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Abstract

Video is increasingly becoming the favorite medium for many communication

entities for its extraordinary expressive power. With the fast advancement

of network bandwidth and high-capacity storage devices, large scale digital

video library systems are growing rapidly. However, such an augmenting video

repository gives rise to new challenges to both the end users and the content

providers. Since it is time consuming to download and browse through the

whole contents of the video, browsing and managing the video database can

be quite tedious. To solve this problem, video summarization, which engages in

providing concise and informative video summaries to help people to browse

and manage video files efficiently, has received more and more attention in

these years.

Basically there are two kinds of video summaries: static video story board,

which is composed of a set of salient images extracted or synthesized from the

original video, and dynamic video skimming, which is a shorter version of the

original video made up of several short video clips.

This thesis presents our work on automatic video summarization. First,

we present our early work on greedy method based video skim generation

approach. Several important features are extracted from the video. Given
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the distribution of the important features, a greedy selection algorithm is used

to select video segments to form a video skimming. A refinement process is

employed to increase the coherence of the video skimming.

Then, we propose a graph optimization based video summarization frame-

work. The workflow in this framework consists four major steps: video struc-

ture analysis, video scene analysis, graph modeling and optimization. Both

a dynamic video skimming and a static video summary are generated as the

content preview for a video document.

In order to adapt the high level semantic information of the video, we have

designed a semi-automatic video annotation system to help the user to effi-

ciently create content descriptions for each detected video shot. Given the

semantic content descriptions of the video shots, we employ the mutual rein-

forcement principle to calculate an importance measure for each video shot,

then create video summaries based on the importance measure and shots ar-

rangement patterns.

We have implemented the three proposed video summarization frameworks,

provided the functionality to the users and conducted some experiments. The

user tests show that the video summaries generated by our framework are able

to guarantee both the balanced content coverage and the visual coherence.
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論文摘要 

 
隨著現今寬帶網路和大容量記憶體的快速發展，現今的互聯網視頻越見普及。它可

應用於教育、娛樂及資訊分享等方面。由於要瞭解視頻的內容，必需先把它下載，

然後瀏覽大部份片段，這確是一件相當費時的工作。 對於最終用戶而言，在互聯網

上的大量視頻來源中，很難逐一去根據內容來找到所想要的視頻。對於視頻資料庫

的管理者而言，管理海量的視頻資料也是一件不方便的工作。為了解決以上問題，

近年來出現了視頻摘要技術，其目的是從視頻中摘取片斷組成簡略摘要，供用戶快

速流覽以節省流覽時間。視頻摘要有靜態和動態兩種形式，靜態摘要由一系列靜止

圖像組成，而動態摘要則是由一系列動態視頻片斷組成。 

 

我們在本論文中描述我們在視頻摘要方面所做的工作。首先我們提出一種基於視頻

特徵的摘要演算法。若干種重要特徵被提取出來，並用貪心演算法根據其分佈選出

視頻摘要片斷。我們還使用了一個平滑過程來提高所得到的摘要的平滑度。 

 

我們還提出了一個基於視頻結構資訊和圖優化的視頻摘要方案。首先我們分析待摘

要視頻的結構資訊，基於此資訊，我們建立一個圖來描述每個段落中的鏡頭之間的

視覺相似度和時序關係。最終的摘要鏡頭由在此圖上搜索一條最長路徑而得到。動

態和靜態摘要均能由此方案生成。 

 

為了進一步提高摘要的質量，我們提出了一種基於語義的摘要方案。我們設計並實

現了一個半自動的視頻內容標注系統來幫助用戶有效地標注視頻。基於得到的語義

描述，我們使用互支援機制得到視頻鏡頭的重要性度量。基於此度量，我們可以得

到新的視頻摘要。 
 
我們實現了以上提出的幾種視頻摘要方案並且進行了一系列試驗以測試其效果。從



 v

最終用戶的反饋可以看出我們的摘要方法的確可以兼顧視頻內容和摘要的平滑度，

可以起到幫助用戶快速瞭解視頻內容的功用。 
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Chapter 1

Introduction

1.1 Motivation and objectives

Video enriches the content delivery by combining visual, audio, and textual in-

formation in multiple data streams. Thus it is always the favorite medium for

most people and communication entities for its extraordinary expressive power.

With the fast development of the network bandwidth and large-capacity stor-

age devices, video data has become pervasive on the Internet in these days. On

today’s network, many companies provide video sharing services, which further

speeds up the growth of the volume of Internet videos. People can retrieve and

enjoy multimedia information in the form of text, image and particularly video.

Moreover, individual people also begin to share their own edited videos. In

2000, a survey by PC Data showed that an estimated 57.2% of Internet users

watch online video clips, and 7.3% of them edited video clips on their personal

computers [11]. In 2003, another survey by Broadband4Britain.com [5] show

that 34% of British broadband user in often enjoy video-on-demand service.

The evident growing video database thus gives rise to new challenges to

both the content providers and the end-users: for users, browsing through the

large video repository for the interesting content in a tedious work; for content

providers, they are in urgent need of solutions to help them managing the large

video database efficiently.
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Chapter 1 Introduction 2

To solve this problem, video summarization, which engage in providing

concise and informative video summaries to help people to browse and manage

video files efficiently, have received more and more attention in these years.

Basically there are two kinds of video summaries: static video story board,

which is composed of a set of salient images extracted or synthesized from the

original video, and dynamic video skimming, which is a shorter version of the

original video made up of several short video clips.

1.2 Our contributions

In this thesis we present our research work done on generating video summaries.

Our work has the following contributions:

1. Specific target goals–We have proposed several targets that a video

summary with good quality should be able to achieve, and we have

achieve them in our framework.

2. Video structure utilization–We analyze the intrinsic shot-group-scene

structure of the video and employ the structure information to help us

in video skimming generation. By incorporating the video structural

information, the balanced content coverage is thus guaranteed.

3. Graph based skim generation–We model each of the video scenes

into a graph based on the video shots contained in it, and select video

shots to from video summaries by searching a constrained longest path

in that graph. Both the static storyboard and dynamic skimming are

generated from the framework. Our graph based method is able to cover

both the visual content coverage and the temporal content distribution

simultaneously.

4. Video content annotation and semantic video summarization–

We propose a semi-automatic semantic video description framework to
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help the user to annotate the video shots efficiently. Given the video se-

mantic content description, an importance measure is derived by mutual

reinforcement principle and video summaries are thus generated upon

this importance measure. The performance of our new work is compared

with our previous work.

1.3 Thesis outline

The thesis is organized as follows:

Chapter 2 reviews some technology related to our research work emerged

in recent years. First, we describe the development of today’s large scale

digital video libraries. Then both the static video summary generation and

the dynamic video skimming generation techniques will be reviewed. We also

review the work done on intrinsic video structure analysis, which provides

important information that help us to generate meaningful video summaries.

Chapter 3 describes our early video skimming generation method based on

video feature detection and greedy method;

Chapter 4 describes our video structure analysis procedure. We illustrate

how we process the raw video data and recover the shot-group-scene structure

information. After the video scene boundaries have been determined, video

shot arrangement pattern strings are analyzed and recorded as candidate ele-

ments for video skim. The structural information and the shot arrangement

pattern strings are stored for further video summary generation.

Chapter 5 describes our graph-optimization based video summary gener-

ation method. To generate a dynamic video skimming, first, we analyze the

content complexity and distribute the total skimming length to each of the

scenes; second, each detected video scene is modelled into a graph, then the

representative video shots are selected by solving a constrained-longest path

problem on that graph. Both the generation of moving image video skim and
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the static video storyboard will be discussed. Experiments show that our video

skimming selection scheme does generate meaningful video summaries to the

users.

Chapter 6 describes our effort engaged in video content annotation and

semantic video summarization. We have developed a semi-automatic system

to assist the user to make semantic annotation to video shots efficiently. Given

the semantic content description of the video content, we use mutual reinforce-

ment principle to derive an importance measure for each annotated video shot.

Similarly with previous chapter, we employ video arrangement pattern strings

as the video skim candidates. Finally, the most important video shot strings

are selected as the final video skimming. The performance of the new method

is compared with our previous work done upon low-level features.

Finally, Chapter 7 concludes the whole thesis and discusses our future work.



Chapter 2

Related work

Video summarization engages in providing concise and informative video sum-

maries in order to help people browsing and managing video files more effi-

ciently. As an valuable tool, video summarization has received more and more

attention in recent years. Basically here are two fundamentally different kinds

of video summaries: static-image summary and moving-image skimming. The

static-image summary, also known as a static storyboard, is a small collection

of salient images extracted or generated from the underlying video source. In

this report, we call this type of summary a video summary. The moving-image

abstract, also known as moving skim, or multimedia summary, consists of a

collection of video clips, as well as the corresponding audio segments extracted

from the original sequence and is thus itself a shorter version of the original

video. In this report, we call this type of abstract a video skimming.

In this chapter, we review some recent technologies related to static video

summary and dynamic video skimming generation.

2.1 Static video summary

A static video summary is a collection of images that can represent the under-

lying video content. In recent years, muck work has been done on static video

summary generation. According to the method used to extract representative

5



Chapter 2 Related work 6

images, we can classify static video summary methods into sampling-based

method, shot-based, motion based and mosaic based methods.

Early work selects video key frames by random or uniform sampling the

video image sequence, like the MiniVideo system [66] and Video Magnifier [41].

Their methods are simple, however, since they do not analyze the contents of

the video at all, it is unable to guarantee that the important contents can be

covered by the selected key frames.

Video shots are the building blocks of edited videos. Video shots transi-

tions include hard cut, wipe, and fade in/outs. Video shot transition detection

has been suggested in various work [16, 17, 83, 82, 48, 56, 13, 30, 6, 33, 4].

Since a shot is a image sequence captured continuously, its visual content can

be represented by its first frame. In order to cover the content of the dynamic

video shots, in the work reported in [83], the key frames are extracted in a

sequential fashion for each shot. Particularly, the first frame within the shot

is always chosen, then the color-histogram difference between the subsequent

frames and the latest key frame is computed. Once the difference exceeds a

certain threshold, a new key frame will be extracted. A similar work is also

reported in [78]. In [54], a design pattern based video analysis method is pro-

posed to discover high structure information. In [85], the authors propose to

extract the key frames using an unsupervised clustering scheme. Basically,

all video frames within a shot are first clustered into certain number of clus-

ters based on the color-histogram similarity comparison where a threshold is

predefined to control the density of each cluster. Next, all the clusters that

are big enough are considered as the key clusters, and a representative frame

closest to the cluster centroid is extracted from each of them. Color based al-

gorithms are robust to background noises and motion, but their performance

highly depends on particular threshold selection.

When the camera motion can be detected, a mosaic image can be con-

structed to represent the whole contents of a dynamic video shot with camera
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motion (pan, tilt, zoom, translate) [29, 75, 40, 2]. Although this approach is

quite informative to represent a dynamic shot, it still has several drawbacks.

First, it only provides an extended panoramic spatial view of the entire static

background scene, but contains no information about the moving object in

the foreground. Moreover, recent mosaic generation methods are not robust

enough. In the situation that the background-foreground of the scene is chang-

ing frequently and the camera operation is quite complex. current algorithm

tend to achieve poor performance.

Based on the temporal dynamics of the video by motion analysis, vari-

ous techniques to control the selected number of key frames have been ad-

dressed [70, 68, 69]. Most of them are based on image pixel difference [28] or

optical flow [74, 34]. In [27] motion and human gesture analysis are employed

to create summaries for video taped presentation files.

Normal edited videos comprise quite a lot video shots. Directly presenting

a large amount of video shot images to the user might not be a good idea,

and later work concentrate on organizing the shot images by analyzing the

intrinsic video structure. Since edited videos depicts a story just like am

article, they also have a similar structure just like articles do. In [53], the

content of a video is represented in a tree structured manner: from top to

down, a video consists several scenes, each of which is like a paragraph in

an article; each scene is composed by several semantically-related video shot

groups; each video shot group is composed by several visually similar and

temporally adjacent video shots. The tree structure is presented to the user

as an abstraction of the video content.High level scene structure based on shot

similarity has been also addressed in [22]. [77] construct a scene transition

graph (STG) for a video by time constrained clustering on the video shots.

In the scene transition graph, each video shot cluster is represented by one

node in the graph, and the transitions between nodes can reflect the structure

of the video. Spectral graph clustering has been proposed in [57] for image
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region detection, and in [49, 47], the method is used to cluster the video

shots detected from a video and higher structure recovery. In [72], a comic

book style video summary is generated such that the size of selected images

are adjusted according to their importance. The video structure reflects how

the editor choose and arrange video shots, they are very valuable information

for video summarization. Hierarchical representation of video contents has

been proposed in [58], in which a hierarchical video content representation are

built, and a tree style video summary is presented, with the level of detail

is adjustable. A fuzzy logic based video shot grouping algorithm is proposed

in [18]. In ShotWeave system [67], various cues between video shots have been

analyzed for better video structure analysis result. A computational scene

model combining audio and visual cues and film syntax is proposed in [62].

Some other work on static video summary generation integrates different

mathematical methodologies. A EM algorithm based approach is suggested

in [73]. In [12], the video are modelled into a curve in high-dimensional feature

space, and a set of representative images are extracted by curve simplification

and approximation. An approach based on singular value decomposition is

proposed in [20], and user log analysis are employed to refine the video skim-

ming [79]. A genetic algorithm based technique is proposed in [9]. A CPR

model is proposed in [15]. A variation of classic K-mean clustering algorithm

is applied to generate content plots for videos in [55].

2.2 Dynamic video skimming

Compared with static video summary, dynamic video skimming preserves the

dynamic properties of the original video, thus is more attractive and helpful

to the user. Moreover, the audio information is also preserved thus the video

skimming is able to make more senses.

The moving video skimming can be classified into two types: Overview and
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Highlight. Facing a new movie, mostly the user is totally unaware about the

content thus can only specify a target length thus hope to see enough detail

about the movie. The request may be like “Give me 3 minutes of preview

showing that this movie is about”, and we call this kind of video skimming

“overview”. But for specific domain like sports video and news, the user al-

ready knows some domain specific knowledge and he may just request those

video shots that he is interested in. In this situation, the request many be like

”give me 3 minutes of video about goals and corner kicks”. This kind of video

skimming is called “highlight”.

For overview generation, early attempts includes the VAbstract [50] and

MOCA project [50, 30]. In VAbstract system, the most characteristic video

segments are extracted to form a movie trailer. The frames with high-contrast

are detected as the parts containing important contents; the frames having

largest frame differences are extracted as the high-action parts; also, to preserve

the basic mood of the original movie, the scenes that have a color composition

similar to the average color composition of the entire movie, are included in the

skimming; moreover, the recognition of dialog scenes is performed by detecting

the spectrum of a spoken “a” since “a” occurs frequently in most languages.

Finally all selected scenes (except the last part of the movie), organized in their

original temporal order, forms the movie trailer. There are some interesting

ideas in this paper, but some parts of the algorithm are too simple to be

effective and will need lots of improvement. The researchers also lack thorough

user studies to support their conclusions. In the MoCA project, which is an

improved version of VAbstract, special events such as closed-up shots of leading

actors, explosions and gunfire, are detected to help determine the important

scenes.

Another straightforward approach to save the video viewing time is by

speeding up the playback speed of the original video. As studied by Omoigui,

et al. at Microsoft Research, the entire video could be watched in a shorter
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amount of time by fast playback with almost no pitch distortion using the

time compression technology. CueVideo system provides faster playback speed

when playing long, static video scenes and slower speed for short, dynamic

video scenes [51]. Although the playback time has been reduced but the tem-

poral property of the original video is distorted, which may mislead the users

about the nature of the original video. Similar work is also reported by Amir,

et al. by using audio time scale modification technology [51]. These techniques,

however, only allow a maximum time compression of 1.5-2.5 depending on the

speech speed [25], else the speech will become incomprehensible.

The Informedia project aims to create a very short synopsis of the original

video by extracting the significant audio and video information [59, 23, 60].

Particularly, text keywords are first extracted from manual transcript and

closed captioning by using the well-known tf -idf (Term-Frequency- Inverse

Document Frequency) technique, then the audio skimming is created by ex-

tracting the audio segments corresponding to the selected keywords as well

as including some of their neighboring segments for better comprehension.

Next, the image skimming is created by selecting the video frames which are:

(a) frames with faces or texts; (b) static frames following camera motion; (c)

frames with camera motion and human faces or text, and (d) frames at the

beginning of a video scene, with a descending priority. As a result, a set of

video frames, which may not align with the audio in time, but may be more ap-

propriate for image skimming in visual aspect are extracted. Finally the video

skimming is generated by analyzing the word relevance and the structure of

the prioritized audio and image skimming. Experiments of this skimming ap-

proach have shown impressive results on limited types of documentary video

that have very explicit speech or text contents. However, satisfying results

may not be achievable using such a text-driven approach on other videos with

a soundtrack containing more complex audio contents. Some improvements of

their algorithms have been made and a subjective evaluation of this project is
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reported in [60].

Later work on video overview generation explore and employ multiple fea-

tures. In [39], the authors tries to model and simulate the attention of the

video viewer. To simulate human reaction, first, multiple features like con-

trast, motion, audio volume, caption text are extracted respectively, then for

each feature, a user attention function is defined and calculated. Finally, the

net user attention function is obtained as the weighted summation of the user

attention functions. Given the length limit, a moving video skimming is ex-

tracted by maximizing the attention value summation on the skimming parts.

Simultaneously, a static image presentation is extracted according to the local

maximum points of the user attention curve. However, humans understand

the video not only by perceiving the low level features, but also by the high

level semantic features, and the paper does not address how to determine the

weights for each of the user attention values. The video structure information

is also neglected.

In [64, 63, 8, 61], the authors discussed the issue of determining movie scenes

based on audio and visual cues and film syntax. Later, a utility framework

for video skimming generation is proposed in [65]. In the framework, the

video is first segmented into continuous video shots, and a utility function is

calculated for each video shot based on the scene complexity of the shot and

other cues. Finally, the video skimming is selected by maximizing the utility

summation. In [19], a entropy based visual content redundancy function is

defined, and the video summary is extracted based on doing optimization on

that function. In [38, 37], video shot arrangement patterns are extracted and

utilized to increase the coherence of the video skimming.

For video highlight generation, most work tries to find solution for domain-

specific videos where some special features can be used, like sports videos,

news, and presentation videos. For sports video, most work are based on event

detection, like in soccer video [52, 31], baseball video [7, 26], and basketball
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video [45]. For news, a question answering system is proposed in [76]. Highlight

video skimming for presentation is proposed in [24].

Most of the traditional video skimming generation approaches are based

on low level video features, and they may not be able to guarantee that the

generated video skim contains the semantically important contents thus the

video skim may not make sense to the users. To attack this problem, semantic

information is needed to make a meaningful video skimming. Unfortunately,

although quite a lot attempts have been done to automatically annotate generic

video and image contents [44, 32] and event detection in specific video cate-

gories like sports video [3], recognition of high level semantic information like

key actors, action taken is still beyond the capacity of present techniques. To

collect reliable video semantic information we still need to manually annotate

the video contents. Video summarization based on semantic annotation can

be found in [84, 71, 38].

2.3 Summary

Video summarization is practically an inseparable research area for many video

applications including video indexing, browsing and retrieval. A concisely and

intelligently generated video summary will not only enable a more informa-

tive interaction between human and computer during the video browsing, but

also help to build more meaningful and quicker video indexing and retrieval

systems. Recently, video summarization has been attracting considerable re-

search interest, and it is gradually coming to play an important role in the

multimedia database area.

For most up-to-date video summarization techniques, most of them is based

on some specific features as heuristics for video skim shots selection, and the

video structure information is not fully exploited. Moreover, for dynamic video
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skim generation, most of the suggested solutions concentrate on only “infor-

mativeness”, while few work has considered the quality goals that a video

summary should achieve.



Chapter 3

Greedy method based skim

generation

In this chapter we describe our early work done for video skimming gener-

ation. To generate a perfect summarization of a given video requires good

understanding of the video semantic content. However, understanding the

semantic content of the video is still far beyond the capability of today’s in-

telligent systems, despite the significant advances in computer vision, image

understanding, and pattern recognition algorithms. So, we can only rely on

extracting and analyzing some low-level features to generate video summaries.

There are two major objectives for a video summary. First, we want to

browse only the major contents of the whole video from the summary. Second,

we want to shorten the duration of the summary in order to browse it effi-

ciently. According to these two objectives, our video summary is designed as

follows. A video summary is combined by a set of video segments, which con-

tain the important video features of the source video. These important features

are in fact the most valuable contents of the video. The summary with more

important features is better in quality, as it collects the major video contents.

However, our first problem is the different users’ preferences about the impor-

tance of video features. We find that each user may have different opinions

on whether a video feature is valuable in a video. As a result, the quality of a

14
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video summary really depends on each user’s preferences. Besides the quality

of a video summary, the duration depends also on the need of each user. Since

a longer video summary contains more video contents while a shorter one can

be browsed efficiently, then a user needs to make a decision on either getting

more information or spending less time on the summary. Therefore our sec-

ond problem is to customize the video summary according the time constraint

provided by the user. We propose a statistical approach to select the contents

for the video summary. In our system, we accept user’s input about their pref-

erences on the set of video features that we provided. We can then calculate

a score for each video segment based on the user’s preferences, such that if

the score is high, the video segment contains more preferred video features;

otherwise, it contains less preferred video features. Under a user defined time

constraint, we can only select those segments with higher scores into our video

summary, such that the summary contains more preferred video features. The

generated video summary is therefore able to fit into user’s appetite. Since

there may be too many discontinuous and short segments selected into the

video summary, it is difficult for a user to browse it comfortably. To resolve

this we propose an adaptive merging process to merge close segments so that

the coherency of the video skimming can be improved.

We first give some term definitions for this chapter:

1. A video is defined as a sequence of images. It is represented by V =

(I1, I2...In), where Ii is the i-th indexed frame image of the video and

n is the number of total frames in the video V . The video can also be

represented in the short form as V = [Ibegin, Iend] where 1 6 begin 6

end 6 n. Moreover, the length of a video, length(V ) is end− begin + 1.

2. The feature score function fi of a frame is a function over the whole

frame image set I. Without loss of generality, we assume these functions

to be non-negative. It can be discrete, which indicates the occurrence of a
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feature of interest like human face; or it can be continuous to describe the

magnitude of the feature like noise volume, percentage of the interesting

color, etc.

3. An extracted video is defined as a mapping of a video with a set of

feature functions to a set of video clips through a video feature extraction

algorithm. This can be written as h : V × F → {Vi}, where F is a

nonempty set of feature functions and V is a set of zero or more of valid

video clips. If some items in {Vi} are overlapping, i.e., Vi

⋂

Vj 6= ∅, i 6= j,

we call this the overlapping extracted video. Otherwise, we call it the

non-overlapping extracted video. One may assume that the items in the

set are sorted in a non-descending order by the Ibegin variable. We define

the length of an extracted video to be the summation of all the elements’

length in the extracted video.

The overview of our feature based video summarization generation frame-

work is shown in Figure. 3.1.

3.1 Selected video features for video summa-

rization

Before we start our video summarization algorithm, we need to extract a set of

features from the video in order to calculate the score for each video segment.

Different video features, which appear on the video sequence, can be used

in our video summarization algorithm. With more video features employed

in our algorithm, a user can have a more flexible selection of his interested

video segments. The resulting video summary can then be customized for the

user more accurately. In our system, we employ five video features. They are:

human face detection, male voice recognition, female voice recognition, volume

level, and caption text detection. These features bring us most important
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Figure 3.1: Flowchart of the framework

information about the video content and serve a good indication of important

video content that should be put into the video summary.

3.2 Video summarization problem

After we choose a set of feature score distribution functions on the frame

set of the original video, we aim to get the final video summary that mostly

represents the content of the original video. To achieve this, we can select

to maximize the feature score summation of the video summary. Then the

problem can be formalized as described in Problem 1:

Problem 1 Given a set of video features, a time threshold T , and {Vi} ob-

tained from a set of video feature extraction functions, find the final video
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summary, {Vfinal}, an non-overlapping extracted video, such that it maximizes

the total feature score summation and length({Vfinal}) = T .

From the users’ point of view, a smoother video summary may seem better

than a jumpy one. The more broken segments the video summary contains,

the more jumpy the video summary will be. The solution is to decrease the

number of video segments in the video summary so that the summary may look

more coherent and smoother. We thus define the transition of an extracted

video to describe the smoothness of the extracted video summary as follows:

Definition 2 A transition in the non-overlapping extracted video is defined

as the cardinality of the video as #({Vi}). It is the number of segments in

{Vi}.

With the above definition we can extend Problem 1 as follows.

Problem 3 Given a set of video features, {Vi} obtained from the a set of

video feature extraction functions, find the final video summary, {Vfinal}, an

non-overlapping extracted video such that length({Vfinal}) = T , moreover, it

maximizes the total feature score and minimizes the transition number.

To solve Problem 1 and Problem 3, we need to solve the constraints. We

may solve the constraints with various methods like greedy method, lagrange

multiplier, dynamic programming, etc. Here we use a straight-forward greedy

method to solve Problems 1. Since we use the summation of the feature score as

the importance measure of each frame, we first calculate the feature score sum-

mation value for each video frame, then sort them according to their feature

score values, and select the T frames with highest scores. The time complexity

for the greedy method is O(n log(n)), which is the complexity of the sorting

process. After the greedy method, we get an extracted video set {Vi} as the

video summary.
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We can solve Problem 3 by refining the video summary {Vi} that we get

by the greedy method. To minimize the transition number in video summary

{Vi}, we need to decrease the granularity of the selected segments to make it

look smoother while preserve most of the information contained in the previ-

ous video summary. We perform a segment merging process to minimize the

number of the transitions in the extracted video summary. Each time we find

the two nearest selected video segments and join them to form a longer and

more coherent segment until the extracted video is smooth enough. Let {Ei}

be the set of unselected segments, we introduce a penalty function to measure

the granularity of the {Vi} as,

p({Vi}, {Ei}) =
∑

j

∑

t length(Et)

length(Ej)
. (3.1)

Function g can be used to adjust to what extent we will reduce the transi-

tion number. Consequently, we can derive the new importance function as

N({Vi}, {Ei}) = f({vi}) − w · p({Vi}, {Ei}) (3.2)

where f() is the feature score summation function for the selected segments

{Vi}, p() is the penalty function, and w is the weight of the penalty function.

Our goal is to maximize the function N .

To find the maximum value of function N , we propose a search algorithm

based on the result segments generated by the greedy method as described

below:

Note that during the 4th step in the repeat loop, we merge the two adjacent

selected segments in the way that we move the segment with smaller feature

score values, so that the loss of feature score is minimized in this step.

When we continue merging the unselected segments, the penalty function

p, which is proportional to the summation of all unselected segments’ recip-

rocal, changes with the reciprocal of the unselected segment’s length. As the

merge process continues, the length of the shortest unselected segments be-

comes longer and its reciprocal becomes smaller. Thus function p decreases
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Algorithm 1 Video summary refinement algorithm

Find the result segments {Ei}, {Vi} with the greedy method;
repeat

1. TEMPTV ALUE = N({Ei}, {Vi});
2. Find the shortest unselected segment ei;
3. Find the adjacent selected segment s1, s2 of ei;
4. Merge s1 and s2, so the shortest unselected segment ei is eliminated.
Now we get updated {Ei},{Vi}.
5. Calculate N({Ei}, {Vi}) for updated {Ei},{Vi}.

until N({Ei}, {Vi}) < TEMPTV ALUE

Undo the last merge;
The final smoother video summary is found.

quickly with the merge process and the refinement process soon converges.

The complexity of the merge process would not be greater than O(n log(n)).

Including the refinement process, we can still regard the complexity of the

whole process as O(n log(n)).

3.3 Experiments

To test the performance of our video summarization and the refinement pro-

cess, we implemented the proposed algorithm and applied it on some video

clips and observe its performance. Our experiment consists of a subjective

test and a quantitative test. In the experiment, all tested video clips were

in Mpeg-2 coded AVI format. We employed a PC platform with 2.0G hz P4

CPU on the Win2000 OS. We developed a system to perform the summariza-

tion procedure and played the video summary for user assessment. We will

briefly describe the system in the next section.

We selected two types of video clips for our summarization experiment. The

first set was news video clips, and the other set was video clips grabbed from

movies. We select these two types of videos because they are quite pervasive

and representative. However, their structures are rather different. Our test

includes ten news video clips that were about 1 to 2 minutes long, and three
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movie clips that were about 7 to 10 minutes long. We show the experimental

results for one sample video from each type of the videos.

For the news video clips, we selected the following features for video summa-

rization: human face detection, male/female voices occurrence, camera zoom-

ing and caption text occurrence. Table 3.1 shows the selected features and

the corresponding parameters specified by when we engaged summarization

to one of the video clips. Note that the weights here are normalized so that
∑

i Weighti = 1.

Table 3.1: Parameters for news clips
Features Weight

f1:Face occurrence 0.30
f2:Text occurrence 0.20
f3:Voice 0.20
f4:Camera zooming 0.30

Parameters Value

Original length 95 sec
Summary length 22 sec

w 20.0

The feature distribution and the finally generated segments for a sample

news video are shown in Fig. 3.2. The horizontal axes denote the time.

From Fig. 3.2 we can see that the feature distribution and the selected

segments are all quite long and coherent, so that no refinement process is

needed. This is because the news video itself is well structured and composed

with longer video shots. We played the summary and observed that it did

contain the major content of the news story. Tests on most other news video

clips yielded similar results.

For the movie clips, we selected the following features for video summariza-

tion generation: human face occurrence, loud human voices/cries, loud noises

like gun shots and explosion, and the color of fire. Table 3.2 shows the selected

features and the corresponding parameters specified in the experiment.
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Figure 3.2: Result for news video

Table 3.2: Parameters for movie clip
Features Weight

f1:Gunshot/explode noise 0.45
f2:loud voice 0.25
f3:Face occurrence 0.10
f4:Fire Color 0.20

Parameters Value

Original length 477 sec
Summary length 50 sec

w 20.0

The feature distribution and the finally generated segments are shown in

Fig. 3.3.

From Figure. 3.3 we can see that in the movie, shot and feature changes

happen much more frequently than in the news video, especially for the ac-

tion movies. The result of the greedy method contains many broken short

segments, which causes jumpy scenes to the user. Consequently, in this case,

the refinement process is needed for more satisfying results. The refinement

process generated several longer and more coherent video segments from the
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Figure 3.3: Result for movie clip

short fragments yielded by the greedy method. From Figure. 3.3 we can see

that those refined longer segments still cover most of the parts that obtained

the highest feature score values in the feature summation distribution graph.

Moreover, they matched the segments clusters generated by the greedy method

quite well , and not much information in the original summary was lost while

the summary has become smoother. We played the summary and observed

that it still covered the major key events in the movie and preserved the genre

of the original movie.

To demonstrate the capability of our framework to generate multiple video

summaries, we change the weight for some specific features, for example, if

we prefer more on human faces and we increase the weight for human face

occurrence, then more contents with human face will be selected into the video

summary. Table 3.3 shows the effects resulted from changing the weight for

the ”face occurrence” feature in the video summarization procedure. We can

see that if we adjust the feature weight for the face occurrence to a higher

level, the result summary will select more content with face occurrence.
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Table 3.3: Effects by changing the weight for face occurrence
Weight 0.2 0.4 0.6 0.8
Rate 0.24 0.32 0.54 0.88

3.4 Summary

Video summarization is a powerful tool for video browsing and management.

In this chapter we have proposed a feature-based greedy method solution to

extract the perceptional important video segments to form moving video sum-

maries. A refinement process is proposed to make a smoother summary. We

also conducted some experiments to evaluate our proposed algorithms. The

initial experimental results were encouraging.

The work in this chapter can be further extended in the following aspects:

1. Video structure and style analysis– Video structure and style anal-

ysis may also provide us with some semantical information to refine our

summarization results. For different types of videos, we may build dif-

ferent summarization profiles for them according to their unique styles.

2. More features and more constraints– The suggested problem solu-

tion framework can be extended by adding informative features, espe-

cially some high-level semantic features and video structure and style, or

by extending the object function with some new importance measures

on the selected video segments. The refinement process can also be fur-

ther improved. Besides the greedy method, we will try other constraint-

solving methods to solve the constraints then get the final video sum-

mary.

3. Minimal summarization limit– As the video summarization length T

decreases, the quality of the video summary becomes worse. Therefore,

for a specified video file, there may exist a lower bound time limit for

a meaningful video summary, which is determined by the content and
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structure of the video. Finding the lower bound of the video summary

length Tmin within which we can still ensure the quality of the video

summary is another problem left for us for further study.

We will discuss the further work on video summarization in the following

chapters.



Chapter 4

Video structure analysis

A video narrates a story just like an article does, similarly, a video also have

intrinsic structure just like paragraph, sentence in articles. From top to down,

a video is composed by several video scenes, each of them depicts an event

just like a paragraph does in the article. A video scene is composed by a series

of semantically related video shots. A video shot’s role is like the sentence in

the articles. Between video scenes and video shots, temporally adjacent video

shots can be grouped into video shot groups.

Video structural information is very important to generating a video sum-

mary with satisfying content coverage.

In this chapter, we discuss how we analyze and explore the structural infor-

mation from the raw video data. We build up the video structure in a bottom-

up manner. First, we decompose the video into continuous video shots, then

we group visually similar and temporal adjacent video shots into video shot

groups. Based on the video shot groups we can construct video scenes, so that

a four-layered video structure is constructed.

Here we give definition for some terms we use in this section. In this thesis,

we followed the term definitions in [53]. The structure of a video is defined

as a 4-level hierarchical tree structure, from top to down, it consists of video

level, video scene level, video shot group level, and video shot level, as shown

in Figure 6.3.

26
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1. Video: A video is defined as a image sequence {f1......fn}. The video

contains all the elements listed below.

2. Video shot: A video shot shi is defined as a continuous image se-

quence uninterruptedly captured by a camera. The images frames are

{fibegin
...fiend

}, the length lshi
of video shot shi is the number of image

frames it contains. Video shots are the building blocks of edited videos.

We can employ the begin and end frames of a video shot as the key

frames to represent its visual content.

3. Key frame: The visual content of a video shot can be represented by

its key frames. We use the first frame fibegin
and last frame fiend

of the

video shot shi as its key frames.

4. Video shot group: A video shot group Sgi = {shi1 ...shik} is composed

by visually similar and temporally adjacent video shots. The length of

a video shot group lsgi
is the summation of all video shots contained

in the video shot group. The length lsgi
of video shot group sgi is the

summation of the video shot length that it contains. There are two

properties of the member shots:

(a) Visual similarity: The visual similarity between each video shot

pairs should be larger than the similarity threshold Tvsim, described

as follows:

vsim(shx, shy) > Tvsim (4.1)

where x, y ∈ {i1...ik}.

(b) Temporal adjacency: The temporal distance between consecutive

video shots in a video shot group should not be larger than the time

threshold Ttemporal, described as follows:
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dT (shx, shx+1) > Ttemporal, x ∈ {i1...ik − 1} (4.2)

where dT (shx, shy) is defined as the distance between middle frame

images of video shot shx and shy, in terms of frame number.

5. Video scene: A video scene is the intermediate entity between video

shot groups and the whole video. We classify the video scene into two

types, loop scene and progressive scene. Loop scenes are composed by

several intersecting video shot groups, while the progressive scenes are

composed by series of temporally successive but visually different video

shots. A video scene describe an event, or depict the transfer between

events. The length lsci
of video scene shi is the summation of the video

shot length that it contains.

4.1 Video shot detection

A video shot is an image sequence captured continuously by a single camera.

It is the basic building block of edited videos like movies, broadcast news, TV

shows, etc. Detecting video shot boundaries is the first step for video content

analysis.

Normally there are two kinds of video shot breaks. The first is called cut,

and the second is called fade. A video cut is an instantaneous change from one

video shot to another; a video fade transition effect is that when the content

change from one video shot to another, the new shots gradually comes out

and the old video shot gradually fades out. In this section we describe how we

detect cuts and fades from the raw video.
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4.1.1 Shot cut detection

Since the video shot is composed of relatively coherent images, we can use some

metrics to measure the similarity between consequent image pairs then by some

threshold method we can detect the interrupt changes, thus we can detect the

cut occurrences. Various video detection techniques have been proposed [17,

82, 1].

To measure the similarity of two images, traditional methods use the frame

difference, correlation/intersection of color histogram, etc. Frame difference is

easy to compute, however, it is very sensitive to camera motion. To overcome

this, a proper offset can be calculated to compensate the motion, but searching

for such an offset can be quite time consuming. Another metric is the color

histogram. Since the color histogram is derived from the statistics of the

original image, it can only describe the composition of the image but does

not contain any information about how the image looks, which may lead to

some mis-detections. Regional color histogram [46] is also sensitive to camera

motion. Moreover, histogram calculation requires that all the pixels in the

image frame should be processed, so that the histogram based approach may

not be very computationally efficient. Consequently, we use a simple, efficient

yet robust video shot detection method, described as follows.

To detect video shot boundaries, we first extract a video slice image [48]

from the original video, then we detect video transitions by analyzing the

patterns in the video slice image. A video slice image is a spacial sampling of

the video over the temporal axis, which can be generated by cutting through

the video from one position, e.g. the center horizontal line of a frame, the

diagonal line of a frame, etc. An example of the video slice image by cutting

through the center horizontal line (or put all the center pixel line of the video

frames together) is shown in Figure 4.1.

We can choose whatever fixed line on the video image to generate a video
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Figure 4.1: Video slice image extracted from a video, accompanied by the pixel
difference and the detected shot breaks

slice. Experiments show that simply choosing the center horizontal line of the

image to generate the video slice yields satisfying detection result, so in practice

we select only one middle slice image from the center horizontal pixel line of

the video. Two reasons contributes to the fact that the center horizontal pixel

line is good. First, when a video is recorded, the camera normally moves in

the horizontal plane, and the horizontal panning happens more frequently than

the vertical panning. The second reason is that the camera operator normally

places the interesting object in the center of the camera view. So a slice

generated by the center horizontal line is good enough for video segmentation

in most common conditions.

With the slice image generated, we can measure the similarity of the con-

sequent video image pairs by measuring the similarity of the pixel rows in the
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slice image. Since only one pixel column is need for processing, the computa-

tion cost is highly reduced, with comparison to the traditional histogram based

method. We use the pixel difference and column correlation as the measure

for image similarity, described as follows:

Suppose we have pixel columns cli and cli+1 which are two image pixel

columns in the middle slice image, each of them contains n pixels. The min-

imum difference between the ith row and the i + 1th column is computed as

follows:

Dmin(i) =
m

min
x=−m

(
n

∑

j=1

(|cli(j) − cli+1((j + x) mod n)|)) (4.3)

We move the consequent image columns while computing the difference of

the two columns, and get the least value of the difference. The reason we use

an offset x up to m is for horizontal motion compensation. The computed

least difference is shown in Figure 4.1.

If we view each column of pixels as a single vector, we can use the correlation

and the angle between them as a new similarity measure. Given pixel column

cli = {pi1 ...pin} and clj = {pj1 ...pjn
}, we can have the correlation between the

pixel columns as:

corr(cli, clj) =

∑

x pix × pjx
√

∑

y p2
iy
×

∑

z p2
jz

(4.4)

Since the correlation between vectors is just the cosine value of the angle

between them, we can also calculate the angle as:

θij = arccos(corr(cli, clj)) (4.5)

And now we have three functions describing the column pairwise dissimi-

larity in the middle slice image. Based on them, we can detect video shot cuts.

We have compared their performance in the experiment section, in which shows

that the best measure is the column pixel difference. Moreover, at the same
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time, it is also the measure which is the easiest to compute among the three

measures.

From all the three dissimilarity function we can see that when there is a

video shot break, the difference function will experience a sudden jump. Under

normal situation without intense motion, by applying a global threshold on the

pixel difference, we can find most of those cut points, and the pixel difference

seems to be good enough for shot cut detection. However, in case that the

motion of the scene is intense, simply applying a global threshold yields a

lot of false shot detections. Several optimal threshold selection methods are

proposed described in [80], but the performance of them is not quite satisfying.

We notice that there are two factors that jointly identify a video shot

break. First, at shot break position the difference function should be a local

maximum; Second, the width of the jump peak should be exactly equal to 1.

Note that this two criterion are all local features, so that we need to determine

the proper threshold locally instead of determining it globally. Based on these

two criterion, we apply the following non-linear filter to the pixel difference

function to find out such video shot changes:

D′
i =

Di

maxw
j=−w,j 6=0(Di+j)

(4.6)

where w is the half width of the window.

The original pixel difference function and the filtered difference function

are shown in Figure. 4.2.

After applying this filtering, the transformed value will be more than 1

only at those points that are local maxima in its neighborhood. Thus we can

successfully detect most of the local video shot breaks by directly applying a

threshold on the filtered difference function. Our method is quite robust with

camera and object motion, and the computation cost is quite low.

Another merit of our method is that it is very robust to sudden lightness

change, which is mostly caused by the camera flash. In some document videos
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After non-linear filtering


After thresholding (1.50)


Column pixel difference


Figure 4.2: Filtering of pixel difference function then detect video shot cuts
by thresholding

camera flashes often generate a lot of false positives, the dissimilarity function

on those points will have a sudden jump with width equal to 2. However,

our non-linear filtering method is very robust toward such sudden lighting

change, as the sudden jump which is greater than 1 are all filtered out, shown

in figure 4.3.

For video shot shi, we use its first frame kfibegin
and the last frame kfiend

as the key frames to represent the visual content of the video shot.

4.1.2 Fade detection

In document videos, it is common to use fade in/out(dissolve) as the transition

between different video shots, for it feels less abrupt than direct shot cut.
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Camera flash points


After non-linear window


filtering


After thresholding


Figure 4.3: Flash effect elimination

However, the cut detection fails to detect fade in/outs for the pixels changes

gradually and does not yield apparent jumps in the pixel difference function.

On the middle slice image, we can easily see the fade patterns Figure 4.4.

We may regard that the fade in/out area between video shot shi and shj as

the interpolation result of the two intensity function of two video shots. On

the middle slice image, suppose that the intensity function of shot shi and shj

are Ii(t, x) and Ij(t, x) respectively, and the fade area starts at t1 and end at
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t2, we can write the intensity function in the fade area as:

fade(t, x) =
t − t1

t2 − t1
× Ii(t1, x) +

t2 − t

t2 − t1
× Ij(t2, x) (4.7)

which is the linear interpolation of two intensity functions according to the

time. In most cases, the fade in/outs are indeed made in this way. In order to

detect such fade transitions, we employ three cues, described as follows:

First, we employ the n-step column difference function on the middle slice

image. A n-step column difference function is define as the pixel difference

function between two image columns in the middle slice image with column-

distance n, described as follows:

nd(i) =
∑

j

(|cli(j) − cli+n(j)|) (4.8)

we can expect that for video fades that the width is less or qual to n (in-

cluding the cuts), we can see an step function with width n for video shot cuts.

However, for video fades, the difference function shape will like an triangle. In

most cases, the duration of the fade is less than 1 second, which corresponds

to around 30 frames in normal digital videos. Given the cuts detected already,

if there is a triangle function but no cuts detected, then very likely there will

be a fade/in/out, as shown in figure 4.4.

Given the interpolation function, we can have the variance function that

varies from t1 to t2, given as follows:

var(t, x) = var(
t − t1

t2 − t1
× Ii(t1, x) +

t2 − t

t2 − t1
× Ij(t2, x)) (4.9)

var(t, x) = var(Ii(t1, x))+var(Ij(t2, x))+var(Ij(t2, x))×(
t − t1

t2 − t1

2

)−2
t − t1

t2 − t1
×var(Ii(t1, x))

(4.10)

So that the variance function on the fade area will become a parabola

shape, as shown in figure 4.4. In most cases, the lowest point of the parabola

will be at the center of the fade area.
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Column n-Step difference


function
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Parabola shape


Upper triangle shape


Video shot cuts


Figure 4.4: Cue features for video fade detection

We combine the two cues as the sign flag for fade occurrence. To detect

parabola shapes, we employ a parabola template, and we calculate the unified

auto-correlation between the variance function and the template. Peaks are

considered as parabolas. The experiments shows that combining the two cues

does yield an effective method for video fade detection.

4.2 Video shot group construction

A video shot’s role is just like a sentence in articles. The visual content of a

video shot can be represented by its key frames. A video shot group Sgi is the

intermediate entity between video scenes and video shots, which is composed

of several visually similar and temporally adjacent video shots. Thus from
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top to down, a video has a 4-level hierarchical structure: Video, Video scenes,

Video shot groups, and Video shots [53]. Figure 6.3 shows the hierarchical

structure of a video.

Figure 4.5: Hierarchical video structure

In the remaining part of this paper, we use lshi
, lSgj

and lSci
to represent the

length of video shot shi, video shot group Sgj, and video scene Sci, representing

the total number of images containing in them respectively.

The structure of a video is built in a bottom-up manner. After we have

determined the video shot boundaries, we can continue to build up the hier-

archical structure. Visually similar video shots are clustered into video shot

groups, and temporal intersected video shot groups form video scenes.

To automatically group the visually similar video shots into video shot

groups, many methods have been proposed in the literature, like the time-

adaptive shot grouping algorithm [53], hierarchical clustering [77], and spectral
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graph partitioning [57]. Spectral graph partitioning techniques are known

for effective perceptual grouping. It has been used for image segmentation

based on pixel proximity and color similarity with good performance. We

have implemented both the ToC and the spectral graph clustering algorithms

to group the similar video shots. Their performance are compared in the

experiment section.

4.2.1 Shot pairwise similarity measure

The similarity between video shot pairs is very crucial for video shot cluster-

ing. Normally, for a video shot group, there are two factors that should be

quite consistent: first, the video shots should be visually similar; second, the

camera motion of the video shots should also be similar. To measure the vi-

sual similarity between video shots, In this paper, we first transform the color

image into HSV color space, then we employ a H-S histogram in HSV color

space, with 8 bins for H channel and 4 bins for S channel. The maximal H-S

histogram correlation between shot key frames is used as the visual similarity

measure wij, shown as follows:

vsim(shi, shj) = max
x,y

HistCorr(kfix , kfjy
) (4.11)

where x, y ∈ {begin, end}.

To compare the motion intensity, we don’t consider the orientation of the

motion. Given the image frames {fi1 ...fin} contained in video shot shi, the

following average motion intensity is calculated for each video shot:

mishi
=

∑in−1
j=i1

|1 − HistCorr(fij , fij+1)|

n − 1
(4.12)

and the motion intensity similarity between video shots shi and shj is

defined as:
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misimi,j =
min(mishi

,mishj
)

max(mishi
,mishj

)
(4.13)

The middle slice image of a video shot can be analyzed to find some motion

cues. Panning camera brings about slope line patterns in the middle slice

image, while the static camera yields horizontal lines in the middle slice image.

In this paper, we only detect and process the camera panning situation. By first

doing a pass of edge detection and an edge orientation (gradient) histogram, we

can successfully detect camera panning. We then classify the camera panning

into three styles: panning left, panning right and no panning. If two video

shots have the similar panning style, the panning similarity between them will

be 1 and otherwise 0.

Finally we linearly combine the visual similarity and the motion similarity

into a similarity measure between video shots, given as follows:

simij = (1− t1− t2)vsim(shi, shj)+ t1×misim(shi, shj)+ t2×msim(shi, shj)

(4.14)

where t1 is the weight for the motion intensity similarity and t2 is the weight

for camera panning similarity.

4.2.2 Video shot grouping by ToC

In [53], the authors proposed the following window-sweeping algorithm to

group the visually similar video shots:

The ToC algorithm set up the video shot-group-scene structure with the

following time-constrained grouping method. First, two measures are calcu-

lated for each video shot:

1. Color histogram of the entire shot key frame image.
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2. Shot activity, as the average color difference of the frames contained in

the shot.

The similarity between video shot pairs is thus the weighted sum of the

similarity between histograms and the shot activity similarity. Their shot

similarity measure is quite similar to our similarity in equation 4.14, in the

experiments, we employ the similarity measure in equation 4.14 in both cases.

To determine if a video shot shi should be put in group gj = {shj1 ...shjm
},

a shot-to-group similarity should be calculated. The shot-to-group similarity

is calculated as:

simshi,gj
= max

t
simi,jt

(4.15)

which is the maximum similarity or

simshi,gj
=

∑

t simi,jt

m
(4.16)

which is the average similarity.

The temporal distance dT (shi, shj) between video shots shi and shj is de-

fined as the temporal distance between their center image frames.

And the temporal distance between video shot shi and video shots group

gk is defined as:

dT (shi, gj) = min
t

dT shi, shkt
(4.17)

where shkt
∈ gk

When the shot pairwise similarity is obtained, the ToC algorithm make the

video shot groups in the following way, as shown in algorithm:

The performance of ToC algorithm is very significantly determined by the

similarity threshold sth. However, since different video shot groups may have

different proper similarity thresholds, so that the time-constrained grouping

with a hard threshold may not be able to correctly detect all video shot groups

and is likely to generate a lot of over-groupings and miss-groups.
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Algorithm 2 ToC video shot grouping algorithm

Input: The set of video shots SH = {sh1....shn}, the shot pair similarity
{simij} for all i,j ∈ {1...n};
Output: The set of video shot groups G = {g1....gm}
1. Add the first group g1 to G, assign sh1 to g1;
for shi ∈ SH do

for gj ∈ G do

calculate the shot-to-group similarity simshi,gj
;

if simshi,gj
≥ sth and dT (shi, gj) ≤ Tth then

assign shi to gj

else

add new shot group gk to G, assign shi to gk

end if

end for

end for

4.2.3 Spectral graph partitioning

Spectral graph clustering was introduced in [57], it is a recursive clustering

method proposed to segment images into regions based on the color similar-

ity and spacial distance between image pixels. In [57], a completed graph is

constructed with the pixels in the image as vertexes and on each edge there

is a weight describing the color similarity and spacial distance between im-

age pixels. The graph is then recursively partitioned into smaller clusters, on

each partitioning, a global optimal normalized cut is calculated to ensure the

performance. Finally the original image is segmented into coherent regions.

The graph partitioning can be migrated from image segmentation to other

clustering scenarios, in which if the graph can be built. Our shot clustering

problem is one of such cases that can utilize the spectral graph clustering.

Given a series of video shots, we can also construct a graph G(V,E), where V

is the vertex set, in which each element corresponds to a video shot. E is the

edge set, in which the edges connects each shot pair in V . On each edge eij

there is a edge weight wij, which is a measure of the visual similarity between

the two video shots.
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Given the graph G(V,E), we may cut the vertex set V into disjointed sets

A and B, and compute the Normalized Cut Value to evaluate a cut:

NCut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(4.18)

where

cut(A,B) =
∑

i∈A,j∈B

wij (4.19)

is the cut value and

assoc(A, V ) =
∑

i∈A,j∈V

wij (4.20)

is the association of A with the vertex set V , an example figure is shown in

Figure 4.6. In the figure, the vertex set V is divided into vertex set A and B.

The edges contribute to cut(A,B) is red, the edges contribute to assoc(A, V )

is green, while the edges contribute to assoc(B, V ) is blue.

The meaning of the cut value is the total similarity summation between

partition A and B. And the meaning of the association is in fact the total sim-

ilarity summation within the vertexes in partition A and B. A good partition

would create two self-similar and mutual-dissimilar partitions.

We hope that by cutting the graph into A and B, we can separate the dis-

similar node into different parts as many as possible, which means Cut(A,B)

should be small; also, we hope that the assoc(A, V ) and assoc(B, V ) be large

for they should contain similar video shots. Thus the optimal goal for the

graph cut is like follows:

Given G, the optimal partition for G is the partition that minimize the

Normalized Cut Value NCut(A,B).

According to [57], the NCut minimization problem can be transformed

into solving a standard eigen system:

D− 1

2 (D − W )D− 1

2 x = Λx (4.21)
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Figure 4.6: Spectral graph cut sample

Here D is a diagonal matrix, dii =
∑

j wij. W is the shot similarity matrix.

The eigenvector corresponding to the second smallest eigenvalue can be used

to partition V into A and B.

We can recursively construct sub-graphs A and B and solve the eigen sys-

tem to get finer clusters until some ending condition is met. In this way we

can partition the vertex set into smaller sets. When the elements in a vertex

set is “similar” enough we cease partitioning. Then we get several video shot

groups and a series of “single” video shot groups, in which only one video shot

is in the group. We put all the single un-grouped shot together to form a

background video shot group. With this grouping information we can easily

build up the video scene structure. The merit of this recursive algorithm is

that every time it split the vertex set, a global optimal cut is found thus the

clusters can better adjusted to the nature of the original data. The recursive

algorithm is described in algorithm:

The graph partitioning algorithm outperform the highly threshold-dependent
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Algorithm 3 Recursive clustering algorithm based on spectral graph parti-
tioning

Input: The set of video shots SH = {sh1....shn}, the shot pair similarity
{simij} for all i,j ∈ {1...n};
Output: The set of video shot groups SG = {sg1....sgm}
1. Add the first group sg1 to SG, assign sh1 to sg1;
for shi ∈ SH do

for sgj ∈ SG do

calculate the shot-to-group similarity simshi,sgj
;

if simshi,sgj
≥ sth and dT (shi, sgj) ≤ Tth then

assign shi to sgj

else

add new shot group sgk to SG, assign shi to sgk

end if

end for

end for

window sweeping algorithm for every time the algorithm generates a new clus-

ter, it considers the global similarity information and the splitted clusters are

global optimal. It is also easy to create self-adaptive thresholds for clusters

with different sizes, while the hard threshold grouping algorithm tend to over-

divide groups or fail to classify different groups, according to the fixed thresh-

old. Some shot groups generated by each method are shown in Figure ??.

According to the definition of the video shot groups, we can pose a time

threshold Tth to the intervals between consecutive video shots in the detected

video shot clusters, then we split the cluster into video shot groups if the

interval is greater than Tth.

4.3 Video scene detection

After we have detected the video shot groups, we can continue find the video

scenes. According to our definition there are two kinds of video scenes, loop

scenes, which is composed by more than one video shot groups, and progressive

scenes, which is composed by a series of visually dissimilar video shots.
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According to the definition, the contents of interlaced video shot groups

should be relevant thus should be put in the same scene, which is a story unit

in the video like a paragraph in an article. Given the detected video shot

groups {sg1...sgn}, there are two steps to form video scenes. First we need to

sort video groups according to the temporal order of their first member, which

is the most preceding video shot in the group. Second, we compare the time

slots for the first and the last member in the group with the time slot for each

scene.

After the groups are sorted, there are only three cases we need to handle

in the second step.

1. We assign a group to a scene if it is overlapped with the time interval of

the scene.

2. If a group includes the first member within the scene time and the last

member outside the scene time, we also assign the group to the scene.

However, in this case, we need to expand the time interval of the scene

to cover this group.

3. If a group is not overlapped with any scene, we create a new scene for

the group.

All video scenes are formed after every video group is examined in turns. The

video scene formation algorithm is given as algorithm 2, where we use startsci
,

startsgi
to denote the start frames of video scene sci and video shot group sgi,

and endsci
and endsgi

to denote the end frame of video scene sci and video

shot group sgi.

Algorithm 2 detects all the loop scenes, as the examples shown in Figure 4.7.

The left un-grouped single video shots then compose progressive scenes.

A loop scene is composed of more than one video shot groups, while a pro-

gressive scene is composed of a series of dissimilar video shots. Loop scenes are
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Algorithm 4 Video loop scene formation algorithm from a set of video shot
groups

Input: The set of video shot groups SG = {sg1...sgn}, where sgi is sorted
by the temporal sequence of their first member shots;
Output: The set of k video scenes SC = {Sc1...Sck},
1. Add the first scene Sc1 to Sc, assign the first video shot group Sg1 to
Sc1;
for sgi ∈ SG do

for scj ∈ SC do

if startscj
< startsgi

and endscj
> startsgi

then

assign sgi to scj

else

if startscj
< startsgi

ANDendscj
< startsgi

then

add new video scene sck to SC, assign sgi to sck

end if

end if

end for

end for

often used to depict an event happening in a place that needs detailed descrip-

tion, e.g., a conversation, while the progressive scenes are often used to depict

changes between two events or some dynamic scene. We think that normally

the loop scenes contain more important contents that need repeated illustra-

tion, thus they are relatively more important than the progressive scenes. The

loop scenes and progressive scenes are treated differently during video skim-

ming generation.

Loop scene


Progressive scene


Figure 4.7: Example of loop and progressive scenes
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4.4 Shot arrangement patterns

In each loop scene, we can assign a unique label for each detected video shot

group it contains. A video shot group composed with more than one video

shot is called a key video shot group, and all the remaining single video shots

are regarded as a background video shot group. Thus a loop video scene can

be regarded as composed of several key video shot groups and one background

video shot group. After label assignment, each video shot group gk has a group

label lbk, shared among the video shots contained in it. Let the set of group

labels be LB. Given a video scene Scx = {sh1....shn} we can have a group

label string lb1....lbn corresponds to the video shot list in the scene, where

lbi ∈ LB.

In the label string we can find specific video shot arrangement patterns.

Such patterns reflect how the editor arrange the video shots and weave them

to tell a story. Thus the patterns in the video shot string are very important

information about video editing and should be analyzed and utilized for video

summarization.

Here we give some definition for video shot string analysis.

1. A video shot string str is defined as a series of consecutive video shots

{sh1....shx}, with the group label string {lb1...lbx}; The importance value

of a video shot string Istr is defined as Istr =
∑x

j=1 vj, vj is the importance

value of video shot shj.

2. A non repetitive shot string (nrs string) is defined as a video shot string

{sh1....shx}, ∀i, j ∈ {1...x}, lbi 6= lbj.

3. A k-non repetitive shot string (k-nrs string) is defined as a non repetitive

shot string with length k. We use {k-nrsj} to denote a set of nrs string

with length k.

4. If stri is the sub-string of strj, we say that strj covers stri. For example,
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the 4-nrs string 3124 covers two 2-nrs strings {312, 124}, three 2-nrs

strings {31, 12, 24} and four 1-nrs strings {3, 1, 2, 4}.

nrs string carries important information about how the video editor arrange

the video shots. They are the reflection of the intention of the video editor.

We can easily find all k-nrs strings by scanning through the video label string.

Then we use them as skimming candidates. Some sample nrs strings are shown

in Figure 6.7.

2-nrs strings


4-nrs strings


Figure 4.8: Several detected nrs shot strings

To ensure a balanced content coverage, the skimming shots should be able

to cover as many semantically important shots as possible. To guarantee the

coherence of the video skimming, on the other hand, we hope to pick more

longer substrings from the video shot list. Thus the k-nrs strings become very

good candidates for video skimming. First, they are composed of video shots

depicting non repetitive contents with the least redundancy; second, they are

a coherent part of the original video. By scanning the video shot string we can

easily obtain all k-nrs strings for all k.

Given a video shot shi and a k-nrs string strj = {shj1 ...shjk
}, we can

define the visual similarity between them as:
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sim(shi, strj) =
k

∑

x=1

sim(shi, shjx
) ×

Length(shjx
)

∑k

y=1 Length(shjy
)

(4.22)

After that, we can define the visual similarity function between two k-nrs

strings stri and strj:

sim(stri, strj) =
∑

x

sim(shix , strj) ×
Length(shix)

∑

y Length(shiy)
(4.23)

where shix ∈ stri.

4.5 Experiments

In this section we evaluate the algorithms proposed for video structure analysis.

We carry out the experiments on a PC platform with win2000 OS, P4 2.0G

CPU and 512Mb Ram. The video processing module is developed with Visual

C++, based on Microsoft DirectsShow SDK. We employ several documentary

videos and several movie clips as the test data set.

For video shot cut detection, we have implemented our proposed approach

and apply it to several test videos from movie, news and documentary video.

The experiment results are shown in Table 4.1. We compare the result with the

approach in [46] and found that our method’s indeed outperform the previous

method in [46], in which the shot cut detection accuracy reported varies from

63.4% to 85.9%. The difference should lies in our non-linear neighborhood

filtering. From the result data we can see that our method is quite robust and

accurate, in most cases, our method achieves a correct detection rate around

95 percent, while the computation cost is quite low.

For fade detection, our result is shown in Table 4.2. We can see that the

result is quite satisfying too. However, since the feature is not as good as video

cuts and is more sensitive to noises, the correct detection is a bit less than the

video cut detection method.
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Table 4.1: Video cut detection results
Video type Length Ground truth Detected F. D. M. D. Right Per.

Movie 477 sec. 166 157 0 9 94.6
Movie 1440 sec. 237 235 6 8 96.6

Document 1380 sec. 147 141 3 9 94.3
News 40 39 1 1 95.0

Table 4.2: Video fade detection results
Video type Length Ground truth Detected F. D. M. D. Right Per.

Document 620 12 10 1 3 75.0
Document 1380 21 23 5 3 85.7

Movie 477 4 3 0 0 75.0

For videos shot group formation, we have implemented the graph cut al-

gorithm and the window-sweeping algorithm in [53]. Some sample video shot

groups generated by the two algorithms are shown in Figure 4.9 and Fig-

ure 4.10.

From the detected video shot groups we can construct the video scenes.

However, as video scene is a high level concept, the ground truth of “video

scene boundary” might not be definite. So in the following experiment we

employ the “Human opinion” as the ground truth. Table 4.3 and Table 4.4

summarize some results for scene detection results generated by our graph

based method and the original ToC method (F. D. for False Detection and M.

D. for Missed Detection).

Table 4.3: Video scene detection results by ToC
Video type Length Human Opinion Detected F. D. M. D.

Movie 477 sec. 4 5 2 1
Movie 1440 sec. 9 10 2 1

Document 620 sec. 6 8 4 2
Document 1380 sec. 7 10 4 1

From the experimental result data in Table 4.3 and Table 4.4, we can see

that the spectral clustering method outperform the ToC method in correctly

detecting video scenes. And our work is based on the video shot group-scene
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Figure 4.9: Several detected video shot groups by ToC method

detection result of this method. Although the performance of the automatic

video scene segmentation seems to be not quite satisfying, the quality of the

video summary based on it is not too bad, as we will show in the next chapter.

4.6 Summary

A video has its intrinsic structure just like an article does. In this chapter,

we describe our work done on analyzing the structure information of the video



Chapter 4 Video structure analysis 52

Figure 4.10: Several detected video shot groups by spectral graph partition

documents. A video file is first broken into coherent video shots by cut detec-

tion and fade detection, and its key frames are extracted; then the similarity

function between video shots are defined and calculated based on color and

motion information; similar video shots are grouped and the video story is

divided into video scenes just like paragraphs in articles. In each detected

scene, we discover and analyze the non-repetitive arrangement patterns for

further video summary purpose for they carry important information about

video editing.
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Table 4.4: Video scene detection results by Spectral graph method
Video type Length Human Opinion Detected F. D. M. D.

Movie 477 sec. 4 5 1 0
Movie 1440 sec. 9 10 2 1

Document 620 sec. 6 6 1 1
Document 1380 7 9 2 0



Chapter 5

Graph optimization based video

summary generation

In the previous chapter we analyze the structural information of a video, and

in this chapter we describe our video summarization scheme based on the

recovered structural information and graph optimization. Based on different

user requests, we can classify video summaries into two types:

1. Overview–In cases that the user is totally unaware about the content,

like facing several movie files that he has never seen, he can only specify

a target length thus hope to see enough detail about the movie. Such

requests may be like “Give me 3 minutes of preview showing that this

movie is about”, and we call this kind of video skimming “overview”. In

this thesis we concentrate on the movie overview generation.

2. Highlight–For specific domain like sports video and news, the user al-

ready knows some domain specific knowledge and he may just request

those video shots that she is interested in like ”give me 3 minutes of

video about goals and corner kicks”. This kind of video summary is

called “highlight”.

Based on the video structure analysis result, we describe our automatic

video summary generation method in this chapter. First, we specify several

54
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targets that a good video summary should be able to achieve, shown as follows:

1. Conciseness–For conciseness, the length of the generated video skim-

ming should be within the user-specified length Lvs; the static summary

should not contain too many images.

2. Balanced content coverage–As the video is a structured document,

the video skimming should be able to represent the original contents

with balance. At the same time, both the visual diversity and the tem-

poral coverage of the original contents should be reflected by the video

skimming.

3. Visual coherence–One problem for traditional video skimming gener-

ation is that the user often feel that the video skimming is quite choppy.

A good video skimming should increase the coherence of the video skim-

ming while preserving the content coverage.

In this chapter we describe how we select video shots from the video to

form video summaries that is able to meet the above goals. The work flow of

our video skim generation framework is shown in Figure 5.1:

5.1 Video scene analysis

To ensure the informativeness of the generated video skimming, we need to

preserve the important contents of the original video. In the previous chapter,

we have already found the scene boundaries in the video, since each video scene

can be viewed as a paragraph, we can create summary for each video scene then

concatenate them to form a video summary. Given a series of detected video

scenes {Sci} and the target video skimming length Lvs, we need to determine

the target skimming length for each of the video scenes first.
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Figure 5.1: Work flow of our video summarization framework

5.1.1 Scene content entropy

In term of importance, we think that the longer and the more complex a video

scene is, the more important it should be. For progressive scenes, we simply use

their length to measure their importance. For loop scenes, however, since they

are composed of several video shot groups, their content complexity should

relate with both the number of video shot groups it contains and the lengthes

of the member video shot groups. To quantitatively evaluate the complexity

of a loop video scene based on these two factors, we define the content entropy

of a video scene and employ it as the measure of content complexity, defined
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in equation 5.1:

Entropy(Sci) =
∑

Sgj∈Sci

−
lSgj

lSci

log2(
lSgj

lSci

). (5.1)

5.1.2 Target skim length assignment

With the above definition, given the target video skimming length Lvs and the

length of the video Lv, the skim ratio rs is thus Lvs

Lv
. We determine the skim

length Sl of each of the video scenes in the video as follows:

1. For each progressive scene Scx,

Slx = lScx
× rs (5.2)

If Slx is less than the preset threshold t1, we discard scene Scx as too

short skim does not make sense to people.

2. Suppose that after the first step, the left skim length is L′
vs, for the loop

scenes {Sc1...Scn},

Sli = L′
vs ×

Entropy(Sci) × lSci
∑n

j=1 Entropy(Scj) × lScj

(5.3)

In a similar manner, we discard Sci if Sli is less than a preset threshold

t2.

3. Suppose that after step 2, the remaining loop scenes are {Sc′1...Sc′m},

then for the remaining video scenes we set

Sli = L′
vs ×

Entropy(Sc′i) × lSc′i
∑m

j=1 Entropy(Sc′j) × lSc′j

(5.4)

The above skim length assignment algorithm ensures that more important

scenes are assigned with more skim length, thus the balanced content coverage

can be achieved. Moreover, loop scenes are assigned with more skim length,

since they are regarded as more important than the progressive scenes.
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5.2 Graph modelling of video scenes

Coherency is another important goal that the video skimming should achieve.

If a lot of breaks are included in the video skimming, the user may feel that it

is jumpy and less enjoyable. Since video shots are continuous image sequences

and they are the building block of videos, in our work, we select complete

video shots as the elements in the video skimming to guarantee the coherence

of the video skimming. Moreover, we employ nrs strings as skim candidate to

achieve better coherency.

With each scene’s target skimming length determined, we need to select

several video shots according to the skim length of each video scene and gener-

ate the final skimming. The selected video shots should be able to cover both

the visual diversity and the temporal distribution of the original video scene;

meanwhile, the coherency of the video skim should be ensured. To achieve all

these objectives simultaneously, we model each video scene with a graph based

on the video nrs shot strings it contains, then we select the skimming video

shots by performing optimization on that graph.

5.2.1 Decompose the video scene into candidate video

strings

In the previous chapter we define and detect non-repetitive video shot strings

(nrs strings). Since the non-repetitive string is a longer coherent part of a

video and it contains no visual redundancy, it is very good candidate that can

be selected into the video skim.

To model the scene as a graph, we first need to decompose the video scene

into a set of non-overlapped nrs strings Nrslstr
. However there are still some

problems to meet: First, the longer the nrs strings are, the more coherent the

final selected video skim will be. However, if the candidate nrs strings are

too long, the content coverage might not be able to get guaranteed. Another
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problem is that there may be more than one method to decompose the video

scene into a set of video shot strings.

So we propose the following bounded decomposition process for a video

scene:

1. We specify an integer lnrs, which is the upper bound of shot number in

the nrs strings to be decomposed from the video scene.

2. We decompose the video scene shots into a set of nrs strings whose length

is upper bounded by lstr. Given a video scene Sci, we note the nrs string

set decomposed from the scene as Nrsk if we set the parameter lnrs with

value k. Since there are more than 1 possible methods to decompose

the video scene, every time we decompose the first longest possible nrs

string from left to right. For example, the Nrs3 set for a video scene

{1245141316} should be {124, 514, 13, 16}.

We can use the integer lnrs to control the coherence of the extracted video

skim. As a special case, the Nrs1 set of a scene is just all the video shots it

contains. The longer lstr is, the more coherency will the selected skim be, but

the content coverage might decrease accordingly.

5.2.2 The spatial-temporal relation graph

Based on the shot nrs strings we detect from the video shot list, we define the

spatial-temporal relation graph as follows:

The spatial-temporal relation graph G(V,E) is a graph defined on a video

shot string set Ssh = {str1, ....strn} such that:

1. G(V,E) is a complete graph.

2. Each vertex vi ∈ V is corresponding to a video shot string stri in Ssh

and vise versa. On each vi there is a weight wi which is equal to the

length of video shot string stri.
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3. On each edge eij ∈ E, there is an edge weight weij
which is equal to the

spatial-temporal dissimilarity function Dis(stri, strj) between video shot

strings stri and strj. The direction of edge eij is from the temporally

earlier shot string to the temporally later video shot string. Thus G is

acyclic.

A simple example of the spatial-temporal relation graph on a scene is shown

in Figure. 5.2.
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 e23(4)
 e34(7)
 e45(2)


e13(2)


e14(5)


e35(7)
e24(4)


e15(9)


e25(6)


v1(35)
 v2(23)
 v3(19)
       v4(35)
    v5(26)


Shot string 1
 Shot string 5
Shot string 4
Shot string 3
Shot string 2


Figure 5.2: Spatial temporal dissimilarity graph on five shot strings

To determine the value on each edge, we define the spatial-temporal dis-

similarity function between two video shot strings stri, strj as:

Dis(stri, strj) = 1 − sim(stri, strj) × e−k×dT (stri,strj) (5.5)

and

weij
= Dis(stri, strj) (5.6)

Here sim(stri, strj) can be any visual similarity measure between video shot

strings, and here we use the definition given in the previous chapter. dT (stri, strj)

is the temporal distance between the temporal middle point of video string stri

and strj, in terms of frame number. k is the parameter to control the slope of

the exponential function, also in terms of frame number. An example of simi-

larity function between video shots in a sample video is shown in Figure 5.3:
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Figure 5.3: The spatial-temporal dissimilarity function for a sample video with 7

scenes

To allow for a good coverage of both the visual and temporal contents of the

video scene, we define the dissimilarity function such that it changes linearly

with the visual similarity, but exponentially with the temporal distance. Such

a dissimilarity definition will guarantee those visually dissimilar video shot

strings are chosen, and it can guarantee that the chosen video shot strings will

be well distributed on the time axis, so that a good temporal coverage of the

original contents can be achieved.

5.2.3 The optimal skim problem

Given the target skimming length Lvs, we can search a path in the spatial-

temporal graph then use the video shots corresponding to the vertexes in that

path as the video skimming for the video shot set. A path p = {vx1
, ...vxn

} in

the spatial-temporal graph consists of a set of video shot strings {strx1
, ...strxn

},

which is a video skimming whose total length is the summation of the weights
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on the vertexes vx1
, ...vxn

in the path. We let V WS(pi) represent the vertex

weight summation of the path pi. The length of the path is the summation

of the spatial-temporal dissimilarity function between consecutive video shot

pairs.

For this optimal path ps, we have two goals to meet: First, we want to

maximize the length of the path Lps
, which is the summation of dissimilarity

function between consecutive video shot strings; Second, we want V WS(ps)

to be as close to Lvs as possible, but not to exceed it. So the problem is a

constrained longest path problem. The result path varies with different target

skim lengths, as shown in Figure 5.4:
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Figure 5.4: The optimal pathes with different V WS values

We combine the above two goals in the objective function fobj, which is de-

scribed in the following definition for our video skimming generation problem.

Problem 4 Given a set of video strings Sstr = {str1...strn}, the spatial-

temporal graph G(V,E) built on Sstr, the target video skimming length Lvs,

and a weight parameter w, search the path ps = {vs1
...vsn

} such that it maxi-

mizes the object function

fobj(ps, Lvs) = Lps
+ w × (V WS(ps) − Lvs) (5.7)

under the constraint that V WS(ps) ≤ Lvs.
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Here w is the weight parameter for the length difference between the se-

lected video skim length and the target length.

5.3 Graph optimization

Problem 4 is a constrained optimization problem. Brute force searching is

feasible but inefficient; however, the problem has an optimal substructure [10]

and can be solved with dynamic programming, shown as follows.

Suppose there are n video shot strings in the video shot set. We add a

virtual vertex v0 such that w0 = 0 and we0j
= 0 for all 0 < j ≤ n. We

use pi
vx,lr

= {vx, ...} to denote a path in the spatial-temporal relation graph

such that it begins with vertex vx, and its vertex weight summation is upper

bounded by lr. We then use po
vx,lr

to denote the optimal path among all such

paths, which means fobj(p
o
vx,lr

) = maxi fobj(p
i
vx,lr

). Thus po
v0,Lvs

is the path we

want to find.

Then we have the following optimal substructure:

1. fobj(p
o
vn,lr

) = w × (lshn
− Lvs), for all lr ≤ Lvs;

2. fobj(p
o
vx,lr

) = maxn
y=x+1[Dis(strx, stry) +

fobj(p
o
vy ,lr−lstry

) + w × lstrx
] × τ(lr, y)

Here τ(lr, y) = 1 if lr − lshy
≥ 0, otherwise τ(lr, y) = 0.

With the above optimal-substructure we can calculate the object function

value of the optimal path fopt(p
o
v0,Lvs

) and all optimal sub-solutions with the

following dynamic programming algorithm:

After the objective function of the optimal path is found, we can easily

trace back and find the global optimal path as well as the skimming shots

of the scene. In case there are multiple global optimal paths, the trace back

algorithm will also find all of them. We concatenate the skimmings of each

video scene and get the whole video skimming. Note that the algorithm may
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Algorithm 5 Video skim selection algorithm based on dynamic programming

Input: The spatial-temporal relation graph G(V,E) based on the candidate
video string set Strin = {str1....strSn

}.
Output: The objective function value for the optimal path po

v0,Lvs
, denoted

by Fopt.
BEGIN
Set Lopt[i][j] = 0 for all i,j;
for Lr = TH to Lvs do

Lopt[LastShot][Lr] = −penalty;
end for

for ix = Sn to 0 do

for Lr = 0 to Lvs do

opt = −infinity;
for t = ix + 1 to Sn do

if lt < Lr then

if opt < Lopt[t][Lr − lt] + Dis(strt, strix) then

opt = Lopt[t][Lr − lt] + Dis(strt, strix);
end if

end if

end for

Lopt[ix][Lr] = opt;
end for

end for

Fopt = Lopt[0][Lvs];
END

generate a video skimming that is a little shorter than the target length Lvs.

As this will not affect much about the content coverage of our video skim, we

randomly select some video shots to fill that length.

The time complexity of this dynamic programming algorithm is O(n2×Lvs),

while the spatial complexity is O(n × Lvs). For most video scenes, n and Lvs

would not be very large and the algorithm can complete quite quickly.

5.4 Static video summary generation

In some cases the user may prefer to a static video summary, for the static

summary requires less bandwidth and can be viewed with a glance. In this



Chapter 5 Graph optimization based video summary generation 65

section we discuss how to generate a meaningful static video summary for the

user.

The graph optimization based approach can easily generate a static video

summary for the user. Most straightforwardly, once we have extracted a mov-

ing video skimming, we can use the key frame of the selected video shots to

form a video static summary. One example of the detected video scene (shown

as grouped key frames) and the selected video skim shots images are shown in

Figure 5.5 and Figure 5.6.

In most cases the key frames for selected video skim shots are good enough

for a static video summary. However, sometimes if the user only want to see a

static video summary, they might specify a desired image number and hope to

see a video summary that composed by exactly that number of images. In that

case, we have to redefine and solve the static video summary generation prob-

lem, in which the user may specify the number of images to be selected, noted

as Nvs. In such a situation, we need to reformulate the graph optimization

problem and propose a new solution.

We can still construct the spatial-temporal graph based on the video shots

contained in a video scene. However, in this situation some change need to

be made. First, since nrs strings are employed for better video skimming

coherency and is not helpful here, we do not use the video shot strings here,

but directly build up the graph on video shots. Second, in the new situation

there is no skimming-length constraint, only one constraint on the number of

images Nvs is left.

The spatial-temporal graph G(V,E) in the new situation is defined as fol-

lows:

1. G(V,E) is a completed graph;

2. Each vertex vi ∈ V is corresponding to a video shot.

3. On each edge eij ∈ E, there is an edge weight weij
which is equal to the
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spatial-temporal dissimilarity function Dis(shi, shj) between video shot

shi and shj. The direction of edge eij is from the temporally earlier shot

to the temporally later video shot. Thus G is acyclic.

We continue using the shot-pairwise dissimilarity function in the previous

sub-section, which is defined as:

Our target is to generate Nvs of static shot images that is able to cover

the visual content diversity and content temporal distribution. The spacial-

temporal dissimilarity function has already combined the visual similarity and

the temporal distance between video shots. Since the only constraint is the

number of images to be comprised in the video summary Nvs, we can search

a path ps with exactly Nvs vertexes that maximize the path length, and use

those shot key frames corresponding to the vertexes on the path as the final

video static summary. We formulate the problem in problem 4.2:

Problem 5 Given a set of video shot Ssh = {sh1...shn}, the spatial-temporal

graph G(V,E) built on Ssh, the target video shot images Nvs ,search the path

ps = {vs1
...vsNvs

} such that the length of ps is maximized.

We use po
i,n to denote the optimal path such that it begin with vertex vi,

and it contain exactly n video shots. We use loi,n to denote the length of the

optimal path.

We observe that the length of the path po
i,n also has a optimal structure

property, shown as follows:

1. loi,n = maxNsh

j=i+1 weij
+ loj,n−1, i ∈ {0...Nsh − 1};

2. loi,n = 0, when n = 1 or i = Nsh;

With the above optimal substructure we can use dynamic programming to find

the optimal path comprising Nsh shots as the solution to the problem. The

algorithm is shown in Algorithm 2:
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Algorithm 6 Video static summary selection algorithm based on dynamic
programming

Input: The spatial-temporal relation graph G(V,E) based on the candidate
video shot set Shin = {sh1....shSn

}.
Output: The objective function value for the optimal path po

v0,Lvs
, denoted

by Fopt.
BEGIN
Set Lopt[i][j] = 0 for all i,j;
for ix = Sn to 0 do

for Nr = 0 to Nvs do

opt = −infinity;
for t = ix + 1 to Sn do

if lt < Lr then

if opt < Lopt[t][Lr − lt] + Dis(sht, shix) then

opt = Lopt[t][Lr − lt] + Dis(sht, shix);
end if

end if

end for

Lopt[ix][Lr] = opt;
end for

end for

Fopt = Lopt[0][Lvs];
END

Algorithm 2 find the longest path with exactly Nvs shots in the spacial-

temporal graph G as the representative video shots. Since in this scenario we

don’t have the target skim length constraint, the time complexity is now O(n2)

and spacial complexity O(n), for normal scenes, the algorithm finishes quickly.

5.5 Experiments

We implement the video summarization algorithms then apply them to some

video clips. We carry out the experiments on a PC platform with win2000 OS,

P4 2.0G CPU and 512Mb Ram. The video processing module is developed

with Visual C++, based on Microsoft DirectShow SDK. The exponent control

parameter k in the spatial-temporal dissimilarity function is set to 250 (in
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term of frame numbers), and the weight factor w in the objective function

is set to 0.01. The threshold parameters t1, t2 are set to 3 seconds and 4

seconds, respectively. The test video materials include two movie clips, two

documentary videos and one sitcom videos, and video skimmings at skim rate

0.15 and 0.30 are extracted for each test video clip. At each video skim rate, we

generate two video skimmings with lstr equal to 1 and 3. Detailed information

about the test video clips are described in Table 1. An example for a scene’s

key frames (shown as video shot groups) and the selected skimming video

shots’ key frames are shown in Figure 5.5 and Figure 5.6.

To evaluate the quality of the generated video skimming, we employ two

criterion: meaningfulness and favorite. Since it is hard to objectively eval-

uate a video skimming, we use the following subjective test to evaluate the

performance of our video skimming generation scheme. To test the meaning-

fulness of the video skimmings we have attained, 10 people were invited as

test users to watch the video skimming generated with two skim rates 0.15

and 0.30 then answer several questions about the video contents. To evaluate

meaningfulness, the test users are asked to watch the video skimmings then

answer several questions about the major events that the video depicts (Who

has done what?). From the number of the questions that the users are able to

answer after they have seen the video skimming, we can get a score to measure

the meaningfulness of the video skimming. The scores are scaled to [0, 100].

To compare the favorite, we ask the users to select a “better” video skimming

between the video skims generated with different lstr values, and the number of

users who choose the skimming as the “better” one is recorded as the favorite

score.

Table 1 shows the numerical results for the user test. From the table we

conclude that the video skimmings’ content coverage is still quit good at a

skim rate of 0.15. Moreover, when the skim rate is 0.30, the skimming content

coverage is even better.
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Original frames in a scene


Selected skim shots


Figure 5.5: Summarized scene key frames

We can also see the effect of the parameter lstr. The meaningfulness scores

for both video skimmings with different lstr are quite similar, but in terms of

favorite, most video skimmings generated with bigger lstr value gain better

favorite scores, which means that more people prefer to view more coherent

video skimmings.

For the compression limit of the video skimming, in our experiments, most

users say that when the skim rate is less than 0.1, they feel difficulty to un-

derstand the selected video skimming, which indicates that, to make sense to
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Original shots in a scene


Selected nrs shot strings


Figure 5.6: Summarized scene key frames based on nrs shot strings

the users, for normal videos a reasonable skim rate should be at least 0.1.

For static video summary, we have generated several set of static video

summaries for a test movie clip. One static summary with the shot number

equals to 30 is shown in Figure 5.7.

From the static video summary we observe that the visually dissimilarity

video shots have been selected; also the video shots distribute quite evenly on

the temporal axis, shown in Figure 5.8. Thus we make the conclusion that the

graph optimization based algorithm is able to simultaneously guarantee the
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Video Clip Duration Major events Skim Rate Mfn. Fav.

Document 1 2403 sec. 7 0.15 82.8/85.7 4/6
Document 2 3230 sec. 8 0.15 78.8/76.4 3/7
Document 3 1477 sec. 5 0.15 88.0/86.0 3/7

Movie 1 1183 sec. 9 0.15 82.2/85.6 4/6
Movie 2 602 sec. 4 0.15 77.5/75.0 4/6
Sitcom1 1183 sec. 8 0.15 71.1/76.4 3/7

Table 5.1: User test results with skim rate 0.15. The scores with lstr is equal
to 3 are in bold

Video Clip Duration Major events Skim Rate Mfn. Fav.

Document 1 2403 sec. 7 0.30 94.3/92.9 5/5

Document 2 3230 sec. 8 0.30 88.9/92.9 6/4

Document 3 1477 sec. 5 0.30 96.0/96.0 2/8

Movie 1 1183 sec. 9 0.30 94.4/97.8 5/5

Movie 2 602 sec. 4 0.30 92.5/97.5 3/7

Sitcom1 1183 sec. 8 0.30 84.3/88.2 2/8

Table 5.2: User test results with skim rate 0.30. The scores with lstr is equal
to 3 are in bold

visual content diversity and temporal coverage.

5.6 Summary

Video summarization is an important technique for efficient video browsing

and management. In this paper, we formulate the video skimming genera-

tion problem as a two-stage graph based optimization problem. We obtain

the video scene boundaries, determine each video scene’s skim length, then we

model each scene into a spatial-temporal relation graph, and employ dynamic

programming to find each scene’s optimal skimming. The whole video skim-

ming is concatenated by each scene’s skimming. We implemented the proposed

algorithm and obtained encouraging experimental results.

In the future, we will further incorporate audio channel analysis to help

our skimming generation. Moreover, intra-shot compression will be studied
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Figure 5.7: An example of static summary

Video scene boundaries


Figure 5.8: Temporal distribution of selected video shots

to shorten the video shots’ length in order to further magnify the content

coverage.



Chapter 6

Video content annotation and

semantic video summarization

6.1 Introduction

Video is increasingly becoming the favorite medium for many communication

entities for its extraordinary expressive power. With the rapid growing com-

puting power and storage device capacity, the large scale digital video library

system is growing rapidly. This massive growing video data thus gives rise to

a challenge for efficient video browsing and management since it is time con-

suming to download and browse through the whole contents of the video. To

solve this problem, video summarization, which engage in providing concise

and informative video summaries to help people to browse and manage video

files more efficiently, has received more and more attention in recent years.

Basically there are two kinds of video summaries: static video story board,

which is composed of a set of salient images extracted or synthesized from the

original video, and dynamic video skimming, which is a shorter version of the

original video made up of several short video clips.

In recent years much work has been conducted on video summarization. For

static summary generation, [70] tends to adapt to the dynamic video content.

73
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A mosaic-based approach is suggested in [29]. Later work present video con-

tents according to the detected video structure. In [53], the authors analyzed

the video structure after video segmentation, and then get a tree-structured

Video-Table-Of-Contents(V-TOC). In [77], a scene transition graph was con-

structed as the video content presentation. A curve simplification approach is

proposed in [12].

Compared with static video summary, dynamic video skimming is more at-

tractive for it reserves the dynamic property of the video thus it is able to make

more sense to the user. Much effort is also devoted to dynamic video skimming

generation. In the VAbstract system [30], key movie segments are selected to

form a movie trailer. The Informedia system [59] selects the video segments ac-

cording to the occurrence of important keywords in the corresponding caption

text. Later work employs perceptional important features to summarize video.

In [39] the authors construct a user attention curve to simulate the user’s at-

tention toward different video contents. [65] proposes a utility function for each

video shot, and video skimmings are generated by utility maximization. [35]

assigns different weight scores on several important features of the video then

selects the video skimming that maximizes the feature score summation. [47]

analyzes video structure by graph modelling then the video skimming is gen-

erated according to this structure and the motion attention values for video

shots. In [36], a graph optimization approach is proposed to guarantee the

content coverage of the generated video skim.

Most of the traditional video skimming generation approaches are based

on low level video features, and they may not be able to guarantee that the

generated video skim contains the semantically important contents thus the

video skim may not make sense to the users. Video summarization based on

semantic annotation can be found in [42, 84, 71, 43]. To attack this problem,

semantic information is needed to make a meaningful video skimming. Un-

fortunately, although quite a lot attempts have been done to automatically
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annotate generic video and image contents [44, 32, 14] and event detection

in specific video categories like sports video [3], their overall performance is

still not satisfactory. Thus the automatic recognition of high level semantic

information like key actors, action taken is still beyond the capacity of up-to-

date techniques. Consequently, to collect reliable video semantic information

we still need to manually annotate the video contents, and we build a semi-

automatic system to help the user to annotate the video.

In this chapter, we propose a framework for dynamic video skimming gen-

eration that emphasizes both the balanced content coverage and the visual

coherence. Figure 6.1 shows the overview workflow of our approach. We first

segment the video into video shots, then we create a semantic content descrip-

tion for each of them with a semi-automatic annotation tool. To guarantee

the balanced content coverage, by video structure analysis we determine the

scene boundaries, and the target skimming length for each scene is determined.

For each video shot, an importance value is calculated according to the Mu-

tual Reinforcement Principle [81], and the video shots are clustered according

to their semantic content descriptions. Finally, we analyze the arrangement

pattern of the video shots and the important shot strings are selected as the

video skimming. In comparison with the traditional approaches, our approach

has the following contributions: First, we employ the Mutual reinforcement

principle to calculate a global importance rank value for each shot, based on

which we can ensure that the semantic important contents can be covered by

the skimming; Second, we analyzed the shot arrangement patterns, which is

neglected by most existing approaches, and we utilize this information to make

a tradeoff between content coverage and visual coherence.

The chapter is organized like follows. In Section 6.2 we review the Mpeg

7 standard. In Section 6.2 we describe the video annotation process. In Sec-

tion 6.3 we analyze the structure of the video and describe how we calculate

the semantic importance value for each video shot by mutual reinforcement
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Figure 6.1: Overview of the semantic video summarization framework

principle. In Section 6.4 we present our video skim generation scheme. Sec-

tion 6.5 we show some experimental results. Finally, we make conclusion in

Section 6.6.

6.2 Semantic video content annotation

6.2.1 Video shot segmentation

A video shot is a image sequence captured continuously by a single camera.

It is the basic building block of edited videos like movies, broadcast news, TV

shows, etc. With the methods described in chapter 3, we can efficiently detect

the video shot boundaries. With the video shots detected, we can further make

annotation for them, and explore the higher level structure of the video.

For video shot shi, we use its first frame kfibegin
and the last frame kfiend

as the key frames to represent the visual content of the video shot.
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6.2.2 Semi-automatic video shot annotation

Given the detected video shots, we continue to define the content description

for a video shot, then we make annotation for the video shots.

Normally when we see a video, the two questions we mostly want to ask

is “Who?” (Who is the person this video is depicting?) and “What?” (What

is the person doing?/What’s happening?). Thus in this paper, for each video

shot’s content description, we currently use the following two semantic concept

contexts to describe the semantic concept of the video shots:

1. Who–This context describes the main person in this video shot.

2. What–This context describes the action taken by the actors, or events

happening.

Under each context there are several concept terms describing the contents.

The video concept description, the corresponding contexts and the possible

optional concept terms are organized in a tree structured manner named shot

concept tree. and the user can freely choose the right concept terms for the

semantic context. Moreover, the user can easily extend, edit and reuse the

shot concept tree.

To accelerate the annotation process we employ a image retrieval module to

assist the annotator. When doing annotation, the annotator is provided with

the video shot key frames for a preview. He can use the relevance feedback

module to retrieve similar video shots and copy the annotation to the similar

shots thus the whole semantic annotation process can be highly accelerated.

The similar video shots confirmed by the user are stored for further usage. The

relevance feedback assisted video annotation interface is shown in Figure 6.2.

After annotation, the video shot content description can be written in a

two-unit tuple: {Fl, Fs}, which is the low level features and the high level

semantic concept. Here Fs = {ci}, each context ci contains several semantic
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Figure 6.2: Video annotation interface

concept terms {tij}. For a video shots shi, we can put the concept terms

together into a keyword set Ti = {tij}.

6.3 Video structures and semantics

6.3.1 Video structure analysis

A video narrates a story just like an article does. From a narrative point of

view, a video is composed of several video scenes {Sc1...Scn}, each of which

depicts an event like a paragraph does in the articles; a video scene is composed

by a series of video shots {sh1...shn}, each of which is an unbroken image

sequence captured continuously by a camera. A video shot’s role is just like
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a sentence in articles. The visual content of a video shot can be represented

by its key frames. A video shot group Sgi is the intermediate entity between

video scenes and video shots, which is composed of several visually similar

and temporally adjacent video shots. Thus from top to down, a video has

a 4-level hierarchical structure: Video, Video scenes, Video shot groups, and

Video shots [53].

Figure 6.3 shows the hierarchical structure of a video.

Figure 6.3: Hierarchical video structure

In the remaining part of this paper, we use lshi
, lSgj

and lSci
to represent

the length of video shot shi, video shot group Sgj, and video scene Sci, which

is the total number of images containing in them respectively.

Given the low level features and the high level semantic description for

each video shot, we can define two similarity measures siml
ij and sims

ij as the

similarity between two video shots based on low level features and high level

semantic features.
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The low level similarity between two video shots is defined as the maximal

H-S histogram correlation between their key frames, that is

V isualSim(shi, shj) = max
x,y

HistCorr(kfix , kfjy
) (6.1)

where x, y ∈ {begin, end}.

and we use the keyword similarity to measure their semantic similarity,

defined as follows:

sims
ij =

|Ti

⋂

Tj|

|Ti

⋃

Tj|
(6.2)

and we can linearly combine the two similarity measure into a net similarity

measure simij:

simij = k × siml
ij + (1 − k) × sims

ij (6.3)

and based on measure simij we can use the window sweeping algorithm in

chapter 3 to find the video shot group and video scene boundaries.

6.3.2 Video structure and video edit process

We have just determined the scene boundaries based on the visual and semantic

similarity. And we continue to explore the semantic structure of a video scene.

The video editing process, described in follows [21], is like follows: To

describe an event the director will first shoot the environment from several

different angles, then mix the video shots from various angles to assemble the

final edited video. For example, to depicting a conversation, there should be

some overview shots showing all the people involved at the beginning and the

end of the scene, and there may be several sets of video shots depicting each

involved actor from different angles. The video shot sets are depicting the

same content(person) but since they might be shot from different angles so

they might not be able to get grouped together by analyzing the low level

features. However, the shot semantic description can help us to find such

structure.
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Figure 6.4: Movie edit process

To better model the intention of the director, we propose a new concept

called semantic video shot group. It is made of a set of video shots that

depicting the same semantic content. However, a semantic video shot group

might not be composed by visually similar video shots. The semantic video

shot group can be viewed as an intermediate entity between video group and

the video scene, and we can expect that video skimming generated upon this

new structure can achieve better performance since it carries the semantic

structure of the video. Another important sign of the director’s intention is the

way he arrange the semantic shot groups. The pattern of the shot arrangement

will be analyzed in Section 6.5.
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6.3.3 Mutual reinforcement and semantic video shot group

detection

Given a video scene composed by a set of annotated video shots and a set of

video annotation concept terms and the corresponding contexts, we need to

measure the relative importance of each video shots and each different concept

term. We employ the following mutual reinforcement principle [81] to detect

the semantic video shot groups and give a importance evaluation for each

detected video shots. Suppose that we have obtained a set of video shot

descriptions D = {d1...dn} based on a set of concept terms T = {t1...tm}

under the description context c, we hope to get a rank to measure the priority

of the description items video shot description set. A weighted bipartite graph

can be built from T to D in the following way: if description di contains term

tj, then we set up a edge between di and tj, and we can compute a weight

wij associated with the edge. wij can be any non-negative measure of the

relationship between concept terms and descriptions. In this paper, we define

the weight such that if description di contains concept term tj then wij = 1,

else wij = 0.

The idea of mutual reinforcement principle [81] is as follows: an important

term should occur in many important descriptions; and an important descrip-

tion should contain many important terms. The principle dictates that, the

importance score of a concept term is determined by the importance scores of

the descriptions it appears in; And the importance score of a semantic descrip-

tion is determined by the importance scores of the concept terms contained

in it. Given the shot description set D and term set T , the weight matrix

W = [wij], we use the vector U and V to denote the importance scores for the

term set T and the description set D. Mathematically, we have the following

relationship:

U =
1

k1

WV (6.4)
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and

V =
1

k2

W T U (6.5)

, where k1 and k2 are some constants.

We can easily get

U =
1

k1k2

WW T U (6.6)

and

V =
1

k1k2

W T WV (6.7)

Thus we can see that U and V should be the eigenvectors of the matrix

WW T and matrix W T W . Since the elements in W are all non-negative, the

largest eigenvalue of W T W and WW T must be also non-negative. In that case,

we may choose the eigenvectors corresponding to the largest singular value of

WW T and W T W as the importance scores for the concept terms and shot

descriptions.

By this mutual reinforcement process we can find the importance score

vector for all the video shot descriptions. We can see that video shot with

similar content will have similar importance values. Thus by this importance

value vector we can group the semantic similar video shots into semantic video

shot groups. For a set of video shots, we compute importance value vectors

based on context ”who” and ”what”, thus result in two vector Vwho and Vwhat.

And the final importance vector is obtained by

V = Vwhat + Vwho (6.8)

We combine this two value vectors then use it to classify video shots. Since

the importance value is a measure for this shot’s relative semantic rank, ac-

cording to the importance value vectors, we can select several semantic video

shot groups with high importance values called key video shot groups, and the

rest content are treated as the background shot group. Figure 6.5 shows the

importance vector we get from a video scene. Figure 6.6 show some classified
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shots based on the importance vector. On the top row the shots contains two

key actors thus has the highest importance value; The second and third row

are those video shots depicting one main actors; The above 3 video shot groups

forms the key video shot groups; Those video shots do not contain key actors

form the background video shots group, shown in the bottom row.

Figure 6.5: Importance vector of video shots

Figure 6.6: Some classified video shots

When we have found the semantic video shot groups, our video summa-

rization process will be just like a inversion of the video edit process followed

by another edit process. We first group the video shots depicting the same

content, which is just the inversion of movie editing, then we select some shots
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from the same group according to some rules then reassemble them into the

final video skimming.

6.4 Semantic video summarization

6.4.1 Summarization requests and goals

Basically there are two kinds of video skimming: overview and highlight. For

specific domain like sports video and news, the user already knows some do-

main specific knowledge and he may just request those video shots that he is

interested in like ”give me 3 minutes of video about goals and corner kicks”.

This kind of video skimming is called “highlight”. But for movies, mostly the

user is totally unaware about the content thus can only specify a target length

thus hope to see enough detail about the movie. The request may be like

“Give me 3 minutes of preview showing that this movie is about”, and we call

this kind of video skimming “overview”. In this paper we concentrate on the

movie overview generation.

To obtain a meaningful video skimming, we specify several goals that we

would achieve as follows:

1. Conciseness–To be useful, the length of the generated video skimming

should be within the user specified length Lvs.

2. Balanced content coverage–As the video is a structured document,

the video skimming should be able to represent the original content with

balance. At the same time, the visual and semantic diversity of the

original contents should be reflected by the video skimming.

3. Visual coherence–One problem for traditional video skimming gener-

ation is that the user often feel that the video skimming is quite choppy.
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Thus we hope to increase the coherence of the video skimming while

preserving the content coverage.

Now that we have attained the formation of the semantic video shot groups

and video scene boundaries, the final video skimming can be then made by first

make sub-skimmings for each scene then concatenate them. Thus our video

skimming generation scheme has three steps: First, determine the target length

for each scene; Second, extract the sub-skimming according to each length;

Finally, assemble the sub-skims to form the final skimming.

6.4.2 Determine the sub-skimming length for each scene

Suppose that the video is composed by a set of detected scenes {Sci}, given

total video skimming length Lvs, we need to distribute the skimming length to

each of scenes. It’s natural that longer and more complex video scenes should

share a longer part in the final video skimming. To describe the complexity of

a video scene, we define the content entropy for a video scene Sci as follows:

Entropy(Sci) =
∑

Sgj∈Sci

−
lSgj

lSci

log2(
lSgj

lSci

) (6.9)

Here lSgj
and lSci

are the length of the video shot group and video scene,

in terms of image frame number.

After we have calculated the content entropy for each video scene Sci, given

the total video skimming length Lvs, we determine the target skimming length

Sli for each video scene in the following way:

1. For the video scenes {Sc1...Scn}, we first calculate Sli = Lvs×
Entropy(Sci)×lSci

∑n
j=1

Entropy(Scj)×lScj

.

If Sli is less than the preset threshold t1, then the corresponding scene

is considered as non-important thus will be discarded.

2. For the remaining scenes {Sc′1...Sc′m}, we set

Sli = Lvs ×
Entropy(Sc′i)×lSc′

i
∑m

j=1
Entropy(Sc′j)×lSc′

j

.
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6.4.3 Extracting video shots by string analysis

Now that we have determined all the semantic video scenes’ target length, and

we can continue to extract some video shots from each video scene to form

the sub-video skimming. In [36] we proposed a graph optimization algorithm

to select video skimming shots. Each detected video scene is modeled into a

graph, and the video skimming is generated by searching a constrained longest

path in that graph, such that balanced content coverage can be achieved.

However, this method select separate video shots thus the video skimming

seems choppy. In this paper, we use a new method based on string sequence

analysis to select the shots, which is able to generate a more coherent video

skimming while still guarantee the content coverage. We will compare the

performance of the two methods in the experiment.

After the mutual reinforcement process, we have the importance vector V

for the video shots, each component vi is the importance value of video shot

shi. Based on the importance value we can classify the video shots into a set

of semantic shot groups G = {gk}, including several key video shot groups and

one background video shot group. Each semantic group gk has a group label

lbk, shared by the video shots contained in it. Let the set of group labels be

LB. Now that given a video scene Scx = {sh1....shn} and we can have a group

label string lb1....lbn, where lbi ∈ LB.

Here we give some definition for video shot string analysis.

1. A video shot string str is defined as a series of consecutive video shots

{sh1....shx}, with the group label string {lb1...lbx}; The importance value

of a video shot string Istr is defined as Istr =
∑x

j=1 vj, vj is importance

values of videos shot shj.

2. A non repetitive shot string (nrs string) is defined as a video shot string

{sh1....shx}, ∀i, j ∈ {1...x}, lbi 6= lbj;
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3. A k-non repetitive shot string (k-nrs string) is defined as a non repetitive

shots string with length k. We use {k-nrsj} to denote a set of nrs string

with length k.

4. If stri is the sub-string of strj, we say that strj covers stri. For example,

the 4-nrs string 3124 covers 2 2-nrs strings {312, 124}, 3 2-nrs strings

{31, 12, 24} and 4 1-nrs strings {3, 1, 2, 4}.

nrs strings carries important information about how the video editor ar-

range the video shots. We can easily find all k − nrs string by scanning the

video label string. Then we use them as skimming candidates. Some sample

nrs strings are shown in Figure 6.7:

2-nrs strings


4-nrs strings


Figure 6.7: Several detected nrs string in a movie scene

To ensure the balanced content coverage, we hope that the skimming shots

is able to cover as many semantically important shots as possible. To guarantee

the coherence of the video skimming, we hope that in the skimming, we can

pick more longer substrings from the video shot list. Thus the k-nrs strings

become good candidates for video skimming since they are composed by video

shots depicting non repetitive contents, and they are a coherent part of the

original video. By scanning the video shot string we can easily get all k-nrs

strings for all k.

We then formulate the video skimming generation problem as follows:
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Problem 6 For a video scene, given the target skimming length Lvs, a set of

video shots {sh1...shn} contained in the scene, the corresponding video shot

length set {li}, and the corresponding video shot group label set {lb1...lbn},

find a continuous nrs string set SKIM = {nrsj}, such that:

1.
∑

j Inrsj
is maximized (semantic importance summation is maximized);

2. |SKIM | is minimized;

3. Minimize the duplicated items in SKIM ;

4.
∑

j(lnrsj
) = lt;

To solve the above problem, we propose a greedy method algorithm, which

is described in Algorithm 1:

Algorithm 7 Video skimming selecting algorithm

Input: The set of all nrs strings NRS; The target skimming length Lvs;
Output: The selected nrs set SKIM that form the video skimming
BEGIN SKIM = ∅
STEP 1: Sort the nrs strings in NRS according to their importance value;
while Lvs > 0 do

Select the best nrs string nrsopt, such that:

1. Lnrsopt
< Lvs

2. ∀nrsi ∈ N and Lnrsi
< Lvs, Inrsopt

≥ Inrsi

if Found then

1. SKIM = S ∪ {nrsopt}

2. Lvs = Lvs − Lnrsopt

3. NRS = NRS − {nrst|nrsopt covers nrst}
else if Not found then

GOTO END
end if

end while

END

Algorithm 1 continue selecting the most uncovered important nrs strings

into the video skimming, and discard the already covered short nrs strings so
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that the semantic important contents are selected while the redundancy of the

video skimming is minimized. By this algorithm we obtain a set of coherent

video segments as the video skimming, such that the content coverage and

coherency can be simultaneously achieved.

6.5 Experiments

To test the performance of our proposed approach, we have implemented the

proposed video annotation and summarization framework then apply it to

some movie clips. We employed a PC with 2.0G hz P4 CPU and 512Mb RAM

on the Win2000 OS as the test bed. The weight parameter k is set to 0.6,

and the time threshold t1 is set to 4 seconds. Three movie clips and 1 sitcom

clip are processed, and two skimmings generated at skim rate 0.15 and 0.30

are extracted for each test clip. Details about the video clips are shown in

Table 6.5.

To evaluate the quality of the generated video skimming, we employ two

criterion: meaningfulness and favorite. Since it is hard to objectively eval-

uate a video skimming, we use the following subjective test to compare the

performance of our new video skimming generation scheme and the method

we proposed in [36]. We have invited 10 test users to watch the video skim-

ming generated from the video by the two methods at skim rate 0.15 and

0.30. To evaluate meaningfulness, the test users are asked to answer several

questions about the key events that the video depicts(who has done what?).

The scores are scaled to [0, 100]. To compare the favorite, we ask the user to

select a “better” video skimming between the video skims generated by the

two approaches, and the number of users who choose the skim as “better” is

recorded as the favorite score. Figure 6.8 and Figure 6.9 show the average

meaningfulness and favorite scores for the video skims generated by our pro-

posed method and method in [36] respectively. The numbers of continuous
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video segments according to the original video that the video skims contain

are also employed as a measure of coherence. The experimental results are also

shown in Table 6.5 (Mfn. means Meaningfulness, Fav. means favorite, N.S.

means Number of Segments, SEM means the new semantic approach, GRA

means our old graph based approach).

Figure 6.8: Meaningfulness Scores

Figure 6.9: Favorite Scores

Our experimental results are quite encouraging. In terms of the mean-

ingfulness, at the skim rate 0.15, the proposed semantic video summarization

method obtain a quite high mean score 77.95. At skim rate at 0.30, the score

achieved is even higher. Moreover, in most cases, our new semantic approach
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Video Clip Duration Actors Events Skim Rate Mfn. Fav. N.S.

Movie1 1403 sec. 9 7
0.15 78.5/82.3 7/3 15/59
0.30 97.1/95.6 9/1 22/89

Movie2 1230 sec. 7 8
0.15 77.5/ 76.4 9/1 16/44
0.30 96.2/ 92.9 10/0 22/65

Movie3 477 sec. 6 4
0.15 82.5/ 80.5 6/4 12/30
0.30 92.5/95.0 9/1 19/46

Sitcom1 1183 sec. 8 9
0.15 73.3/71.1 7/3 24/54
0.30 88.8/84.3 8/2 46/87

Average — — —
0.15 77.95/77.57 7.25/2.75

—
0.30 93.65/91.65 9/1

Table 6.1: User test results. Scores for the new approach are bold

has gained a higher score than our previous graph-optimization approach. In

terms of favorite, we can see that although both video skimming is meaningful,

at both skim rates, most users would prefer the video skimming generated by

the new method. The major reason should be that the new skim is more coher-

ent. We also find that our new approach generates much less video segments

than the previous approach, which greatly increase the coherence. From the

experimental results we can make the conclusion that our proposed method

is able to generate a better video skimming in comparison with our previous

work.

6.6 Summary

In this chapter, we illustrate a novel framework for semantic video summariza-

tion. We provide the users a semi-automatic system to help them annotating

the video semantic contents efficiently. Then we combine the semantic informa-

tion and structure information of the video, compute the semantic importance

for each video shot, analyze the arrangement patterns of the video shots. Fi-

nally, we obtain a dynamic skimming by selecting the key video shot strings.

The experimental results show that our approach ensures both the balanced
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content coverage and visual coherence. Experimental results show that the

framework is effective in generating good quality video skims.



Chapter 7

Conclusion remarks

7.1 Summary

Video is getting more and more popular now than ever before, due to the rapid

growth of the Internet bandwidth and the growing use of video in education,

entertainment, and information sharing. Many organizations produce huge

volume of video data everyday. Facing the massive data volume, end users

find that it is inefficient to browse a favorite video from the Internet, and

the content providers have to face the tedious work of managing the ever

growing video database. The urgent problem brings a lot attention to video

summarization, which is a new technology intends to solve the problem by

providing the people with concise and informative content presentations so

that the users can quickly grasp the major contents of a video.

Most video summaries goes into the following two types: static video story

board, which is composed of a set of salient images extracted or synthesized

from the original video, and dynamic video skimming, which is a shorter version

of the original video made up of several short video clips.

This thesis presents our work done on automatic video summarization. We

first specify three goals that a video summary with good quality should achieve:

1. Conciseness–For conciseness, the length of the generated video skim-

ming should be within the user-specified length Lvs; the static summary

94
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should not contain too many images.

2. Balanced content coverage–As the video is a structured document,

the video skimming should be able to represent the original contents

with balance. At the same time, both the visual diversity and the tem-

poral coverage of the original contents should be reflected by the video

skimming.

3. Visual coherence–One problem for traditional video skimming gener-

ation is that the user often feel that the video skimming is quite choppy.

A good video skimming should increase the coherence of the video skim-

ming while preserving the content coverage.

In conclusion, we have proposed a automatic video content analysis and

summarization framework. First, analyze the structure of the video, based on

the structure, we create video summaries that is able to achieve the above three

goals. Our research work also comprises some initial work on video semantic

content annotation and semantic video summarization. To obtain and utilize

the semantic information of the video, a semi-automatic video annotation sys-

tem is built and video summary are generated based on the semantic content

descriptions.

Our research work has the following contributions:

1. We have proposed several targets that a video summary with good qual-

ity should have, and we have achieve them in our framework.

2. We analyze the intrinsic video shot-shot group-scene structure of the

video and employ the structure information to help us in video skimming

generation. The balanced content coverage is thus guaranteed.

3. We model the video scenes into a graph based on the video shots con-

tained in it, and select video shots by searching a constrained longest
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path in that graph. Our method is able to cover both the visual content

coverage and the temporal content distribution simultaneously.

4. We propose a semantic video annotation and summarization framework

to help the user to annotate the video shots semi-automatically. An

importance measure is derived from the semantic content descriptions

based on mutual reinforcement principle. Video summaries are then

generated with the semantic descriptions. The performance of our new

work is compared with our previous work.

7.2 Future work

In this paper we describe the work we have done on video content analysis and

summarization. A graph-optimization based video summarization framework

and a semantic video summarization framework have been proposed. The

frameworks themselves are quite flexible; many other features and constraints

can be added into this framework as its extension. In the future, we may

enhance the system by incorporating better feature analysis technique into

our framework.

Currently our system provides only limited interactivity for the user. Our

framework can be further extended by incorporating the user defined prefer-

ence. The user may specify what he is specially interested in, or what he is not

interested in to make a personalized video summary that is specially useful to

himself. Different ways for user to describe and express his preference during

interaction with the video summarization system will be investigated.

For video semantic recovery, one possible way to obtain video semantic

description is using the video production documents. During video document

production, a lot of planning work and paper materials is produced, like movie

screenplays, scripts, plans, etc. The information contained in them contains

time, location, order, actor, dialog script, background music, etc., which is
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detailed enough for further processing. Moreover, recovering such detailed

information from produced video automatically is far beyond up-to-date in-

telligent systems’ abilities. So one good practical way to resolve the semantic

gap and obtain accurate semantic video descriptions is to find a method to

better incorporate Mpeg-7 during video production and we can directly obtain

video semantic description with very low cost, which is a alternative to obtain

reliable video semantic descriptions.
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