Vk − 1) − Y TUK, (4.7)

where Y ∈ Rn
+, and µk ∈ R+. Let the i-th element of Uk, the

j-th element of Vk, and the i-th element of Y be Uki, Vkj and Yi

respectively. In order to solve this problem, take derivative on
J with respect to Uki and Vj. We have

∂J

∂Uki

=
∑

j:(i,j)∈OI

2(Rij − UkiVkj)(−Vkj)

+ 2µkUki − Yi = 0, (4.8)
∂J

∂Vkj

=
∑

i:(i,j)∈OI

2(Rij − UkiVkj)(−Uki)

+ 2νkVkj = 0. (4.9)

If Uk is given, then minimizing the quadratic function in Eq. (4.7),
we obtain that

Vkj =

∑
i:(i,j)∈OI RijUki∑

i:(i,j)∈OI U 2
ki + νk

, (4.10)

where νk is a parameter such that ||Vk||F = 1.

If Vk is given, considering the constraints that Uk ≥ 0 and
||Uk−1||F ≥ ||Uk||F , we obtain

Uki =

∑
j:(i,j)∈OI RijVkj + Yi/2
∑

j:(i,j)∈OI V 2
kj + µk

=
(
∑

j:(i,j)∈OI RijVkj)+∑
j:(i,j)∈OI V 2

kj + µk

, (4.11)

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 51

where Yi is the minimum positive number such that
∑

j:(i,j)∈OI

RijVkj + Yi/2 ≥ 0,

i.e.,
Yi = 0 if

∑

j:(i,j)∈OI

RijVkj ≥ 0,

and

Yi = −
∑

j:(i,j)∈OI

RijVkj if
∑

j:(i,j)∈OI

RijVkj < 0,

and µk is the minimum positive number such that

||Uk||F ≤ ||Uk−1||F .

We name our algorithm as Semi-Nonnegative Matrix Fac-
torization with Global Statistical Consistency (SNGSC). In Al-

gorithm 1, we summarize a learning algorithm by employing
Eq. (4.10) and Eq. (4.11). The criterion that no useful infor-
mation can be mined in R is specified in our experiments as:

the difference between the mean residual 1
|OI|
∑

(i,j)∈OI |Rij| in
the current dimension d and that in the previous dimension is

smaller than 0.0005.
From the algorithm, we can see the time complexity of SNGSC

is linear on the number of ratings, i.e., O(|OI|), because we only
need to calculate the multiplications when the ratings values are

not missing. Moreover, with the proper physical meaning in U
and V , our algorithm is expected to achieve more accurate re-
sults.

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 52

Algorithm 1: SNGSC Learning Algorithm

Input: Incomplete matrix X ≥ 0
Output: d, {Uk}d

k=1, and {Vk}d
k=1

1: Initialize d = 0, k = 1.
2: repeat

3: if k == 1 then

4: R = X
5: else

6: R = R − Uk−1V
T
k−1

7: end if

8: repeat

9: for j = 1 TO m do

10: Vkj =
∑

i:(i,j)∈OI RijUki∑
i:(i,j)∈OI U2

ki+νk

11: end for

12: for i = 1 TO n do

13: Uki =
(
∑

j:(i,j)∈OI RijVkj)+∑
j:(i,j)∈OI V 2

kj+µk

14: end for

15: until Converge
16: k = k + 1

17: until No useful information can be mined in R
18: d = k − 1

4.2 Consistency with Global Information

Until now, we only constrain the expression
∑d

k=1(UkV
T
k) in

Eq. (4.5) by fitting its values on the user-item pairs with the
training data. However, we observe that this partial constraint

cannot make the values
∑d

k=1(UkV
T
k) follow the global statistics

such as the first moment and the second moment. The previous

low-dimensional factor models share this problem because no
action is taken on controlling the global statistics. For example,

the mean of ratings in EachMovie Data is 0.607357 (after scaling

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 53

1 2 3 4 5 6 7 8 9 10 11
0.4

0.45

0.5

0.55

0.6

0.65

Dimension

M
e

a
n

Mean Given by SNGSC Without Global Constraints
Mean Given by SNGSC With Global Constraints
Mean Given by SVD
Mean of Ratings in Data

Figure 4.1: An illustration showing the problem of SNGSC and SVD without
controlling the global statistics. The means predicted by models are far away
from the true means.

to the interval [0,1]), but the mean given by SVD and SNGSC
is far away from the true mean. In Figure 4.1, we demonstrate

this problem.
Based on the above observation, we propose to impose the

consistency on SNGSC between the predicted statistics and those
given in the data samples. Ideally we should consider moments

of all orders and the data priors, but considering the compu-
tation cost and the model complexity, we only include the first
moment X̄–the mean of ratings in this chapter. The predicted

values are given by
∑d

k=1(UkV
T
k), and hence the predicted mean

by the model is

1

nm

n∑

i=1

m∑

j=1

d∑

k=1

(UkiVkj) =
d∑

k=1

(ŪkV̄
T
k),

where Ūk and V̄k are the vector means of Uk and Vk respectively.

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 54

Let η be the parameter balancing the tradeoff of fitting the data
and fitting the mean of ratings. Then we should optimize

min
Uk,Vk

∑

(i,j)∈OI

(
Rij − (UkV

T
k)ij

)2

+ λn||Uk||2F + λm||Uk||2F

+ η
1

nm

n∑

i=1

m∑

j=1

(

k∑

l=1

UliVlj − X̄)2,

s.t. Uk ≥ 0,

||Uk−1||F ≥ ||Uk||F ,

||Vk||F = 1. (4.12)

When η = 0, no global information is included; when η = +∞,
all the predicted values

∑k
l=1 UliVlj will be equal to X̄ such that

the first moment is perfectly fitted. The best η should be in the
middle of these two extreme cases. In our experiments, we set

η =
√

nm/|OI| based on experiences. An ordinary calculus can
result in similar equations as Eq. (4.10) and Eq. (4.11).

4.3 Experiments

In this section, we conduct several experiments to compare the
recommendation quality of our approach with other state-of-

the-art collaborative filtering methods. Our experiments are
intended to address the following questions:

1. How does our approach compare with the published state-
of-the-art collaborative filtering algorithms?

2. How does the model parameter η (the global consistency
parameter) affect the accuracy of the prediction?

3. How do the non-negative constraints affect the accuracy of

the recommendation quality?

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 55

4. What is the performance comparison on users with different
observed ratings?

4.3.1 Description of Dataset

We evaluate our algorithms on the EachMovie dataset1, which is
commonly used in previous work [75, 94, 133]. The EachMovie
dataset contains 74,424 users, 1,648 movies, and 2,811,718 rat-

ings in the scale of zero to five. We map the ratings 0,1,2,3,4
and 5 to the interval [0, 1] using the linear function t(x) = x/5.

As to the training data, we employ three settings: 80%, 50%
and 20% for training, where 80% means we randomly select 80%

ratings as training data to predict the remaining 20% ratings.
Selecting 80% as training data is the standard evaluation setting
which is widely employed in the previous work. However, in this

chapter, we are also interested in the settings to include 50%
and 20% as training data, since these two settings can be used

to examine how well the algorithms are under the sparse data
settings. The reported results in all of the experiments in this

chapter are the average of ten runs of the algorithms on the ten
random partitions of the dataset.

4.3.2 Metrics

We use the Mean Absolute Error (MAE) and Root Mean Square

Error (RMSE) metrics to measure the prediction quality of our
proposed approach in comparison with other collaborative fil-

tering methods. MAE is defined as:

MAE =

∑
i,j |ri,j − r̂i,j|

N
, (4.13)

where ri,j denotes the rating user i gave to item j, r̂i,j denotes
the rating user i gave to item j as predicted by our approach,

1http://www.research.digital.com/SRC/EachMovie/. It is retired by Hewlett-Packard
(HP).

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 56

and N denotes the number of tested ratings. RMSE is defined
as:

RMSE =

√∑
i,j(ri,j − r̂i,j)2

N
. (4.14)

4.3.3 Performance Comparisons

We compare our SNGSC approach with other four approaches.

1. User Mean: This is a baseline method which predicts a

user’s missing rating on an item by the sample mean of this
user’s ratings.

2. Item Mean: This is a baseline method which predicts a

user’s missing rating on an item by the sample mean of this
item’s ratings.

3. MMMF [94, 114]: This method constrains the norms of

U and V instead of their dimensionality. This corresponds
to constraining the overall “strength” of the factors, rather

than their number.

4. PMF [99]: This method proposes a probabilistic frame-
work to employ UT

i Vj with Gaussian noise fitting each rat-

ing observation.

The prediction accuracies evaluated by Root Mean Squared

Error (RMSE) and Mean Absolute Error (MAE) are shown in
Table 4.3. In SNGSC, the parameter λ is set to be 0.000004,

and the parameter η is set to be
√

nm/|OI|, where |OI| is the
number of observed ratings. The dimensions for SNGSC are

automatically determined at each of the ten runs, and they are
between 25 and 30. In order to compare other algorithms fairly,
we set the dimensions of MMMF and PMF to 30.

From Table 4.3, we can observe that our algorithm consis-
tently performs better than the other methods in all the set-

tings. When we use a sparse dataset (20% as training data), we

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 57

Table 4.3: Comparison with other popular algorithms. The reported val-
ues are the mean RMSE and MAE on the EachMovie Dataset achieved by
ten runs from dividing the data into 80%, 50%, and 20% for training data,
respectively.

Data Metrics User Mean Item Mean MMMF PMF SNGSC

80%

RMSE 1.426 1.386 1.173 1.151 1.122

Variance ≤ 10−4 ≤ 10−4 ≤ 0.001 ≤ 0.001 ≤ 10−5

MAE 1.141 1.102 0.928 0.901 0.860

Variance ≤ 10−4 ≤ 10−4 ≤0.001 ≤0.001 ≤ 10−5

50%

RMSE 1.438 1.387 1.342 1.335 1.176

Variance ≤ 10−4 ≤ 10−4 ≤ 0.001 ≤ 0.001 ≤ 10−5

MAE 1.149 1.103 0.978 0.963 0.891

Variance ≤ 10−4 ≤ 10−4 ≤0.001 ≤0.001 ≤ 10−5

20%

RMSE 1.484 1.388 1.466 1.451 1.266

Variance ≤ 0.001 ≤ 0.001 ≤ 0.01 ≤ 0.01 ≤ 10−4

MAE 1.180 1.103 1.143 1.085 0.973

Variance ≤ 0.001 ≤ 0.001 ≤0.01 ≤0.01 ≤ 10−4

find that our method generates much better performance than

MMMF and PMF. However, MMMF and PMF do not address
the problem of sparsity, hence they even perform worse than

the Item Mean method when using 20% as training data. This
demonstrates the advantage of our algorithm in handling the
sparsity problem.

In Figure 4.2 and Figure 4.3, we also plot the percentages of
performance increase of our algorithm against other four meth-

ods in terms of RMSE and MAE on the EachMovie dataset,
respectively. From these figures, we observe an interesting phe-

nomenon: as the sparsity of the data increases, the percentages
of performance increase against MMMF and PMF keep increas-

ing. This observation again proves the advantage of our algo-

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 58

Figure 4.2: Performance Increase on RMSE (EachMovie)

rithm. On the other hand, we can also notice that as the sparsity
increases, although our method still can generates much better

recommendation qualities than User Mean and Item Mean meth-
ods, the percentages of performance increase against these two

methods keep dropping. This observation is reasonable because
our random testing data generation method does not change
the distribution of the ratings. Hence, the User Mean and Item

Mean algorithms should be relatively stable against the sparsity
problem.

In order to show the usefulness of each key part of SNGSC,
we also evaluate our algorithm on its various degraded cases as

follows:

1. SNGSC-1: It is the SNGSC algorithm without the global
consistency (η = 0);

2. SNGSC-2: It is the SNGSC algorithm without the non-
negative constraint (a modified version of SVD with global

consistency);

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 59

Figure 4.3: Performance Increase on MAE (EachMovie)

3. SNGSC-3: It is the SNGSC algorithm with nonnegative
constraints on both U and V (a modified version of NMF

with global consistency).

The results on the EachMovie dataset are reported in Ta-

ble 4.4. From the results, we observe that our Semi-Nonnegative
setting is the best among all these variants, which empirically
demonstrates the need of introducing SNMF.

However, the global consistency achieves only a little accu-
racy improvement in this experimental setting (See SNGSC-1

and SNGSC). This phenomenon may be caused by the setting
that majority (80%) of data is chosen as training data. In the

extreme case that the rating data is very sparse and each user
only rates one movie, then the latent features U and V do not

have much meanings, but we can at least predict all the missing
ratings as the mean of training data. We believe that the sparser
the training data, the better the global consistency approach. To

demonstrate the effectiveness of the global consistency approach,
we run both SNGSC-1 and SNGSC in a different setting: 20%

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 60

Table 4.4: Comparison with variants of SNGSC in a setting with 80% for
training and 20% for testing on the EachMovie dataset. (1) SNGSC-1:
SNGSC without the global consistency (η = 0); (2) SNGSC-2: SNGSC
without the nonnegative constraint (a modified version of SVD with global
consistency); and (3) SNGSC-3: SNGSC with nonnegative constraints on
both U and V (a modified version of NMF with global consistency).

Algorithms SNGSC-1 SNGSC-2 SNGSC-3 SNGSC

RMSE 1.151 1.212 1.258 1.122

Variance ≤ 10−5 ≤0.001 ≤0.001 ≤ 10−5

MAE 0.883 0.932 0.971 0.860

Variance ≤ 10−5 ≤0.001 ≤0.001 ≤ 10−5

Table 4.5: Comparison with variants of SNGSC in a 20% for training 80%
for testing setting on the EachMovie dataset.

Algorithms SNGSC-1 SNGSC-2 SNGSC-3 SNGSC

RMSE 1.423 1.356 1.365 1.266

Variance ≤ 10−4 ≤0.01 ≤0.01 ≤ 10−4

MAE 1.095 1.048 1.060 0.973

Variance ≤ 10−4 ≤0.01 ≤0.01 ≤ 10−4

of the data are chosen for training and 80% for testing. The

results are shown in Table 4.5. From the results, we can see
SNGSC with the global consistency significantly outperforms

the one without the global consistency (SNGSC-1). In such a
setting, it is not surprising to see that the difference between
SNGSC and SNGSC-2 is small, because the latent feature is not

very meaningful and hence the sign setting is not so important;
therefor, the global consistency dominates the results.

4.4 Summary

We demonstrate a Semi-Nonnegative Matrix Factorization method
with Global Statistical Consistency for collaborative filtering, in

which the user-specific latent feature Uik includes the meaning of

CHAPTER 4. RECOMMEND WITH GLOBAL CONSISTENCY 61

the confidence of user i on the k-th latent type of the item, and
the item-specific latent feature Vjk includes the meaning of the

quality of the item j on the k-th latent type of the item. This
work has showed that the latent features with physical mean-

ings can achieve not only the model interpretability but also the
prediction accuracy. Moreover, we propose a novel method that
imposes the consistency between the statistics of training data

and the statistics of the predicted ratings. The experimental
analysis shows that our method outperforms other state-of-the-

art algorithms.
For the global consistency, we only take the first step, i.e.,

we only make our models consistent with the first moment cur-
rently. By doing so we have already achieved promising results.

In order to capitalize on these achievements, further study is
needed on the following problems:

1. We would enforce the consistency with the second moment

globally in the models without increasing the complexity of our
models.

2. There is prior information that all values in the matrix∑d
k=1(UkV

T
k) should be between zero and one after the mapping.

Without taking any action, prediction by
∑d

k=1 UkV
T
k will run

outside of the range of valid rating values. For this, one choice is
to map the values to the interval [0, 1] by some nonlinear func-

tions like logistic function. But in our setting, such a mapping
does not match our intuition–the prediction on the user-item

pair (i, j) results from a linear combination of the products of
i’s authority on a latent type and j’s quality. For such a consid-

eration, how can we put a constraint that 0 ≤∑d
k=1(UkV

T
k) ≤ 1

while we can still learn the latent features dimension by dimen-

sion.

2 End of chapter.

Chapter 5

Social Recommendation

Traditional recommender systems assume that users are i.i.d. (in-
dependent and identically distributed); this assumption ignores

the social interactions or connections among users. But the fact
is, offline, social recommendation is an everyday occurrence. In
order to reflect users’ social relations in the recommendations,

based on the intuition that a user’s social network will affect
her/his personal behaviors on the Web, in this chapter, we pro-

pose to fuse a user’s social network graph with the user-item
rating matrix in order to make more accurate and personalized

recommendations, which is called Social Recommendation.

5.1 Recommendation Framework

In this section, we first design a recommendation framework

by consolidating user-item rating matrix and users’ social trust
network in Section 5.1.1. Then in Section 5.1.2, we apply this

framework to incorporating social tag information, which is an-
other important source of social contextual information.

5.1.1 Recommendation with Social Trust Network

We first demonstrate our recommendation framework using a

simple but illustrative toy example. Then we introduce the rec-

62

CHAPTER 5. SOCIAL RECOMMENDATION 63

ommendation framework by factor analysis using probabilistic
matrix factorization.

A Toy Example

Let us first consider the typical social trust network graph in
Fig. 5.1(a). There are 6 users in total (nodes, from u1 to u6) with
8 relations (edges) between users in this graph, and each relation

is associated with a weight wij in the range [0, 1] to specify how
much user ui knows or trusts user uj. In an online social network

Web site, the weight wij is often explicitly stated by user ui. As
illustrated in Fig. 5.1(b), each user also rates some items (from

i1 to i8) on a 5-point integer scale to express the extent of favor
of each item. The problem we study in this chapter is how to

predict the missing values of the user-item matrix effectively and
efficiently by employing two different data sources. Motivated
by the intuition that a user’s social trust connections will affect

this user’s behaviors on the Web, we therefore factorize the social
trust graph and user-item matrix simultaneously and seamlessly

using UTZ and UTV , where the shared low-dimensional matrix
U denotes the user latent feature space, Z is the factor matrix in

the social network graph, and V represents the low-dimensional
item latent feature space. If we use 5 dimensions to perform the
matrix factorization for social recommendation, we obtain

CHAPTER 5. SOCIAL RECOMMENDATION 64

(a) Social Network Graph

(b) User-Item Matrix (c) Predicted User-Item Matrix

Figure 5.1: Example for Toy Data

CHAPTER 5. SOCIAL RECOMMENDATION 65

U =

1.55 1.22 0.37 0.81 0.62 −0.01

0.36 0.91 1.21 0.39 1.10 0.25

0.59 0.20 0.14 0.83 0.27 1.51

0.39 1.33 −0.43 0.70 −0.90 0.68

1.05 0.11 0.17 1.18 1.81 0.40

,

V =

1.00 −0.05 −0.24 0.26 1.28 0.54 −0.31 0.52

0.19 −0.86 −0.72 0.05 0.68 0.02 −0.61 0.70

0.49 0.09 −0.05 −0.62 0.12 0.08 0.02 1.60

−0.40 0.70 0.27 −0.27 0.99 0.44 0.39 0.74

1.49 −1.00 0.06 0.05 0.23 0.01 −0.36 0.80

,

where Ui and Vj are the column vectors and denote the latent

feature vectors of user ui and item vj, respectively. Note that the
solutions of U and V are not unique. Then we can predict the

missing value wij in Fig. 5.1(b) using UT
i Vj (before prediction,

we need to first transfer the value of UT
i Vj using logistic function

g(x) and another mapping function f(x), which will be intro-
duced in Section 5.1.1 and Section 5.1.1 respectively). There-
fore, all the missing values can be predicted using 5-dimensional

matrices U and V , as shown in Fig. 5.1(c). Note that even
though user u4 does not rate any items, our approach still can

predict reasonable ratings.
Since this example is a toy example, we cannot evaluate the

accuracy of the prediction. However, the experimental analysis
in Section 5.2 based on Epinions dataset tests the effectiveness

of our approach. In the following sections, we will present the
details of how we conduct factor analysis for social recommen-
dation using probabilistic matrix factorization.

CHAPTER 5. SOCIAL RECOMMENDATION 66

Social Network Matrix Factorization

Suppose we have a directed social network graph G = (V, E),

where the vertex set V = {vi}n
i=1 represents all the users in

a social network and the edge set E represents the relations

between users. Let C = {cik} denote the m × m matrix of G,
which is also called the social network matrix in this chapter.

For a pair of vertices, vi and vk, let cik ∈ (0, 1] denote the weight
associated with an edge from vi to vk, and cik = 0, otherwise.

The physical meaning of the weight cik can be interpreted as
how much a user i trusts or knows user k in a social network.
Note that C is an asymmetric matrix, since in a social network,

especially in a trust-based social network, user i trusting k does
not necessary indicate user k trusts i.

The idea of social network matrix factorization is to derive
a high-quality l-dimensional feature representation U of users

based on analyzing the social network graph G. Let U ∈ Rl×m

and Z ∈ Rl×m be the latent user and factor feature matrices,
with column vectors Ui and Zk representing user-specific and

factor-specific latent feature vectors, respectively. We define the
conditional distribution over the observed social network rela-

tionships as

p(C|U, Z, σ2
C) =

m∏

i=1

m∏

k=1

N
[(

cik|g(UT
i Zk), σ

2
C

)]IC
ik , (5.1)

where N (x|µ, σ2) is the probability density function of the Gaus-

sian distribution with mean µ and variance σ2
C, and IC

ik is the
indicator function that is equal to 1 if user i trusts or knows

user k and equal to 0 otherwise. The function g(x) is the logis-
tic function g(x) = 1/(1 + exp(−x)), which makes it possible to
bound the range of UT

i Zk within the range [0, 1]. We also place

zero-mean spherical Gaussian priors [31, 99] on user and factor

CHAPTER 5. SOCIAL RECOMMENDATION 67

feature vectors:

p(U |σ2
U) =

m∏

i=1

N (Ui|0, σ2
UI),

p(Z|σ2
Z) =

m∏

k=1

N (Zk|0, σ2
ZI). (5.2)

Hence, through a simple Bayesian inference, we have

p(U, Z|C, σ2
C, σ2

U , σ2
Z)

∝ p(C|U, Z, σ2
C)p(U |σ2

U)p(Z|σ2
Z)

=
m∏

i=1

m∏

k=1

N
[(

cik|g(UT
i Zk), σ

2
C

)]IC
ik

×
m∏

i=1

N (Ui|0, σ2
UI) ×

m∏

k=1

N (Zk|0, σ2
ZI). (5.3)

In online social networks, the value of cik is mostly explicitly
stated by user i with respect to user k, which cannot accurately

describe the relations between users since it contains noises and
it ignores the graph structure information of social network. For

instance, similar to the Web link adjacency graph in [130], in
a trust-based social network, the confidence of trust value cik

should be decreased if user i trusts a large number of users;

however, the confidence of trust value cik should be increased if
user k is trusted by lots of users. Hence, we employ the term

c∗ik which incorporates local authority and local hub values as a
substitute for cik in Eq. (5.1),

p(C|U, Z, σ2
C) =

m∏

i=1

n∏

j=1

N
[(

c∗ik|g(UT
i Zk), σ

2
C

)]IC
ik ,

c∗ik =

√
d−(vk)

d+(vi) + d−(vk)
× cik, (5.4)

where d+(vi) represents the outdegree of node vi, while d−(vk)

indicates the indegree of node vk.

CHAPTER 5. SOCIAL RECOMMENDATION 68

Figure 5.2: Graphical Model for Social Trust Recommendation

User-Item Matrix Factorization

Now considering the user-item matrix, suppose we have m users,

n movies, and rating values within the range [0, 1]. Actually,
most recommender systems use integer rating values from 1 to

Rmax to represent the users’ judgements on the items. In this
chapter, without loss of generality, we map the ratings 1, ..., Rmax

to the interval [0, 1] using the function f(x) = (x−1)/(Rmax−1).

Let Rij represent the rating of user i for movie j, and U ∈
Rl×m and V ∈ Rl×n be latent user and movie feature matrices,

with column vectors Ui and Vj representing user-specific and
movie-specific latent feature vectors respectively. We define the

conditional distribution over the observed ratings as

p(C|U, V, σ2
R) =

m∏

i=1

n∏

j=1

N
[(

rij|g(UT
i Vj), σ

2
R

)]IR
ij , (5.5)

CHAPTER 5. SOCIAL RECOMMENDATION 69

where IR
ij is the indicator function that is equal to 1 if user i

rated movie j and equal to 0 otherwise. We also place zero-mean
spherical Gaussian priors on user and movie feature vectors:

p(U |σ2
U) =

m∏

i=1

N (Ui|0, σ2
UI),

p(V |σ2
V) =

n∏

j=1

N (Vj|0, σ2
V I). (5.6)

Hence, similar to Eq. (5.3), through a Bayesian inference, we

have

p(U, V |R, σ2
R, σ2

U , σ2
V)

∝ p(R|U, V, σ2
R)p(U |σ2

U)p(Z|σ2
V)

=
m∏

i=1

n∏

j=1

N
[(

rij|g(UT
i Vj), σ

2
R

)]IR
ij

×
m∏

i=1

N (Ui|0, σ2
UI) ×

n∏

j=1

N (Vj|0, σ2
V I). (5.7)

Matrix Factorization for Social Trust Recommendation

In order to reflect the phenomenon that a user’s social connec-

tions will affect this user’s judgement of interest in items, we
model the problem of social recommendation using the graph-

ical model described in Fig. 5.2, which fuses both the social
network graph and the user-item rating matrix into a consistent

and compact feature representation.
Based on Fig. 5.2, we have

p(U, V, Z|C, R, σ2
C, σ2

R, σ2
U , σ2

V , σ2
Z)

∝ p(R|U, V, σ2
R)p(C|U, Z, σ2

C)

× p(U |σ2
U)p(V |σ2

V)p(Z|σ2
Z). (5.8)

CHAPTER 5. SOCIAL RECOMMENDATION 70

The log of the posterior distribution for the above equation
is given by

ln p(U, V, Z|C, R, σ2
C, σ2

R, σ2
U , σ2

V , σ2
Z) =

− 1

2σ2
R

m∑

i=1

n∑

j=1

IR
ij (rij − g(UT

i Vj))
2

− 1

2σ2
C

m∑

i=1

m∑

k=1

IC
ik(c

∗
ik − g(UT

i Zk))
2

− 1

2σ2
U

m∑

i=1

UT
i Ui −

1

2σ2
V

n∑

j=1

V T
j Vj −

1

2σ2
Z

m∑

k=1

ZT
k Zk

−1

2

((
m∑

i=1

n∑

j=1

IR
ij

)
lnσ2

R +

(
m∑

i=1

m∑

k=1

IC
ik

)
lnσ2

C

)

−1

2

(
mllnσ2

U + nllnσ2
V + mllnσ2

Z

)
+ C, (5.9)

where C is a constant that does not depend on the parame-
ters. Maximizing the log-posterior over three latent features

with hyperparameters (i.e., the observation noise variance and
prior variances) kept fixed is equivalent to minimizing the fol-
lowing sum-of-squared-errors objective functions with quadratic

regularization terms:

L(R, C, U, V, Z) =
1

2

m∑

i=1

n∑

j=1

IR
ij (rij − g(UT

i Vj))
2

+
λC

2

m∑

i=1

m∑

k=1

IC
ik(c

∗
ik − g(UT

i Zk))
2

+
λU

2
‖U‖2

F +
λV

2
‖V ‖2

F +
λZ

2
‖Z‖2

F ,(5.10)

where λC = σ2
R/σ2

C, λU = σ2
R/σ2

U , λV = σ2
R/σ2

V , λZ = σ2
R/σ2

Z,

and ‖ · ‖2
F denotes the Frobenius norm. A local minimum of the

CHAPTER 5. SOCIAL RECOMMENDATION 71

objective function given by Eq.(5.10) can be found by perform-
ing gradient descent in Ui, Vj and Zk,

∂L
∂Ui

=
n∑

j=1

IR
ijg

′(UT
i Vj)(g(UT

i Vj) − rij)Vj

+ λC

m∑

j=1

IC
ikg

′(UT
i Zk)(g(UT

i Zk) − c∗ik)Zk + λUUi,

∂L
∂Vj

=
m∑

i=1

IR
ijg

′(UT
i Vj)(g(UT

i Vj) − rij)Ui + λV Vj,

∂L
∂Zk

= λC

m∑

i=1

IC
ikg

′(UT
i Zk)(g(UT

i Zk) − c∗ik)Ui + λZZk,(5.11)

where g′(x) is the derivative of logistic function g′(x) = exp(x)/(1+
exp(x))2. In order to reduce the model complexity, in all of the

experiments we conduct in Section 5.2, we set λU = λV = λZ .

Complexity Analysis

The main computation of gradient methods is evaluating the ob-

ject function L and its gradients against variables. Because of
the sparsity of matrices R and C, the computational complexity
of evaluating the object function L is O(ρRl + ρC l), where ρR

and ρC are the numbers of nonzero entries in matrices R and C,
respectively. The computational complexities for gradients ∂L

∂U
,

∂L
∂V

and ∂L
∂Z

in Eq. (5.11) are O(ρRl + ρC l), O(ρRl) and O(ρC l),
respectively. Therefore, the total computational complexity in

one iteration is O(ρRl+ρCl), which indicates that the computa-
tional time of our method is linear with respect to the number of
observations in the two sparse matrices. This complexity anal-

ysis shows that our proposed approach is very efficient and can
scale up with respect to very large datasets.

CHAPTER 5. SOCIAL RECOMMENDATION 72

5.1.2 Recommendation with Social Tags

In the above section, we demonstrate how to recommend by in-

corporating users’ social trust information. Actually, this gen-
eral framework can also be easily extended to fuse the user-item

rating matrix with social tags information. We can use similar
factor analysis approach by utilizing both users’ rating infor-

mation and tagging information at the same time in light of
the facts that both users’ rating information and users’ tag-

ging information can reflect their opinions about Web content.
Specifically, on the one hand, we connect users’ rating infor-
mation with users’ tagging information through the shared user

latent feature space. The graphical model of this case is shown
in Fig. 5.3, where the matrix T represents the latent feature of

each tag, and Fik indicates how many times that user ui used
tag tk. We can also have the similar object function as shown in

Eq. (5.10) with the parameter λU
T controlling how many users’

tag information should be used. On the other hand, we connect
items’ received rating information with items’ received tagging

information through the shared item latent feature space. The
related graphical model is shown in Fig. 5.4, where Fjk repre-

sents how many times that item vj is tagged by tag tk. In the
objective function, we employ λV

T to control how many items’

tag information should be incorporated.
The user latent feature space affects users’ behaviors on both

rating and tagging activities, while the item latent feature space
determines both the received rating information and received
tagging information.

5.2 Experimental Analysis

In this section, we conduct several experiments to compare the

recommendation quality of our social recommendation approach

CHAPTER 5. SOCIAL RECOMMENDATION 73

Figure 5.3: Graphical Model for Recommendation with User Tags

Figure 5.4: Graphical Model for Recommendation with Item Tags

CHAPTER 5. SOCIAL RECOMMENDATION 74

with other state-of-the-art collaborative filtering methods. We
conduct the experiments on two different datasets, one is Epin-

ions which is associated with a social trust network, another is
Movielens which has tag information that is issued by different

users.
Our experiments are intended to address the following ques-

tions:

1. How does our approach compare with the published state-
of-the-art collaborative filtering algorithms?

2. How does the model parameter λC affect the accuracy of
prediction?

3. What is the performance comparison on users with different
observed ratings?

4. Can our algorithm achieve good performance even if users
have no observed ratings?

5. Is our algorithm efficient for large datasets?

5.2.1 Metrics

We use two metrics, the Mean Absolute Error (MAE) and the
Root Mean Square Error (RMSE), to measure the prediction

quality of our proposed approach in comparison with other col-
laborative filtering and trust-aware recommendation methods.

The metrics MAE is defined as:

MAE =

∑
i,j |ri,j − r̂i,j|

N
, (5.12)

where ri,j denotes the rating user i gave to item j, r̂i,j denotes

the rating user i gave to item j as predicted by a method, and
N denotes the number of tested ratings. The metrics RMSE is

defined as:

CHAPTER 5. SOCIAL RECOMMENDATION 75

RMSE =

√∑
i,j(ri,j − r̂i,j)2

N
. (5.13)

5.2.2 Compared Methods

In this section, in order to show the performance improvement
of our Recommendation Algorithm with Social Contextual In-

formation (SoRec), we compare our algorithm with two baseline
methods User Mean and Item Mean, as well as two state-of-

the-art algorithms SVD [63] and Probabilistic Matrix Factor-
ization (PMF) [99].

5.2.3 Epinions Dataset

Description of the Epinions Dataset

A tremendous amount of data has been produced on the Internet
every day over the past decade. Millions of people influence

each other implicitly or explicitly through online social network
services, such as Facebook1. As a result, there are many online

opportunities to mine social networks for the purposes of social
recommendations.

We choose Epinions as the data source for our experiments
on social recommendation. Epinions.com is a well known knowl-
edge sharing and review site that was established in 1999. In

order to add reviews, users (contributors) need to register for
free and they begin submitting their own personal opinions on

topics such as products, companies, movies, or reviews issued by
other users. Users can also assign products or reviews integer

ratings from 1 to 5. These ratings and reviews will influence
future customers when they are deciding whether a product is

worth buying or a movie is worth watching. Every member of

1http://www.facebook.com

CHAPTER 5. SOCIAL RECOMMENDATION 76

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

of Items Rated by Users

#
 o

f
U

s
e

rs

(a)

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

Outdegree

#
 o

f
U

s
e

rs

(b)

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

Indegree

#
 o

f
U

s
e

rs

(c)

Figure 5.5: Power-Law Distributions of the Epinions Dataset. (a) Items per
User Distribution. (b) Trust Graph Outdegree Distribution. (c) Trust Graph
Indegree Distribution.

Epinions maintains a “trust” list which presents a network of
trust relationships between users, and a “block (distrust)” list

which presents a network of distrust relationships. This net-
work is called the “Web of trust”, and is used by Epinions to
re-order the product reviews such that a user first sees reviews

by users that they trust. Epinions is thus an ideal source for ex-
periments on social recommendation. Note that in this chapter,

we only employ trust statements between users while ignoring
the distrust statements, for the following two reasons: (1) The

distrust list of each user is kept private in Epinions.com in order
to protect the privacies of users, hence it is not available in our

dataset. (2) As presented in [42], the understanding of distrust
is more complicated than trust, which indicates that the user
trust latent feature space may not be the same as the user dis-

trust latent feature space. The study of distrust-based social
recommendation will be conducted as future work.

The dataset used in our experiments is collected by crawl-
ing the Epinions.com site on Jan 2009. It consists of 51,670

users who have rated a total of 83,509 different items. The
total number of ratings is 631,064. The density of the user-
item rating matrix is less than 0.015%. We can observe that

CHAPTER 5. SOCIAL RECOMMENDATION 77

Table 5.1: Statistics of User-Item Rating Matrix of Epinions

Statistics User Item

Max. Num. of Ratings 1,960 7,082

Avg. Num. of Ratings 12.21 7.56

Table 5.2: Statistics of Social Trust Network of Epinions

Statistics Trust per User Be Trusted per User

Max. Num. 1,763 2,443

Avg. Num. 9.91 9.91

the user-item rating matrix of Epinions is very sparse, since the
densities for the two most famous collaborative filtering datasets

Movielens (6,040 users, 3,900 movies and 1,000,209 ratings) and
Eachmovie (74,424 users, 1,648 movies and 2,811,983 ratings)

are 4.25% and 2.29%, respectively. Moreover, an important fac-
tor that we choose the Epinions dataset is that user social trust
network information is not included in the Movielens and Each-

movie datasets. The statistics of the Epinions user-item rating
matrix is summarized in Table 5.1. As to the user social trust

network, the total number of issued trust statements is 511,799.
The statistics of this data source is summarized in Table 5.2.

We also observe a number of power law distributions in our
dataset, including items per user distribution, social trust net-
work outdegree and indegree distributions. The distributions

are shown in Fig. 5.5.

Comparison

We use different amounts of training data (90%, 80%, 70%, 60%)

to test all the algorithms. Training data 90%, for example,
means we randomly select 90% of the ratings from Epinions

dataset as the training data to predict the remaining 10% of
ratings. The random selection was carried out 5 times indepen-

CHAPTER 5. SOCIAL RECOMMENDATION 78

Table 5.3: MAE comparison with other approaches on Epinions dataset (A
smaller MAE value means a better performance)

Methods 90% Training 80% Training 70% Training 60% Training

User Mean 0.9294 0.9319 0.9353 0.9384

Item Mean 0.8936 0.9115 0.9316 0.9528

5D

SVD 0.8739 0.8946 0.9214 0.9421

PMF 0.8678 0.8946 0.9127 0.9350

SoRec 0.8442 0.8638 0.8751 0.8948

10D

SVD 0.8702 0.8921 0.9189 0.9382

PMF 0.8651 0.8886 0.9092 0.9328

SoRec 0.8404 0.8580 0.8722 0.8921

Table 5.4: RMSE comparison with other approaches on Epinions dataset (A
smaller RMSE value means a better performance)

Methods 90% Training 80% Training 70% Training 60% Training

User Mean 1.1927 1.1968 1.2014 1.2082

Item Mean 1.1678 1.1973 1.2276 1.2505

5D

SVD 1.1635 1.1845 1.2067 1.2298

PMF 1.1583 1.1773 1.1943 1.2163

SoRec 1.1333 1.1530 1.1690 1.1892

10D

SVD 1.1600 1.1812 1.2011 1.2268

PMF 1.1544 1.1760 1.1968 1.2230

SoRec 1.1293 1.1492 1.1660 1.1852

CHAPTER 5. SOCIAL RECOMMENDATION 79

dently. The experimental results are shown in Table 5.3. The
parameter settings of our approach are λC = 20, λU = λV =

λZ = 0.001, and in all the experiments conducted in the follow-
ing sections, we set all of the parameters λU , λV and λZ equal

to 0.001. From Table 5.3 and Table 5.4, we can observe that our
approach outperforms the other methods. The improvements
are significant, which shows the promising future of our recom-

mendation approach.

Impact of Parameter λC

The main advantage of our recommendation approach is that it

incorporates the social trust network information, which helps
predict users’ preferences. In our model, parameter λC balances

the information from the user-item rating matrix and the user
social trust network. If λC = 0, we only mine the user-item
rating matrix for matrix factorization, and if λC = ∞, we only

extract information from the social network to predict users’
preferences. In other cases, we fuse information from the user-

item rating matrix and the user social network for probabilistic
matrix factorization and, furthermore, to predict ratings for ac-

tive users.
Fig. 5.6 shows the impacts of λC on MAE and RMSE. We ob-

serve that the value of λC impacts the recommendation results

significantly, which demonstrates that fusing the user-item rat-
ing matrix with the user social trust network greatly improves

the recommendation accuracy. As λC increases, the prediction
accuracy also increases at first, but when λC surpasses a certain

threshold, the prediction accuracy decrease with further increase
of the value of λC . This phenomenon confirms the intuition that

fusing the user-item rating matrix and the user social trust net-
work can generate better performance than only purely using
each of these two resources separately. From Fig. 5.6, we ob-

serve that for this Epinions dataset, our social recommendation

CHAPTER 5. SOCIAL RECOMMENDATION 80

0.1 1 10 20 50 100
0.84

0.85

0.86

0.87

0.88

0.89

Values of λ
C

M
A

E

90% as Training Data

0.1 1 10 20 50 100
0.85

0.86

0.87

0.88

0.89

0.9

0.91

Values of λ
C

M
A

E

80% as Training Data

0.1 1 10 20 50 100
0.87

0.88

0.89

0.9

0.91

0.92

0.93

Values of λ
C

M
A

E

70% as Training Data

0.1 1 10 20 50 100
0.89

0.9

0.91

0.92

0.93

0.94

0.95

Values of λ
C

M
A

E

60% as Training Data

0.1 1 10 20 50 100
1.12

1.13

1.14

1.15

1.16

1.17

1.18

Values of λ
C

R
M

S
E

90% as Training Data

0.1 1 10 20 50 100
1.14

1.15

1.16

1.17

1.18

1.19

Values of λ
C

R
M

S
E

80% as Training Data

0.1 1 10 20 50 100
1.17

1.18

1.19

1.2

1.21

Values of λ
C

R
M

S
E

70% as Training Data

0.1 1 10 20 50 100
1.19

1.2

1.21

1.22

1.23

1.24

Values of λ
C

R
M

S
E

60% as Training Data

Figure 5.6: Impact of Parameter λC (Dimensionality = 10)

CHAPTER 5. SOCIAL RECOMMENDATION 81

1−10 11−20 21−40 41−80 81−160 >160
0

0.5

1

1.5

2
x 10

4

Number of Observed Ratings

N
u

m
b

e
r

o
f
T

e
st

 R
a

tin
g

s

(a) Distribution of Testing Data (90%
as Training Data)

1−10 11−20 21−40 41−80 81−160 >160
0.75

0.8

0.85

0.9

0.95

1

Number of Observed Ratings

M
A

E

Dimensionality = 10

SVD
PMF
SoRec

(b) MAE Comparison on Different User
Rating Scales (90% as Training Data)

1−10 11−20 21−40 41−80 81−160 >160
1.05

1.1

1.15

1.2

1.25

Number of Observed Ratings

R
M

S
E

Dimensionality = 10

SVD
PMF
SoRec

(c) RMSE Comparison on Different
User Rating Scales (90% as Training
Data)

Figure 5.7: Performance Comparison on Different Users

CHAPTER 5. SOCIAL RECOMMENDATION 82

method achieves the best performance when λC is around 20,
while smaller values like λC = 0.1 or larger values λC = 100 can

potentially degrade the model performance.

Performance on Different Users

One main task we target in this chapter is to provide accurate
recommendations when users only supply a few ratings or even

have no rating records. Although previous work has noticed
this critical problem, few approaches perform well when few user

ratings are given. Hence, in order to compare our approach with
the other methods thoroughly, we first group all the users based

on the number of observed ratings in the training data, and
then evaluate prediction accuracies of different user groups. The

experimental results are shown in Fig. 5.7. Users are grouped
into 10 classes: “= 0”, “1 − 5”, “6 − 10”, “11 − 20”, “21 − 40”,
“41− 80”, “81− 160”, “160− 320”, “320− 640”, and “> 640”,

denoting how many ratings users have rated.
Fig. 5.7(a) summarizes the distributions of testing data ac-

cording to groups in the training data (90% as training data).
For example, there are a total of 3,360 user-item pairs to be

predicted in the testing dataset in which the related users in the
training dataset have rating numbers from 1 to 10. In Fig. 5.7(b)
and Fig. 5.7(c), we observe that our SoRec algorithm consis-

tently outperforms other methods even when users only rated
very few ratings.

Efficiency Analysis

The complexity analysis in Section 5.1.1 states that the compu-
tational complexity of our approach is linear with respect to the

number of ratings, which proves that our approach is scalable
to very large datasets. Actually, our approach is very efficient
even when using a very simple gradient descent method. In the

CHAPTER 5. SOCIAL RECOMMENDATION 83

0 50 100 150 200 250 300
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Iterations

M
A

E

Dimensionality = 10

SoRec λ
C
= 0.1

SoRec λ
C
= 1

SoRec λ
C
= 10

SoRec λ
C
= 20

(a) 90% as Training Data

0 50 100 150 200 250 300
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Iterations

R
M

S
E

Dimensionality = 10

SoRec λ
C
= 0.1

SoRec λ
C
= 1

SoRec λ
C
= 10

SoRec λ
C
= 20

(b) 90% as Training Data

0 50 100 150 200 250 300
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Iterations

M
A

E

Dimensionality = 10

SoRec λ
C
= 0.1

SoRec λ
C
= 1

SoRec λ
C
= 10

SoRec λ
C
= 20

(c) 80% as Training Data

0 50 100 150 200 250 300
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Iterations

R
M

S
E

Dimensionality = 10

SoRec λ
C
= 0.1

SoRec λ
C
= 1

SoRec λ
C
= 10

SoRec λ
C
= 20

(d) 80% as Training Data

Figure 5.8: Efficiency Analysis

experiments using 90% of the data as training data, each itera-

tion only needs less than 2 seconds. Also, as shown in Fig. 5.8,
when using 90% of the data as training data, our method needs

less than 300 iterations to converge, which only needs approx-
imately 10 minutes. When using 60% of the data as training

data, we only need less than 5 minutes to train the model. All
the experiments are conducted on a normal personal computer
containing an Intel Pentium D CPU (3.0 GHz, Dual Core) and

1 Giga byte memory.

CHAPTER 5. SOCIAL RECOMMENDATION 84

From Fig. 5.8, we also observe that when using a small value
of λC , such as λC = 0.1 or λC = 1, after 50 or 100 iterations,

the model begins to overfit, while a larger λC, such as λC =
20, does not have the overfitting problem. These experiments

clearly demonstrate that in this Epinion dataset, using little
social network information can cause overfiting problem, and
that the predictive accuracy can be improved by incorporating

more social network information.

5.2.4 MovieLens Dataset

Description of the MovieLens Dataset

MovieLens is a famous recommender system. The dataset we
employ in this chapter is the 10M/100K dataset. This data

set contains 10,000,054 ratings and 95,580 tags added to 10,681
movies by 71,567 users of the online movie recommender service

MovieLens.

Comparison

In the comparison, we employ different amounts of training
data, including 80%, 50%, 30%, 10%. 80% training data means

we randomly select 80% of the ratings from the MovieLens
10M/100K data set as the training data, and leave the remain-

ing 20% as prediction performance testing. The procedure is
carried out 5 times independently, and we report the average

values in this chapter.
As introduced in Section 5.1.2, we can incorporate social tag

information in two ways: (1) the first method is to treat the

tags as the favors of users (we call this method SoRecUser, and
it is related to the graphical model shown in Fig. 5.3 with the

parameter λU
T); (2) the second method is to interpret the tags

as the properties of items (we call this method SoRecItem, and

CHAPTER 5. SOCIAL RECOMMENDATION 85

Table 5.5: MAE comparison with other approaches on MovieLens dataset
(A smaller MAE value means a better performance)

Methods 80% Training 50% Training 30% Training 10% Training

User Mean 0.7686 0.7710 0.7742 0.8234

Item Mean 0.7379 0.7389 0.7399 0.7484

5D

SVD 0.6390 0.6547 0.6707 0.7448

PMF 0.6325 0.6542 0.6698 0.7430

SoRecUser 0.6209 0.6419 0.6607 0.7040

SoRecItem 0.6199 0.6407 0.6395 0.7026

10D

SVD 0.6386 0.6534 0.6693 0.7431

PMF 0.6312 0.6530 0.6683 0.7417

SoRecUser 0.6197 0.6408 0.6595 0.7028

SoRecItem 0.6187 0.6395 0.6584 0.7016

Table 5.6: RMSE comparison with other approaches on MovieLens dataset
(A smaller RMSE value means a better performance)

Methods 80% Training 50% Training 30% Training 10% Training

User Mean 0.9779 0.9816 0.9869 1.1587

Item Mean 0.9440 0.9463 0.9505 0.9851

5D

SVD 0.8327 0.8524 0.8743 0.9892

PMF 0.8310 0.8582 0.8758 0.9698

SoRecUser 0.8121 0.8384 0.8604 0.9042

SoRecItem 0.8112 0.8370 0.8591 0.9033

10D

SVD 0.8312 0.8509 0.8728 0.9878

PMF 0.8295 0.8569 0.8743 0.9681

SoRecUser 0.8110 0.8372 0.8593 0.9034

SoRecItem 0.8097 0.8359 0.8578 0.9019

CHAPTER 5. SOCIAL RECOMMENDATION 86

=0 1−5 6−10 11−20 >21
0.6

0.62
0.64
0.66
0.68

0.7
0.72
0.74
0.76
0.78

0.8

Dimensionality = 10

Number of observed unique tags

M
A

E

10% as Training Data
30% as Training Data
50% as Training Data
80% as Training Data

(a) MAE

=0 1−5 6−10 11−20 >21
0.78

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1
Dimensionality = 10

Number of observed unique tags

R
M

S
E

10% as Training Data
30% as Training Data
50% as Training Data
80% as Training Data

(b) RMSE

Figure 5.9: Performance Comparison on Items with Different # of Tags

it is associated with the graphical model shown in Fig. 5.4 with

the parameter λV
T).

In the comparison, we set λU
T = 1 and λV

T = 10. The MAE re-

sults and RMSE results are reported in Table 5.5 and Table 5.6,
respectively. From the results, we can see that our SoRecUser

and SoRecItem approaches consistently outperform the baseline
methods and the state-of-the-art recommendation algorithms,
especially when there is a small amount of training data, which

is equivalent to data sparsity in reality. In addition, it is nec-
essary to notice that in the MovieLens 10M/100K data set, all

the selected users have rated at least 20 movies, but in reality,
according to the famous power law distribution phenomenon, in

almost all kinds of Web activities, most users only rated very
few items. Thus, we can see the improvement of our method

is significant, and this again shows the promising future of our
approach.

As to the parameters λU
T and λV

T basically, they share the

similar trends with Fig. 5.6, hence we do not show the detailed
results here.

CHAPTER 5. SOCIAL RECOMMENDATION 87

=0 1−5 6−10 11−20 >21
0

1

2

3

4

5

6

7

8

9

10
x 10

5 Dimensionality = 20

Number of observed unique tags

N
um

be
r o

f I
te

m
s

(a) 80% as Training Data

=0 1−5 6−10 11−20 >21
0

0.5

1

1.5

2

2.5
x 10

6 Dimensionality = 20

Number of observed unique tags

N
um

be
r o

f I
te

m
s

(b) 50% as Training Data

=0 1−5 6−10 11−20 >21
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6 Dimensionality = 20

Number of observed unique tags

N
um

be
r o

f I
te

m
s

(c) 30% as Training Data

=0 1−5 6−10 11−20 >21
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6 Dimensionality = 20

Number of observed unique tags

N
um

be
r o

f I
te

m
s

(d) 10% as Training Data

Figure 5.10: Tag Distributions of Testing Data on Different Amount of Train-
ing Data

CHAPTER 5. SOCIAL RECOMMENDATION 88

Performance on Items with Different Number of Tags

One major contribution of this chapter is incorporating social

tagging information with traditional rating information to im-
prove prediction quality. In order to further investigate how the

number of tags attached to one item affects the prediction ac-
curacies, we first group all the items based on the number of

unique tags they have been annotated, then evaluate the pre-
diction accuracies on different groups. We divide the items into

5 groups based on the number of unique tags that have been
annotated: “= 0”, “1-5”, “6-10”, “11-20”, and “≥21”.

Experimental results are presented in Fig. 5.9. This fig-

ure shows the prediction accuracies (measured with MAE and
RMSE) of groups of items annotated with different number of

unique tags, and the results of different amount of training data
are all presented. We only report the results on dimensionality

= 10. From Fig. 5.9, we can see that incorporating tags informa-
tion can improve prediction quality significantly. In addition, as
the number of annotated unique tags increases, the prediction

quality first improves drastically, then gradually stabilizes after
the number of tags surpasses some threshold value (around 20

in this data set). This phenomenon is reasonable, because with
more tags’ information, the concept of an item can be repre-

sented more accurately, but too many tags result in redundancy
in representing the concepts of the items. Fig. 5.10 shows the

tag distributions of testing data on different amount of training
data.

5.3 Summary

In this chapter, in order to alleviate the data sparsity problem
in the traditional recommender systems, we present a novel, effi-

cient and general recommendation framework fusing a user-item

CHAPTER 5. SOCIAL RECOMMENDATION 89

rating matrix with social contextual information using proba-
bilistic matrix factorization. The experimental results show that

our approach outperforms the other state-of-the-art collabora-
tive filtering algorithms, and the complexity analysis indicates

it is scalable to very large datasets. Moreover, the data fusion
method using probabilistic matrix factorization we introduce in
this chapter is not only applicable to recommendation with so-

cial contextual information, but also extensible to other popular
research topics, such as social search.

For future work, we employ the inner product of two vectors
to fit the observed data in this chapter; this approach assumes

that the observed data is a linear combination of several latent
factors. Although we use the logistic function to constrain the

inner product, a more natural and accurate improvement over
this assumption is to use a kernel representation for the two
low-dimensional vectors, such as a Gaussian Kernel or a Poly-

nomial Kernel, which map the relations of the two vectors into a
nonlinear space, and thus leading to an increase in the model’s

performance.
Moreover, we only employ inter-user trust information in this

chapter, but in many online social networks, the distrust infor-
mation is also stated by many users. Because a user trust feature
space may not be consistent with the corresponding user distrust

feature space, we cannot simply incorporate the distrust infor-
mation into our model. In the future, we need to investigate

the following two problems: whether the distrust information is
useful to increase the prediction quality, and how to incorporate

this distrust information to obtain better quality results.
Furthermore, when fusing the social trust network informa-

tion, we ignore the information diffusion or propagation between
users. A more accurate approach is to consider the diffusion pro-
cess between users. Hence, we need to replace the social network

matrix factorization with the social network diffusion processes.

CHAPTER 5. SOCIAL RECOMMENDATION 90

This consideration will help alleviate the data sparsity problem
and will potentially increase the prediction accuracy.

Lastly, we either associate tags with users or associate tags
with items. Actually, we can design a more general framework

to incorporate tags with users and items simultaneously. This
consideration will provide more information than either of the
proposed methods, hence can further improve the recommenda-

tion quality.

2 End of chapter.

Chapter 6

Recommend with Social Trust

Ensemble

In last chapter, we developed a factor analysis method based on
the probabilistic graphical model which fuses the user-item ma-

trix with the users’ social trust networks by sharing a common
latent low-dimensional user feature matrix. The experimental
analysis shows that this method generates better recommen-

dations than the non-social collaborative filtering algorithms.
However, the disadvantage of this work is that although the

users’ social trust network is integrated into the recommender
systems by factorizing the social trust graph, the real world rec-

ommendation processes are not reflected in the model. This
drawback not only causes lack of interpretability in the model,

but also affects the recommendation qualities. A more novel
and realistic approach is needed to model the trust-aware rec-
ommendation problem.

6.1 Recommendation with Social

Trust Ensemble

Traditional recommender system techniques, like collaborative
filtering, only utilize the information of the user-item rating ma-

trix for recommendations while ignore the social trust relations

91

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 92

(a) Social Trust Graph (b) User-Item Rating Matrix

Figure 6.1: Example for Trust based Recommendation

among users. As the exponential growth of online social net-

works, incorporating social trust information into recommender
systems is becoming more and more important. In this section,

we first describe the trust-aware recommendation problem in
Section 6.1.1, and then provide the solution in Sections 6.1.2,

6.1.3 and 6.1.4.

6.1.1 Problem Description

In the real world, the process of recommendation scenario in-
cludes two central elements: the trust network and the favors of

these friends, which can essentially be modeled by the examples
of the trust graph in Fig. 6.1(a) and the user-item rating ma-

trix in Fig. 6.1(b), respectively. In the trust graph illustrated in
Fig. 6.1(a), totally, 5 users (nodes, from u1 to u5) are connected

with 9 relations (edges) between users, and each relation is asso-
ciated with a weight Sij in the range (0, 1] to specify how much
user ui knows or trusts user uj. Normally, the trust relations in

the online trust network are explicitly stated by online users. As
illustrated in Fig. 6.1(b), each user also rated some items (from

v1 to v6) on a 5-point integer scale to express the extent of the
favor of each item (normally, 1, 2, 3, 4 and 5 represent “hate”,

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 93

“don’t like”, “neutral”, “like” and “love”, respectively). The
problem we study in this chapter is how to predict the missing

values for the users effectively and efficiently by employing the
trust graph and the user-item rating matrix.

6.1.2 User Features Learning

In order to learn the characteristics or features of the users, we
employ matrix factorization to factorize the user-item matrix.
The idea of user-item matrix factorization is to derive a high-

quality l-dimensional feature representation U of users and V of
items based on analyzing the user-item matrix R. Suppose in

a user-item rating matrix, we have m users, n items, and rat-
ing values within the range [0, 1]. Actually, most recommender

systems use integer rating values from 1 to Rmax to represent
the users’ judgements on items. In this chapter, without loss of
generality, we map the ratings 1, ..., Rmax to the interval [0, 1]

using the function f(x) = x/Rmax. Let Rij represent the rating
of user ui for item vj, and U ∈ Rl×m and V ∈ Rl×n be latent user

and item feature matrices, with column vectors Ui and Vj rep-
resenting the l-dimensional user-specific and item-specific latent

feature vectors of user ui and item vj, respectively. Note that
the solutions of U and V are not unique. In [99], the conditional

distribution over the observed ratings is defined as:

p(R|U, V, σ2
R) =

m∏

i=1

n∏

j=1

[
N
(
Rij|g(UT

i Vj), σ
2
R

)]IR
ij , (6.1)

where N (x|µ, σ2) is the probability density function of the Gaus-

sian distribution with mean µ and variance σ2, and IR
ij is the

indicator function that is equal to 1 if user ui rated item vj and

equal to 0 otherwise. The function g(x) is the logistic function
g(x) = 1/(1 + exp(−x)), which makes it possible to bound the
range of UT

i Vj within the range [0, 1]. The zero-mean spherical

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 94

(a) Factorization of User-
Item Matrix

(b) Recommendations by Trusted Friends

(c) Recommendations with Social Trust Ensemble

Figure 6.2: Graphical Models

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 95

Gaussian priors are also placed on user and item feature vectors:

p(U |σ2
U)=

m∏

i=1

N (Ui|0, σ2
UI), p(V |σ2

V)=

n∏

j=1

N (Vj|0, σ2
V I). (6.2)

Hence, through a Bayesian inference, we have

p(U, V |R, σ2
R, σ2

U , σ2
V) ∝ p(R|U, V, σ2

R)p(U |σ2
U)p(V |σ2

V)

=
m∏

i=1

n∏

j=1

[
N
(
Rij|g(UT

i Vj), σ
2
R

)]IR
ij

×
m∏

i=1

N (Ui|0, σ2
UI) ×

n∏

j=1

N (Vj|0, σ2
V I). (6.3)

The graphical model of Eq. (6.3) is shown in Fig. 6.2(a). This
equation represents the method on how to derive the users’ la-

tent feature space or users’ characteristics purely based on the
user-item rating matrix without considering the favors of users’

trusted friends. In the next section, we will systematically illus-
trate how to recommend based on the tastes of trusted friends.

6.1.3 Recommendations by Trusted Friends

In this section, we analyze how our social trust networks affect
our decisions or behaviors, and propose a method to recommend

only by using the tastes of trusted friends.
Suppose we have a directed social trust graph G = (U , E),

where the vertex set U = {ui}m
i=1 represents all the users in

a social trust network and the edge set E represents the trust

relations between users. Let S = {Sij} denote the m×m matrix
of G, which is also called the social trust matrix in this chapter.
For a pair of vertices, ui and uj, let Sij ∈ (0, 1] denote the weight

associated with an edge from ui to uj, and Sij = 0, otherwise.
The physical meaning of the weight Sij can be interpreted as

how much a user ui trusts or knows user uj in a social network.

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 96

Note that social trust matrix S is an asymmetric matrix, since
in a trust-based social network, user ui trusting uj does not

necessary indicate user uj trusts ui.
In reality, we always turn to our friends for recommendations

since we trust our friends. We also believe that most probably we
will like the items (books, music, movies, etc.) that our trusted
friends recommend. Even if the recommended items are not the

types we like, we still have a high probability to be influenced
by our trusted friends. In the real world, suppose a user wants

to see the movie “The Dark Knight” (suppose it is the item v1

in Fig. 6.1(b)), which is now playing at the theaters, but he/she

knows nothing about the movie, like user u1 in Fig. 6.1(b). What
this user normally do is to take into account his/her trusted

friends’ recommendations. Among all of his/her trusted friends
in Fig. 6.1(a), u2 and u4 rated this movie as 4 and 5, and u1

trusts u4 (weight 1.0) more than u2 (weight 0.6). Based on the

information, there is a very high probability that u1 will draw
the conclusion that “The Dark Knight” is a very good movie

worth of watching.
From the above analysis, we can generalize the above social

process as

R̂ik =

∑
j∈T (i)

RjkSij

|T (i)| , (6.4)

where R̂ik is the prediction of the rating that user ui would

give item vj, Rjk is the score that user uj gave item vk, T (i) is
the friends set that user ui trusts and |T (i)| is the number of
trusted friends of user ui in the set T (i). |T (i)| can be merged

into Sij since it is the normalization term of trust scores. Hence,
Eq. (6.4) can be simplified as

R̂ik =
∑

j∈T (i)

RjkSij. (6.5)

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 97

Then the prediction of the ratings that user ui gives to all the
items can be inferred as

R̂i1

R̂i2

...

R̂in

=

R11 R21 ... Rm1

R12 R22 ... Rm2

...

R1n R2n ... Rmn

Si1

Si2

...

Sim

. (6.6)

We can then infer that for all the users to obtain

R̂ = SR, (6.7)

where SR can be interpreted as the recommendations purely
based on the trusted friends’ tastes.

From the social trust network aspect, we define the condi-

tional distribution over the observed ratings as

p(R|S, U, V, σ2
R) =

m∏

i=1

n∏

j=1

N

Rij|g(
∑

k∈T (i)

SikU
T
k Vj), σ

2
S

IR
ij

, (6.8)

where Sik is normalized by |T (i)|, which is the number of trusted
friends of user ui in the set T (i). IR

ij is the indicator function

that is equal to 1 if user i rated item j and equal to 0 otherwise.
Hence, similar to Eq. (6.3), through a Bayesian inference, we

have

p(U, V |R, S, σ2
S, σ2

U , σ2
V)

∝ p(R|S, U, V, σ2
S)p(U |S, σ2

U)p(V |S, σ2
V). (6.9)

In Eq. (6.9), we can assume that S is independent with the
low-dimensional matrices U and V , then this equation can be

changed to

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 98

p(U, V |R, S, σ2
S, σ2

U , σ2
V)∝p(R|S, U, V, σ2

S)p(U |σ2
U)p(V |σ2

V),

=

m∏

i=1

n∏

j=1

N

Rij|g(
∑

k∈T (i)

SikU
T
k Vj), σ

2
S

IR
ij

×
m∏

i=1

N (Ui|0, σ2
UI) ×

n∏

j=1

N (Vj|0, σ2
V I). (6.10)

where p(U |σ2
U) and p(V |σ2

V) are zero-mean spherical Gaussian
priors on user and item feature vectors. This equation specifies

the method to recommend purely based on users’ trusted friends’
tastes. The graphical model is shown in Fig. 6.2(b).

6.1.4 Social Trust Ensemble

In Section 6.1.2, given the user-item rating matrix, the observed
rating Rij is interpreted by the user ui’s favor on item vj, while in
Section 6.1.3, given the user-item rating matrix and users’ social

trust network, the observed rating Rij is realized as the favors on
item vj of user ui’s trusted friends. Actually, both of the above

assumptions are partially right since in the real world situation,
every user has his/her own taste and at the same time, every

user may be influenced by his/her friends he/she trusts. Hence,
in order to define the model more realistically, every observed
rating in the user-item matrix should reflect both of these two

factors. Based on this motivation, we model the conditional

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 99

distribution over the observed ratings as:

p(U, V |R, S, σ2, σ2
U , σ2

V)

=

m∏

i=1

n∏

j=1

N

Rij|g(αUT
i Vj + (1 − α)

∑

k∈T (i)

SikU
T
k Vj), σ

2

IR
ij

×
m∏

i=1

N (Ui|0, σ2
UI) ×

n∏

j=1

N (Vj|0, σ2
V I). (6.11)

In Eq. (6.11), the users’ favors and the trusted friends’ favors
are smoothed by the parameter α, which naturally fuses appro-
priate amount of real world recommendation processes into the

recommender systems. The parameter α controls how much do
users trust themselves or their trusted friends. It is also the

reason we call our approach Recommendation with Social Trust
Ensemble (RSTE). The graphical model of RSTE is shown in

Fig. 6.2(c).
The log of the posterior distribution for the recommendations

is given by

lnp(U, V |R, S, σ2, σ2
U , σ2

V) =

− 1

2σ2

m∑

i=1

n∑

j=1

IR
ij (Rij − g(αUT

i Vj + (1 − α)
∑

k∈T (i)

SikU
T
k Vj))

2

− 1

2σ2
U

m∑

i=1

UT
i Ui −

1

2σ2
V

n∑

j=1

V T
j Vj

−1

2
(

m∑

i=1

n∑

j=1

IR
ij)lnσ2 − 1

2
(mllnσ2

U + nllnσ2
V) + C, (6.12)

where C is a constant that does not depend on the parame-

ters. Maximizing the log-posterior over two latent features with
hyperparameters (i.e., the observation noise variance and prior

variances) kept fixed is equivalent to minimizing the following

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 100

sum-of-squared-errors objective functions with quadratic regu-
larization terms:

L(R, S, U, V)

=
1

2

m∑

i=1

n∑

j=1

IR
ij (Rij − g(αUT

i Vj + (1 − α)
∑

k∈T (i)

SikU
T
k Vj))

2

+
λU

2
‖U‖2

F +
λV

2
‖V ‖2

F , (6.13)

where λU = σ2/σ2
U , λV = σ2/σ2

V , and ‖·‖2
F denotes the Frobenius

norm.
A local minimum of the objective function given by Eq. (6.13)

can be found by performing gradient descent in Ui, Vj ,

∂L
∂Ui

=α

n∑

j=1

IR
ijg

′(αUT
i Vj + (1 − α)

∑

k∈T (i)

SikU
T
k Vj)Vj

× (g(αUT
i Vj + (1 − α)

∑

k∈T (i)

SikU
T
k Vj) − Rij)

+ (1 − α)
∑

p∈B(i)

n∑

j=1

IR
pjg

′(αUT
p Vj + (1 − α)

∑

k∈T (p)

SpkU
T
k Vj)

× (g(αUT
p Vj + (1 − α)

∑

k∈T (p)

SpkU
T
k Vj) − Rpj)SpiVj +λUUi,

∂L
∂Vj

=
m∑

i=1

IR
ijg

′(αUT
i Vj + (1 − α)

∑

k∈T (i)

SikU
T
k Vj)

× (g(αUT
i Vj + (1 − α)

∑

k∈T (i)

SikU
T
k Vj) − Rij)

× (αUi + (1 − α)
∑

k∈T (i)

SikU
T
k) + λV Vj, (6.14)

where g′(x) is the derivative of logistic function g′(x) = exp(x)/(1+

exp(x))2 and B(i) is the set that includes all the users who trust

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 101

user ui. In order to reduce the model complexity, in all of the
experiments we conduct in Section 6.2, we set λU = λV .

6.1.5 Complexity Analysis

The main computation of gradient methods is evaluating the
object function L and its gradients against variables. Because

of the sparsity of matrices R and S, the computational complex-
ity of evaluating the object function L is O(ρRl + ρRkl), where
ρR is the number of nonzero entries in the matrix R, and k is

the average number of friends that a user trusts. Since almost
all of the online social networks fit the power-law distribution,

a large long tail of users only have few trusted friends. This
indicates that the value of k is relatively small. The computa-

tional complexities for the gradients ∂L
∂U

and ∂L
∂V

in Eq. (6.14) are
O(ρRp l + ρRp kl) and O(ρRl + ρRkl), respectively, where p is
the average number of friends who trust a user, which is also a

small value. Actually, in a social trust graph, the value of k is
always equal to the value of p, which is 9.91 in the dataset we

employ in the Section 6.2. Therefore, the total computational
complexity in one iteration is O(ρRp l+ρRp kl), which indicates

that theoretically, the computational time of our method is lin-
ear with respect to the number of observations in the user-item

matrix R. This complexity analysis shows that our proposed
approach is very efficient and can scale to very large datasets.

6.2 Empirical Analysis

In this section, we conduct several experiments to compare the
recommendation qualities of our RSTE approach with other
state-of-the-art collaborative filtering and trust-aware recom-

mendation methods. Our experiments are intended to address
the following questions: (1) How does our approach compare

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 102

Table 6.1: Statistics of User-Item Rating Matrix of Epinions

Statistics User Item

Max. Num. of Ratings 1960 7082

Avg. Num. of Ratings 12.21 7.56

Table 6.2: Statistics of Social Trust Network of Epinions

Statistics Trust per User Be Trusted per User

Max. Num. 1763 2443

Avg. Num. 9.91 9.91

with the published state-of-the-art collaborative filtering and
trust-aware recommendation algorithms? (2) How does the model

parameter α affect the accuracy of prediction? (3) What is the
performance comparison on users with different observed rat-

ings? (4) Can our algorithm achieve good performance even if
users have few observed rating records? (5) Is our algorithm
efficient when training the model?

6.2.1 Dataset Description

We choose Epinions as the data source for our experiments on
recommendation with social trust ensemble. Epinions.com is a

well known knowledge sharing site and review site, which was
established in 1999. In order to add reviews, users (contributors)

need to register for free and begin submitting their own personal
opinions on topics such as products, companies, movies, or re-
views issued by other users. Users can also assign products or

reviews integer ratings from 1 to 5. These ratings and reviews
will influence future customers when they are about to decide

whether a product is worth buying or a movie is worth watch-
ing. Every member of Epinions maintains a “trust” list which

presents a social network of trust relationships between users.
Epinions is thus an ideal source for experiments on social trust
recommendation.

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 103

The dataset used in our experiments is collected by crawl-
ing the Epinions.com site on Jan 2009. It consists of 51,670

users who have rated a total of 83,509 different items. The
total number of ratings is 631,064. The density of the user-

item rating matrix is less than 0.015%. We can observe that
the user-item rating matrix of Epinions is very sparse, since the
densities for the two most famous collaborative filtering datasets

Movielens (6,040 users, 3,900 movies and 1,000,209 ratings) and
Eachmovie (74,424 users, 1,648 movies and 2,811,983 ratings)

are 4.25% and 2.29%, respectively. Moreover, an important fac-
tor that we choose the Epinions dataset is that user social trust

network information is not included in the Movielens and Each-
movie datasets. The statistics of the Epinions user-item rating

matrix is summarized in Table 6.1. As to the user social trust
network, the total number of issued trust statements is 511,799.
The statistics of this data source is summarized in Table 6.2.

6.2.2 Metrics

We use two metrics, the Mean Absolute Error (MAE) and the
Root Mean Square Error (RMSE), to measure the prediction

quality of our proposed approach in comparison with other col-
laborative filtering and trust-aware recommendation methods.

The metrics MAE is defined as:

MAE =

∑
i,j |ri,j − r̂i,j|

N
, (6.15)

where ri,j denotes the rating user i gave to item j, r̂i,j denotes

the rating user i gave to item j as predicted by a method, and
N denotes the number of tested ratings. The metrics RMSE is

defined as:

RMSE =

√∑
i,j(ri,j − r̂i,j)2

N
. (6.16)

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 104

6.2.3 Comparison

In this section, in order to show the performance improvement of

our RSTE approach, we compare our method with the following
approaches.

1. PMF: this method is proposed by Salakhutdinov and Minh
in [99]. It only uses user-item matrix for the recommenda-

tions, and it is based on probabilistic matrix factorization.

2. Trust: this is the method purely uses trusted friends’ tastes
making recommendations. It is proposed in Section 6.1.3 in

this chapter. It is also a special case of RSTE when α = 0.

3. SoRec: this is the method proposed in [74]. It is a so-

cial trust-aware recommendation method that factorizes
the user-item rating matrix and users’ social trust network

by sharing the same user latent space.

We use different amounts of training data (90%, 80%) to

test the algorithms. Training data 90%, for example, means we
randomly select 90% of the ratings from Epinions dataset as
the training data to predict the remaining 10% of ratings. The

random selection was carried out 5 times independently. The
experimental results using 5 and 10 dimensions to represent the

latent features are shown in Table 6.3.
The parameter settings of our approach are α = 0.4 for both

90% training data and 80% training data, λU = λV = 0.001,
and in all the experiments conducted in the following sections,
we set all of the parameters λU , λV equal to 0.001. From Ta-

ble 6.3, we can observe that our approach RSTE outperforms
the other methods. In general, two social trust recommenda-

tion approaches SoRec and RSTE all perform better than the
PMF method (only uses the user-item matrix for recommen-

dations). However, the Trust method performs worse than the

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 105

Table 6.3: Performance Comparisons (A Smaller MAE or RMSE Value
Means a Better Performance)

Training Data Metrics
Dimensionality = 5

Trust PMF SoRec RSTE

90%
MAE 0.9054 0.8676 0.8442 0.8377

RMSE 1.1959 1.1575 1.1333 1.1109

80%
MAE 0.9221 0.8951 0.8638 0.8594

RMSE 1.2140 1.1826 1.1530 1.1346

Training Data Metrics
Dimensionality = 10

Trust PMF SoRec RSTE

90%
MAE 0.9039 0.8651 0.8404 0.8367

RMSE 1.1917 1.1544 1.1293 1.1094

80%
MAE 0.9215 0.8886 0.8580 0.8537

RMSE 1.2132 1.1760 1.1492 1.1256

PMF method, which indicates purely utilizing trusted friends’
tastes to recommend is not applicable. Among these three trust-

aware recommendation methods, our RSTE method generally
achieves better performance than the SoRec and Trust methods
on both MAE and RMSE. This demonstrates that our interpre-

tation on the formation of the ratings is realistic and reasonable.

6.2.4 Performance on Different Users

One challenge of the recommender systems is that it is diffi-

cult to recommend items to users who have very few ratings.
Hence, in order to compare our approach with the other meth-

ods thoroughly, we first group all the users based on the number
of observed ratings in the training data, and then evaluate pre-

diction accuracies of different user groups. The experimental
results are shown in Fig. 6.3. Users are grouped into 6 classes:
“1−10”, “11−20”, “21−40”, “41−80”, “81−160” and “> 160”,

denoting how many ratings users have rated.

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 106

1−10 11−20 21−40 41−80 81−160 >160
0

0.5

1

1.5

2
x 10

4

Number of Observed Ratings

N
um

be
r

of
 T

es
t R

at
in

gs

(a) Distribution of Testing Data (90% as
Training Data)

1−10 11−20 21−40 41−80 81−160 >160
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Number of Observed Ratings

M
A

E

Dimensionality = 10

Trust
PMF
SoRec
RSTE

(b) MAE Comparison on Different User
Rating Scales (90% as Training Data)

1−10 11−20 21−40 41−80 81−160 >160
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Number of Observed Ratings

R
M

S
E

Dimensionality = 10

Trust
PMF
SoRec
RSTE

(c) RMSE Comparison on Different User
Rating Scales (90% as Training Data)

Figure 6.3: Performance Comparison on Different Users

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 107

Fig. 6.3(a) summarizes the distributions of testing data ac-
cording to groups in the training data (90% as training data).

For example, there are a total 3,360 user-item pairs to be pre-
dicted in the testing dataset in which the related users in the

training dataset have rating numbers from 1 to 10. In Fig. 6.3(b)
and Fig. 6.3(c), we observe that our RSTE algorithm consis-
tently performs better than other methods, especially when few

user ratings are given. When users’ rating records are ranging
from 1 to 80, our RSTE method performs much better than the

Trust, PMF and SoRec approaches.

6.2.5 Impact of Parameter α

In our method proposed in this chapter, the parameter α bal-

ances the information from the users’ own characteristics and
their friends’ favors. It controls how much our method should
trust users themselves and their friends. If α = 1, we only mine

the user-item rating matrix for matrix factorization, and simply
employ users’ own tastes in making recommendations. If α = 0,

we only extract information from the social trust graph to pre-
dict users’ preferences purely from the friends they trust. In

other cases, we fuse information from the user-item rating ma-
trix and the user social trust network for probabilistic matrix

factorization and, furthermore, to predict ratings for the users.
Fig. 6.4 shows the impacts of α on MAE and RMSE. We

observe that the value of α impacts the recommendation re-

sults significantly, which demonstrates that fusing the users’
own tastes with their friends’ favors greatly improves the rec-

ommendation accuracy. No matter using 90% training data or
80% training data, as α increases, the MAE and RMSE de-

crease (prediction accuracy increases) at first, but when α sur-
passes a certain threshold, the MAE and RMSE increase (pre-
diction accuracy decreases) with further increase of the value

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 108

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.82

0.84

0.86

0.88

0.9

0.92

0.94

Values of α

M
A

E

90% as Training Data

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

Values of α

R
M

S
E

90% as Training Data

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.84

0.86

0.88

0.9

0.92

0.94

Values of α

M
A

E

80% as Training Data

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.12

1.14

1.16

1.18

1.2

1.22

1.24

Values of α

R
M

S
E

80% as Training Data

(d)

Figure 6.4: Impact of Parameter α (Dimensionality = 10)

of α. This phenomenon confirms with the intuition that purely

using the user-item rating matrix or purely using the users’ so-
cial trust network for recommendations cannot generate better
performance than fusing these two favors together.

From Fig. 6.4(a) and Fig. 6.4(b), when using 90% ratings as
training data, we observe that, our RSTE method achieves the

best performance when α is around 0.4, while smaller values
like α = 0.1 or larger values like α = 0.7 can potentially degrade

the model performance. This indicates that we need to trust
more about the tastes of users’ trusted friends than their own
tastes, since the training data of user-item matrix is very sparse,

which can hardly learn the accurate characteristics of users. In
Fig. 6.4(c) and Fig. 6.4(d), when using 80% ratings as train-

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 109

0 50 100 150 200 250 300 350 400
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Iterations

M
A

E
Dimensionality = 10

RSTE α = 0
RSTE α = 0.4
RSTE α = 0.7
RSTE α = 1

(a)

0 50 100 150 200 250 300 350 400
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

Iterations

R
M

S
E

Dimensionality = 10

RSTE α = 0
RSTE α = 0.4
RSTE α = 0.7
RSTE α = 1

(b)

Figure 6.5: Efficiency Analysis (90% as Training Data)

ing data, the optimal value of α is also around 0.4. However,

less ratings for users will lead to an overall degradation of the
recommendation results.

6.2.6 Training Efficiency Analysis

The complexity analysis in Section 6.1.5 states that the compu-
tational complexity of our approach is linear with respect to the

number of ratings, which shows that our approach is scalable
to very large datasets. Actually, our approach is very efficient
even when using a very simple gradient descent method. In the

experiments using 90% of the data as training data, our method
only needs less than 400 iterations for training, and each itera-

tion only requires less than 20 seconds. All the experiments are
conducted on a normal personal computer containing an Intel

Pentium D CPU (3.0 GHz, Dual Core) and 1G memory.
Fig. 6.5(a) and Fig. 6.5(b) show the performance (MAE and

RMSE) changes with the iterations. We observe that when us-
ing a large value of α, such as α = 1 or α = 0.7, at the end of the
training, the model begins to overfit (especially for the RMSE),

while a relatively smaller α, such as α = 0 or α = 0.4, does not

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 110

have the overfitting problem. These experiments clearly demon-
strate that in this dataset, an approach ignoring the social trust

information can cause the overfitting problem, and that the pre-
dictive accuracy can be improved by incorporating appropriate

amount of social trust information.

6.3 Summary

This chapter is motivated by the fact that a user’s trusted friends

on the Web will affect this user’s online behavior. Based on the
intuition that every user’s decisions on the Web should include

both the user’s characteristics and the user’s trusted friends’ rec-
ommendations, we propose a novel, effective and efficient prob-
abilistic matrix factorization framework for the recommender

systems. Experimental analysis on the Epinions dataset shows
the promising future of our proposed method. Moreover, the

method introduced in this chapter by using probabilistic matrix
factorization is not only working in trust-aware recommender

systems, but also applicable to other popular research topics,
such as social search, collaborative information retrieval, and
social data mining.

In this chapter, although we employ the trusted friends’ opin-
ions in the social trust network to make recommendations for

the users, we do not consider the possible diffusions of trusts
between various users. Under the circumstance that both the

user-item rating matrix and the trust relations of a social net-
work are very sparse, the diffusions of trust relations become

inevitable since this consideration will help to alleviate the data
sparsity problem and will potentially increase the prediction ac-
curacy. We plan to employ the diffusion processes in our future

work.
In many popular applications on the Web, users not only can

keep a list of trust relationships, but also have the rights to

CHAPTER 6. RECOMMEND WITH SOCIAL TRUST ENSEMBLE 111

establish a list of distrust or block relationships. If a user uj

is in the distrust list of a user ui, most probably, it is because

the user ui thinks the user uj’s taste is totally different from
him/her. Actually, this information is very useful on the recom-

mender systems. Unfortunately, to the best of our knowledge,
no previous work can employ this information well into recom-
mender systems. The understanding of distrust relations is still

unclear to the researchers: We cannot use diffusion methods to
model it due to the reason that one person’s enemy’s enemy is

not necessarily the enemy of this person. In the future, we plan
to study the formation and nature of the distrust relations, and

explicitly model them in the recommender systems.

2 End of chapter.

Chapter 7

Recommend with Social

Distrust

Although we developed two trust-based recommendation ap-
proaches in this thesis, we ignored a very important information,

i.e., distrust relations among users.
In this chapter, we propose a factor analysis framework with

the constraints of distrust and trust relations among users. Our

work is based on the following intuitions:

• Users’ latent features can be extracted by factorizing the
user-item rating matrix.

• Users’ distrust relations can be interpreted as the “dissim-

ilar” relations since user ui distrusts user ud indicates that
user ui disagrees with most of the opinions issued by user

ud.

• Users’ trust relations can be modeled as the “similar” re-
lations due to the reason that user ui trusts user ut means
that user ui agrees with most of the opinions issued by ut.

7.1 Recommendation Framework

Previous recommender system techniques only utilize the in-

formation of the user-item rating matrix for recommendations

112

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 113

while ignoring the trust and distrust relationships among users.
However, the fact is, trust and distrust information is very help-

ful in making the recommendations since to some extent, they
represent the “similar” and “dissimilar” relationships. With the

exponential growth of Web 2.0 Web sites, providing personal-
ized recommendations and incorporating trust and distrust into
traditional recommender systems are becoming more and more

important.
In this section, we first describe the problem we study in

Section 7.1.1, and then brief the matrix factorization technique
for recommendation in Section 7.1.2. We provide solutions on

how to incorporate the distrust and trust into recommendations
in Section 7.1.3, Section 7.1.4 and Section 7.1.5. Finally, the

complexity analysis is conducted in Section 7.1.6.

7.1.1 Problem Definition

Fig. 7.1(a) illustrates a typical Web user we will study in this
chapter. In this figure, user u1 rated three items v1, v3 and v5.

In addition to the rating data, this user also maintains two lists:
trust list and distrust list. The trust list stores all the users that

user u1 trusts while the distrust list includes all the users that
user u1 distrusts.

By integrating all the information from all the users, we sum-
marize three different data sources: the user-item rating matrix
shown in Fig. 7.1(b), the user trust graph shown in Fig. 7.1(c)

and the user distrust graph shown in Fig. 7.1(d). In this exam-
ple, totally, there are 5 users (from u1 to u5) and 5 items (from

v1 to v5) with 6 trust relations (edges) and 5 distrust relations
between users. Each relation is associated with a weight wij in

the range (0, 1] to specify how much user ui trusts or distrusts
user uj. In an online social network Web site, the weight wij

is often explicitly stated by user ui. Typically, each user also

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 114

(a) A Web User (b) User-Item Rating Matrix

(c) User Trust Graph (d) User Distrust Graph

Figure 7.1: A Toy Example

rates some items on a 5-point integer scale to express the extent
of the favor of each item (normally, 1, 2, 3, 4 and 5 represent

“hate”, “don’t like”, “neutral”, “like” and “love”, respectively).
The problem we study in this chapter is how to effectively and

efficiently predict the missing values of the user-item matrix by
employing these different data sources.

7.1.2 Matrix Factorization for Recommendation

A common and popular approach to recommender systems is to

fit a factor model to the user-item rating matrix, and use it in
order to make further predictions [48, 76, 94, 99]. The premise

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 115

behind a low-dimensional factor model is that there is only a
small number of factors influencing the preferences, and that a

user’s preference vector is determined by how each factor applies
to that user [94].

Consider an m × n user-item rating matrix R, the matrix
factorization method employs a rank-l matrix X = UTV to fit
it, where U ∈ R

l×m and V ∈ R
l×n. From the above defini-

tion, we can see that the low-dimensional matrices U and V are
unknown, and need to be estimated. Moreover, this feature rep-

resentations have clear physical meanings. In this linear factor
model, each factor is a preference vector, and a user’s prefer-

ences correspond to a linear combination of these factor vectors,
with user-specific coefficients. More specifically, each row of U

performs as a “feature vector”, and each row of V is a linear
predictor, predicting the entries in the corresponding column of
R based on the “features” in U .

Actually, most recommender systems use integer rating val-
ues from 1 to Rmax to represent the users’ judgements on items.

In this chapter, without loss of generality, we map the rat-
ings 1, ..., Rmax to the interval [0, 1] using the function f(x) =

x/Rmax. However, simply employing UT
i Vj to predict the miss-

ing value Ri,j can make the prediction outside of the range of
valid rating values. Hence, instead of using a simple linear factor

model, in this chapter, the inner product between user-specific
and movie-specific feature vectors is mapped through a nonlin-

ear logistic function g(x) = 1/(1 + exp(−x)), which bounds the
range of the predictions into [0, 1].

Hence, by adding the constraints of the norms of U and V ,
we have the following optimization problem:

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 116

min
U,V

L(R, U, V) =
1

2

m∑

i=1

n∑

j=1

IR
ij (Rij − g(UT

i Vj))
2

+
λU

2
‖U‖2

F +
λV

2
‖V ‖2

F , (7.1)

where IR
ij is the indicator function that is equal to 1 if user ui

rated item vj and equal to 0 otherwise, and ‖ · ‖2
F denotes the

Frobenius norm.
The optimization problem in Eq. (7.1) minimizes the sum-of-

squared-errors objective function with quadratic regularization
terms. It also has a probabilistic interpretation with Gaussian
observation noise, which is detailed in [99]. However, the same as

many other collaborative filtering methods, this approach only
utilizes the user-item rating matrix for the recommendations.

In the following sections, we will introduce how to incorporate
the distrust and trust information into the matrix factorization

method.

7.1.3 Recommendation with Distrust Relations

In this section, we analyze how the distrust relationships can
affect the recommendation processes.

Distrust is one of the most controversial topics and issues to

cope with, especially when considering trust metrics and trust
propagation [135]. Although many researchers have already con-

ducted comprehensive studies on the trust related applications,
the understanding of distrust relations is still unclear to the

researchers. Distrust is totally different with trust, hence the
method employed in the trust-aware recommender systems can-
not be simply transplanted to distrust-aware recommender sys-

tems. For example, the most popular method in trust-aware
recommender systems is to improve the recommendation qual-

ity by the propagation of trust; however, we cannot simply use

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 117

propagation methods to model distrust due to the reason that
one person’s enemy’s enemy is not necessarily the enemy of this

person.
However, we cannot ignore the distrust information since as

reported in [42], experience with real-world implemented trust
systems such as Epinions and eBay suggests that distrust is at
least as important as trust.

In this chapter, we employ a simple intuition to make positive
influence using distrust information. If a user ud is in the distrust

list of a user ui, most probably, it is because the user ui thinks
the user ud’s taste is totally different from him/her. Actually,

this information is very useful on the recommender systems. We
could interpret this problem using the following intuition: if user

ui distrusts user ud, then we could assume that the features Ui

and Ud will have a large distance in the feature space. Based on
this assumption, for all the users in the user space, we summarize

the following optimization function:

max
U

1

2

m∑

i=1

∑

d∈D+(i)

SD
id‖Ui − Ud‖2

F , (7.2)

where D+(i) is the set of users that user ui distrusts, and SD
id ∈

(0, 1] is the weight of distrust score that user ui gives to user ud.

The larger the value of SD
id is, the more the user ui distrusts the

user ud.

Based on Eq. (7.1) and Eq. (7.2), we define the recommenda-
tion with distrust relations as the following optimization prob-
lem:

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 118

min
U,V

LD(R, SD, U, V) =
1

2

m∑

i=1

n∑

j=1

IR
ij(Rij − g(UT

i Vj))
2

+
β

2

m∑

i=1

∑

d∈D+(i)

(−SD
id‖Ui − Ud‖2

F)

+
λU

2
‖U‖2

F +
λV

2
‖V ‖2

F . (7.3)

In the online opinion sharing or recommender systems, the

distrust value SD
id is typically issued by user ui explicitly with

respect to user ud, and it cannot accurately describe the relations

between users since it contains noises and ignores the graph
structure information of distrust network. For instance, similar

to the Web link adjacency graph in [130], in a distrust graph,
the confidence of distrust value SD

id should be decreased if user ui

distrusts lots of users; however, the confidence of distrust value
SD

id should be increased if user ud is trusted by lots of users.
Hence, we propose to smooth the term SD

id by incorporating

local authority and local hub values in Eq. (7.3),

SD
id =

∇−(ud)

∇+(ui) + ∇−(ud)
× SD

id, (7.4)

where ∇+(ui) represents the outdegree of user ui in the distrust
graph, while ∇−(ud) indicates the indegree of user ud in the
distrust graph.

A local minimum of the objective function given by Eq. (7.3)
can be found by performing gradient descent in Ui, Vj ,

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 119

∂LD
∂Ui

=
n∑

j=1

IR
ijg

′(UT
i Vj)(g(UT

i Vj) − Rij)Vj

+ β
∑

d∈D+(i)

SD
id(Ud − Ui) + β

∑

p∈D−(i)

SD
pi(Up − Ui)

+ λUUi,

∂LD
∂Vj

=

m∑

i=1

IR
ijg

′(UT
i Vj)(g(UT

i Vj) − Rij)Ui + λV Vj , (7.5)

where D−(i) is the set of users that distrust user ui.

7.1.4 Recommendation with Trust Relations

In this section, we discuss how to incorporate the trust relation-
ships into recommender systems. In order to model the trust

relationships between users realistically, we first need to under-
stand where the “trust” comes from. Actually, on the Web, it

is not difficult to interpret the generation of trust relations. For
example, in an opinion sharing Web site, if a user ut is in the

trust list of a user ui, most probably, the underlying cause is
that user ui agrees with most of user ut’s opinions. Moreover,
how much user ui trusts user ut depends on how much user ui

agrees with user ut.
Based on the above interpretation, if user ui trusts user ut, we

can assume that the feature representations Ui and Ud of these
two users are close in the feature space. Following this intuition,

we minimize the objective function

min
U

1

2

m∑

i=1

∑

t∈T +(i)

ST
it ‖Ui − Ut‖2

F , (7.6)

where T +(i) is the set of users that user ui trusts, and ST
it ∈ (0, 1]

is the degree indicates how much user ui trusts user ut. The

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 120

larger the value of ST
it is, the more the user ui trusts the user ut.

By employing Eq. (7.1) and Eq. (7.6), we define the recom-
mendation problem with trust relations as the following opti-

mization problems:

min
U,V

LT (R, ST , U, V) =
1

2

m∑

i=1

n∑

j=1

IR
ij (Rij − g(UT

i Vj))
2

+
α

2

m∑

i=1

∑

t∈T +(i)

(ST
it ‖Ui − Ut‖2

F)

+
λU

2
‖U‖2

F +
λV

2
‖V ‖2

F . (7.7)

Similar to Eq. (7.4), we also smooth the trust value ST
it in

Eq. (7.7) based on the following equation:

ST
it =

∆−(ut)

∆+(ui) + ∆−(ut)
× ST

it , (7.8)

where ∆+(ui) represents the outdegree of user ui in the trust
graph, while ∆−(ut) indicates the indegree of user ut in the trust

graph.
In Eq. (7.7), by performing gradient descent in Ui, Vj, we

have

∂LT
∂Ui

=
n∑

j=1

IR
ijg

′(UT
i Vj)(g(UT

i Vj) − Rij)Vj

+ α
∑

t∈T +(i)

ST
it (Ui − Ut) + α

∑

q∈T −(i)

ST
qi(Ui − Uq)

+ λUUi,

∂LT
∂Vj

=

m∑

i=1

IR
ijg

′(UT
i Vj)(g(UT

i Vj) − Rij)Ui + λV Vj, (7.9)

where T −(i) is the set of users that trust user ui.

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 121

7.1.5 Prediction

After the low-dimensional latent feature spaces U and V are

learned, the next step is to predict the ratings for the active
users. For the given missing data Rij, the value predicted by

our method is defined as

R̂ij = g(UT
i Vj). (7.10)

We will evaluate the prediction quality in Section 7.2.

7.1.6 Complexity Analysis

The main computation of gradient methods is evaluating the

object functions LD, LT and their gradients against variables.
Because of the sparsity of matrices R, SD and ST , the com-

putational complexities of evaluating the objective functions LD
are LT are O(ρRl + mrl) and O(ρRl + msl), respectively, where
ρR is the number of nonzero entries in the matrix R, l is the

dimensions of the user feature, m is the number of users, r is
the average number of users that a user distrusts, and s is the

average number of friends that a user trusts. Since almost all of
the online social network graphs fit the power-law distribution, a

large long tail of users only have few trusted or distrusted users.
This indicates that the values of r and s are relatively small.

Generally, mr << ρR and ms << ρR.
The computational complexities for the gradients ∂LD

∂U
and

∂LD

∂V
in Eq. (7.5) are O(ρRl2 + m(r + r′)l) and O(ρRl2), respec-

tively, where r′ is the average number of users who distrust a
user, which is also a small value. Actually, in a distrust network

graph, the value of r is always equal to the value of r′, which is
0.94 in the dataset we employ in the Section 7.2.

The computational complexities for the gradients ∂LT

∂U
and

∂LT

∂V
in Eq. (7.9) are O(ρRl2 + m(s + s′)l) and O(ρRl2), respec-

tively, where s′ is the average number of friends who trust a

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 122

user. In a trust network graph, the value of s is also equal to
the value of s′, which is 5.45 in the dataset we employ in the

experiments.
Therefore, the total computational complexity in one iter-

ation is O(ρRl + ρRl2), which indicates that theoretically, the
computational time of our method is linear with respect to the
number of observations in the user-item matrix R. This com-

plexity analysis shows that our proposed approach is very effi-
cient and can scale to very large datasets.

7.2 Experimental Analysis

In this section, we conduct several experiments to compare the
recommendation qualities of our approaches with other state-of-

the-art collaborative filtering and trust-aware recommendation
methods. Our experiments are intended to address the following

questions:

1. How does our approach compare with the published state-

of-the-art collaborative filtering and trust-aware recommen-
dation algorithms?

2. How do the model parameter α and β affect the accuracy
of prediction?

7.2.1 Dataset Description

We choose Epinions as the data source for our experiments on

trust and distrust-aware recommendations. Epinions.com is a
well known knowledge sharing site and review site, which was

established in 1999. In order to add reviews, users (contributors)
need to register for free and begin submitting their own personal

opinions on topics such as products, companies, movies, or re-
views issued by other users. Users can also assign products or

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 123

Table 7.1: Statistics of User-Item Rating Matrix of Epinions

Statistics User Item

Min. Num. of Ratings 1 1

Max. Num. of Ratings 162169 1179

Avg. Num. of Ratings 102.07 17.79

Table 7.2: Statistics of Trust Network of Epinions

Statistics Trust per User Be Trusted per User

Max. Num. 2070 3338

Avg. Num. 5.45 5.45

reviews integer ratings from 1 to 5. These ratings and reviews
will influence future customers when they are about to decide
whether a product is worth buying or a movie is worth watch-

ing. Every member of Epinions maintains a “trust” list which
presents a network of trust relationships between users, and a

“block (distrust)” list which presents a network of distrust re-
lationships. This network is called the “Web of trust”, and is

used by Epinions to re-order the product reviews such that a
user first sees reviews by users that they trust. Epinions is thus
an ideal source for experiments on social recommendation.

The dataset used in our experiments consists of 131,580 users
who have rated at least one of a total of 755,137 different items.

The total number of ratings is 13,430,209. The density of the
user-item matrix is 0.014%. We can observe that the user-item

matrix of Epinions is very sparse, since the densities for the two
most famous collaborative filtering datasets Movielens (6,040

users, 3,900 movies and 1,000,209 ratings) and Eachmovie (74,424
users, 1,648 movies and 2,811,983 ratings) are 4.25% and 2.29%,
respectively. Moreover, an important reason that we choose the

Epinions dataset is that user trust and distrust information is
not included in the Movielens and Eachmovie datasets. The

statistics of the Epinions user-item rating matrix is summarized

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 124

Table 7.3: Statistics of Distrust Network of Epinions

Statistics Distrust per User Be Distrusted per User

Max. Num. 1562 540

Avg. Num. 0.94 0.94

in Table 7.1.
As to the user trust network, the total number of issued trust

statements is 717,129. The statistics of the this data source
is summarized in Table 7.2. In the user distrust network, the

total number of issued distrust statements is 123,670, and the
statistics of the distrust data is summarized in Table 7.3.

We also observe a number of power-law distributions in these
data sources, including items per user, trust relations per user

(outdegree in the trust graph) and distrust relations per user
(outdegree in the distrust graph). The distributions are shown
in Fig. 7.2.

7.2.2 Metrics

We employ the Root Mean Square Error (RMSE) to measure
the prediction quality of our proposed approaches in comparison

with other collaborative filtering and trust-aware recommenda-
tion methods.

The metrics RMSE is defined as:

RMSE =

√∑
i,j(ri,j − r̂i,j)2

N
. (7.11)

where ri,j denotes the rating user i gave to item j, r̂i,j denotes

the rating user i gave to item j as predicted by a method, and
N denotes the number of tested ratings.

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 125

10
0

10
2

10
4

10
6

10
0

10
1

10
2

10
3

10
4

10
5

of Items Rated by Users

of

 U
se

rs

(a)

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

of Trusted Users

of

 U
se

rs

(b)

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

of Distrusted Users

of

 U
se

rs

(c)

Figure 7.2: Power-Law Distributions of the Epinions Dataset. (a) Items per
User Distribution. (b) Trust Graph Outdegree Distribution. (c) Distrust
Graph Outdegree Distribution.

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 126

7.2.3 Comparison

In this section, in order to show the effectiveness of our proposed

recommendation approaches, we compare the recommendation
results of the following methods:

1. PMF (Probabilistic Matrix Factorization): this method is
proposed by Salakhutdinov and Minh in [99]. It only uses

user-item matrix for the recommendations.

2. SoRec (Social Recommendation): this is the method pro-
posed in [74]. It is a trust-aware recommendation method

that factorizes the user-item rating matrix and users’ trust
network by sharing the same user latent space.

3. RWD (Recommendation With Distrust): this is a matrix
factorization-based recommendation method with distrust

constraints. It is proposed in Section 7.1.3 in this chapter.

4. RWT (Recommendation With Trust): this is a matrix factorization-

based recommendation method with trust constraints. It
is proposed in Section 7.1.4 in this chapter.

As to the training data, we employ three settings: 5%, 10%

and 20% for training, where 20% means we randomly select 20%
ratings as training data to predict the remaining 80% ratings.

In our RWD and RWT methods, there are totally four pa-
rameters need to be set, including α, β, λU and λV . Without

loss of generality, in order to reduce the model complexity, we
set λU = λV = 0.001 in all the experiments we conduct in this
chapter. We will discuss the influence of the parameters α and

β in the experiments conducted in Section 7.2.4.
The prediction accuracies evaluated by RMSE are shown

in Table 7.4. In our proposed distrust-aware recommendation
method RWD, the parameter β is set to be 0.00001 while in our

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 127

Table 7.4: RMSE Comparison with other popular algorithms. The reported
values are the RMSE on the Epinions Dataset achieved from dividing the
data into 5%, 10%, and 20% for training data, respectively.

Dataset Traning Data Dimensionality PMF SoRec RWD RWT

Epinions

5%
5D 1.228 1.199 1.186 1.177

10D 1.214 1.198 1.185 1.176

10%
5D 0.990 0.944 0.932 0.924

10D 0.977 0.941 0.931 0.923

20%
5D 0.819 0.788 0.723 0.721

10D 0.818 0.787 0.723 0.720

Figure 7.3: RWT Performance Increase (5D)

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 128

Figure 7.4: RWT Performance Increase (10D)

trust-aware recommendation method RWT, the parameter α is

set to be 0.001.
From Table 7.4, we can observe that our RWD and RWT ap-

proaches constantly performs better than the other methods in

all the settings. When we use 20% as training data, we find that
our method generates much better performance than PMF and

SoRec. This demonstrates the advantages of trust and distrust-
aware recommendation algorithms.

In Fig. 7.3 and Fig. 7.4, we also plot the percentages of per-
formance increase of our RWT algorithm against PMF, SoRec

as well as our RWD algorithms in terms of RMSE. From these
figures, we observe an interesting phenomenon: as the sparsity
of the data decreases, the percentages of performance increase

against PMF and SoRec keep increasing. This observation is
reasonable since in the very spare training settings like 5% and

10%, the user features cannot be accurately learned since the
training sample is very sparse. Hence our optimization methods

cannot maximize the influences of the trust and distrust con-

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 129

0 100 200 300 400 500 600
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

Iterations

R
M

S
E

Dimensionality = 10

PMF
SoRec

(a)

0 500 1000 1500 2000 2500 3000 3500
0.92

0.96

1

1.04

1.08

1.12

1.16

1.2

Iterations

R
M

S
E

Dimensionality = 10

RWD
RWT

(b)

Figure 7.5: Efficiency Analysis (10% as Training Data). (a) RMSEs of PMF
and SoRec Change with Iterations. (b) RMSEs of RWD and RWT Change
with Iterations (α = 0.001, β = 0.00001).

straints. But as the increase of the training data, RWD and
RWT performs better and better.

We also observe another phenomenon worthy of studying.
We find that the distrust-based method RWD performs almost

as good as the trust-based method RWT (Please notice that in
Table 7.2 and Table 7.3, in average, every user only has 0.94

distrusted users while has 5.45 trusted users). This observation
proves that the distrust information among users is as important
as the trust information in the recommender systems.

In Fig. 7.5, we plot the performance (RMSE) changes with
the iterations. We observe that in the PMF and SoRec methods,

at the end of the training, the models begin to overfit, as shown
in Fig. 7.5(a), while our RWD and RWT methods do not have

the overfitting problem, as illustrated in Fig. 7.5(b). These ex-
periments clearly demonstrate that in this dataset, the employ
of our trust and distrust regularization terms not only gener-

ates better performance than other methods, but also avoids
the overfitting problem.

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 130

10
−5

10
−4

10
−3

10
−2

10
−1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Values of α

R
M

S
E

5% as Training Data, Dimensionality = 10

(a) 5% as Training Data

10
−5

10
−4

10
−3

10
−2

10
−1

0.922

0.924

0.926

0.928

0.93

0.932

0.934

0.936

0.938

Values of α

R
M

S
E

10% as Training Data, Dimensionality = 10

(b) 10% as Training Data

10
−5

10
−4

10
−3

10
−2

10
−1

0.718

0.72

0.722

0.724

0.726

0.728

0.73

0.732

Values of α

R
M

S
E

20% as Training Data, Dimensionality = 10

(c) 20% as Training Data

Figure 7.6: Impact of Parameter α

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 131

7.2.4 Impact of Parameters α and β

In our method proposed in this chapter, the parameters α and β

play very important roles. They control how much our method
should use the information of trusted or distrusted users. In the

extreme case, if we use a very small value of α or β, we only mine
the user-item rating matrix for matrix factorization, and simply

employ users’ own tastes in making recommendations. On the
other side, if we employ a very large value of α or β, the trust

or distrust information will dominate the learning processes. In
normal cases, we integrate information from the user-item rat-
ing matrix and the users’ trust or distrust network for matrix

factorization and, furthermore, to predict ratings for the users.
Fig. 7.6 shows the impacts of α on RMSE. We observe that

the value of α impacts the recommendation results significantly,
which demonstrates that incorporating the trust information

greatly improves the recommendation accuracy. No matter us-
ing 5% training data, 10% training data or 20% training data, as
α increases, the RMSE decrease (prediction accuracy increases)

at first, but when α surpasses a certain threshold like 0.01, the
RMSE increase (prediction accuracy decreases) with further in-

crease of the value of α. The existence of the yielding point con-
firms with the intuition that purely using the user-item rating

matrix or purely using the users’ trust information for recom-
mendations cannot generate better performance than appropri-

ately integrating these two sources together.
The impact of β generally shares the same trend as the impact

of α. The difference is that we should choose a relatively small

value of β, since if we choose a large value, the optimization
problem in Eq. (7.3) will become unbounded, hence we cannot

find the solutions.

CHAPTER 7. RECOMMEND WITH SOCIAL DISTRUST 132

7.3 Summary

In this chapter, we systematically study how to effectively and
efficiently incorporate the trust and distrust information into

the recommender systems. Our proposed framework is based
on matrix factorization with regularization terms constraining
the trust and distrust relations between users. The complex-

ity of our proposed optimization framework is linear with the
observations of the ratings, and the experimental analysis on a

large Epinions dataset shows that our RWD and RWT meth-
ods outperforms other state-of-the-arts algorithms. Based on

the experimental analysis, we also draw the conclusion that the
distrust information is at least as important as the trust infor-
mation. This observation brings a major contribution to the

research of trust and distrust-aware applications since it proves
that the distrust information can also be utilized to influence

online applications in a positive fashion.
In this chapter, the trust and distrust constraints are regular-

ized separately. In order to generate better prediction quality,
a possible improvement is to fuse these two data sources into

the same objective function. The most direct method is simply
attaching the constraints in Eq. (7.2) and Eq. (7.6) to the objec-
tive function in Eq. (7.1). However, this will increase the model

complexity, hence a more flexible and efficient method needs to
be designed in the future.

2 End of chapter.

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this chapter, we provide a summary of the thesis. The thesis
consists of two parts: the first part deals with traditional rec-

ommender systems while the second part focuses on social-based
recommender systems. All of the approaches proposed in this
thesis are aiming at alleviating the data sparsity problems in

recommender systems.
In the first part, we first present an effective missing data pre-

diction method for collaborative filtering, which is a memory-
based method. In order to improve the recommendation per-

formance, we predict some of the missing data, and utilize the
enriched data for further prediction. The second method in this
part is a model-based method which utilizes matrix factoriza-

tion technique to constrain the mean of the testing data with
the mean of the training data. The experimental results show

that this method can generate better results.
In the second part of this thesis, thanks to the many Web

2.0 Web sites, we propose three methods to incorporate social
contextual information into traditional recommender systems.

For trust relations, the underlying assumption we make is that
online users can be very easily influenced by the friends they
trust, and prefer their friends’ recommendations. For distrust

133

CHAPTER 8. CONCLUSION AND FUTURE WORK 134

relations, we model them as “dissimilar” relations since user ui

distrusts user ud indicates that user ui disagrees with most of

the opinions issued by user ud.
In general, the goal of our work is to model the real world

recommendation as realistic as possible. Our proposed social
recommendation framework opens a new direction for other re-
searchers.

8.2 Future Work

There has several research directions we can follow in both tra-

ditional and social-based recommender systems in the future.
For traditional methods, we plan to conduct more research

on the relationship between user information and item informa-

tion since our simulations show the algorithm combining these
two kinds of information generates better performance. Another

direction worth of investigation is how design a method to take
advantages of both memory-based and model-based methods.

For the social based methods, currently, we only use social
trust and distrust information to improve recommendations.
However these two types of relations are still different with the

“Friend” relation, such as friend relations in Facebook 1. To
achieve the final goal of social recommendation, we need to uti-

lize social friend data instead of social trust data for recommen-
dation.

As the exponential growth of online social network sites con-
tinues, the research of social search is becoming more and more

important. We also plan to develop similar techniques to allow
users’ trusted friends to influence the users’ search results or
query suggestions. The intuition behind this is that if a large

number of our friends are searching for something, it’s likely

1http://www.facebook.com

CHAPTER 8. CONCLUSION AND FUTURE WORK 135

that we may be interested in that topic too. This would be an
interesting search phenomenon to explore in social networks.

The Web is now leaving the era of search and entering one
of discovery. Search is what you do when you are looking for

something. Discovery is when something wonderful that you do
not know existed, or do not know how to ask for, finds you.
Hence, in the future, another promising research topic would be

how to actually extend recommendations techniques to search
problems. If we can accurately model users’ search behaviors,

we believe we can also design accurate personalized results for
all the online users.

2 End of chapter.

Bibliography

[1] A. Abdul-Rahman and S. Hailes. A distributed trust
model. In NSPW ’97: Proceedings of the 1997 workshop
on New security paradigms, pages 48–60, New York, NY,

USA, 1997. ACM.

[2] G. Adomavicius and A. Tuzhilin. Toward the next gener-

ation of recommender systems: A survey of the state-of-
the-art and possible extensions. IEEE Trans. Knowl. Data

Eng., 17(6):734–749, 2005.

[3] R. Andersen, C. Borgs, J. Chayes, U. Feige, A. Flaxman,

A. Kalai, V. Mirrokni, and M. Tennenholtz. Trust-based
recommendation systems: an axiomatic approach. In Proc.
of WWW ’08, pages 199–208, New York, NY, USA, 2008.

ACM.

[4] J. S. Armstrong. Principles of Forecasting - A Hand-

book for Researchers and Practitioners. Kluwer Academic,
2001.

[5] R. A. Baeza-Yates, C. A. Hurtado, and M. Mendoza.
Query recommendation using query logs in search engines.

In EDBT Workshops, pages 588–596, 2004.

[6] A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R. J.
Mooney. Model-based overlapping clustering. In KDD ’05:

Proceedings of the eleventh ACM SIGKDD international

136

BIBLIOGRAPHY 137

conference on Knowledge discovery in data mining, pages
532–537, New York, NY, USA, 2005. ACM.

[7] S. Banerjee and K. Ramanathan. Collaborative filtering
on skewed datasets. In WWW ’08: Proceeding of the 17th

international conference on World Wide Web, pages 1135–
1136, New York, NY, USA, 2008. ACM.

[8] P. Bedi, H. Kaur, and S. Marwaha. Trust based recom-

mender system for semantic web. In IJCAI’07: Proceed-
ings of International Joint Conferences on Artificial Intel-

ligence, pages 2677–2682, 2007.

[9] R. Bell, Y. Koren, and C. Volinsky. Modeling relation-

ships at multiple scales to improve accuracy of large rec-
ommender systems. In Proc. of KDD ’07, pages 95–104,

New York, NY, USA, 2007. ACM.

[10] R. Bell, Y. Koren, and C. Volinsky. Modeling relation-
ships at multiple scales to improve accuracy of large rec-

ommender systems. In KDD ’07: Proceedings of the
13th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pages 95–104, New York,
NY, USA, 2007. ACM.

[11] R. M. Bell and Y. Koren. Lessons from the netflix prize
challenge. SIGKDD Explor. Newsl., 9(2):75–79, 2007.

[12] R. M. Bell and Y. Koren. Scalable collaborative filtering
with jointly derived neighborhood interpolation weights.
In ICDM ’07: Proceedings of the 2007 Seventh IEEE Inter-

national Conference on Data Mining, pages 43–52, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[13] D. Billsus and M. J. Pazzani. Learning collaborative in-
formation filters. In ICML, pages 46–54, 1998.

BIBLIOGRAPHY 138

[14] D. Billsus and M. J. Pazzani. Learning collaborative infor-
mation filters. In ICML ’98: Proceedings of the Fifteenth

International Conference on Machine Learning, pages 46–
54, San Francisco, CA, USA, 1998. Morgan Kaufmann

Publishers Inc.

[15] P. Bonhard, M. A. Sasse, and C. Harries. ”the devil you
know knows best”: how online recommendations can ben-

efit from social networking. In BCS-HCI ’07: Proceedings
of the 21st British CHI Group Annual Conference on HCI

2007, pages 77–86, Swinton, UK, UK, 2007. British Com-
puter Society.

[16] J. S. Breese, D. Heckerman, and C. Kadie. Empirical anal-
ysis of predictive algorithms for collaborative filtering. In

Proceedings of the Fourteenth Conference on Uncertainty
in Artificial Intelligence (UAI-98), pages 43–52, San Fran-
cisco, 1998. Morgan Kaufmann.

[17] J. S. Breese, D. Heckerman, and C. Kadie. Empirical anal-
ysis of predictive algorithms for collaborative filtering. In

UAI’98: Proceedings of Uncertainty in Artificial Intelli-
gence, 1998.

[18] C. Burges, R. Ragno, and Q. V. Le. Learning to rank with
nonsmooth cost functions. In NIPS, pages 193–200, 2006.

[19] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In ICML ’05: Proceedings of the 22nd

international conference on Machine learning, pages 89–
96, New York, NY, USA, 2005. ACM.

[20] J. Canny. Collaborative filtering with privacy via factor
analysis. In SIGIR ’02: Proceedings of the 25th annual in-

ternational ACM SIGIR conference on Research and de-

BIBLIOGRAPHY 139

velopment in information retrieval, pages 238–245, New
York, NY, USA, 2002. ACM.

[21] B. Cao, J.-T. Sun, J. Wu, Q. Yang, and Z. Chen. Learn-
ing bidirectional similarity for collaborative filtering. In

ECML PKDD ’08: Proceedings of the 2008 European Con-
ference on Machine Learning and Knowledge Discovery
in Databases - Part I, pages 178–194, Berlin, Heidelberg,

2008. Springer-Verlag.

[22] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning

to rank: from pairwise approach to listwise approach. In
ICML ’07: Proceedings of the 24th international confer-

ence on Machine learning, pages 129–136, New York, NY,
USA, 2007. ACM.

[23] M. Carbone, M. Nielsen, and V. Sassone. A formal model
for trust in dynamic networks. In IN PROC. OF INTER-
NATIONAL CONFERENCE ON SOFTWARE ENGI-

NEERING AND FORMAL METHODS (SEFM03, pages
54–63. Society Press, 2003.

[24] Y. H. Chien and E. I. George. A bayesian model for
collaborative filtering. In Proceedings of the Seventh In-

ternational Workshop Artificial Intelligence and Statistics,
1999.

[25] P. A. Chirita, C. S. Firan, and W. Nejdl. Personalized
query expansion for the web. In SIGIR ’07: Proceedings of
the 30th annual international ACM SIGIR conference on

Research and development in information retrieval, pages
7–14, New York, NY, USA, 2007. ACM.

[26] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google
news personalization: scalable online collaborative filter-

ing. In WWW ’07: Proceedings of the 16th international

BIBLIOGRAPHY 140

conference on World Wide Web, pages 271–280, New York,
NY, USA, 2007. ACM.

[27] J. Delgado and N. Ishii. Memory-based weighted-majority
prediction for recommender systems. In SIGIR ’99: Pro-

ceedings of the SIGIR Workshop Recommender Systems:
Algorithms and Evaluations, 1999.

[28] M. Deshpande and G. Karypis. Item-based top-n recom-

mendation. ACM Transactions on Information Systems,
22(1):143–177, 2004.

[29] P. Domingos. Mining social networks for viral marketing.
IEEE Intelligent Systems, 20(1):80–82, 2005.

[30] P. Domingos and M. Richardson. Mining the network value
of customers. In Proc. of the ACM SIGKDD Conf., pages

57–66, 2001.

[31] D. Dueck and B. Frey. Probabilistic sparse matrix factor-

ization. In Technical Report PSI TR 2004-023, Dept. of
Computer Science, University of Toronto, 2004.

[32] G. Dupret and M. Mendoza. Automatic query recommen-

dation using click-through data. In IFIP PPAI, pages 303–
312, 2006.

[33] D. Gambetta. Can we trust trust? In Trust: Making
and Breaking Cooperative Relations, pages 213–237. Basil

Blackwell, 1988.

[34] W. Gao, C. Niu, J.-Y. Nie, M. Zhou, J. Hu, K.-F. Wong,

and H.-W. Hon. Cross-lingual query suggestion using
query logs of different languages. In SIGIR ’07: Proceed-
ings of the 30th annual international ACM SIGIR con-

ference on Research and development in information re-
trieval, pages 463–470, New York, NY, USA, 2007. ACM.

BIBLIOGRAPHY 141

[35] T. George and S. Merugu. A scalable collaborative fil-
tering framework based on co-clustering. In ICDM ’05:

Proceedings of the Fifth IEEE International Conference
on Data Mining, pages 625–628, Washington, DC, USA,

2005. IEEE Computer Society.

[36] L. Getoor and M. Sahami. Using probabilistic relational

models for collaborative filtering. In In Workshop on Web
Usage Analysis and User Profiling (WEBKDD’99, 1999.

[37] D. Gleich and L. Zhukov. Svd subspace projections for
term suggestion ranking and clustering. In Technical Re-

port of Yahoo! Research Labs, 2004.

[38] J. Golbeck. Generating predictive movie recommendations
from trust in social networks. In iTrust, pages 93–104,
2006.

[39] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using

collaborative filtering to weave an information tapestry.
Commun. ACM, 35(12):61–70, 1992.

[40] K. Y. Goldberg, T. Roeder, D. Gupta, and C. Perkins.
Eigentaste: A constant time collaborative filtering algo-

rithm. Inf. Retr., 4(2):133–151, 2001.

[41] Z. Guan, J. Bu, Q. Mei, C. Chen, and C. Wang. Person-
alized tag recommendation using graph-based ranking on
multi-type interrelated objects. In SIGIR ’09: Proceed-

ings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval, pages

540–547, New York, NY, USA, 2009. ACM.

[42] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Prop-

agation of trust and distrust. In WWW ’04: Proceedings
of the 13th international conference on World Wide Web,

pages 403–412, New York, NY, USA, 2004. ACM.

BIBLIOGRAPHY 142

[43] J. Herlocker, J. A. Konstan, and J. Riedl. An empirical
analysis of design choices in neighborhood-based collabo-

rative filtering algorithms. Information Retrieval, 5:287–
310, 2002.

[44] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl.
An algorithmic framework for performing collaborative fil-
tering. In SIGIR ’99: Proceedings of the 22nd annual in-

ternational ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 230–237, New

York, NY, USA, 1999. ACM.

[45] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T.

Riedl. Evaluating collaborative filtering recommender sys-
tems. ACM Trans. Inf. Syst., 22(1):5–53, 2004.

[46] W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Recom-
mending and evaluating choices in a virtual community of
use. In CHI ’95: Proceedings of the SIGCHI conference

on Human factors in computing systems, pages 194–201,
New York, NY, USA, 1995. ACM Press/Addison-Wesley

Publishing Co.

[47] T. Hofmann. Collaborative filtering via gaussian proba-

bilistic latent semantic analysis. In SIGIR ’03: Proceed-
ings of the 26th annual international ACM SIGIR confer-

ence on Research and development in informaion retrieval,
pages 259–266, New York, NY, USA, 2003. ACM.

[48] T. Hofmann. Latent semantic models for collaborative

filtering. ACM Transactions on Information Systems,
22(1):89–115, 2004.

[49] T. Hofmann and J. Puzicha. Latent class models for col-
laborative filtering. In IJCAI ’99: Proceedings of the Six-

teenth International Joint Conference on Artificial Intel-

BIBLIOGRAPHY 143

ligence, pages 688–693, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc.

[50] Z. Huang, H. Chen, and D. Zeng. Applying associative
retrieval techniques to alleviate the sparsity problem in

collaborative filtering. ACM Trans. Inf. Syst., 22(1):116–
142, 2004.

[51] S.-Y. Hwang and L.-S. Chen. Using trust for collaborative

filtering in ecommerce. In ICEC ’09: Proceedings of the
11th International Conference on Electronic Commerce,

pages 240–248, New York, NY, USA, 2009. ACM.

[52] J. Jeon, W. B. Croft, and J. H. Lee. Finding similar ques-

tions in large question and answer archives. In CIKM
’05: Proceedings of the 14th ACM international confer-

ence on Information and knowledge management, pages
84–90, New York, NY, USA, 2005. ACM.

[53] R. Jin, J. Y. Chai, and L. Si. An automatic weighting

scheme for collaborative filtering. In SIGIR ’04: Proceed-
ings of the 27th annual international ACM SIGIR con-

ference on Research and development in information re-
trieval, pages 337–344, New York, NY, USA, 2004. ACM.

[54] R. Jin, L. Si, and C. Zhai. A study of mixture models for
collaborative filtering. Inf. Retr., 9(3):357–382, 2006.

[55] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust
and reputation systems for online service provision. Decis.
Support Syst., 43(2):618–644, 2007.

[56] A. Kohrs and B. Merialdo. Clustering for collaborative
filtering applications. In Proceedings of CIMCA, 1999.

[57] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker,
L. R. Gordon, and J. Riedl. Grouplens: applying collabo-

BIBLIOGRAPHY 144

rative filtering to usenet news. Commun. ACM, 40(3):77–
87, 1997.

[58] J. Koren, Y. Zhang, and X. Liu. Personalized interactive
faceted search. In WWW ’08: Proceeding of the 17th inter-

national conference on World Wide Web, pages 477–486,
New York, NY, USA, 2008. ACM.

[59] Y. Koren. Factorization meets the neighborhood: a mul-

tifaceted collaborative filtering model. In Proc. of KDD
’08, pages 426–434, New York, NY, USA, 2008. ACM.

[60] Y. Koren. Factorization meets the neighborhood: a mul-
tifaceted collaborative filtering model. In KDD ’08: Pro-

ceeding of the 14th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 426–

434, New York, NY, USA, 2008. ACM.

[61] Y. Koren. Collaborative filtering with temporal dynam-
ics. In KDD ’09: Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data
mining, pages 447–456, New York, NY, USA, 2009. ACM.

[62] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins.
Recommendation systems: A probabilistic analysis. J.

Comput. Syst. Sci., 63(1):42–61, 2001.

[63] M. Kurucz, A. A. Benczur, and K. Csalogany. Methods

for large scale svd with missing values. In Proceedings of
KDD Cup and Workshop, 2007.

[64] G. L. Lilien, P. Kotler, and K. S. Moorthy. Marketing
Models. Prentice Hall, 1992.

[65] G. Linden, B. Smith, and J. York. Amazon.com recom-

mendations: Item-to-item collaborative filtering. IEEE
Internet Computing, pages 76–80, Jan/Feb 2003.

BIBLIOGRAPHY 145

[66] N. N. Liu and Q. Yang. Eigenrank: a ranking-oriented ap-
proach to collaborative filtering. In SIGIR ’08: Proceed-

ings of the 31st annual international ACM SIGIR con-
ference on Research and development in information re-

trieval, pages 83–90, 2008.

[67] Y. Liu, B. Gao, T.-Y. Liu, Y. Zhang, Z. Ma, S. He, and
H. Li. Browserank: letting web users vote for page im-

portance. In SIGIR ’08: Proceedings of the 31st annual
international ACM SIGIR conference on Research and de-

velopment in information retrieval, pages 451–458, New
York, NY, USA, 2008. ACM.

[68] H. Ma, I. King, and M. R. Lyu. Effective missing data
prediction for collaborative filtering. In SIGIR ’07: Pro-

ceedings of the 30th annual international ACM SIGIR con-
ference on Research and development in information re-
trieval, pages 39–46, New York, NY, USA, 2007. ACM.

[69] H. Ma, I. King, and M. R. Lyu. Learning to recom-
mend with social trust ensemble. In SIGIR ’09: Proceed-

ings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval, pages

203–210, New York, NY, USA, 2009. ACM.

[70] H. Ma, M. R. Lyu, and I. King. Learning to recommend

with trust and distrust relationships. In RecSys ’09: Pro-
ceeding of the 3rd ACM conference on Recommender Sys-
tems, New York, NY, USA, 2009. ACM.

[71] H. Ma, H. Yang, I. King, and M. R. Lyu. Learning latent
semantic relations from clickthrough data for query sug-

gestion. In CIKM ’08: Proceeding of the 17th ACM con-
ference on Information and knowledge management, pages

709–718, New York, NY, USA, 2008. ACM.

BIBLIOGRAPHY 146

[72] H. Ma, H. Yang, I. King, and M. R. Lyu. Semi-nonnegative
matrix factorization with global statistical consistency in

collaborative filtering. In CIKM ’09: Proceeding of the
18th ACM conference on Information and knowledge man-

agement, New York, NY, USA, 2009. ACM.

[73] H. Ma, H. Yang, M. R. Lyu, and I. King. Mining social

networks using heat diffusion processes for marketing can-
didates selection. In CIKM ’08: Proceeding of the 17th

ACM conference on Information and knowledge manage-
ment, pages 233–242, New York, NY, USA, 2008. ACM.

[74] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social
recommendation using probabilistic matrix factorization.

In CIKM ’08: Proceeding of the 17th ACM conference on
Information and knowledge management, pages 931–940,

New York, NY, USA, 2008. ACM.

[75] B. Marlin. Modeling user rating profiles for collaborative

filtering. In S. Thrun, L. Saul, and B. Schölkopf, editors,
Advances in Neural Information Processing Systems 16.

MIT Press, Cambridge, MA, 2004.

[76] B. Marlin and R. S. Zemel. The multiple multiplicative

factor model for collaborative filtering. In Proc. of ICML
’04, page 73, Banff, Alberta, Canada, 2004.

[77] P. Massa and P. Avesani. Trust-aware collaborative

filtering for recommender systems. In Proceedings of
CoopIS/DOA/ODBASE, pages 492–508, 2004.

[78] P. Massa and B. Bhattacharjee. Using trust in recom-
mender systems: An experimental analysis. In iTrust,

pages 221–235, 2004.

[79] M. R. McLaughlin and J. L. Herlocker. A collaborative

filtering algorithm and evaluation metric that accurately

BIBLIOGRAPHY 147

model the user experience. In SIGIR ’04: Proceedings of
the 27th annual international ACM SIGIR conference on

Research and development in information retrieval, pages
329–336, New York, NY, USA, 2004. ACM.

[80] B. P. S. Murthi and S. Sarkar. The role of the manage-
ment sciences in research on personalization. Management
Science, 49(10):1344–1362, 2003.

[81] A. Nakamura and N. Abe. Collaborative filtering using
weighted majority prediction algorithms. In ICML ’98:

Proceedings of the Fifteenth International Conference on
Machine Learning, pages 395–403, San Francisco, CA,

USA, 1998. Morgan Kaufmann Publishers Inc.

[82] J. O’Donovan and B. Smyth. Eliciting trust values from

recommendation errors. In FLAIRS Conference, pages
289–294, 2005.

[83] J. O’Donovan and B. Smyth. Trust in recommender sys-

tems. In IUI ’05: Proceedings of the 10th international
conference on Intelligent user interfaces, pages 167–174,

New York, NY, USA, 2005. ACM.

[84] J. O’Donovan and B. Smyth. Is trust robust?: an analysis

of trust-based recommendation. In IUI, pages 101–108,
2006.

[85] M. Papagelis, D. Plexousakis, and T. Kutsuras. Allevi-
ating the sparsity problem of collaborative filtering using
trust inferences. In iTrust, pages 224–239, 2005.

[86] D. Pavlov, E. Manavoglu, D. M. Pennock, and C. L. Giles.
Collaborative filtering with maximum entropy. IEEE In-

telligent Systems, 19(6):40–48, 2004.

BIBLIOGRAPHY 148

[87] D. Pavlov and D. M. Pennock. A maximum entropy ap-
proach to collaborative filtering in dynamic, sparse, high-

dimensional domains. In NIPS, pages 1441–1448, 2002.

[88] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles.

Collaborative filtering by personality diagnosis: A hybrid
memory- and model-based approach. In Proceedings of of
UAI, 2000.

[89] G. Pitsilis and L. Marshall. A model of trust derivation
from evidence for use in recommendation systems. In Tech-

nical Report Series, CS-TR-874. University of Newcastle
Upon Tyne, 2004.

[90] G. Pitsilis and L. Marshall. Trust as a key to improving
recommendation systems. In iTrust, pages 210–223, 2005.

[91] M. J. D. Powell. Approximation Theory and Methods.
Cambridge Univ. Press, 1981.

[92] T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, W.-Y. Xiong,
and H. Li. Learning to rank relational objects and its
application to web search. In WWW ’08: Proceeding of the

17th international conference on World Wide Web, pages
407–416, New York, NY, USA, 2008. ACM.

[93] D. Quercia, S. Hailes, and L. Capra. B-trust: Bayesian
trust framework for pervasive computing. In iTrust, pages

298–312, 2006.

[94] J. D. M. Rennie and N. Srebro. Fast maximum margin

matrix factorization for collaborative prediction. In ICML
’05: Proceedings of the 22th International Conference on
Machine Learning, 2005.

[95] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: An open architecture for collabora-

BIBLIOGRAPHY 149

tive filtering of netnews. In Proceedings of ACM Confer-
ence on Computer Supported Cooperative Work, 1994.

[96] E. Rich. User modeling via stereotypes. pages 329–342,
1998.

[97] M. Richardson and P. Domingos. Mining knowledge-
sharing sites for viral marketing. In Proc. of the ACM
SIGKDD Conf., pages 61–70, 2002.

[98] R. Salakhutdinov and A. Mnih. Bayesian probabilistic
matrix factorization using markov chain monte carlo. In

ICML ’08: Proceedings of the 25th International Confer-
ence on Machine Learning, 2008.

[99] R. Salakhutdinov and A. Mnih. Probabilistic matrix fac-
torization. In Advances in Neural Information Processing

Systems, volume 20, 2008.

[100] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted

boltzmann machines for collaborative filtering. In ICML
’07: Proceedings of the 24th international conference on
Machine learning, pages 791–798, New York, NY, USA,

2007. ACM.

[101] G. Salton. Automatic Text Processing. Addison-Wesley,

1989.

[102] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-

based collaborative filtering recommendation algorithms.
In WWW ’01: Proceedings of the 10th international con-

ference on World Wide Web, pages 285–295, New York,
NY, USA, 2001. ACM.

[103] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl.

Application of dimensionality reduction in recommender

BIBLIOGRAPHY 150

system - a case study. In In ACM WebKDD Workshop,
2000.

[104] E. Savia, K. Puolam?ki, J. Sinkkonen, and S. Kaski. Two-
way latent grouping model for user preference prediction.

In In Proceedings of the UAI’05, pages 518–525. AUAI
Press, 2005.

[105] G. Shani, R. I. Brafman, and D. Heckerman. An mdp-

based recommender system. In UAI, pages 453–460, 2002.

[106] U. Shardanand and P. Maes. Social information filter-

ing: algorithms for automating “word of mouth”. In CHI
’95: Proceedings of the SIGCHI conference on Human fac-

tors in computing systems, pages 210–217, New York, NY,
USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[107] L. Si and R. Jin. Flexible mixture model for collaborative
filtering. In ICML ’03: Proceedings of the 20th Interna-

tional Conference on Machine Learning, 2003.

[108] B. Sigurbjörnsson and R. van Zwol. Flickr tag recom-

mendation based on collective knowledge. In WWW ’08:
Proceeding of the 17th international conference on World

Wide Web, pages 327–336, New York, NY, USA, 2008.
ACM.

[109] P. Singla and M. Richardson. Yes, there is a correlation -
from social networks to personal behavior on the web. In

WWW ’08: Proceedings of the 17th international confer-
ence on World Wide Web, pages 655–664, New York, NY,

USA, 2008. ACM.

[110] R. R. Sinha and K. Swearingen. Comparing recommen-

dations made by online systems and friends. In DELOS
Workshop: Personalisation and Recommender Systems in

Digital Libraries, 2001.

BIBLIOGRAPHY 151

[111] X. Song, B. L. Tseng, C.-Y. Lin, and M.-T. Sun. Personal-
ized recommendation driven by information flow. In Proc.

of the ACM SIGIR Conf., pages 509–516, 2006.

[112] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.-C. Lee,

and C. L. Giles. Real-time automatic tag recommenda-
tion. In SIGIR ’08: Proceedings of the 31st annual inter-
national ACM SIGIR conference on Research and develop-

ment in information retrieval, pages 515–522, New York,
NY, USA, 2008. ACM.

[113] N. Srebro and T. Jaakkola. Weighted low-rank approxima-
tions. In ICML ’03: Proceedings of the 20th International

Conference on Machine Learning, pages 720–727, 2003.

[114] N. Srebro, J. D. M. Rennie, and T. Jaakkola. Maximum-

margin matrix factorization. In NIPS, 2004.

[115] M. E. Tipping and C. M. Bishop. Probabilistic princi-
pal component analysis. Journal of the Royal Statistical

Society. Series B (Statistical Methodology), 61(3):611–622,
1999.

[116] L. Ungar, D. Foster, E. Andre, S. Wars, F. S. Wars, D. S.
Wars, and J. H. Whispers. Clustering methods for collab-

orative filtering. AAAI Press, 1998.

[117] L. Ungar and D. P. Foster. A formal statistical approach

to collaborative filtering. In In CONALD98, 1998.

[118] F. E. Walter, S. Battiston, and F. Schweitzer. A model of a

trust-based recommendation system on a social network.
Autonomous Agents and Multi-Agent Systems, 16(1):57–
74, 2008.

[119] J. Wang, A. P. de Vries, and M. J. T. Reinders. Uni-
fying user-based and item-based collaborative filtering ap-

BIBLIOGRAPHY 152

proaches by similarity fusion. In SIGIR ’06: Proceedings of
the 29th annual international ACM SIGIR conference on

Research and development in information retrieval, pages
501–508, New York, NY, USA, 2006. ACM.

[120] J. Wang, A. P. de Vries, and M. J. T. Reinders. A user-
item relevance model for log-based collaborative filtering.

In ECIR, pages 37–48, 2006.

[121] J. Wang, A. P. de Vries, and M. J. T. Reinders. Uni-
fied relevance models for rating prediction in collaborative
filtering. ACM Trans. Inf. Syst., 26(3):1–42, 2008.

[122] J. Weng, C. Miao, and A. Goh. Improving collaborative

filtering with trust-based metrics. In SAC ’06: Proceedings
of the 2006 ACM symposium on Applied computing, pages
1860–1864, New York, NY, USA, 2006. ACM.

[123] J. Xu and W. B. Croft. Query expansion using local and

global document analysis. In SIGIR ’96: Proceedings of
the 19th annual international ACM SIGIR conference on

Research and development in information retrieval, pages
4–11, New York, NY, USA, 1996. ACM.

[124] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu,
and Z. Chen. Scalable collaborative filtering using cluster-

based smoothing. In SIGIR ’05: Proceedings of the 28th
annual international ACM SIGIR conference on Research

and development in information retrieval, pages 114–121,
New York, NY, USA, 2005. ACM.

[125] K. Yu, J. D. Lafferty, S. Zhu, and Y. Gong. Large-scale
collaborative prediction using a nonparametric random ef-

fects model. In ICML, page 149, 2009.

[126] K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast nonpara-

metric matrix factorization for large-scale collaborative fil-

BIBLIOGRAPHY 153

tering. In SIGIR ’09: Proceedings of the 32nd interna-
tional ACM SIGIR conference on Research and develop-

ment in information retrieval, pages 211–218, New York,
NY, USA, 2009. ACM.

[127] S. Zhang, W. Wang, J. Ford, and F. Makedon. Learning
from incomplete ratings using non-negative matrix factor-
ization. In SDM, 2006.

[128] Y. Zhang and J. Koren. Efficient bayesian hierarchical user
modeling for recommendation system. In Proc. of SIGIR

’07, pages 47–54, New York, NY, USA, 2007. ACM.

[129] Z. Zheng, H. Ma, M. R. Lyu, and I. King. Wsrec: A collab-

orative filtering based web service recommender system.
In ICWS ’09: Proceedings of the 2009 IEEE International

Conference on Web Services, pages 437–444, Washington,
DC, USA, 2009. IEEE Computer Society.

[130] D. Zhou, B. Scholkopf, and T. Hofmann. Semi-supervised

learning on directed graphs. In Advances in Neural Infor-
mation Processing Systems, volume 17, 2005.

[131] D. Zhou, S. Zhu, K. Yu, X. Song, B. L. Tseng, H. Zha,
and C. L. Giles. Learning multiple graphs for document

recommendations. In WWW ’08: Proceedings of the 17th
international conference on World Wide Web, pages 141–

150, New York, NY, USA, 2008. ACM.

[132] T. C. Zhou, H. Ma, I. King, and M. R. Lyu. Tagrec: Lever-
aging tagging wisdom for recommendation. In Proceedings

of IEEE International Symposium on Social Intelligence
and Networking, 2009.

[133] S. Zhu, K. Yu, and Y. Gong. Predictive matrix-variate t
models. In J. Platt, D. Koller, Y. Singer, and S. Roweis,

BIBLIOGRAPHY 154

editors, Advances in Neural Information Processing Sys-
tems 20, pages 1721–1728. MIT Press, Cambridge, MA,

2008.

[134] S. Zhu, K. Yu, and Y. Gong. Stochastic relational models

for large-scale dyadic data using mcmc. In NIPS, pages
1993–2000, 2008.

[135] C.-N. Ziegler and G. Lausen. Propagation models for trust

and distrust in social networks. Information Systems Fron-
tiers, 7(4-5):337–358, 2005.

