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Abstract of thesis entitled:

Web Mining Techniques for Query Log Analysis and Expertise Retrieval

Submitted by DENG, Hongbo

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in September 2009

With the large increase in the amount of information available online, rich

Web data can be obtained on the Internet, such as over one trillion Web pages,

millions of scientific literature, and different interactions with society, like

question answers, query logs. Currently, Web mining techniques has emerged

as an important research area to help Web users find their information need.

In general, Web users express their information need as queries, and expect

to obtain the needed information from the Web data through Web mining

techniques. To better understand what users want in terms of the given query,

it is very essential to analyze the query logs. On the other hand, the returned

information may be Web pages, images, and other types of data. Beyond

the traditional information, it would be quite interesting and important to

identify relevant experts with expertise for further consulting about the query

topic, which is also called expertise retrieval.

The objective of this thesis is to establish automatic content analysis meth-

ods and scalable graph-based models for query log analysis and expertise

retrieval. One important aspect of this thesis is therefore to develop a frame-

work to combine the content information and the graph information with the

following two purposes: 1) analyzing Web contents with graph structures,
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more specifically, mining query logs; and 2) identifying high-level information

needs, such as expertise retrieval, behind the contents.

For the first purpose, a novel entropy-biased framework is proposed for

modeling bipartite graphs, which is applied to the click graph for better query

representation by treating heterogeneous query-URL pairs differently and di-

minishing the effect of noisy links. Based on the graph information, there is

a lack of constraints to make sure the final relevance of the score propagation

on the graph. To tackle this problem, a general Co-HITS algorithm is devel-

oped to incorporate the bipartite graph with the content information from

both sides as well as the constraints of relevance. Extensive evaluations on

query log analysis demonstrate the effectiveness of the proposed models.

For the second purpose, a weighted language model is proposed to aggre-

gate the expertise of a candidate from the associated documents. The model

not only considers the relevance of documents against a given query, but also

incorporates important factors of the documents in the form of document

priors. Moreover, an important approach is presented to boost the exper-

tise retrieve by incorporating the content with other implicit link information

through the graph-based re-ranking model. Furthermore, two community-

aware strategies are developed and investigated to enhance the expertise

retrieval, which are motivated by the observation that communities could

provide valuable insight and distinctive information. Experimental results on

the expert finding task demonstrate these methods can improve and enhance

traditional the traditional expertise retrieval models with better performance.
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Chapter 1

Introduction

1.1 Overview

The World Wide Web (Web) has been providing an important and indispens-

able platform for receiving information and disseminating information as well

as interacting with society on the Internet. With its astronomical growth over

the past decade, the Web becomes huge, diverse, and dynamic. On July 25,

2008, Google software engineers Jesse Alpert and Nissan Hajaj announced

that Google Search1 had discovered one trillion unique URLs [4]. Due to the

properties of the Web data, we are currently drowning in information and

facing information overload [90]. The information may consist of Web pages,

images, people and other types of data. To help Web users find their infor-

mation need, a critical issue is to understand what users want with respect to

the given query by mining the query logs. On the other hand, it would be quite

interesting and important to identify relevant experts with expertise for fur-

ther consulting about the query topic, which is also called expertise retrieval.

In order to achieve the above goals, Web mining has emerged as an impor-

tant interdisciplinary research area by leveraging several disciplines such as

1http://www.google.com/
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CHAPTER 1. INTRODUCTION 2

information retrieval, data mining, machine learning, and database systems.

The Web mining research field is fast moving, and has encountered a great

number of challenges such as scalability, spam, content quality, unstructured

data and so on [55]. As a result, many research efforts have been devoted

to pushing forward the techniques for Web search and mining. According

to analysis targets, these methods can be divided into three different types,

including Web content mining, Web structure mining and Web usage min-

ing [71, 82]. Basically, the Web content consists of several types of data

such as textual, image, audio, etc. Web content mining sometimes is called

text mining, because much of the Web content data is unstructured text

data [23, 47], which could be used to measure the relevance to the needed

information based on information retrieval models. As for the Web structure

mining, it is the process of using link analysis algorithms to analyze the node

and discover the model from link structures of the Web [24]. Web usage min-

ing [61, 99, 105, 135] try to make sense of the data generated by the Web

surfer’s sessions or behaviors. Since the content and the link structure are

two essential and important parts for the Web data, there is an increasing

demand to develop more advanced models by mining multiple information

sources, especially the text (content) and link structure (graph) information,

so as to identify needed information with high relevance and quality.

The objective of this thesis is to establish automatic content analysis meth-

ods and scalable graph-based models for identifying the needed information

with high relevance and good quality. Many data types arising from Web

search and mining applications can be modeled as the combination of both

content and graph information. Examples include queries and URLs in query

logs, and authors and papers in scientific literature. One important aspect of

this thesis is therefore to develop a framework to combine the content informa-

tion and the graph information with the following two purposes: 1) analyzing
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Web contents with graph structures, more specifically, mining query logs; and

2) identifying high-level information needs, such as expertise retrieval, behind

the contents. As the query log is a good resource that records users’ search

histories, it is very essential to mine the query logs for capturing users’ infor-

mation needs. In addition, expertise retrieval can be viewed as a high-level

information retrieval beyond the traditional document retrieval, whose task

is to retrieve a ranked list of persons who possess expertise on a given topic.

In this thesis, several general models are proposed for query log analysis and

expertise retrieval.

In this chapter, we briefly introduce the Web mining techniques as well

as the applications, including the query log analysis and expertise retrieval.

Then we present the objectives of this thesis and outline the contributions.

Finally, we provide an overview of the rest of this thesis.

1.2 Web Mining Techniques

The Web search and mining research is a converging research area from several

communities, such as information retrieval, link analysis, data mining, and

machine learning, as well as others. Each of them has been separately studied

in the past decades. Let us briefly introduce them as follows.

1.2.1 Traditional Information Retrieval

Web search and mining has its root in information retrieval [5, 82, 91]. In

general, information retrieval (IR) refers to the retrieval of unstructured data.

Most often, it is related to Text Retrieval, i.e. the retrieval of textual docu-

ments. Other types of retrieval include, for example, Image Retrieval, Video

Retrieval, and Music Retrieval. Retrieving information simply means finding

a set of documents that are relevant to the user query. Clearly, one cen-

tral problem regarding information retrieval systems is to rank documents
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optimally given a query so that relevant documents would be ranked above

nonrelevant ones. The retrieval accuracy of an IR system is directly deter-

mined by the quality of the scoring function. Thus, a major research challenge

in information retrieval is to seek an optimal scoring function (retrieval func-

tion), which is based on a retrieval model. Many important IR models based

on the content information have been proposed to derive the retrieval func-

tions that can be computed to score and rank documents. We will briefly

introduce some traditional IR models in Chapter 2.1.

1.2.2 Link Analysis

The analysis of hyperlinks and the graph structure of the Web has been in-

strumental in the development of Web search [91]. Link analysis [17, 22] is one

of many factors considered by Web search engines in computing a composite

score for a Web page on any given query. Basically, link analysis for Web

search has intellectual antecedents in the field of citation analysis [50, 119],

which seeks to quantify the influence of scholarly articles by analyzing the

pattern of citations among them. As citations represent the conferral of au-

thority from a scholarly article to others, link analysis on the Web treats

hyperlinks from a Web page to another as a conferral of authority. The phe-

nomenon of citation is prevalent and dependable enough that it is feasible

for Web search engines to derive useful signals for ranking from more sophis-

ticated link analysis. Several Web search ranking algorithms use link-based

centrality metrics, including Marchiori’s Hyper Search [92], Google’s PageR-

ank [18], Kleinberg’s HITS algorithm [69], and the TrustRank algorithm [52].

Furthermore, link analysis is also conducted in social network analysis in or-

der to understand and extract information from the relationships between

individual in social networks. Such individuals are often persons, but may be

groups, organizations, nation states, Web sites, or citations between scholarly
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publications. For example the analysis might be of the interlinking between

researchers, politicians’ Web sites or blogs. We will briefly introduce some

link analysis methods in Chapter 2.2.

1.2.3 Machine Learning

There is a close relationship between machine learning and Web mining re-

search areas. A major focus of machine learning research is to learn to recog-

nize complex patterns and make decisions based on data. Machine learning

has been applied to many applications of the Web search and mining, such as

learning to rank [3, 20, 109], text categorization [62, 77, 124, 143], Web query

classification [12, 81, 129], etc. In short, Web search and mining intersects

with the application of machine learning on the Web.

In general, machine learning can be typically categorized as supervised

learning, unsupervised learning, semi-supervised learning, as well as others.

Supervised learning considers the problems of estimating certain functions

from examples with label information, such as Support Vector Machines

(SVM) [29, 80], Neural Network [25, 70, 76] and naive Bayes classifier [94].

Unsupervised learning considers the problem of learning from a collection

of data instances without training labels. One of the most popular areas

of study in unsupervised learning is data clustering techniques, which have

been widely used for data mining applications [58]. Semi-supervised learning

has recently been proposed to take advantage of both labeled and unlabeled

data, which has been demonstrated to be a promising approach. We will

introduce some semi-supervised learning methods, especially the graph-based

semi-supervised learning algorithms, in Chapter 2.3.
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1.3 Applications

In addition to the studies of Web mining techniques, this thesis also investi-

gates these techniques and algorithms with applications to real-world prob-

lems. Two main applications are studied. One is query log analysis, and

the other is expertise retrieval. Although there are many differences between

query log analysis and expertise retrieval, the key point is that all of these

data, the query log data and the expertise retrieval data, can be viewed as

the combination of the content and graph information. The objective of this

work is to propose a general Web mining framework to combine the content

and the graph information effectively, by leveraging Web mining techniques

to boost the performance of these applications. Let us briefly introduce the

main applications and related problems which will be explored in this thesis.

1.3.1 Query Log Analysis

Web query log analysis has been studied widely with different Web mining

techniques for improving search engines’ efficacy and usability in recent years.

Such studies mined the logs to improve numerous search engine’s capabilities,

such as query suggestion, query classification, ranking, targeted advertising,

etc. The click graph [31], a bipartite graph between queries and URLs, is

an important technique for describing the information contained in the query

logs, in which edges connect a query with the URLs that were clicked by

users as a result. As the edges of the click graph can capture some semantic

relations between queries and URLs, it is useful to represent the query using

the vector of documents when only considering the graph information. State-

of-the-art approaches based on the raw click frequencies for modeling the

click graph, however, are not noise-eliminated. Nor do they handle hetero-

geneous query-URL pairs well. To deal with these critical problems, a novel

entropy-biased framework [39] is proposed for query representation on the
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click graph, which incorporates raw click frequencies and other information

with the entropy information of the connected URLs.

Based on the click graph, there is a natural random walk on the bipartite

graph, which demonstrates certain advantages comparing with the traditional

approaches based on the content information. Many link analysis methods

have been proposed, such as HITS [69] and PageRank [18], to capture some

semantic relations within the bipartite graph. However, there is a lack of

constraints to make sure the final relevance of the score propagation on the

graph, as there are many noisy edges within the bipartite graph. In this thesis,

a novel and general Co-HITS algorithm [41] is proposed to incorporate the

bipartite graph with the content information from both sides as well as the

constraints of relevance. Moreover, the Co-HITS algorithm is investigated

from two different perspectives, and applied to query suggestion by mining

the query log data.

1.3.2 Expertise Retrieval

In previous subsection, we have briefly described several models and their

applications to query log analysis by combining the content and graph infor-

mation. As we know, there are many other data types can be regarded as

the combination of the content and graph information. In this subsection,

we will introduce another application, expertise retrieval, by extending the

previous models to incorporate different information in a more heterogeneous

information environment.

With the development of Web mining and information retrieval tech-

niques, many research efforts in this field have been made to address high-level

information retrieval and not just the traditional document retrieval, such as

expertise retrieval [9]. Expertise retrieval has received increased interests

since the introduction of an expert finding task in TREC 2005 [30, 133]. The



CHAPTER 1. INTRODUCTION 8

task of expertise retrieval is to identify a set of persons with relevant expertise

for the given query. Traditionally, the expertise of a person is characterized

based on the documents that have been associated with the person. One

of the state-of-the-art approaches [8, 37] is the document-based model using

a statistical language model to rank experts. However, these methods only

consider the documents associated with the experts. Actually, in addition

to the associated documents, there is much other information that can be

included, such as the importance of the documents, the graph information,

and the community information. Therefore, how to utilize these informa-

tion to model and enhance the expertise retrieval becomes an interesting and

challenging problem.

In this thesis, a weighted language model [37] is proposed to aggregate the

expertise of a candidate from the associated documents. The model not only

considers the relevance of documents against a given query, but also incor-

porates important factors of the documents in the form of document priors.

Moreover, an important approach is presented to boost the expertise retrieval

by incorporating the content with other implicit link information through

the graph-based re-ranking model [40]. Furthermore, two community-aware

strategies are developed and investigated to enhance the expertise retrieval,

which are motivated by the observation that communities could provide valu-

able insight and distinctive information. Experimental results on the expert

finding task demonstrate these methods can improve and enhance traditional

the traditional expertise retrieval models with better performance.

1.4 The Unified Framework and Its Contributions

This thesis aims to propose a general Web mining framework to combine

the content and the graph information effectively. Within this thesis, the

framework is investigated and developed based on two different applications:
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Figure 1.1: The query log data.

query log analysis and expertise retrieval. In the query log analysis, the query

log data, as shown in Figure 1.1, can be modeled as a bipartite graph along

with the content information, i.e., the query terms and the URL text. In the

expertise retrieval, the data is more complicated as shown in Figure 1.2. Be-

sides the paper content information, there is some individual and combined

graph information, including the tripartite graph, the co-authorship graph,

the citation graph, and the paper-author-community relational graph. Al-

though there are many differences between these two applications, the key

point is that both data can be viewed as the combination of the content and

the graph information. Motivated by this observation, this thesis proposes

a general Web mining framework to take into account the content and the

graph information, which combines information retrieval models, link analy-

sis algorithms, and machine learning techniques in a unified way to boost the

performance of these applications.

Based on the framework, some challenging problems are addressed and

novel models are proposed to solve them effectively. In summary, several
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Figure 1.2: The expertise retrieval data.

Table 1.1: Several developed models within the framework.

Model Data Techniques

Entropy-biased Model Bipartite Graph LA + IR

Co-HITS Algorithm Bipartite Graph + Content LA + IR + ML

Weighted Language Model Content + Citation IR

Graph-based Re-ranking Model Content + Affinity Graph LA + IR +ML

Enhanced Model with Communities Content + Community LA + IR +ML

LA: Link Analysis

IR: Information Retrieval

ML: Machine Learning
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developed models within the framework are described in Table 1.1, which il-

lustrates the relationships between the models, the used data, and the utilized

techniques. Basically, the entropy-biased model analyzes the bipartite graph

using link analysis and information retrieval techniques, while the Co-HITS

algorithm makes full use of the bipartite graph and the content information.

A weighted language model takes into consideration not only the relevance

between a query and documents but also the importance of the documents.

Moreover, a graph-based re-ranking approach is developed to refine the rel-

evance scores by regularizing the smoothness of the relevance scores on the

graph along with a regularizer on the initial relevance scores. Furthermore, an

enhanced model is investigated with the community information. The main

contributions of this thesis can be further described as follows:

(1) A Novel Entropy-biased Framework for Query Representation

on the Click Graph.

Based on the click graph, the query can be represented by a vector of

connected documents when only considering the graph information. A

novel entropy-biased framework is proposed for better query representa-

tion by combining the inverse query frequency with the click frequency

and user frequency information simultaneously. In the framework, a

new notion, namely the inverse query frequency, is introduced to weigh

the importance of a click on a certain URL, which can be extended and

used for other bipartite graphs. The proposed entropy-biased model is

the first formal model to distinguish the variation on different query-

URL pairs on the click graph. In addition, a new source, called the user

frequency, is identified for diminishing the manipulation of the malicious

clicks. In our entropy-biased framework, Click Frequency-Inverse Query

Frequency (CF-IQF) is a simplified version of the entropy-biased model.

And this weighting scheme can be applied to other bipartite graphs.
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(2) A Generalized Co-HITS Algorithm.

A generalized Co-HITS algorithm is introduced to incorporate the bi-

partite graph with the content information from both sides. Moreover,

the Co-HITS algorithm is investigated based on two frameworks, in-

cluding the iterative and the regularization frameworks, which illustrate

the generalized Co-HITS algorithm from different perspectives. The ba-

sic idea of the iterative framework is to propagate the scores on the

bipartite graph. Compared with previous methods, the key difference is

that the score is updated according to the aggregated score along with

the initial relevance scores. For the iterative framework, it contains

HITS and personalized PageRank as special cases. In the regularization

framework, we successfully build a connection with HITS, and develop a

new cost function to consider the direct relationship between two entity

sets, which leads to a significant improvement over the baseline method.

To illustrate the methodology, we apply the Co-HITS algorithm to the

application of query suggestion by mining the query log data.

(3) A Weighted Language Model for Expertise Retrieval with Graph-

based Regularization.

In order to investigate the combination of more heterogeneous informa-

tion, the high-level expertise retrieval task is addressed based on the

large-scale DBLP bibliography and its supplemental data from Google

Scholar. A novel expert finding framework is proposed to identify the

relevant experts in the academic field. A weighted language model is

formally defined to aggregate the expertise of a candidate from the as-

sociated documents. The model takes into account not only the rele-

vance between a query and documents, but also the importance of the

documents. In the framework, the paper importance is interpreted by

introducing a prior probability that the paper is written by an expert.
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Furthermore, a graph-based regularization method is integrated to boost

the performance by refining the relevance scores of the documents.

(4) Enhancing Expertise Retrieval Using Community-aware Strate-

gies.

Motivated by the observation that communities could provide valuable

insight and distinctive information, two community-aware strategies are

investigated and developed to enhance the expertise retrieval. We first

propose a new smoothing method using the community context for sta-

tistical language model, which is employed to identify the most relevant

documents so as to reflect the expertise retrieval in the document-based

model. Then, the community-sensitive AuthorRank is introduced to

model the authors’ authorities based on the community coauthorship

networks. Finally, an adaptive ranking refinement strategy is developed

to aggregate the ranking results of both document-based model and

community-sensitive AuthorRank. Experimental results demonstrate

the effectiveness and robustness of both community-aware strategies.

Moreover, the improvements made in the enhanced models are signifi-

cant and consistent.

1.5 Thesis Organization

This thesis reviews the main methodology in Web search and mining, and

proposes several models that integrate different techniques to incorporate

heterogeneous information simultaneously. In this thesis, several important

issues, including the generalized Co-HITS algorithm and the graph-based

regularization, are extensively explored to incorporate content with graph

information. This thesis also extends these techniques to address some real-

world problems in query log analysis and expertise retrieval applications which
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demonstrate promising results. The rest of this thesis is organized as follows:

• Chapter 2

This chapter briefly reviews some background knowledge and work re-

lated to the main methodology that will be explored in this thesis.

• Chapter 3

This chapter studies the problem of query representation by modeling

click graphs. We present a novel entropy-biased framework for modeling

query representation, whose basic idea is to treat various query-URL

pairs differently according to the inverse query frequency (IQF). We

not only formally define and quantify this IQF weighting scheme, but

also incorporate it with the click frequency and user frequency informa-

tion on the click graph for an effective query representation. Extensive

evaluations on query similarity analysis and query suggestion will be

discussed.

• Chapter 4

This chapter proposes a general Co-HITS algorithm to incorporate the

bipartite graph with the content information from both sides. We inves-

tigate the algorithm based on two frameworks, including the iterative

and the regularization frameworks. The Co-HITS algorithm is applied

to the application of query suggestion, which demonstrates the effective-

ness of the Co-HITS algorithm with empirical evaluation on real-world

query logs.

• Chapter 5

This chapter addresses the high-level expertise retrieval task and in-

vestigates the combination of more heterogeneous information. A novel

expertise retrieval framework is proposed based on the large-scale DBLP

bibliography and its supplemental data from Google Scholar. We define
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a weighted language model to aggregate the expertise of a candidate

from the associated documents. Moreover, we integrate a graph-based

regularization method to enhance our model by refining the relevance

scores of the documents with respect to the query. Empirical results on

benchmark datasets will be discussed.

• Chapter 6

This chapter describes two community-aware strategies to enhance ex-

pertise retrieval. One strategy is to smooth the language model with

the community context, and the other strategy is to develop an adaptive

ranking refinement method with the community-sensitive authorities.

This work is motivated by the observation that communities could pro-

vide valuable insight and distinctive information. Extensive evaluation

on benchmark datasets will be studied.

• Chapter 7

The last chapter summarizes this thesis and addresses some directions

to be explored in future work.

In order to make each of these chapters self-contained, some critical con-

tents, e.g., model definitions or motivations having appeared in previous chap-

ters, may be briefly reiterated in some chapters.

2 End of chapter.



Chapter 2

Background Review

In this chapter, we briefly review some backgrounds about Web mining tech-

niques, including information retrieval models, link analysis algorithms, semi-

supervised learning. In addition, we introduce the main applications, i.e.,

query log analysis and expertise retrieval, that will be explored in the thesis.

2.1 Information Retrieval Models

In information retrieval, a major research challenge is to seek an optimal

ranking function, which is based on a retrieval model. The retrieval model

formally defines the notion of relevance and enables us to derive a retrieval

function that can be computed to score and rank documents. The three

classic models in information retrieval are called Boolean model, vector space

model, and probabilistic model. The Boolean model [51, 122] is a simple

retrieval model based on set theory and Boolean algebra, in which documents

and queries are represented as sets of index terms. As the Boolean model

suffers from major drawbacks [5], here we mainly introduce the vector space

model [65, 123, 141, 121], and the probabilistic model [74, 115, 134] especially

the language model [75, 108, 145, 147, 148].

16
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2.1.1 Vector Space Model

In the vector space model [120, 123, 141], documents and queries are repre-

sented as vectors in a t-dimensional space. Each dimension corresponds to

a separate term. The definition of term depends on the application, which

could be single word, keyword, or longer phrase. Typically, the words are cho-

sen to be the terms, the dimensionality of the vector is the number of words

in the vocabulary. If a term t occurs in the document dj , the term is asso-

ciated with a non-zero weight wt,dj
in the document vector

−→
dj . These term

weights are ultimately used to compute the similarity or relevance between

each document and the user query.

There are several different ways developed for computing these term weights,

and one of the best known schemes is TF-IDF (term frequency-inverse doc-

ument frequency) weighting [65, 121]. Let freqi,j (raw term frequency) be

the number of times a given term ti occurs in the document dj. Then, the

normalized term frequency tfi,j of term ti in document dj is given by

tfi,j =
freqi,j
∑

i freqi,j

, (2.1)

where the denominator is the sum number of all terms in document dj. If

the term ti does not appear in the document di, then tfi,j = 0. Such term

frequency is provides one measure of how well that the term describes the

document contents. The inverse document frequency is a measure of the

general importance of the term. Let N be the total number of documents in

the corpus and ni be the number of documents in which the term ti appears.

Thus, the inverse document frequency for ti is given by

idfi = log
N

ni

. (2.2)

The best known TF-IDF weights are given by

wi,j = tfi,j × log
N

ni

. (2.3)
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A high weight in TF-IDF is reached by a high term frequency (in the given

document) and a low document frequency of the term in the whole collection

of documents; the weights hence tend to filter out common terms.

For a collection of documents, a term-document matrix can be utilized

to describe the occurrences of terms in documents. Generally, it is a sparse

matrix. In order to reduce the high dimensionality of term-document matrix,

some advanced techniques, such as Latent Semantic Analysis (LSA) [36, 57],

are proposed to transforms the occurrence matrix into a relation between the

terms and some concepts.

For the vector space model, the document vector
−→
dj is defined as

−→
dj =

(w1,j, w2,j, ..., wt,j), and the query vector −→qi = (w1,i, w2,i, ..., wt,i). The vector

space model proposes to evaluate the similarity of the document dj with

regard to the query qi as the correlation between these two vectors
−→
dj and −→qi .

One simple way is to quantify the correlation using the cosine of the angle

between two vectors, which is defined as

sim(dj , qi) =

−→
dj · −→qi

|−→dj | × |−→qi |
=

∑t

k=1 wj,k × wk,i
√

∑t

k=1 w2
j,k ×

√

∑t

k=1 w2
k,i

(2.4)

where |−→dj | and |−→qi | are the norms of the document and query vectors. The

factor |−→qi | does not affect the ranking of documents because it is the same

for all documents, while the factor |−→dj | provides a normalization in the space

of the documents. In general, the vector space model with heuristic TF-IDF

weighting and document length normalization [131] has traditionally been

one of the most effective retrieval models, and it remains quite competitive

as a popular retrieval model.

2.1.2 Probabilistic Model

In the probability model, the process of document retrieval can be treated as

estimating the probability that this document is relevant to this query [74,
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115, 134]. The Probability Ranking Principle proposed in [112] is often taken

as the foundation for probabilistic retrieval models. Formally, let R be a

binary random variable that includes whether d is relevant to q or not. It

takes two values which we denotes as r (“relevant”) and r (“not relevant”).

Given a query q, the probabilistic model assigns to each document dj the

ratio p(r|q, dj)/p(r|q, dj) which computes the odds of the document dj being

relevant to the query q. Equivalently, we may use the following log-odds ratio

to rank documents:

log
p(r|q, dj)

p(r|q, dj)
= log

p(q, dj|r)p(r)

p(q, dj|r)p(r)
. (2.5)

Two different ways are reviewed in [145] to factor the conditional probability

p(d, q|r), corresponding to “document generation” and “query generation.”

Using document generation, p(d, q|r) = p(d|q, r)p(q|r), the following rank-

ing formula is obtained:

log
p(r|q, dj)

p(r|q, dj)
= log

p(dj|q, r)
p(dj|q, r)

+ log
p(r|q)
p(r|q) . (2.6)

Based on document generation, many classical probabilistic retrieval mod-

els [49, 114, 145], including the Binary Independence Retrieval (BIR) model [49,

114], have been developed to estimate the probability of relevance.

Let us now consider refining Eq. 2.5 with query generation, i.e., p(d, q|r) =

p(q|d, r)p(d|r). In this case, we obtain the following formula:

log
p(r|q, dj)

p(r|q, dj)
= log

p(q|dj, r)

p(q|dj, r)
+ log

p(r|dj)

p(r|dj)
. (2.7)

Various models based on query generation have been explored in [49, 74].

Under the assumption R = r, the document dj is conditionally independent

of the query q, the formula can be transformed to be

log
p(r|q, dj)

p(r|q, dj)
rank
= log p(q|dj, r) + log

p(r|dj)

p(r|dj)
. (2.8)
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The major component p(q|dj, r) is the probability that a user would use q

as a query to retrieve dj. The second component p(r|dj) is a prior which is

usually ignored.

Over the decades, an interesting class of probabilistic models called lan-

guage modeling approaches have led to effective retrieval functions. The lan-

guage modeling approach was first introduced by Ponte and Croft in [108].

The goal is to infer a language model for each document and rank according

to the estimated probability p(q|dj) of the query given the language model

of document dj. Many variations of the basic language modeling have since

been proposed and studied, including relevance-based language model [75],

title language model [60], cluster-based language models [84], etc. Typically,

a necessary step for these language models is to perform smoothing for the

unseen query terms in the document. To improve the accuracy of the esti-

mated model, several different smoothing methods [145, 146, 147, 148], such

as Jelinek-Mercer smoothing and Bayesian smoothing using Dirichlet priors,

have been proposed which plays a similar role to term weighting in a tradi-

tional vector space model.

Language models are attractive because of their foundations in statistical

theory. Here we study the basic language modeling approach. To determine

the probability of a query given a document, we infer a document language

model θd for each document. The relevance score of document d with respect

to query q is then defined as the conditional probability p(q|θd). Suppose

q = t1...tm and each term t is generated independently, the relevance score

would be,

p(q|θd) =
∏

t∈q

p(t|θd)
c(t,q), (2.9)

where c(t, q) is the count of term t in query q, and p(t|θd) is the maximum

likelihood estimator of the term in a document d. With such a model, the

retrieval problem is reduced to the problem of estimating p(ti|θd). In general,
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the Dirichlet prior smoothing method [148] is employed to assign nonzero

probabilities to unseen words as follows:

p(t|θd) =
c(t, d) + νp(t|C)

|d|+ ν
. (2.10)

where ν is the parameter to control the amount of smoothing, and p(t|C) is

the collection language model. As the superior performance achieved by the

statistical language model, in this thesis, we employ the statistical language

model as the baseline model with the content information for several Web

mining applications.

2.2 Web Link Analysis

The analysis of hyperlinks and the graph structure has been extensively stud-

ied in the development of Web search and mining. The link analysis methods

are basically used for ranking Web search results as one of many factors in

computing a composite score for a Web page or document. In this section,

we briefly review two fundamental methods, PageRank [18] and HITS [69],

as well as some other variations for link analysis.

2.2.1 PageRank

The intuition of PageRank is that a link from page j to page i represents a vote

for page i, by page j. The pages which are linked by many “important” pages

become more “important”. The PageRank of a page is defined recursively

and roughly based on the number of inbound links (inlinks) as well as the

PageRank of the pages providing the links. Given the Web graph G = (V, E),

the PageRank score of the page i (denoted by P (i)) is formally defined by

P (i) = (1− d)
1

N
+ d

∑

(j,i)∈E

P (j)

Oj

, (2.11)
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where N is the total number of pages, and Oj is the number of outbound links

of page j. The above formula can be interpreted as a random surfer model who

gets bored after several clicks and switches to a random page. The parameter

d is a damping factor which can be set between 0 and 1, and it is usually

set around 0.85. Because of the size of the actual Web, the PageRank values

are calculated using an approximatively iterative computation. This means

that each page is assigned an initial starting value 1 and the PageRanks of all

pages are then calculated in several computation circles based on the above

equation. Finally, the sum of all pages’ PageRank values still converges to

the total number of Web pages.

2.2.2 HITS

HITS (Hyperlink-Induced Topic Search) [69] is another important link anal-

ysis algorithm that determines two values for each page, a authority score

and a hub score, instead of a single value in PageRank. The intuitive notions

behind the HITS algorithm are that good hubs point to good authorities and

that good authorities are linked by good hubs.

In the HITS algorithm, authority and hub values are defined in terms of

one another in a mutual recursion. To begin the calculation, the authority

value A(i) and the hub value H(i) of each page are set to be 1. Then, the

iterative algorithm with a pair of updates is given by the follow equations:

A(i) ←
∑

j 7→i

H(j) (2.12)

H(i) ←
∑

i7→j

A(i), (2.13)

where i 7→ j means there exists a link from i to j. Thus, an authority value

is computed as the sum of the scaled hub values that point to that page, and

meanwhile, a hub value is the sum of the scaled authority values of the pages

it points to. Essentially, a good hub represents a page that points to many
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other pages, and a good authority represents a page that is linked by many

different hubs.

2.2.3 Other Variations

There are a family of variations proposed based on the original PageRank and

HITS, such as topic-sensitive PageRank [53, 54], EigenTrust [67], PopRank [101],

TrustRank [52], BrowseRank [85], and so on. In addition, a family of work

on the structural re-ranking paradigm over a graph is proposed to refine the

initial ranking scores based on centrality within graphs, through PageRank-

inspired algorithm [72] and HITS-style cluster-based approach [73]. In [43],

the authors have tried to model a unified framework for link analysis, which

includes HITS and PageRank. Several normalized ranking algorithms are

studied which are intermediate between HITS and PageRank.

Beyond explicit hyperlinks on the Web, the PageRank and HITS al-

gorithms can be utilized to explore other implicit links in other contexts.

PopRank [101] is developed to extend PageRank models to integrate het-

erogenous relationships between objects. Another approach suggested by

Minkov et al. [98] has been used to improve an initial ranking on graph walks

in entity-relation networks. Cohn and Hofmann [28] propose pLSI+PHITS to

construct the latent space by combining content with link information, using

content analysis based on pLSI [57] and link analysis based on PHITS [27].

Zhang et al. [149] propose a method to improve Web search results based

on a linear combination of results from text search and authority ranking.

However, the linear combination does not make full use of the information as

it treats each of them individually. In this thesis, we propose the Co-HITS

algorithm [41], which contains HITS and PageRank as special cases, and it

integrates the graph information with the content information simultaneously.
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2.3 Semi-supervised Learning

Semi-supervised learning [26, 154] considers the problem of learning from both

a set of labeled data and a set of unlabeled data. In recent research studies,

many methods have been proposed for solving semi-supervised learning prob-

lems, such as co-training [16], self-training [118], transductive support vector

machine [63, 130], and a set of graph-based methods [13, 14, 132, 151, 156,

157]. Let us briefly review several graph-based models.

The graph-based semi-supervised learning can be modeled as a random

walk with label propagation from labeled data to unlabeled data in [155, 156].

From a different perspective, this method can be viewed as having a quadratic

loss function with infinity weight, so that the labeled data are fixed at given

label values, and a regularizer based on the graph information:

R =
1

2

n
∑

i,j

wij(fi − fj)
2 +

∑

i∈L

(fi − yi)
2, (2.14)

where wij corresponds to the weight between point i and point j, L is the

set of labeled data, and yi is the label value. In the equation, the second

component only considers the loss function using the labeled data. The local

and global consistency method proposed by Zhou et al. [151] uses the loss

function based on both labeled and unlabeled data, and the normalized graph

Laplacian in the regularizer,

R =
1

2

n
∑

i,j

wij(
fi√
Dii

− µ
fj

√

Djj

)2 +

n
∑

i

(fi − yi)
2, (2.15)

where D is a diagonal matrix with entries Dii =
∑

j wij, and µ > 0 is the

regularization parameter. The first term of the right-hand side in the cost

function is the smoothness constraint, which means that a good classifying

function should not change too much between nearby points. The second

term is the fitting constraint, which means a good classifying function should
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not change too much from the initial label assignment. The trade-off be-

tween these two competing constraints is captured by the parameter µ. By

minimizing the cost function R, the solution can be obtained which is equiv-

alent to that of the iterative label propagation algorithm. Motivated by the

graph-based semi-supervised learning, we develop the Co-HITS algorithm and

graph-based regularization model in Chapter 4 and Chapter 5, respectively.

2.4 Query Log Analysis

With the advance of Web mining technologies, many approaches have been

proposed to utilize and analyze query logs to enhance the search results in

various aspects. We apply the proposed models to query log analysis in

Chapter 3 and Chapter 4.

A common model for utilizing query logs from search engines is in the

form of a click graph [31]. Based on the click graph, many research efforts in

query log analysis have been devoted to query clustering [11, 139], query sug-

gestion [66, 86, 96], query classification [81, 127, 128, 129] and user behavior

understanding [15, 32, 45, 111]. The use of the click-through data for query

clustering has been suggested by Befferman and Berger [11], who proposed an

agglomerative clustering technique to identify related queries and Web pages.

Wen et al. [139] combined query content information and click-through in-

formation and applied a density-based method to cluster queries. The click-

through data has been studied for query expansion in the past [33, 142]. In

addition to query clustering, click-through data has also been used to learn

the rank function [64, 110]. Craswell and Szummer [31] used click graph

random walks for relevance rank in image search. Mei et al. [96] proposed

an approach to query suggestion by computing the hitting time on a click

graph. Li et al. [81] presented the use of click graphs in improving query in-

tent classifiers. These methods are proposed based on the click graph, while
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the objective of our proposed entropy-biased model [39] is to investigate a

better model to utilize and represent the click graph.

In Chapter 3, we propose an entropy-biased framework to find a better

representation through modeling click graphs. It is unique in which we focus

solely on how to represent query using the click graph. There are several

approaches that have tried to model the representation of queries or docu-

ments on the click graph. Baeza-Yates et al. [6] used the content of clicked

Web pages to define a term-weight vector model for a query. They considered

terms in the URLs clicked after a query. Each term was weighted according

to the number of occurrences of the query and the number of clicks of the

documents in which the term appeared. In [7], the authors introduced an-

other vectorial representation for the queries without considering the content

information. Queries were represented as points in a high dimensional space,

where each dimension corresponds to a unique URL. The weight assigned to

each dimension was equal to the click frequency. This is one of the traditional

click frequency models. Moreover, Poblete et al. [106] proposed the query-set

document model by mining frequent query patterns to represent documents

rather than the content information of the documents. However, these exist-

ing methods do not distinguish the variation on different query-URL pairs.

Besides, there is a trend to explore the query logs and model queries with

variation for personalization [44, 136]. Dou et al. [44] explored click entropy to

measure the variability in click results, while Teevan et al. [136] proposed re-

sult entropy to capture how often results change. In Chapter 3, we also utilize

the entropy information of the URL. Other methods are focused on person-

alization for different queries, while our proposed entropy-biased models are

different, which are focused on the weighting scheme of various query-URL

pairs. Another group of query log analysis aims to explain the log genera-

tion process [32, 46] and understand user behavior [45, 111, 140]. Dupret et
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al. [46] interpreted the data found in search engine logs by two factors: the

position of the document in the result list and the attractiveness of the doc-

ument surrogate. A fundamental problem in click data is the position bias.

Craswell et al. [32] attempted to explain that bias by modeling how proba-

bility of click depends on position. The proposed entropy-biased models [39]

are not trying to model the position-biased data, but these models seem to

be able to diminish the position-bias clicks by the inverse query frequency.

Furthermore, to incorporate the bipartite graph with the content information

from both sides, we proposes a general Co-HITS algorithm [41] and apply it

to the application of query suggestion by mining the query logs in Chapter 4.

2.5 Expertise Retrieval

As mentioned before, the objective of this thesis is to propose a general Web

mining framework to combine the content with the graph information as

well as other kinds of information effectively. In addition to the application

to query log analysis, we also address a high-level expertise retrieval task

and investigate several models to combine more heterogeneous information in

Chapter 5 and Chapter 6.

With the inclusion of expert finding in the TREC Enterprise track [30,

133], a great deal of work has been done in this area. In general, there are

two principal approaches for modeling expertise: the candidate model and

the document model [8, 48, 103]. These two models have been proposed and

compared by Balog et al. [8]. The candidate-based approach is also referred as

profile-based method in [48] or query-independent approach in [103]. These

methods build a profile (“virtual document”) [10] for each candidate based on

all documents associated with the candidate, and estimate the ranking scores

according to the candidate profile in response to a given query. On the other

hand, document-based models [8, 48] are also referred to as query-dependent
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method in [103]. These approaches first rank documents in the corpus for a

given query topic, and then find the associated candidates according to the

retrieved documents. These two kinds of models have their advantages and

disadvantages. In terms of data management, candidate-based methods may

require significantly smaller data in size than the original corpus. However,

the contribution of each document in a profile cannot be measured individ-

ually. Meanwhile, document-based models allow the application of advanced

text modeling techniques in ranking individual documents, which achieve bet-

ter performance than the candidate-based models. We choose the document-

based model as the baseline, and propose several methods to further enhance

this model with valuable graph and community information.

Based on both the candidate and the document models, an expert-finding

system has to discover documents related to a person and estimate the proba-

bility of that person being an expert from the text. One of the state-of-the-art

approaches is based on statistical language models, which have been studied

extensively for information retrieval in recent years [108, 145, 148]. Further-

more, Mimno and McCallum [97] propose an Author-Persona-Topic model

for matching papers with reviewers, in which the expertise is modeled by

multiple topical mixtures associated with each individual author. Wei and

Croft [138] describe a topic model for information retrieval tasks. The au-

thors find that interpolations between Dirichlet smoothed language models

and topic models show improvements in retrieval performance above language

models. However, all those methods only consider the relevance between a

query and documents. In our proposed weighted language models, we take

into account not only the relevance between a query and documents, but also

the importance of the documents.

Besides the categories described above, there are various methods pro-

posed to extend or enhance the expertise retrieval in many ways. Macdonald
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and Ounis present a voting model for expert search in [88], and enhance

the expert search with query expansion techniques in [89]. In [87], the au-

thors extend the expert search by identifying some high quality evidence.

In [40], the authors propose a graph-based re-ranking model and apply it to

expert finding for refining the ranking results. Furthermore, Karimzadehgan

et al. [68] leverage the organizational hierarchy to enhance expert finding.

Serdyukov et al. [125] model the process of expert finding by the multi-step

relevance propagation over the expertise graphs. Nevertheless, our proposed

community-aware strategies [38] are different from previous methods. In this

thesis, we utilize the AuthorRank [83] to measure the authority based on the

coauthorship network [100], but it is independent of any query. We develop

the query-sensitive AuthorRank as well as the adaptive ranking refinement

strategy for the enhanced model.

Most of the previous work has been concentrated on expertise retrieval

in enterprise corpora [8] or intranet dataset [9]. Despite all these tasks in

expert finding, little work has been done for expertise search on a specific

academic field. In [37], Deng et al. introduce three formal models for expert

finding in a real world academic field based on the DBLP bibliography. Li et

al. [79] build an academic expertise oriented search service, and they propose

a relevancy propagation-based algorithm using the co-authorship network for

expert finding. Actually, there are some major differences for finding experts

from enterprise corpora to DBLP bibliography data. For the enterprise cor-

pora, many research efforts have concentrated on estimating and capturing

the association of a candidate with the documents, while it is easy to build

the document-candidate associations, i.e., the paper-author bipartite graph,

based on the DBLP bibliography data. One shortcoming of DBLP bibliog-

raphy data is that the information provided by the title is too limited to

represent the paper. To address this problem, we utilize Google Scholar as
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data supplementation. We investigate a graph-based regularization technique

to refine the relevance scores in Chapter 5, and further enhance the perfor-

mance of the weighted language model using community-aware strategies in

Chapter 6.

2 End of chapter.



Chapter 3

Entropy-biased Models for

Click Graphs

In this chapter, we investigate and develop a novel entropy-biased framework

to find a better query representation in order to better compute the simi-

larity of queries through modeling click graphs. We focus solely on how to

represent a query by a vector of documents based on the click graph. The

intuition behind this model is that various query-URL pairs should be treated

differently, i.e., common clicks on less frequent but more specific URLs are of

greater value than common clicks on frequent and general URLs. According

to this intuition, we utilize the entropy information of the URLs and intro-

duce a new concept, namely the inverse query frequency (IQF), to weigh the

importance of a click on a certain URL. Furthermore, this IQF weighting

scheme is incorporated with the click frequency and user frequency informa-

tion on the click graph for an effective query representation. To illustrate our

methodology, we conduct experiments with the AOL query log data for query

similarity analysis and query suggestion tasks. Experimental results demon-

strate that considerable improvements in performance are obtained with our

entropy-biased models.

31
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Figure 3.1: Example of a click graph.

3.1 Problem and Motivation

Recently query log analysis has been studied widely for improving search en-

gines’ efficacy and usability. Such studies mined the logs to improve numerous

search engine’s capabilities, such as query suggestion and classification, rank-

ing, targeted advertising, etc. The click graph [31], a bipartite graph between

queries and URLs, is an important technique for describing the information

contained in the query logs, in which edges connect a query with the URLs

that were clicked by users as a result. An example of a click graph with 4

queries and 4 URLs is depicted in Figure 3.1. The edges of the graph can cap-

ture some semantic relations between queries and URLs. For example, queries

“map” and “travel” are related to each other, since they are co-clicked with

some URLs such as “www.mapquest.com” and so on. Therefore, how to uti-

lize and model the click graph to represent queries becomes an interesting

and challenging problem.

Traditionally, the edge of the click graph is weighted based on the raw click

frequency (number of clicks) [31] from a query to a URL. The transition prob-

ability can be further determined by the normalized click frequency [96, 107].
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Figure 3.2: The click frequency from the query “map”.

Taking the edge from “map” to “www.mapquest.com” in Figure 3.1 as an

example, the raw click frequency is 10 and the normalized click frequency is

10/22. However, the traditional query representation for the click graph has

its own disadvantages. One of these disadvantages is its robustness, i.e., a

query that has a skewed click count on a certain URL may exclusively in-

fluence the click graph, such as navigational queries. In order to avoid the

adverse effect on learning algorithms, previous work presented in [81] simply

identified some navigational queries and removed them from the click graph.

Unfortunately, the deletion of such queries leads to the loss of some informa-

tion. Another related problem is that the raw click frequency can be easily

manipulated as it is prone to spam by some malicious clicks. To deal with

these critical problems, we explore a novel entropy-biased framework which

incorporates raw click frequencies and other information with the entropy in-

formation of the connected URLs. Also, there is the issue of an inherent bias

of clicks in this graph, favoring already highly ranked URLs [32, 111].

The basic idea of the entropy-biased model is that various query-URL

pairs should be treated differently. Let us look at the query “map” (q2) and

its connected URLs, which is shown in Figure 3.2. The click frequency from q2

to d3 is the same as the count (10) from q2 to d1. There is a critical question

when only consider the raw click frequency: Is a single click on different

URLs in the click graph equally important? Clearly not! In this case, at
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an intuitive level, one click on d3 may capture more meaningful information,

or be more important than one click on d1. The key difference is that the

connected URLs are different: One URL is “www.mapquest.com”, which is

connected with 2 queries; while another URL is “www.yahoo.com”, which is

connected with 3 queries. Before performing a theoretical analysis, we first

briefly review the entropy and information theory [126]. Suppose there is a

URL which is commonly clicked and connected with most of the queries (with

equal probability), this tends to increase the ambiguity (uncertainty) of the

URL. However, if the URL is clicked and connected with fewer queries, this

tends to increase the specificity of the URL. A frequently clicked URL thus

functions in retrieval as a nonspecific URL, even though its meaning may be

quite specific in the ordinary sense. Therefore, a single click on a specific

URL is most likely to be more important for distinguishing the specificity

of the query than another click on an ambiguous URL. Based on the above

intuition, we introduce a new concept, denoted as the inverse query frequency,

to weigh the importance of a click on a certain URL, which can be extended

and used for other bipartite graphs.

Consequently, we propose a novel entropy-biased model, namely CF-IQF

model, to represent the query, which simultaneously combines the inverse

query frequency information with the raw click frequency. As the raw click

frequency can be easily manipulated, we develop and use the number of

users associated with the query-URL pair, namely the user frequency (UF

model), instead of the raw click frequency (CF model) to improve the resis-

tance against malicious click data. Moreover, the inverse query frequency can

be incorporated with the user frequency, as another entropy-biased UF-IQF

model, to achieve better performance.

In a nutshell, our contributions of this chapter are: (1) the introduction of

a new notion, namely the inverse query frequency, to weigh the importance of



CHAPTER 3. ENTROPY-BIASED MODELS FOR CLICK GRAPHS 35

a click on a certain URL, which can be extended and used for other bipartite

graphs; (2) the identification of a new source, called the user frequency, for

diminishing the manipulation of the malicious clicks; (3) the framework of the

entropy-biased model for the click graph, which simultaneously combines the

inverse query frequency with the click frequency and user frequency informa-

tion; and (4) the first formal model to distinguish the variation on different

query-URL pairs in the click graph.

The rest of this chapter is organized as follows. Section 3.2 presents the

proposed query representation models. Section 3.3 describes two basic ap-

plications of these models, which are the query similarity analysis and query

suggestion. Section 3.4 describes and reports the experimental evaluation.

Section 3.5 summarizes this chapter.

3.2 Query Representation Models

As stated above, the issue of how to represent queries based on the click

graph is critical to the task of effectively analyzing query logs. In this section,

we first introduce the preliminaries and notations, and then investigate and

explore the query representation models for the click graph.

3.2.1 Preliminaries and Notations

Let Q = {q1, q2, ..., qM} be the set of M unique queries submitted to a search

engine during a specific period of time. Let D = {d1, d2, ..., dN} be the set

of N URLs clicked for those queries. A click graph is a query-URL bipartite

graph G = (Q ∪D, E) where every edge in E connects a vertex in the query

set Q and one in the URL set D. For q ∈ Q and d ∈ D, the pair (q, d) is an

edge of E if and only if there is a user who clicked on URL d after submitting

the query q. For each edge (qi, dj) ∈ E, we associate a numeric weight cij,

known as the click frequency, that measures the number of times the URL
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Table 3.1: Click frequency matrix for the example click graph.

C d1 d2 d3 d4

q1 50 5 0 0

q2 10 2 10 0

q3 5 2 5 10

q4 0 2 0 10

dj was clicked when shown in response to the query qi. Let C be an M ×N

matrix, whose M rows correspond to the queries of Q and whose N columns

correspond to the URLs of D, and the entry (i, j) contains a value cij . The

click frequency matrix of Figure 3.1 is shown in Table 3.1.

Let U = {u1, u2, ..., uK} be the set of K users who submitted the queries

and clicked on the URLs. Now, a query instance can be made up of one

or more 〈q, d, u〉 triples. It is obvious that every edge (qi, dj) in the click

graph has a set of users associated with it, so we introduce a new notion ufij,

referred to as the user frequency, that measures the total number of users who

submitted the query qi and clicked on the URL dj. This measurement can be

a good supplement of the click frequency for a robust query representation.

To further explore the information of query logs, we aggregate the number

of queries that are connected with a URL dj and use n(dj) to denote it. A

URL with large n(dj) means the document is commonly clicked on many

queries, which tends to increase the ambiguity and uncertainty of the URL

according to information theory [126]. Therefore, we introduce another novel

and important notion idf(dj), the inverse query frequency, to denote the

general importance of a certain URL dj . Some other notations are briefly

shown in Table 3.2, and will be defined in the following subsections.
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Table 3.2: Table of Notation.

Symbol Meaning

C M ×N query-URL matrix

cij Click frequency between query qi and URL

dj , with the entry (i, j) of the matrix C

cf(qi) Number of clicks for query qi

cf(dj) Number of clicks for URL dj

ufij User frequency between qi and dj

n(dj) Number of queries associated with URL dj

idf(dj) Importance of a certain URL dj

p(dj |qi) Transition probability from qi to dj

p(qi|dj) Transition probability from dj to qi

p(qj|qi) Transition probability from query qi to qj

Pq2d An M ×N query-URL probability matrix

Pd2q An N ×M URL-query probability matrix

Pq2q M ×M query-query probability matrix
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Table 3.3: CF transition probabilities for the example click graph.

Pq2d d1 d2 d3 d4

q1 0.909 0.091 0 0

q2 0.455 0.091 0.455 0

q3 0.227 0.091 0.227 0.455

q4 0 0.167 0 0.833

3.2.2 Click Frequency Model

Traditionally, the edge of the click graph is weighted by the raw click frequency

between a query and a URL, which we call click frequency (CF) model. Given

qi ∈ Q and dj ∈ D, the transition probability [31, 96, 107] from the query qi

to the URL dj is defined by normalizing the click frequency from the query

qi as

p(dj|qi) =
cij

cf(qi)
, (3.1)

where cf(qi) =
∑

j∈D cij , and it denotes the aggregated number of clicks for

qi. The notation p(qi|dj) denotes the transition probability from the URL dj

to the query qi,

p(qi|dj) =
cij

cf(dj)
, (3.2)

where cf(dj) =
∑

i∈Q cij , and it denotes the aggregated number of clicks for

the URL dj. Although the click frequency cij is the same, the transition

probabilities p(qi|dj) and p(dj|qi) are generally not symmetric because of the

various normalization. If there is no edge between qi and dj, the transition

probability is equal to 0.

After calculating all these transition probabilities, we obtain two kinds

of matrices: Pq2d ∈ RM×N and Pd2q ∈ RN×M . Taking the click graph of

Figure 3.1 as an example, we can get the transition matrix Pq2d as shown in
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Table 3.3. Without considering the content information, the query qi can be

represented by a vector of documents weighted as the i-th row of the matrix

Pq2d:

−→qi = 〈Pq2d(i, 1), ..., Pq2d(i, N)〉,

and meanwhile the document dj can be represented by a vector of queries

weighted as the j-th row of the matrix Pd2q:

−→
dj = 〈Pd2q(j, 1), ..., Pd2q(j, M)〉.

After vectorization, it can be used to measure the similarity between queries

and applied to other query log analysis. According to Table 3.3, for exam-

ple, the most similar query of q2 (“map”) is q1 (“Yahoo”) using the cosine

similarity.

3.2.3 Entropy-biased Model

The CF model only considers the raw click frequency, and treats different

query-URL pairs equally even if some URLs are very heavily clicked. More

generally, a great variation in URL distribution is likely to appear, and it

may thus cause the loss of important information since different query-URL

pairs are not sufficiently distinguished. For example, the click frequency c21

is equal to c23 in Figure 3.1. However, it may be more reasonable to weight

these two edges differently because of the variation of the connected URLs.

In this chapter, we define int(q, d) to be true when the query q has clicks

on d at least once. Let n(dj) be the total number of queries (query frequency)

that are connected with the URL dj, which is defined as

n(dj) =
∑

i∈Q

1int(qi,dj).

It is predicted that the more general and highly ranked URL would be clicked

and connected with more queries than the specific URLs. Thus the less spe-

cific URLs would have a larger collection distribution than the more specific
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ones, which tends to increase the ambiguity and uncertainty of the URLs in

the ordinary sense. Using information theory, the entropy [126] of a URL dj

is defined as

E(dj) = −
∑

i∈Q

p(qi|dj) log p(qi|dj). (3.3)

Suppose that the URL dj is connected with those queries with equal proba-

bility p(qi|dj) = 1
n(dj)

, the maximum entropy is transformed to

E(dj) = log n(dj). (3.4)

Generally, the entropy of the URL tends to be proportional to the query

frequency n(dj). In order to simplify the calculation, we roughly use the

maximum entropy to approximate the exact entropy in the following analysis.

It is argued that the discriminative ability of a URL should be inversely

proportional to the entropy, hence a (heavily-clicked) URL with a high query

frequency is less discriminative overall. This motivates us to propose a novel

and important concept, referred to as the inverse query frequency, to measure

the discriminative ability of the URL dj. Suppose |Q| is the total number of

queries in the query log, the inverse query frequency for the URL dj is defined

as,

iqf(dj) = log |Q| − log n(dj) = log
|Q|

n(dj)
, (3.5)

which is similar to the inverse document frequency for the term [65]. Table 3.4

shows the corresponding IQF values of the example URLs. The inverse query

frequency factor has several benefits. The most important one is that it can

constrain and diminish the influence of some heavily-clicked URLs. This will

tend to balance the inherent bias of clicks for those highly ranked URLs [32].

Furthermore, the inverse query frequency can be incorporated with other fac-

tors to tune the representation models as shown in the following subsections.
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Table 3.4: IQF values of the URLs

d1 d2 d3 d4

iqf log(4/3) 0 log(2) log(2)

CF-IQF Model

In the entropy-biased model, we incorporate the inverse query frequency with

the raw click frequency in a unified CF-IQF model, namely

cfiqf(qi, dj) = cij · iqf(dj). (3.6)

The intuition behind the CF-IQF model is that query-URL pairs are treated

differently according to the inverse query frequency, so that the common

clicks on less frequent yet more specific URLs are of greater value than the

common clicks on frequent URLs. Figure 3.3 shows the surface specified

by the click frequency, query frequency, cfiqf , with color specified by the

cfiqf value. The color is proportional to the surface height. A high weight

cfiqf is reached by a high click frequency for the query-URL pair and a low

query frequency associated with the URL in the whole query log. As shown in

Figure 3.3, the query-URL pair A, which has the same click frequency with B,

will be weighted much higher than B because of the associated inverse query

frequency, hence such weights tend to diminish the influence of heavily-clicked

URLs.

The new transition probability from qi to dj becomes

p′c(dj|qi) =
cfiqf(qi, dj)

cfiqf(qi)
, (3.7)

where cfiqf(qi) =
∑

j∈D cfiqf(qi, dj). The new matrix P ′
q2d of Figure 3.1 is

shown in Table 3.5. Based on this matrix, it can be calculated that the most

similar query of q2 (“map”) is q3 (“travel”), which is more reasonable than
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Figure 3.3: The surface specified by the click frequency, query frequency and cfiqf,

with color specified by the cfiqf value. The color is proportional to the surface

height.

the result of CF model. Currently, we only consider changing the transition

probability from the query to the URL, and keeping the transition probability

p(qi|dj) from the URL to the query as the same as that of CF model.

UF Model and UF-IQF Model

Another drawback of the CF model is that it is prone to spam by some

malicious clicks, and it can be easily influenced by a single user if he/she

clicked on a certain URL thousands of times. To address the problem, we

introduce a new concept user frequency (UF), which denotes the number of

users associated with the query-URL pair, instead of the click frequency, to

improve the resistance against malicious click data. Let int(qi, dj, uk) to be

true if a user uk submitted the query qi and clicked on the URL dj at least
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Table 3.5: CF-IQF transition probabilities for the example click graph.

P ′
q2d d1 d2 d3 d4

q1 1 0 0 0

q2 0.293 0 0.707 0

q3 0.122 0 0.293 0.586

q4 0 0 0 1

once, then the user frequency ufij is defined as

uij =
∑

k∈U

1int(qi,dj ,uk).

Based on the user frequency, we can obtain UF model similar to CF model.

Intuitively, UF model reinforces the capability of diminishing the effect of

some manipulated clicks.

To further distinguish the performance of the model, we also incorporate

the user frequency with the inverse query frequency in a unified UF-IQF

model,

ufiqf(qi, dj) = ufij · iqf(dj). (3.8)

With Eq. 3.8, the transition probability from qi to dj becomes

p′u(dj|qi) =
ufiqf(qi, dj)

ufiqf(qi)
, (3.9)

where ufiqf(qi) =
∑

j∈D ufiqf(qi, dj).

3.2.4 Connection with Other Methods

In this subsection, we establish the connection between our entropy-biased

model and the famous TF-IDF model [65, 121]. Over the years, the weight-

ing scheme TF-IDF has been extensively and successfully used in the vector
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space model for text retrieval. Several researchers [113, 117, 35] have tried to

interpret IDF based on binary independence retrieval, Poisson, information

entropy and language modeling. Although the success of the TF-IDF in the

text mining is widely claimed, it has never been explored to bipartite graphs.

The idea of measuring the discriminative ability of the URL by IQF is totally

new, and it can be expected to produce the similar effects on click graphs

as IDF on text mining. Moreover, our entropy-biased model is employed to

identify the edge weighting of the click graph, which can also be applied to

other bipartite graphs without the content information. As the query can

also be represented by the vector of terms using TF and TF-IDF models, we

will compare the performance of these two models with our proposed models

in Section 3.4.3.

3.3 Mining Query Log on Click Graph

The proposed query representation models can be applied to mine the query

log in many cases, such as query-to-query similarity, query clustering, query

suggestion, etc. For the comparison of different models, we focus on two

tasks: (1) the fundamental query-to-query similarity analysis, which is very

suitable for evaluating the performance of the proposed query representation

models, and (2) the popular query suggestion task, which is to find seman-

tically related queries for a given query using the graph-based random walk

model.

3.3.1 Query-to-Query Similarity Measurement

As the query can be represented by a vector of documents (or a vector of

terms), two common similarity measurements will be used to calculate the

similarity between queries: one is the cosine similarity and the other is the

Jaccard coefficient. The cosine similarity is a measure of similarity between
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two vectors by finding the angle θ between them. It is represented using a

dot product and magnitude as

Cos(θ) =
−→qi · −→qj

‖ −→qi ‖‖ −→qj ‖
, (3.10)

where −→qi denotes the vector of a query. The Jaccard coefficient is defined as

the value of the intersection divided by the value of the union of the query

vectors:

J(−→qi ,
−→qj ) =

∑

n∈N |Pq2d(i, n) ∩ Pq2d(j, n)|
∑

n∈N |Pq2d(i, n) ∪ Pq2d(j, n)| , (3.11)

where Pq2d(i, n) denotes the n-th value of −→qi . We report and analyze the

query similarity results in Section 3.4.3.

3.3.2 Graph-based Random Walk Model

In previous studies [31, 96, 107], the click graph has been thought of as a ran-

dom walk between queries and URLs according to the transition probabilities

Pq2d and Pd2q. To consider the vertices in one side, such as the query-to-

query graph, then a new random walk can be introduced by the transition

probability from qi to qj ,

p(qj|qi) =
∑

k∈D

p(dk|qi)p(qj |dk). (3.12)

We use Pq2q to denote the transition matrix whose entry (i, j) has the value

p(qj |qi). It is important to note that the self-transition probability exists

naturally in the model.

The personalized PageRank [54, 59] is the steady-state distribution of the

random walk, which is usually used to rank vertices on the graph in a query

dependent way. The corresponding linear system of personalized PageRank

can be shown as:

Rn+1
j = (1− α)R

(0)
j + α ·

∑

i

p(qj |qi)R
n
i , (3.13)
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where R
(0)
j is a personalized (or query dependent) initial values for vertex j,

and n is the steps of a random walk. We may set R
(0)
j = 1 if vj is the given

query and 0 otherwise. The parameter α is usually set to be 0.7 in previous

studies. Since the objective is to show the effectiveness of our proposed models

for query suggestion, we present the query suggestions ranked by personalized

PageRank in Section 3.4.4.

3.4 Experimental Evaluation

In the following experiments we compare our proposed models with other

methods on the tasks of mining query logs through an empirical evaluation.

We define the following task: Given a query and a click graph, the system has

to identify a list of queries which are most similar or semantically relevant to

the given query. In the rest of this section, we introduce the data collection,

the assessments and evaluation metrics, and present the evaluation results.

3.4.1 Data Collection and Analysis

The dataset that we study is adapted from the query log of AOL search

engine [102]. The entire collection consists of 19, 442, 629 user click-through

records. These records contain 10, 154, 742 unique queries and 1, 632, 789

unique URLs submitted from about 650, 000 users over three months (from

March to May 2006). As shown in Table 3.6, each record of the click contains

the same information: UserID, Query, Rank and ClickURL (we do not show

the Time properties due to the limited space). This dataset is the raw data

recorded by the search engine, and contains a lot of noises. Hence, we conduct

a similar method employed in [137] to clean the raw data. We clean the data

by removing the queries that appear less than 2 times, and by combining the

near-duplicated queries which have the same terms without the stopwords

and punctuation marks (for example, “google’s image” and “google image”
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Table 3.6: Samples of the AOL query log dataset.

UserID Query Rank ClickURL

2722 yahoo 1 www.yahoo.com

121537 map 1 www.mapquest.com

123557 travel 2 www.expedia.com

1903540 cheap flight 1 www.cheapflights.com

will be combined as the same query). After cleaning, we get totally 883, 913

queries and 967, 174 URLs in our data collection. After the construction

of the click graph, we observe that a total of 4, 900, 387 edges exist, which

indicates that each query has 5.54 distinct clicks, and each URL is clicked

by 5.07 distinct queries. Moreover, taken as a whole, this data collection has

250, 127 unique terms which appear in all the queries.

It has been shown in [7] that the occurrences of queries and the clicks

of URLs exhibit a power-law distribution. However, the properties of the

user frequency and query frequency have not been well explored. Figure 3.4

shows the distributions of the click frequency (cij) and the user frequency

(ufij) associated with the query-URL edges, and the query frequency (n(dj))

associated with the URLs. All of them exhibit power-law distributions in the

figure.

3.4.2 Assessments and Evaluation Metrics

It is difficult to evaluate the quality of query similarity/relevance rankings

due to the scarcity of data that can be examined publicly. For an automatic

evaluation, we utilize the same method used in [7] to evaluate the similarity
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Figure 3.4: The distributions of the (a) click frequency, (b) user frequency and (c)

query frequency.
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of retrieved queries, but engage the Google Directory1 instead of the Open

Directory Project2. When a user types a query in Google Directory, besides

site matches, we can also find category matches in the form of paths between

directories. Moreover, these categories are ordered by relevance. For instance,

the query “United States” would provide the hierarchical category “Regional

> North America > United States”, while one of the results for “National

Parks” would be “Regional > North America > United States > Travel and

Tourism > National Parks and Monuments”. Hence, to measure how similar

two queries are, we can use a notion of similarity between the corresponding

categories provided by the search results of Google Directory. In particular,

we measure the similarity between two categories Cai and Car as the length of

their longest common prefix P (Cai, Car) divided by the length of the longest

path between Cai and Car. More precisely, the similarity is defined as:

Sim(Cai, Car) = |P (Cai, Car)|/ max(|Cai|, |Car|), (3.14)

where |Cai| denotes the length of a path. For instance, the similarity between

the above two queries is 3/5 since they share the path “Regional > North

America > United States” and the longest one is made of five directories.

We evaluate the similarity between two queries by measuring the similarity

between the aggregated categories of the two queries, among the top 5 answers

provided by Google Directory.

To give a fair assessment, we randomly select 300 distinct queries from

the data collection, then retrieve a list of similar queries using the proposed

methods for each of these queries. For the evaluation of the task, we adopt

the precision at rank n to measure the relevance of the top n results of the

retrieved list with respect to a given query qr, which is defined as

P@n =

∑n

i=1 Sim(qi, qr)

n
, (3.15)

1http://directory.google.com/
2http://www.dmoz.org/
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where Sim(qi, qr) means the similarity between qi and qr. In our experiments,

we report the precision from P@1 to P@10, and take the average over all the

300 distinct queries.

3.4.3 Query Similarity Analysis

We consider the question whether our proposed method can boost the perfor-

mance using the entropy-biased models for the fundamental query similarity

analysis tasks. We compare six different models, including four models (CF,

CF-IQF, UF and UF-IQF) based on the click graph and two models (TF

and TF-IDF) based on the query content information, and report the preci-

sions from P@1 to P@10 in Figure 3.5 using two similarity measurements.

In this figure we can see, as expected, that our proposed entropy-biased CF-

IQF model outperforms the CF model in all the metrics from P@1 to P@10.

Similarly to what happens between the CF-IQF and CF models, the per-

formance of the UF-IQF model is better than that of the UF model. The

results support our intuition of the entropy-biased framework about treating

various query-URL pairs differently. When comparing the results of UF with

CF, and the results of UF-IQF with CF-IQF, we can observe that the UF

and UF-IQF models perform better than the CF and CF-IQF models respec-

tively, which indicates the user frequency associated with the query-URL pair

is more robust than the click frequency for modeling the click graph.

We also compare our models with the TF and TF-IDF models to see

whether the improvements of CF-IQF and UF-IQF over CF and UF models

are consistent with the improvement of the TF-IDF over TF model. Accord-

ing to Figure 3.5, it is obvious that the TF-IDF model improves the per-

formance of the TF model, with the same observations of our entropy-biased

models. The reason is that they share the same key point to identify and tune

the importance of a term or a query-URL edge. The major difference is that
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(b) Jaccard coefficient

Figure 3.5: The performance comparison of six models (CF, CF-IQF, UF, UF-IQF,

TF and TF-IDF models) using two different similarity measurements.



CHAPTER 3. ENTROPY-BIASED MODELS FOR CLICK GRAPHS 52

Table 3.7: Comparison of different methods by P@1 and P@10. We also show the

percentage of relative improvement in the lower part.

Method Cosine Jaccard

P@1 P@10 P@1 P@10

CF 0.476 0.351 0.491 0.369

CF-IQF 0.505 0.365 0.521 0.383

UF 0.485 0.360 0.500 0.380

UF-IQF 0.502 0.372 0.523 0.391

TF 0.433 0.311 0.418 0.292

TF-IDF 0.463 0.327 0.450 0.321

CF-IQF/CF 6.12% 3.96% 6.01% 3.84%

UF-IQF/UF 3.52% 3.38% 5.50% 2.92%

UF-IQF/CF 5.49% 5.86% 6.51% 6.01%

TF-IDF/TF 6.78% 5.21% 7.63% 9.79%

CF/TF 9.76% 12.91% 17.41% 26.23%

UF/TF 11.85% 15.61% 18.53% 30.02%

CF-IQF/TF-IDF 9.09% 11.57% 15.65% 19.39%

UF-IQF/TF-IDF 8.44% 13.61% 16.19% 21.89%
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the TF-IDF model is used to find the weight value of a term in a document,

which has a significant effect in the information retrieval field. However, our

entropy-biased models are applicable in identifying the weight of the edge for

the click graph, which can be extended to other bipartite graphs without the

content information.

To gain a better insight into the details of the results, we show the com-

parison of different models using P@1 and P@10 in Table 3.7. The first part

shows the absolute precisions of those models, and the second part illustrates

the percentage of relative improvements. A quick scan of the first part, accom-

panying with Figure 3.5, reveals that UF-IQF achieves the best performance

in most cases. When looking at the relative improvements of those models

(the top four lines of the lower part), we can see that CF-IQF improves over

CF by up to 6.12%, UF-IQF over UF by up to 5.5%, and UF-IQF over CF

by up to 6.51%. While TF-IDF improves over TF by up to 9.79% for P@10

using Jaccard coefficient, this is because the precision of TF is much lower

than other methods, which can be easily be improved. In terms of the final

four lines in Table 3.7, another interesting comparison is seen between the

proposed models on the click graph and the traditional models on the query

content information. Based on the click graph, CF and UF models improve

the traditional TF model significantly from 9.76% to 30.02%, while CF-IQF

and UF-IQF models also improve the traditional TF-IDF model from 8.44%

to 21.89%. The results reconfirm many previous studies [7, 111] that the click

graph catches more semantic relations between queries than the query terms.

According to the experimental results, we can argue that it is very essential

and promising to consider the entropy-biased models for the click graph.

To test the sensitivity of the similarity measurement of our entropy-biased

models, we compare the results of the Jaccard coefficient, and find that the

improvements are consistent with the cosine similarity, which indicates that
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our entropy-biased models are independent of the similarity measurements.

In addition, we notice that Jaccard coefficient performs better than cosine

similarity using CF, CF-IQF, UF and UF-IQF models on the click graph,

while cosine similarity is better than Jaccard coefficient using TF and TF-

IDF models on the query content information.

3.4.4 Random Walk Evaluation

In this subsection, we present the comparison of suggestions generated using

the same random walk method with CF and CF-IQF models (we do not

show the comparison of UF and UF-IQF models due to space constraints

and similar results). To better understand the improvements of our entropy-

biased models, we evaluate the performance of our methods with different

number of steps (from 2 to 50). Figure 3.6 illustrates the precisions (P@10)

of CF and CF-IQF models for different parameter n. With the increase of

n, both models improve their performance, which can also converge quickly

after about 10 steps. As shown in Figure 3.6, it is very clear that the CF-IQF

model always performs better than the CF model.

We selectively show the detailed results ranked by the transition proba-

bilities in Table 3.8. In general, the top-4 suggestions generated by the CF

model and the CF-IQF model are similar, and mostly semantically relevant

to the original query. For the first example in Table 3.8, these two models

generate the same suggestions, since the transition probabilities in both mod-

els are usually similar. From these suggested results, we see that our models

not only capture the most common sense, the “american airline”, they also

successfully predict infrequent query “alcoholics anonymous” as suggestion.

After looking into the last two examples, one important observation is that

our CF-IQF model can boost more relevant queries as suggestion and reduce

some irrelevant queries. To see the suggestions for “east texas real estate”,
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Table 3.8: Examples of query suggestions generated by two different models on

click graph.

CF model CF-IQF model

Query = aa

american airlines american airlines

alcoholics anonymous alcoholics anonymous

aa.com aa.com

airlines airlines

Query = east texas real estate

google east texas acreage

east texas acreage tyler real estate

texas real estate tyler texas realtors

tyler real estate texas real estate

Query = home gym equipment

home gyms home gyms

gym equipment gym equipment

treadmills treadmills

buy.com edge 329 upright exercise bike
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Figure 3.6: The performance of random walk model.

for example, we notice that the first suggestion “google”, provided by the

CF model, is irrelevant to the original query. This is because there is a

edge between the query “east texas real estate” and a heavily-clicked URL

“www.google.com”, which are highly associated with the query “google” so

as to generate the high transition probability from “east texas real estate”

to “google”. In the last example, the irrelevant suggestion “buy.com” in the

CF model arises from the similar reason. Comparing with the CF model, the

CF-IQF model can successfully constrain such irrelevant queries and return

mostly relevant suggestions (e.g., upright exercise bike), because it reduces the

adverse factor in such situations by considering the inverse query frequency

in the click graph.

3.5 Summary

In this chapter we present the novel entropy-biased framework for modeling

click graphs, whose basic idea is to treat various query-URL pairs differently



CHAPTER 3. ENTROPY-BIASED MODELS FOR CLICK GRAPHS 57

according to the inverse query frequency. Although its fundamental concept is

very simple, the IQF weighting scheme is never explicitly explored or statisti-

cally examined for any bipartite graphs in the information retrieval literature.

We not only formally define and quantify this scheme, but also propose the

new entropy-biased framework to incorporate it on the click graph for an

effective query representation.

To illustrate our methodology, we apply the entropy-biased models to

query similarity analysis and query suggestion tasks using the real-world AOL

query log data. The main concern is to increase the precision of the top-n

retrieved results. For the query similarity analysis, we compare six different

models, including four models (CF, CF-IQF, UF and UF-IQF) based on the

click graph and two models (TF and TF-IDF) based on the query terms. It is

shown that CF-IQF model improves over CF model by up to 6.12%, while UF-

IQF over UF by up to 5.5%. As expected, UF-IQF and UF outperform CF-

IQF and CF respectively. In addition, UF-IQF model significantly improves

the traditional TF-IDF model by up to 21.89%. For the query suggestion

task, evaluation results also show that the entropy-biased models outperform

the baseline models, indicating that the improvements in our proposed models

are consistent and promising. In addition, our method can also be applied to

other bipartite graphs. In future work, it would be interesting to apply this

entropy-biased model to identify some noise click data.

2 End of chapter.



Chapter 4

Generalized Co-HITS

Algorithm

In previous chapter, the entropy-biased models aim to find a better query rep-

resentation through modeling click graphs when only considering the graph

information. However, besides the graph information, we could obtain the

content information for each entity. As the content and the graph provide

different information, it is reasonable to incorporate the content with graph

information in a unified framework. In this chapter, we propose a novel

and general Co-HITS algorithm to incorporate the bipartite graph with the

content information from both sides as well as the constraints of relevance.

Moreover, we investigate the algorithm based on two frameworks, including

the iterative and the regularization frameworks, and illustrate the general-

ized Co-HITS algorithm from different views. For the iterative framework, it

contains HITS and personalized PageRank as special cases. In the regulariza-

tion framework, we successfully build a connection with HITS, and develop a

new cost function to consider the direct relationship between two entity sets,

which leads to a significant improvement over the baseline method.

58
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4.1 Problem and Motivation

Bipartite graphs have been widely used to represent the relationship between

two sets of entities (which we refer to as two kinds of data to avoid ambiguity)

for Web search and data mining applications. The Web offers rich relational

data which can be represented by bipartite graphs, such as queries and URLs

in query logs, authors and papers in scientific literature, and reviewers and

movies in a movie recommender system. Taking the query-URL bipartite

graph as an example, although there is no direct edges between two queries,

the edges of the bipartite graph between queries and URLs may lead to hid-

den edges within the query set as shown in Figure 4.1. Previous work [31]

shows that there is a natural random walk on the bipartite graph, which

demonstrates certain advantages comparing with the traditional approaches

based on the content information. Many link analysis methods have been

proposed, such as HITS [69] and PageRank [18], to capture some semantic

relations within the bipartite graph.

The problem we address is how to utilize and leverage both the graph and

content information, so as to improve the precision of retrieved entities. One

good example is the query suggestion by mining a query log, in which we have

a query-URL bipartite graph, and the queries and URLs. In addition, the

queries and URLs can be represented as term vectors with the content infor-

mation. The objective of the query suggestion is to find semantically similar

queries for the given query q. Traditionally, we can identify initial similar

queries based on the content information, then utilize HITS or personalized

PageRank [54] for further mutual reinforcement on the bipartite graph. How-

ever, one of the issues is that there is a lack of constraints to make sure the

final relevance of the score propagation on the graph, as there are many noisy

edges within the bipartite graph. For example, let us consider the following

two queries: map and Yahoo, where they may be co-linked by some URLs
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Wuv
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Figure 4.1: Example of a bipartite graph. The edges between U and V are rep-

resented as the transition matrices W uv and W vu. Note that the dashed lines

represent hidden links when considering the vertices in one side, where W uu and

W vv denote the hidden transition matrices within U and V respectively.

such as “www.yahoo.com” (Yahoo! ). As the general URL Yahoo! is associ-

ated with many queries, it can aggregate large relevance scores by the mutual

reinforcement, which may propagate the score to the highly connected query

Yahoo and lead to the high relevance score between map and Yahoo. In this

case, if we consider the content information of the URL Yahoo!, the relevance

score of the URL Yahoo! against the query map will be very low. Thus, when

incorporating the low relevance of the URL into the mutual reinforcement on

the bipartite graph, the final relevance score between map and Yahoo would

be constrained to a lower, but more reasonable score. In order to avoid the

adverse effect of noisy data, we argue that the initial relevance scores, from

both sides of the bipartite graph, provide valuable and reinforced information

as well as the constraints of relevance, which should all be incorporated in a

unified framework.

In this chapter, we propose a novel and general algorithm, namely gen-

eralized Co-HITS, to incorporate the bipartite graph with the content in-
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formation from both sides. Consequently, we investigate the following two

frameworks, i.e., iterative framework and regularization framework, for the

generalized Co-HITS algorithm from different views. The basic idea of the

iterative framework is to propagate the scores on the bipartite graph via an

iterative process with the constraints from both sides. The iterative frame-

work contains HITS, personalized PageRank, and the one-step propagation

algorithm as the special cases. Furthermore, we develop a joint regulariza-

tion framework instead of the above iterative algorithm. In the regularization

framework, we successfully build the connection with HITS, and develop a

new cost function to consider the direct relationship between two entity sets,

which leads to a significant improvement over the baseline method. To il-

lustrate our methodology, we apply the generalized Co-HITS algorithm with

different settings to the query suggestion task using the real-world AOL query

log data [102]. Experimental results show that the CoRegu-0.5 (i.e., a model

of the regularization framework) achieves the best performance, and its im-

provements are consistent and promising.

In a nutshell, our major contributions of this chapter are: (1) the intro-

duction of the generalized Co-HITS algorithm to incorporate the bipartite

graph with the content information from both sides; (2) the investigation of

two frameworks, including the iterative and the regularization frameworks,

for the generalized Co-HITS algorithm from different perspectives; and (3) a

new smoothness function in the regularization framework to consider the di-

rect relationship between two entity sets as well as the smoothness within the

same entity set, which leads to a significant improvement over the baseline

method.

The rest of this chapter is organized as follows. Section 4.2 briefly in-

troduces the preliminaries. Section 4.3 presents the proposed Co-HITS algo-

rithm, including the iterative framework and the regularization framework.
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Section 4.4 describes the application to bipartite graphs. Section 4.5 then

reports the experimental evaluation. Some related work and discussions are

presented in Section 4.6. Finally, Section 4.7 summarizes this chapter.

4.2 Preliminaries

Consider a bipartite graph G = (U ∪ V, E), its vertices can be divided into

two disjoint sets U and V such that each edge in E connects a vertex in U and

one in V ; that is, there is no edge between two vertices in the same set. Let

U = {u1, u2, ..., um} and V = {v1, v2, ..., vn} be the two sets of m and n unique

entities. Generally, a bipartite graph can be modeled as a weighted directed

graph. Given i ∈ U and j ∈ V , if there is an edge connecting ui and vj ,

the transition probabilities wuv
ij and wvu

ji are positive, where wuv
ij denotes the

transition probability from ui to vj , and wvu
ji denotes the transition probability

from vj to ui; otherwise, wuv
ij = wvu

ji = 0. Since the transition probability from

state i to some state must be 1, we have
∑

j∈V wuv
ij = 1 and

∑

i∈U wvu
ji = 1.

For a bipartite graph, there is a natural random walk on the graph with

the transition probability as shown in Figure 4.1. Let W uv ∈ Rm×n denote

the transition matrix from U to V , whose entry (i, j) contains a weight wuv
ij

from ui to vj. Let W vu ∈ Rn×m be the transition matrix from V to U , whose

entry (j, i) contains a weight wvu
ji from vj to ui. To consider the vertices in one

side, such as the query-to-query graph in query logs, then a hidden transition

probability wuu
ij from ui to uj, corresponding to a dashed line in Figure 4.1,

can be introduced as:

wuu
ij =

∑

k∈V

wuv
ik wvu

kj , (4.1)

and

∑

j∈U

wuu
ij =

∑

j∈U

∑

k∈V

wuv
ik wvu

kj =
∑

k∈V

(

wuv
ik

∑

j∈U

wvu
kj

)

=
∑

k∈V

wuv
ik = 1. (4.2)
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Similarly, for the transition probability from vi to vj , we can show that wvv
ij =

∑

k∈U wvu
ik wuv

kj and
∑

j∈V wvv
ij = 1. We use W uu ∈ Rm×m and W vv ∈ Rn×n to

denote the hidden transition matrices within U and V , respectively.

In addition to the graph information, each entity (such as a query or a

document) may be represented as a term vector with its content information.

For a given query q, the relevance scores of the entities can be calculated

using a text relevance function f , such as the vector space model [5] and the

statistical language model [108, 147]. The initial relevance scores x0
i and y0

j

are respectively defined by x0
i = f(q, ui), and y0

j = f(q, vj) for ui and vj .

4.3 Generalized Co-HITS Algorithm

Given a query q and the above information, the ultimate goal is to find a set

of entities which are most relevant to the query q. The problem we address is

how to utilize and leverage both the graph and content information, so as to

improve the precision of the results. In this section, we propose a novel and

general algorithm, namely generalized Co-HITS, to incorporate the bipartite

graph with the content information from both sides.

4.3.1 Iterative Framework

The basic idea of our method is to propagate the scores on the bipartite

graph via an iterative process. As shown in Figure 4.2(a), the score yk of vk is

propagated to ui according to the transition probability. Similarly, additional

scores are propagated from other vertices of V to ui, then the score of ui is

updated to get a new value xi. In Figure 4.2(b), it shows that the new value

xi is propagated to vk. The intuition behind the score propagation is the

mutual reinforcement to boost co-linked entities on the bipartite graph. In

addition, the initial relevance scores based on the content information provide

invaluable information, which should also be considered in the framework.
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Figure 4.2: Score propagation on the bipartite graph: (a) score yk is propagated

to ui and uj, and (b) score xi is propagated to vk.

In order to incorporate the bipartite graph with the content information,

the generalized Co-HITS equations can be written as

xi = (1− λu)x
0
i + λu

∑

k∈V

wvu
ki yk, (4.3)

yk = (1− λv)y
0
k + λv

∑

j∈U

wuv
jk xj , (4.4)

where λu ∈ [0, 1] and λv ∈ [0, 1] are the personalized parameters, x0
i and

y0
k are the initial scores for ui and vk respectively. In this model, the initial

scores are normalized to be
∑

i∈U x0
i = 1 and

∑

k∈V y0
k = 1. Thus, after the

updating operation, the sum of xi and the sum of yk will also be equal to 1

without further normalization. If only considering the vertices in one side, by

substituting Eq. (4.4) for yk in Eq. (4.3), the generalized Co-HITS equation

can be represented as the following

xi = (1− λu)x
0
i + λu(1− λv)

∑

k∈V

wvu
ki y

0
k + λuλv

∑

j∈U

(

∑

k∈V

wuv
jk wvu

ki

)

xj ,

= (1− λu)x
0
i + λu(1− λv)

∑

k∈V

wvu
ki y

0
k + λuλv

∑

j∈U

wuu
ji xj . (4.5)
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The final scores of every entities can be obtained through an iteratively up-

dating process. From our empirical testing, we find in most cases the equation

can converge after about 10 iterations.

The proposed Co-HITS framework is general, and it contains a large algo-

rithm space as shown in Table 4.1, in which HITS and personalized PageRank

are actually two special cases in this space. If λu is set to be 0, the algorithm

returns the initial scores as the baseline. If λu and λv are all equal to 1,

Eq. (4.5) becomes the ordinary HITS equation,

xi =
∑

j∈U

wuu
ji xj . (4.6)

If one of the parameters λu and λv is set to be 1, it can be regarded as the

personalized PageRank (PPR) algorithm [54]. Suppose λv = 1, it becomes

xi = (1− λu) · x0
i + λu

∑

j∈U

wuu
ji · xj . (4.7)

When λv is set to be 0, the algorithm becomes a general hybrid method which

aggregates the initial scores X0 and Y 0 as follows,

xi = (1− λu) · x0
i + λu

∑

k∈V

wvu
ki · y0

k, (4.8)

which can be viewed as an one-step propagation algorithm.

4.3.2 Regularization Framework

Here we investigate a joint regularization framework for the above iterative

framework. Let us first consider the vertices in one side, and imagine the

personalized PageRank algorithm within the graph U as Eq. (4.7). For each

iteration, every node receives the score from its neighbors (second term), and

also retain its initial score (first term). The iteration process continues, and

finally converges with the scores that are determined by their neighbors on the

graph and their initial scores. A regularization framework can be developed
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for the personalized PageRank algorithm, by regularizing the smoothness of

relevance scores over the graph along with a regularizer on the initial ranking

scores. The cost function R1, associated with U , is defined to be

R1 =
1

2

∑

i,j∈U

wuu
ij

∥

∥

∥

∥

∥

xi√
dii

− xj
√

djj

∥

∥

∥

∥

∥

2

+ µ
∑

i∈U

∥

∥xi − x0
i

∥

∥

2
, (4.9)

where µ > 0 is the regularization parameter, and D is a diagonal matrix

with entries dii =
∑

j wij for normalization. Intuitively, the first term of

the cost function defines the global consistency of the refined ranking scores

over the graph, while the second term defines the constraint to fit the initial

ranking scores, and the trade-off between each other can be controlled by the

parameter µ. When µ → +∞, R1 puts all weights on the second term, and

the regularization framework boils down to the baseline which corresponds

to λµ = 0 in Eq. (4.7). If µ = 0, the regularization framework discards the

initial ranking scores, and only takes into account the global consistency on

the graph, which corresponds to λµ = 1 in Eq. (4.7) (i.e., HITS as Eq. (4.6)).

Similarly, for the cost function R2 associated with V , we can show that

R2 =
1

2

∑

i,j∈V

wvv
ij

∥

∥

∥

∥

∥

yi√
dii

− yj
√

djj

∥

∥

∥

∥

∥

2

+ µ
∑

i∈V

∥

∥yi − y0
i

∥

∥

2
.

The intuition behind this framework is the global consistency, i.e., similar

entities are most likely to have similar relevance scores with respect to a

query.

Until now, R1 and R2 have defined the consistency based on the hidden

links within U and V individually. However, the direct links between U

and V may have more significant effect on the score propagation and mutual

reinforcement. In this chapter, we investigate and develop a new cost function

R3 to consider the direct relationship between U and V :

R3 =
1

2

∑

i∈U,j∈V

wuv
ij

∥

∥

∥

∥

∥

xi√
dii

− yj
√

djj

∥

∥

∥

∥

∥

2

+
1

2

∑

j∈V,i∈U

wvu
ji

∥

∥

∥

∥

∥

yj
√

djj

− xi√
dii

∥

∥

∥

∥

∥

2

.(4.10)
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The intuition behind R3 is the smoothness constraint between two entity sets,

which penalizes large differences in relevance scores for vertices between U

and V that are strongly connected.

Formally, the cost function R, associated with both U and V , is defined

to be

R = λr(R1 + αR2) + (1− λr)R3, (4.11)

where α > 0 and λr ∈ [0, 1]. By minimizing the cost function R, we obtain

the general regularization framework associated with the general Co-HITS

equation as Eq. (4.5). In this chapter, we simply set α = 1 and focus on in-

vestigating the effect of parameter λr. Then the original optimization problem

minF (R) can be rewritten as follows:

min
F

1

2

m+n
∑

i,j=1

wij

∥

∥

∥

∥

∥

fi√
dii

− fj
√

djj

∥

∥

∥

∥

∥

2

+ µ
m+n
∑

i=1

∥

∥fi − f 0
i

∥

∥

2

s.t. W =







W uu β ·W uv

β ·W vu W vv






(4.12)

F =







X

Y







β = (1− λr)/λr,

where X and Y are the score vectors for U and V respectively. Differentiating

Eq. (4.12) [151, 156], we have

dR

dF

∣

∣

∣

F=F ∗

= F ∗ − SF ∗ + µ(F ∗ − F 0) = 0, (4.13)

where S = D− 1

2 WD− 1

2 , then Eq. (4.13) can be transformed into

F ∗ − 1

1 + µ
SF ∗ − µ

1 + µ
F 0 = 0. (4.14)
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Table 4.1: Connections with other methods

Iterative Framework

λu λv Description

= 0 ∈ [0, 1] Initial scores xi = x0
i

= 1 = 1 Original HITS as Eq. (4.6)

∈ (0, 1) = 1 Personalized PageRank as Eq. (4.7)

∈ (0, 1) = 0 One-step propagation as Eq. (4.8)

∈ (0, 1) ∈ (0, 1) General Co-HITS as Eq. (4.5)

Regularization Framework

µα, λr Description

µα = 0 Initial scores xi = x0
i

µα = 1 Corresponding to HITS

µα ∈ (0, 1) General regularization framework

λr = 1 Single-sided regularization

λr ∈ (0, 1) Double-sided regularization

λr = 0.5 R = 0.5(R1 + R2) + 0.5R3

After simplifying, a closed-form solution can be derived,

F ∗ = µβ(I − µαS)−1F 0, (4.15)

µα =
1

1 + µ
, and µβ =

µ

1 + µ
,

where I is an identity matrix. Note that µα ranges from 0 to 1, and µα+µβ =

1. In this chapter, we consider the normalized Laplacian in [151], and S is

positive-semidefinite. Details about how to calculate the matrix W and S

will be introduced in Section 4.4.1. Given the initial ranking scores F 0 and

the matrix S, we can compute the refined ranking scores F ∗ directly.
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4.3.3 Connections and Justifications

In this section, we establish connections between the generalized Co-HITS

algorithm and other methods in Table 4.1. The iterative framework contains

HITS, personalized PageRank, and the one-step propagation algorithm as the

special cases. When looking at the regularization framework, its variations

are controlled by the parameters µα and λr. When µα = 0 (µ→ +∞), R puts

all weights on the second term, and the regularization framework boils down

to the baseline. If µα = 1 (µ = 0), the regularization framework discards the

initial ranking scores, and only takes into account the global consistency on

the graph, which corresponds to the HITS algorithm. Moreover, a different

selection of λr leads to a different smoothing strategy. If λr = 1, it only

considers the single-side regularization within U and V . If λr ∈ (0, 1), it

utilizes the double-side regularization to make full use of the bipartite graph.

For the large-scale information retrieval, the matrix S is usually very large

but sparse, which can be loaded in a relatively small storage space. However,

the inverse matrix (I − µαS)−1 will be very dense, and may need a huge

space to save it. To balance the storage space and the computation time of

the inverse matrix, we suggest to approximate the Eq. (4.15) in a specific

subgraph with a submatrix Ŝ, which consists of the top-n entities according

to the initial ranking scores F̂ 0. It can be found that the top ranking scores

usually outnumber the very low ranking scores. Theoretically, if the ranking

scores after n are close to 0, the following approximate solution is equivalent

to Eq. (4.15),

F̂ ∗ = (I − µαŜ)−1F̂ 0. (4.16)

In this equation, we eliminate the parameter µβ as it does not change the

ranking. Accordingly, it needs to calculate the inverse matrix (I − µαŜ)−1

online. Fortunately, the matrix is usually very sparse, then the complexity

time of the sparse matrix inversion can be reduced to be linear with the
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number of nonzero matrix elements. In our experiments, we extract the top

5,000 entities for approximation.

4.4 Application to Bipartite Graphs

To illustrate our proposed method, we use the statistical language model

as the baseline to calculate the initial relevance scores based on the con-

tent information, and specify the application in query suggestion base on

the query-URL bipartite graph. In this section we introduce the bipartite

graph construction and the statistical language model, then show the overall

algorithm of our framework.

4.4.1 Bipartite Graph Construction

Bipartite graphs are widely used to describe the relationship between queries

U and URLs V when mining the query logs, such as query suggestion and

classification. The edges of the query-URL bipartite graph can capture some

semantic relations between queries and URLs. For each edge (qi, dj) ∈ E we

associate a numeric weight cij, known as the click frequency, that measures

the number of times the URL dj was clicked when shown in response to the

query qi. The transition probability wuv
ij [31, 107] from the query qi to the

URL dj is defined by normalizing the click frequency from the query qi as

wuv
ij =

cij
∑

j∈V cij

,

while the transition probability wvu
ji from the URL dj to the query qi is defined

as

wvu
ji =

cij
∑

i∈U cij

.

Thus, we can easily obtain the transition matrices W uv, W vu, W uu and W vv.

In practice, it is sometimes unnecessary to apply our learning algorithms

to a very large bipartite graph constructed from the entire collection. Since
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our task is to find the most relevant queries as suggestion for a given query,

it would be more efficient to apply our algorithm only to a relatively compact

query-URL bipartite graph that covers the relevant queries and related URLs.

We utilize the same method used in [81] for building a compact query-URL

bipartite graph and iteratively expanding it in the following,

1. Initialize a query set Û = UL (seed query set), and initialize a URL set

V̂ = VL (seed URL set);

2. Update V̂ to add the set of URLs that are connected with Û ;

3. Update Û to be the set of queries that are connected with V̂ ;

4. Iterate 2 and 3 until Û and V̂ reach a desired size;

The final bipartite graph Ĝ to which the algorithms are applied consists of

Û , V̂ and edges Ê connecting them. According to the relevance scores, we

initialize the top-10 relevant queries and top-10 relevant URLs as the seed

sets. Generally, it only needs one iteration to reach 5,000 entities in our ex-

periments. In this chapter, we employ the widely used k-nearest neighbor

(k-NN) graph, where each node is connected to its k nearest neighbors under

the transition probability measure and the edges can be weighed by the tran-

sition matrices. It has been shown to be effective when k = 10 in [40]. Then,

the matrix Ŵ is constructed with maximum 50,000 (5, 000× 10) entries. Af-

ter normalization, we can obtain the matrix Ŝ. Fortunately, the matrix is

usually very sparse, and the complexity time of the sparse matrix inversion

can be reduced to be linear with the number of nonzero matrix elements.

4.4.2 Statistical Language Model

Using language models for information retrieval has been studied extensively

in recent years [108, 147, 148]. To determine the probability of a query

given a document, we infer a document model θd for each document in a
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collection. With query q as input, retrieved documents are ranked based on

the probability that the document’s language model would generate the terms

of the query, p(q|θd). The ranking function f 0(q, d) can be written as

f 0(q, d) = p(q|θd) =
∏

t∈q

p(t|θd)
n(t,q), (4.17)

where p(t|θd) is the maximum likelihood estimation of the term t in a doc-

ument d, and n(t, q) is the number of times that term t occurs in query q.

The likelihood of a query q consisting of a number of terms t for a doc-

ument d under a language model with Jelinek-Mercer smoothing [148] is

p(t|θd) = 0.5p(t|d) + 0.5p(t). With the language model, we calculate the

initial ranking scores of the documents with respect to a query.

In our proposed method, we employ the language model to determine the

initial relevance scores F 0 for the queries and URLs. Note the queries from

the query log are very short, but it still can be viewed as a document in

the language model. We can get better initial relevance scores if we perform

the query expansion and construct the document model with the expanded

queries. For each URL, although its exact content information is not included

in the query log, it can be represented as a document by the aggregation of

connected queries [106].

4.4.3 Overall Algorithm

By unifying the Co-HITS algorithm in Section 4.3 and the application to

bipartite graphs, we summarize the proposed algorithm in Algorithm 1. In

the algorithm, note that we first perform preprocessing in a collection to

construct the bipartite graph, and calculate the transition matrices. In the

algorithm, we calculate the initial ranking scores using the language model,

extract the compact bipartite subgraph, and perform the Co-HITS algorithm.

To implement the Co-HITS algorithm, we employ a sparse matrix package,

i.e., CSparse [34], to solve the sparse matrix inversion efficiently. To deploy
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Algorithm 1 Generalized Co-HITS Algorithm

Input: Given a query q and the bipartite graph

Perform:

1. Calculate the initial ranking scores based on the statistical language model

and extract the top-ranked UL and VL as the seed sets;

2. Expand and extract the compact bipartite subgraph Ĝ = (Û ∪ V̂ , Ê);

3. Get the weight matrix Ŵ or Ŝ, and normalize the corresponding initial scores

F 0;

4. Solve Eq. (4.5) or Eq. (4.16) and get the final scores F̂ ∗.

Output: Return the ranked queries.

the efficient implementations of our scheme, all of the other algorithms used

in the study are programmed in the C# language. We have implemented

the language modeling approach to obtain the initial relevance scores with

the Lucene.Net1 package. For these experiments, the system indexes the

collection and does tokenization, stopping and stemming in the usual way.

The testing hardware environment is on a Windows workstation with 3.0GHz

CPU and 1GB physical memory.

4.5 Experimental Evaluation

In the following experiments we compare our proposed algorithm with other

methods on the tasks of mining query logs through an empirical evaluation.

We define the following task: Given a query and a query-URL bipartite graph,

the system has to identify a list of queries which are most similar or seman-

tically relevant to the given query. In the rest of this section, we introduce

the data collection, the assessments and evaluation metrics, and present the

1http://incubator.apache.org/lucene.net/
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Table 4.2: Samples of the AOL query log dataset.

UserID Query Time Rank ClickURL

2722 yahoo 2006-04-25 13:03:23 1 http://www.yahoo.com

121537 map 2006-05-25 18:28:58 1 http://www.mapquest.com

123557 travel 2006-03-13 01:09:53 2 http://www.expedia.com

1903540 cheap flight 2006-05-15 00:31:43 1 http://www.cheapflights.com

experimental results.

4.5.1 Data Collection

The dataset that we study is adopted from the query log of AOL search en-

gine [102]. The entire collection consists of 19, 442, 629 user click-through

records. These records contain 10, 154, 742 unique queries and 1, 632, 789

unique URLs submitted from about 650, 000 users over three months (from

March to May 2006). As shown in Table 4.2, each record of the click con-

tains the same information: UserID, Query, Time, Rank and ClickURL. This

dataset is the raw data recorded by the search engine, and contains a lot of

noises. Hence, we conduct a similar method employed in [137] to clean the

raw data. We clean the data by removing the queries that appear less than

2 times, and by combining the near-duplicated queries which have the same

terms without the stopwords and punctuation marks (for example, “google’s

image” and “google image” will be combined as the same query). After clean-

ing, our data collection consists of 883, 913 queries and 967, 174 URLs. After

the construction of the click graph, we observe that a total of 4, 900, 387 edges

exist, which indicates that each query has 5.54 distinct clicks, and each URL

is clicked by 5.07 distinct queries. Moreover, taken as a whole, this data

collection has 250, 127 unique terms which appear in all the queries.
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4.5.2 Assessments and Evaluation Metrics

It is difficult to evaluate the quality of query similarity/relevance rankings

due to the scarcity of data that can be examined publicly. For an automatic

evaluation, we utilize the same method used in [7] to evaluate the similarity

of retrieved queries, but engage the Google Directory2 instead of the Open

Directory Project3. When a user types a query in Google Directory, besides

site matches, we can also find category matches in the form of paths between

directories. Moreover, these categories are ordered by relevance. For instance,

the query “United States” would provide the hierarchical category “Regional

> North America > United States”, while one of the results for “National

Parks” would be “Regional > North America > United States > Travel and

Tourism > National Parks and Monuments”. Hence, to measure how similar

two queries are, we can use a notion of similarity between the corresponding

categories provided by the search results of Google Directory. In particular,

we measure the similarity between two categories Cai and Car as the length of

their longest common prefix P (Cai, Car) divided by the length of the longest

path between Cai and Car. More precisely, the similarity is defined as:

Sim(Cai, Car) =
|P (Cai, Car)|

max(|Cai|, |Car|)
, (4.18)

where |Cai| denotes the length of a path. For instance, the similarity between

the above two queries is 3/5 since they share the path “Regional > North

America > United States” and the longest one is made of five directories.

We evaluate the similarity between two queries by measuring the similarity

between the aggregated categories of the two queries, among the top 5 answers

provided by Google Directory.

To give a fair assessment, we randomly select 300 distinct queries from

the data collection, then retrieve a list of similar queries using the proposed

2http://directory.google.com/
3http://www.dmoz.org/
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methods for each of these queries. For the evaluation of the task, we adopt

the precision at rank n to measure the relevance of the top n results of the

retrieved list with respect to a given query qr, which is defined as

P@n =

∑n

i=1 Sim(qi, qr)

n
, (4.19)

where Sim(qi, qr) means the similarity between qi and qr. In our experiments,

we report the precision from P@1 to P@10, and take the average over all the

300 distinct queries.

4.5.3 Experimental Results

We consider the question whether our proposed method can boost the perfor-

mance using the generalized Co-HITS algorithm for query suggestion. First

the experiments are performed to compare the iterative framework of Co-

HITS with different parameters λu and λv. Then we examine the perfor-

mance of the regularization framework by varying the parameters µα and λr.

Finally, we investigate and compare the detailed results of different methods,

which shows that the regularization framework CoRegu-0.5 achieves the best

results.

Comparison of Iterative Framework

For the iterative framework, the generalized Co-HITS contains HITS, person-

alized PageRank (PPR), and the one-step propagation (OSP) algorithms as

the special cases. In this subsection, we compare the performance of general

Co-HITS (CoIter) with the above special cases, and report the precisions of

P@5 and P@10 in Figure 4.3.

First of all, we evaluate the performance of personalized PageRank after

setting λv = 1. Figure 4.3(a) illustrates the experimental results for different

λu, in which the solid curves indicate the precisions of P@5 and P@10 for
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(a) λv = 1 (PPR)
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(b) λv = 0 (OSP)
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(c) λu = 0.7 (CoIter)

Figure 4.3: The effect of varying parameters (λu and λv) in the iteration framework:

(a) personalized PageRank, (b) one-step propagation, and (c) general Co-HITS.

The dashed lines denote the baseline results.
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different parameters, and the dashed curves denote the precisions for the

baseline. We can see that the performance has only a slight increase when

compared to the baseline if λu is set close to 0. With the increase of λu,

the performance becomes worse, and even underperforms the baseline. It is

because of the lack of relevance constraints from both sides of the bipartite

graph, so the score propagation on the graph may be influenced easily due

to some noise edges. When λu is equal to 1, it corresponds to the HITS

algorithm that discards the initial relevance scores.

When λv = 0, the Co-HITS algorithm boils down to simply aggregation

of the initial scores from both sides. As shown in Figure 4.3(b), we notice

that the simple aggregation method (i.e., one-step propagation when λu is set

from 0.1 to 0.9) benefits from both sides, and outperforms the method that

only considers from one side. This observation supports the intuition of our

Co-HITS algorithm that the initial relevance scores from both sides provide

valuable and reinforced information as well as the constraints of relevance.

To illustrate the performance of general Co-HITS algorithm, we choose to

set λu = 0.7 and vary the parameter λv from 0 to 1, and then show the results

in Figure 4.3(c). From this figure, we can observe that its improvement over

the baseline is promising when compared to the personalized PageRank, and

it is comparable with the one-step propagation when λv is set to be 0.4.

Comparison of Regularization Framework

For the regularization framework, we first evaluate the single-sided regular-

ization (SiRegu) by varying the parameter µα, then we fix µα and perform

the double-sided regularization (CoRegu) with different λr.

As mentioned in Table 4.1, the parameter µα is used to control the bal-

ance between the global consistency and the initial ranking scores in the

unified regularization framework as Eq. (4.9), and it ranges from 0 to 1. The
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(a) λr = 1 (SiRegu)
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(b) µα = 0.1 (CoRegu)

Figure 4.4: The effect of varying parameters (µα and λr) in the regularization

framework: (a) single-sided regularization, and (b) double-sided regularization.
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experimental results for the single-sided regularization are illustrated in Fig-

ure 4.4(a). When µα = 0, SiRegu boils down to the initial baseline. We

can see that the performance is improved over the baseline when incorpo-

rating the global consistency (µα > 0) in the framework. With the increase

of µα, the performance becomes better until it puts too much weight on the

term of global consistency (µα → 1). If µα → 1, SiRegu discards the ini-

tial ranking scores, and only takes into account the global consistency on the

graph. As shown in Figure 4.4(a), when the parameter µα is equal to 0.99,

the performance of our method becomes worse than the initial baseline due

to the overweighted global consistency. According to the theoretical analysis

in Section 4.3.2, SiRegu corresponds to the personalized PageRank in the

iteration framework. By comparing Figure 4.4(a) with Figure 4.3(a), both

results are improved first and then degraded with the increase of µα and λu,

which shows that the parameters µα and λu have similar impact on SiRegu

and PPR, respectively.

We have shown that SiRegu can improve the performance over the initial

baseline, and achieves the best performance when µα is set to be 0.1. Now

we fix µα = 0.1, and examine whether CoRegu can further boost the per-

formance by incorporating a direct smoothness constraint between two entity

sets. According to Figure 4.4(b), it is obvious that CoRegu (λr < 1) performs

better than SiRegu (λr = 1). The improvement over the SiRegu method owes

to the direct smoothness constraint as Eq. (4.10) which is incorporated in the

CoRegu framework. This observation supports the theoretical analysis of the

proposed regularization framework. Moreover, CoRegu is relatively robust

and may achieve the best results when the parameter λr is set to be 0.2-0.6.
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Table 4.3: Comparison of different methods by P@5 and P@10. The mean preci-

sions and the percentages of relative improvements are shown in the table.

Method Para Evaluation metrics

Iter λu λv P@5 P@10

Baseline 0 × 0.358 ( 0%) 0.317 ( 0%)

PPR-0.1 0.1 1 0.372 ( 4.0%) 0.338 ( 6.7%)

OSP-0.7 0.7 0 0.388 ( 8.4%) 0.351 (11.0%)

CoIter-0.4 0.7 0.4 0.388 ( 8.6%) 0.352 (11.2%)

Regu λr µα P@5 P@10

SiRegu-0.1 1 0.1 0.381 ( 6.5%) 0.343 ( 8.5%)

CoRegu-0.5 0.5 0.1 0.396 (10.8%) 0.357 (12.8%)

Detailed Results

To gain a better insight into the proposed Co-HITS algorithm, we compare the

best results of different models using P@5 and P@10 in Table 4.3. The mean

precisions and the percentages of relative improvements over the baseline are

shown in the table. A quick scan of the table reveals that CoRegu-0.5 achieves

the best performance. When looking at the relative improvements of those

models, we can see that CoRegu-0.5 improves over the baseline by 10.8% (for

P@5) and 12.8% (for P@10) respectively, while CoIter-0.4 over the baseline

by 8.6% and 11.2%. In addition, SiRegu-0.1 performs better than PPR-

0.1. These results confirm that the regularization framework outperforms the

iterative framework.

Figure 4.5 illustrates the precisions of six models from P@1 to P@10.

In general, we can see that the performances of all the models, except the
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Figure 4.5: Comparison of six models.

PPR-0.1, are better than the baseline. It is comparable for the precisions of

OSP-0.7, CoIter-0.4 and SiRegu-0.1. The double-sided regularization model,

i.e., CoRegu-0.5, achieves the best performance, whose improvements are

consistent. After looking into the details, one important observation is that

the improvements of our method over the baseline are increased for larger n

(of the evaluation matric P@n). This is because the mutual reinforcement

can boost the semantically relevant entities which have low initial scores.

According to all the the experimental results, we can argue that it is very

essential and promising to consider the double-sided regularization framework

for the bipartite graph.

4.6 Related Work and Discussions

The work is related to the category of link analysis methods. In [43], the au-

thors have tried to model a unified framework for link analysis, which includes

the two popular ranking algorithms HITS [69] and PageRank [18]. Several

normalized ranking algorithms are studied which are intermediate between
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HITS and PageRank. Our method differs from this unified framework as we

integrate the graph information with the content information.

According to some generalization of PageRank and HITS, a family of

work on the structural re-ranking paradigm over a graph was proposed to re-

fine the initial ranking scores. Kurland and Lee performed re-ranking based

on centrality within graphs, through PageRank-inspired algorithm [72] and

HITS-style cluster-based approach [73]. Zhang et al. [149] proposed a simi-

lar method to improve Web search results based on a linear combination of

results from text search and authority ranking. In addition, PopRank [101]

is developed to extend PageRank models to integrate heterogenous relation-

ships between objects. Another approach suggested by Minkov et al. [98]

has been used to improve an initial ranking on graph walks in entity-relation

networks. However, those methods does not make full use of the content and

the graph information as they treat the content and the graph information

individually.

The regularization framework we proposed is closely related to graph-

based semi-supervised learning [132, 151, 153, 156], which usually assume

label smoothness over the graph. Mei et al. [95] extend the graph har-

monic function [156] to multiple classes. However, our work is different from

theirs, as their tasks are mainly used in query-independent settings (i.e., semi-

supervised classification, topic modeling), while we focus on query-dependent

ranking problems. With the advance of machine learning, graph-based mod-

els have been widely and successively used in information retrieval and data

mining. Diaz [42] use score regularization to adjust ad-hoc retrieval scores

from an initial retrieval. Deng et al. [40] propose a method to learn a latent

space graph from multiple relationships between objects, and then regularize

the smoothness of ranking scores over the latent graph. More recently, Qin et

al. [109] use relational objects to enhance learning to rank with parameterized
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regularization models. But those three methods only consider the regulariza-

tion from one side of the bipartite graph or within a single graph, while our

regularization framework takes into account not only the smoothness within

the same entity set but also the direct relationship between two entity sets.

This work is also related to query log analysis [7], as we apply our Co-

HITS algorithm to the application of query suggestion by mining the query

logs. A common model for utilizing query logs from search engines is in the

form of a query-URL bipartite graph (i.e., click graph) [31]. Based on the

click graph, many research efforts in query log analysis have been devoted to

query clustering [11], query suggestion [66, 86] and query classification [81].

Craswell and Szummer [31] used click graph random walks for relevance rank

in image search. Mei et al. [96] proposed an approach to query suggestion by

computing the hitting time on a click graph. Li et al. [81] presented the use of

click graphs in improving query intent classifiers. In this work, we combine the

click graph with the content information from queries and URLs to improve

the precisions of the results, which differs from the previous methods.

4.7 Summary

In this chapter we have presented the generalized Co-HITS algorithm for bi-

partite graphs, whose basic idea is to incorporate the bipartite graph with the

content information from both sides. We not only formally define the iterative

framework, but also investigate the regularization framework for the general-

ized Co-HITS algorithm from different views. For the iterative framework, it

has been shown that HITS, personalized PageRank, and the one-step prop-

agation algorithm are special cases of the generalized Co-HITS algorithm.

In the regularization framework, we successfully build the connection with

HITS, and develop a new cost function to consider the direct relationship

between two entity sets, which leads to a significant improvement over the
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baseline method. We have applied the proposed algorithm to mine the query

log and compare with many different settings. Experimental results show

that the improvements of our proposed model are consistent, and CoRegu-

0.5 achieves the best performance. In future work, it would be interesting

to investigate the performance of our Co-HITS algorithm in other bipartite

graphs to see if the proposed method might have an impact on any bipartite

graphs.

2 End of chapter.



Chapter 5

Modeling Expertise Retrieval

The objective of this thesis is to propose a general Web mining framework

to combine the content with the graph information as well as other kinds of

information effectively. In previous two chapters, we have described several

models and their applications to query log analysis by combining the con-

tent and graph information. In the following two chapters, we will address

the high-level expertise retrieval task (which is also called expert finding)

and investigate several models to incorporate different information in a more

heterogeneous information environment.

In this chapter, we aim to address expert finding task in a real-world aca-

demic field. We propose a novel expert finding framework based on the large-

scale DBLP bibliography and its supplemental data from Google Scholar.

We formally define a weighted language model to aggregate the expertise of

a candidate from the associated documents. The model not only considers

the relevance of documents against a given query, but also incorporates the

importance of documents in the form of document priors. Moreover, we in-

vestigate and integrate a graph-based regularization method, which can be

viewed as a special case of the Co-HITS algorithm, to boost our model by

refining the relevance scores of the documents with respect to the query.

86
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5.1 Problem and Motivation

With the development of information retrieval techniques, many research

efforts in this field have been made to address high-level information re-

trieval and not just the traditional document retrieval, such as entity re-

trieval [104, 144] and expertise retrieval [9]. Since the advent of the ex-

pert finding task in the TREC Enterprise track [30, 133], expertise retrieval

(i.e., expert finding) has received increased interests in both industry and

academia. The task of expert finding is to retrieve a ranked list of persons

that possess expertise on a given topic. Most current developments in expert

search are concentrated in the Enterprise corpora, as TREC2005 [30] and

TREC2006 [133] have provided a common platform for researchers to em-

pirically assess methods and techniques devised for expert finding. However,

there is a lack of research work for expert search in a specific academic field.

Identification of the experts for a particular academic topic could be of great

value. There are many important research topics and practical applications,

for example, recommending panels of reviewers for state research grant ap-

plications [56], determining important experts for consultation by researchers

embarking on a new research field [93], and assigning papers to reviewers

automatically in a peer-review process [116, 97].

Before we introduce the approach to search experts automatically, let

us imagine the way that researchers identify experts for a specific research

topic. One natural way is to first retrieve articles related to the topic, then

examine the authors of those articles and determine the experts with human

judgments. Figure 5.1 presents an example to artificially identify experts

that have expertise on the topic “probabilistic relevance model.” Using the

topic as the query to search in Google Scholar [2], it will be easy to obtain

the relevant articles related to the query topic. Based on retrieved records,

the researchers “Stephen E. Robertson” and “C. J. van Rijsbergen” may be
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Figure 5.1: A sample of the artificial expert search process.

identified as the experts in this case. However, it is not easy for an outsider

or a novice to identify the most important experts in a new research field.

It usually requires the prior knowledge of this topic for the user to make

the right judgment about the experts. The intensive manual labor search

prompted us to design a system to search for experts automatically.

Expert finding has been treated as an information retrieval task in previous

approaches [8, 21, 30, 133]. One of the state-of-the-art approaches [8, 9] is

based on document-based model using a statistical language model to rank

experts (we refer to it as our baseline model). In this chapter, we propose

a novel framework to aggregate the expertise of a candidate based on the

relevance and importance of the associated documents. More specifically, we

formally define a weighted language model that takes into consideration not

only the relevance between a query and documents but also the importance
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of the documents. Suppose there are two documents d1 and d2 with the same

relevance scores to a query q, while they have different importance and d1

is more important than d2. Intuitively, it is more reasonable that ca1 (the

author of d1) has the higher probability of being an expert than ca2 (the

author of d2) with respect to the query. The underlying idea of our model

is that the more important the document is, the higher prior probability it

is written by an expert. In contrast to existing methods [8, 48, 103], this

probability is ignored or assumed to be uniform. However, in our approach,

such a prior probability is estimated based on the citation number for each

document, and it is simultaneously integrated with the relevance scores.

One of the key issues for finding experts is to retrieve the most relevant

documents along with the relevance scores. However, the initial relevance

scores, estimated by the basic language model, tend to be imperfect. In order

to estimate the relevance scores more correctly, a graph-based approach is

proposed to refine the relevance scores by regularizing the smoothness of the

relevance scores on the graph along with a regularizer on the initial relevance

scores. The graph is either constructed by explicit link structures [18, 69],

such as hyperlinks of Web pages, citations of research papers, or inferred from

the content information, such as k-nearest neighbor graph [72] and affinity

graph [149]. The intuition behind the model is the global consistency on the

graph: Similar documents are likely to exhibit the same relevance scores with

respect to a query. In other words, if the neighbors of a document are highly

relevant to a query, this document is most likely to be relevant to the query;

otherwise, if none of the neighbors of a document is relevant to the query, the

document is unlikely to be relevant to the query. With such a graph-based

regularization method, the performance of our weighted language model may

be further improved.

The schematic of our expert finding system is illustrated in Figure 5.2.
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Our approach consists of the following three major steps. First, when a

query is submitted to the system, top-n related papers are retrieved by the

literature retrieval component, in which the initial relevance and importance

scores are obtained for the relevant articles. Second, a graph-based regular-

ization method is employed to refine the initial relevance scores. Finally, the

expertise of a candidate is aggregated based on the relevance and importance

of associated documents, then the ranked experts with respect to the query

are returned to the user.

To deal with the expert-finding task in a real-world academic field, an

essential component is therefore the acquisition of a dataset replete with pub-

lications from which expertise can be accessed. The DBLP bibliography [1]

is a good starting point for extracting the data needed for this application,

as it contains more than 955,000 articles with over 574,000 authors from con-

ferences and journals in the Computer Science field. We could construct a

paper-author bipartite graph based on the DBLP bibliography data, which

directly builds the document-candidate associations. In scientific research, we

make the assumption that the expertise of a researcher could be represented

by his/her publications [116]. One limitation of DBLP bibliography data is

that each record only contains the paper title without the abstract and index

terms. The information provided by the title is too limited to represent the

paper and to calculate the relevance scores between papers and queries. To

address this problem, Google Scholar [2] is utilized as data supplementation,

thus each paper record is represented by the combination of the paper title

and its supplemental data.

To illustrate our methodology, we compare our weighted language model

with the baseline model, and investigate the effectiveness of the graph-based

regularization method. According to the experimental results, our weighted

language model performs much better than the baseline model, which indi-
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Figure 5.2: The schematic of general expert finding systems.

cates that it is very important to consider the prior probability in the model.

Moreover, experimental results demonstrate the weighted language model can

be further enhanced with the graph-based regularization method, and the im-

provements are consistent and promising.

The rest of this chapter is organized as follows. Section 5.2 provides de-

tailed descriptions of the expertise modeling based on the language model, as

well as the overall algorithm. Section 5.3 presents the graph-based regular-

ization model which is used to refine the initial relevance scores. Section 5.4

defines the experimental setup of our methods. Section 5.5 evaluates the

experimental results. Finally, Section 5.6 summarizes this chapter.

5.2 Modeling Expert Search

In this section, we detail the expert finding task in the academic domain, and

propose a generative probabilistic model to identify the expert researchers.
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Generally, influential researchers publish many manuscripts in their fields.

Therefore, their expertise could thus be deduced based on the overall aggre-

gation of their publications. For a given query, the basic idea is to model

an expert candidate based on the relevance and importance of associated

documents.

5.2.1 Problem Definition

Formally, suppose CA = {ca1, ca2, ..., cam} is the set of expert candidates

to be retrieved. Let D = {d1, d2, ..., dn} denote a collection of supporting

documents, where di is a paper authored by one or several candidates. Given

a query q, we formulate the problem of identifying experts using a generative

probabilistic model, i.e., what is the probability of a candidate ca being an

expert given the query topic q?

Specifically, the task is to determine p(ca|q), and rank candidates ca ac-

cording to this probability that a candidate is “relevant” to the topic (i.e.,

expertise) specified in a query. Using Bayes’ theorem, the probability can be

formulated as follows:

p(ca|q) =
p(ca, q)

p(q)
, (5.1)

where p(ca, q) is the joint probability of a candidate and a query, p(q) is

the probability of the query. The probability p(q) is a constant, so it can be

ignored for ranking purposes. To calculate the probability p(ca|q), it is equiv-

alent to estimate the joint probability p(ca, q). The generative probabilistic

model used to estimate the probability p(ca, q) can be defined as follows:

p(ca, q) =
∑

d∈D

p(d)p(ca, q|d)

=
∑

d∈D

p(d)p(q|d)p(ca|d, q), (5.2)

where p(d) is the prior probability of a document, p(q|d) means the relevance

between q and d, and p(ca|d, q) represents the association between the can-
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Figure 5.3: The weighted model for expert finding.

didates and the documents for a given query. As shown in Figure 5.3, the

supporting documents D act as a “bridge” to connect the query q with the

candidate ca.

Under this model, the process of finding an expert is as follows: Given a

collection of documents ranked according to the query, we first examine each

document relevant to the query, and then identify the authors associated with

that document. Finally, the expertise of a candidate is deduced based on the

overall aggregation of the relevance as well as the priors of the associated

documents. In the process, it is shown that our model aims to search experts

the way researchers do. Here, the automatic search process is taken to the

extreme where we consider all documents in the collection.

In the following subsections, we will present the process with three main

components and discuss how to estimate them respectively.

5.2.2 Paper Relevance

In order to retrieve the most relevant documents, the key challenge is to

compute the relevance between a query and documents. In recent years, sta-

tistical language model has been widely used in the application of information

retrieval [60, 108, 145, 148]. The basic idea of these approaches is to estimate
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a language model for each document, and then rank documents by the likeli-

hood of their matching the query according to the estimated language model.

To determine the probability of a query given a document, we infer a

document language model θd for each document. The relevance score of doc-

ument d with respect to query q is then defined as the conditional probability

p(q|θd). Suppose q = t1...tm and each term t is generated independently, the

relevance score would be,

f(q, d) = p(q|θd) =
∏

t∈q

p(t|θd)
c(t,q), (5.3)

where c(t, q) is the count of term t in query q, and p(t|θd) is the maximum

likelihood estimator of the term in a document d.

With such a model, the retrieval problem is reduced to the problem of

estimating p(ti|θd). In order to assign nonzero probabilities to unseen words,

we adopt the Dirichlet prior smoothing method [148] to estimate the term

likelihood with the collection language model:

p(t|θd) =
c(t, d) + νp(t|C)

|d|+ ν
. (5.4)

where ν is the parameter to control the amount of smoothing, and p(t|C) is

the collection language model.

Based on DBLP records, we could obtain the paper title information dT to

represent each paper. However, it is too limited to represent the paper only

with the paper title. Thus Google Scholar is utilized for data supplementa-

tion, which will be discussed in Section 5.4.1. In our settings, each paper d

is represented by the paper title dT with its supplement dS. Therefore, the

relevance score is reformulated as the linear combination of both information,

f(q, d) = λtp(q|θdT
) + (1− λt)p(q|θdS

) (5.5)

= λt

∏

t∈q

p(t|θdT
)c(t,q) + (1− λt)

∏

t∈q

p(t|θdS
)c(t,q),
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Figure 5.4: A query example with documents and authors.

where p(t|θdT
) and p(t|θdS

) are the smoothed term likelihoods of the paper

title and its supplemental data respectively, and λt is the parameter to control

the linear combination of both information.

5.2.3 Paper Importance

The language model described above calculates the relevance between a query

and a document. Now we discuss the problem how to estimate the prior of

the document. Generally, the document priors are assumed to be uniform,

so p(d) is ignored in previous studies. Let us see an example shown in Fig-

ure 5.4. There are two documents d1 and d2, associated with two authors

ca1 and ca2 respectively. Suppose these two documents have the same rel-

evance scores (p(q|d1) = p(q|d2) = 0.1) with respect to a query q. Given

the above information, it is hard to answer the following two questions: (1)

Which document is more reasonable to rank to the top? (2) Which author

has the higher probability of being an expert given the query topic? Just

imagine these two documents have different importance and d1 is more im-

portant than d2, we would obviously prefer to rank the more important one

(d1) at the top. Therefore, intuitively, it is more reasonable that ca1 has

the higher probability of being an expert than ca2 on the query topic. The

underlying assumption is that the more important the document is, the more
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prior probability it is written by an expert. To the best of our knowledge, the

document-based models [8, 48] currently do not take this factor into account.

We introduce a weight factor wd to denote the importance of the docu-

ment, which, theoretically, can be interpreted as being proportional to the

document prior p(d),

p(d) =
wd

Cw

∝ wd, (5.6)

where Cw (=
∑

d∈D wd) is a constant normalization factor obtained by sum-

ming up all the document weights. The document priors are generally as-

sumed to be uniform in previous studies. When the weight wd is set to be

uniform, we can see that this is exactly the existing methods with uniform

document priors.

As shown in Figure 5.4, d1 is cited by 200 documents, while d2 is cited

by 10 documents. When considering the citation number, the document d1,

which has the higher citation number, would be more important than d2.

For our model, the weight factor is estimated using the citation number, and

transformed using the common logarithm function. We define two different

methods to measure the weight as follows,

wd =











1, (B1)

log(10 + cd), (B2)
(5.7)

where cd (cd ≥ 0) is the citation number of the document d, and the constant

10 is used to guarantee the weight factor to be greater than 1. The cita-

tion numbers are obtained from Google Scholar. B1 represents the baseline

method with uniform weight, while B2 is the weighting method that takes

into account important factors of the documents.

5.2.4 Expertise Aggregation

So far, we have discussed how to estimate the relevance score and paper

importance. Furthermore, we need to build the association between papers
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and expert candidates. In scientific research, the publications of researchers

could be viewed as the representative of their expertise [37]. Intuitively, their

expertise could thus be deduced based on the overall aggregation of their

publications.

Suppose document dq is retrieved as one of the top-n related papers with

respect to query q, then dq should be quite relevant to the query q. Therefore,

the candidate ca is assumed to be conditionally independent of the query q

given a document dq; that is

p(ca|d, q) = p(ca|dq). (5.8)

In our setting, it is reasonable to make the assumption that candidate ca has

knowledge about the topic described in the document d if candidate ca is an

author of document d. In the case of a paper with multiple authors, one au-

thor with many co-authors may have less association p(ca|d) on average than

a sole author. To account for this effect, we weight the association inversely

according to the number of co-authors as follows. Suppose a document has n

authors in total, we assume that each author has the same knowledge about

the topics described in the document,

p(ca|d) =











1
nd

, (ca is the author of d)

0, (otherwise)
(5.9)

where nd is the number of authors, and p(ca|d) is used to measure the

document-candidate association.

By substituting Eq. (5.5), Eq. (5.6) and Eq. (5.8) in Eq. (5.2), the final

estimation of the joint probability would be

p(ca, q)
rank
=
∑

d∈D

wdf(q, d)p(ca|dq) (5.10)

rank
=
∑

d∈D

wd

(

λt

∏

t∈q

p(t|θdT
)c(t,q) + (1− λt)

∏

t∈q

p(t|θdS
)c(t,q)

)

p(ca|dq),
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Table 5.1: Combination of different methods.

Model wd Refine Meaning

LM(bas) B1a Nc baseline model

LM(w) B2b N weighted language model

LM(r) B1 Yd LM(bas) with graph-based regularization

LM(w+r) B2 Y LM(w) with graph-based regularization

a uniform weight (wd = 1)

b common logarithm weight (wd = log(10 + cd))

c without graph-based regularization

d with graph-based regularization

where
rank
= means “equivalence for ranking the candidates.” In this model, we

incorporate the language model with paper importance, namely the weighted

language model. When wd = 1 and λt = 1, it can be regarded as the existing

document-based model [8]. As shown in Table 5.1, LM(bas) represents the

baseline model with uniform weight, while LM(w) is the method with the

common logarithm weight. The expert lists are determined based on the joint

probability. In Section 5.5.2, we evaluate the performance of the weighted

language models with different weighting methods.

5.3 Graph-based Regularization

Under our proposed model, document retrieval is a key ingredient of the

expert finding problem, and hence worth pursuing for identifying the most

relevant papers along with the relevance scores. For a given query q, top-n

related papers can be retrieved according to the relevance scores estimated by
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the statistical language model. However, the statistical language model tends

to be imperfect. In this section, we propose a novel and general framework

to refine the relevance scores, so as to identify a set of the most relevant

documents at the very top ranks of the final results.

5.3.1 Regularization Framework

With the advance of machine learning, graph-based models [40, 42, 109] have

been widely and successively employed in information retrieval and data min-

ing. A set of documents can be represented as a connected graph G(V, E),

where nodes V correspond to the n documents and edges E correspond to

the explicit or implicit links between documents. Let W ∈ Rn×n denote the

weight matrix of the graph, where wij corresponds to the weight between di

and dj, and A is a diagonal matrix with entries aii =
∑

j wij.

Based on the graph, we propose a new regularization framework to refine

the relevance scores. The underlying idea of the regularization framework is

the global consistency on the graph: Similar documents are most likely to have

similar ranking scores with respect to a query. In addition, the refined scores

should be at least somewhat relevant to the initial relevance scores, which,

in our framework, are constrained by a regularizer. Formally, we formulate

the problem by minimizing a cost function R(F, q, G) in a joint regularization

framework similar to [151] as follows,

R(F, q, G) =
1

2

n
∑

i,j=1

wij

∥

∥

∥

∥

f(di, q)√
aii

− f(dj, q)√
ajj

∥

∥

∥

∥

2

+µ

n
∑

i=1

∥

∥f(di, q)− f 0(di, q)
∥

∥

2
, (5.11)

where µ > 0 is the regularization parameter, f 0(di, q) is the initial relevance

score of the document di against the query q, and f(di, q) is the refined

relevance score. We use F and F 0 to denote the refined and initial relevance
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score vector, respectively. In the cost function, the first term defines the

constraint to smooth the refined relevance scores on the graph, while the

second term defines the constraint to fit the initial ranking scores, and the

trade-off between each other can be controlled by the parameter µ.

The final ranking score vector is obtained by minimizing the cost function

F ∗ = arg min
F∈R+n

R(F, q, G). (5.12)

Differentiating Eq. (5.11), we have

dR

dF

∣

∣

∣

F=F ∗

= F ∗ − SF ∗ + µ(F ∗ − F 0) = 0, (5.13)

where S = A− 1

2 WA− 1

2 , then Eq. (5.13) can be transformed into

F ∗ − 1

1 + µ
SF ∗ − µ

1 + µ
F 0 = 0. (5.14)

After simplifying, a closed-form solution can be derived,

F ∗ = µβ(I − µαS)−1F 0, (5.15)

µα =
1

1 + µ
, and µβ =

µ

1 + µ
,

where I is an identity matrix, and S is a positive-semidefinite matrix. Note

that µα ranges from 0 to 1, and µα + µβ = 1. In this chapter, we utilize

the normalized Laplacian [151] to calculate matrix S. Details about how

to calculate the matrix W and S will be introduced in Section 5.3.2. After

obtaining the initial ranking scores F 0 and the matrix S, we can estimate

the refined ranking scores F ∗ directly. With the graph-based regularization

method, we develop another two models, LM(r) and LM(w+r), for expert

search as shown in Table 5.1.

5.3.2 Graph Construction

For the regularization framework, there are many ways to construct an adja-

cency graph and calculate the weight matrix W . To estimate the similarity
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between two documents, we follow the method proposed in [73] and define

the edge weight wij as follows

wij
def
= exp

(

−D
(

θdi
‖θdj

))

, (5.16)

where D is the Kullback-Leibler (KL) divergence [145, 148] based on the

uniform Dirichlet-smoothed language model. To simplify the calculation, we

only consider the paper title dT i for di, then D
(

θdi
‖θdj

)

can be reformulated

to

D
(

θdi
‖θdj

)

=
∑

t∈dTi

p(t|dT i) log
p(t|dT i)

p(t|θdj
)

(5.17)

where p(t|dT ) is the likelihood c(t,dT )
|dT |

and p(t|θdj
) is estimated by Eq.(5.4).

Suppose di and dj are the same document, its KL-divergence D will be 0,

which results in wij = 1. On the other hand, if di and dj are totally different,

the KL-divergence D may be far less than 0, then wij will be close to 0.

In this chapter, we employ the widely used k-nearest neighbor (k-NN)

graph, where each node is connected to its k nearest neighbors and the edges

are weighed according to Eq. (5.16). The k-NN graph has been shown to be

effective when k = 10 in [40]. After normalization, we can obtain the matrix

S = A− 1

2 WA− 1

2 . This process is executed offline, and then we save the matrix

S for our model.

5.3.3 Connections and Justifications

With respect to the difference between our regularization framework and

other similar approaches in [95, 151, 156], our method is more general as

it deals with a query-dependent function f(di, q), while other methods are

mainly used in query-independent settings, including semi-supervised classi-

fication and clustering.

As mentioned above, the balance between the initial ranking scores and

the global consistency on the graph are tuned by the parameter µα, which
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can be set between 0 and 1. If µα → 0, i.e., µ → +∞, then the regulariza-

tion Eq. (5.11) puts almost all weight on the second term, and the objective

function boils down to the initial baseline. By minimizing R(F, q, G), we

will obtain the results which best fit the initial ranking scores. When µα → 1

(µ→ 0), the regularization Eq. (5.11) puts almost all weight on the first term,

and this objective function boils down to a variation of the PageRank-based

model [149]. Minimizing R(F, q, G) will give us the ranking scores which best

fit the global consistency on the graph.

For the large-scale expert-finding problem, the matrix S is usually very

large but sparse. However, the inverse matrix (I−µαS)−1 will be very dense,

which may require a huge space to save it. In order to balance the com-

putation time and the storage space of the inverse matrix, we suggest to

approximate the Eq. (5.15) in a specific subgraph. The subgraph (i.e., sub-

matrix) Ŝ consists of the top-n documents according to the initial ranking

scores F̂ 0. It can be found that the top ranking scores usually outnumber the

very low ranking scores. Theoretically, if the ranking scores after n are close

to 0, the following approximate solution is equivalent to Eq. (5.15):

F̂ ∗ = (I − µαŜ)−1F̂ 0. (5.18)

We eliminate the parameter µβ in this equation as it does not change the

ranking. According to the equation, it requires to calculate the inverse matrix

(I − µαŜ)−1 online. Fortunately, since the matrix is usually very sparse, it

will reduce the time complexity of the matrix-inversion routine, which could

be linear with the number of nonzero matrix elements. In our experiments,

we extract the top 1,000-5,000 documents to approximate the sub-matrix.
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Figure 5.5: A sample of the DBLP XML records.

5.4 Experimental Setup

In the following experiments we compare the expert finding models with dif-

ferent settings through an empirical evaluation. In this section we define

the experimental setup, including the DBLP and topic collection, the assess-

ments and evaluation metrics, while the evaluation results are presented in

Section 5.5.

We have defined the following task: given a query and a set of expert

candidates, the system has to retrieve a list of experts that have expertise in

the given area. In the rest of this section, we introduce the DBLP and topic

collection, the assessment and evaluation metrics.

5.4.1 DBLP Collection and Representation

The acquisition of a dataset populated with publications is an important as-

pect of finding experts from the bibliographic data which expertise can be

derived. DBLP is a computer science bibliography website. As of November

2007, DBLP XML records contain over 955,000 articles, originally published

in conferences, journals, books, etc., adding up to 414.5MB. One of the XML

records is shown in Figure 5.5, which consists of several elements, such as “au-

thor” and “title.” In total we gather more than 574,000 author names from
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Figure 5.6: A snapshot for the search results of Google Scholar.
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Figure 5.7: The representation of a document. After crawling and parsing the

search results from Google Scholar, we combine the paper title dT and the supple-

mental data dS as the representation of a document.
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DBLP XML records, each of which can be an expert candidate. Although

DBLP is a good starting point for obtaining expert candidates and publica-

tions, several challenges exist due to its limitations. One limitation is that

each DBLP record provides the paper title without the abstract and index

terms. It is too limited to represent the paper based on the title; therefore,

some more expanded information is required. Generally, the abstract and

index terms are useful to represent the paper for estimating the probability

of a query or topic given the paper.

To obtain the abstract and index terms for each DBLP record, one natu-

ral way is to fetch them automatically from digital libraries such as ACM1,

IEEE2, Springer3, etc. We note, however, that it is very difficulty to obtain

the complete metadata, i.e., the abstracts and index terms of publications, for

all the DBLP records. In order to obtain a complete, consistent and effective

representation, Google Scholar is utilized for data supplementation. For each

paper d, we use the title as the query to search in Google Scholar and select

the top 10 returned records which are considered most relevant to the query

title. Figure 5.6 illustrates the search results for the paper “probabilistic

models in information retrieval.” As shown in this figure, the third returned

record corresponds to the paper itself, and it is cited by 202 other papers.

Next, these returned records dS are parsed and combined with the paper title

dT as the representation of paper d. This process, as depicted in Figure 5.7, is

done automatically by a crawler and a parser. Moreover, the citation number

for each publication d is obtained at the same time. The metadata (HTML

pages), up to 20GB, is crawled from Google Scholar in 2007. As shown in

Table 5.2, the total number of valid papers after this process is 925, 293, the

number of authors is 574, 369, and the number of terms is 308,651.

1http://portal.acm.org/
2http://ieeexplore.ieee.org/
3http://www.springer.com
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Table 5.2: Statistics of the DBLP collection.

Property #of entities

Number of papers 925,293

Number of authors 574,369

Number of terms 308,651

5.4.2 Assessments

To evaluate the quality of retrieved experts, we manually created the ground

truth through the method of pooled relevance judgments with human as-

sessment efforts. For each query, the top authors from the computer science

bibliography search engines (such as CiteSeer4, Libra5, and Rexa6) and the

committees of the top conferences in the topic were taken to construct the

pool. Then some researchers were asked to assess each of the recommended

candidates with respect to the query. To help them in their task, those re-

searchers were presented with publications and a description relating to each

author. They could access and find additional content directly on a search

engine when needed.

Such a benchmark dataset with expert lists (for expert finding) has been

collected in Tsinghua University [150]. It contains 7 query topics and creates

7 expert lists. Their assessments were carried out mainly in terms of the

number of top conference/journal papers an expert candidate has published,

the number of related publications for the given query, and what distinguished

awards he/she has been awarded. There are four grade scores (3, 2, 1, and

0) which were assigned respectively to represent top expert, expert, marginal

expert, and not expert. Finally, the judgment scores (at levels 3 and 2) were

4http://citeseer.ist.psu.edu/
5http://libra.msra.cn/
6http://rexa.info/
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averaged to construct the final ground truth. We extended this data set to

contain 17 query topics and 17 expert lists. Table 5.3 shows the details of the

benchmark dataset.

5.4.3 Evaluation Metrics

For the evaluation of the task, three different metrics are adopted to measure

the performance of our proposed models, including precision at rank n (P@n),

mean average precision (MAP), bpref [19].

Precision at rank n (P@n) P@n measures the fraction of the top-n re-

trieved results that are relevant experts for the given query, which is

defined as

P@n =
# relevant experts in top n results

n
.

R-precision (R-prec) is defined as the precision at rank R where R is

the number of relevant candidates for the given query.

Mean Average Precision (MAP) Average precision (AP) emphasizes re-

turning more relevant documents earlier. For a single query, AP is de-

fined as the average of the P@n values for all relevant documents:

AP =

∑N

n=1(P@n ∗ rel(n))

R
,

where n is the rank, N the number retrieved, and rel(n) is a binary

function indicating the relevance of a given rank. MAP is the mean

value of the average precisions computed for all the queries.

Bpref Beside the measurement of precisions, Bpref [19] is a good score func-

tion that evaluates the performance from a different view, i.e., the num-

ber of non-relevant candidates. It is formulated as

bpref =
1

R

N
∑

r=1

(1− #n ranked higher than r

R
),
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Table 5.3: Benchmark dataset of 17 queries.

Topic #Expert

Boosting 56

Information Extraction 20

Intelligent Agents 29

Machine Learning 42

Natural Language Processing 43

Planning 34

Semantic Web 45

Support Vector Machine 31

Ontology Alignment 55

Probabilistic Relevance Model 13

Information Retrieval 23

Language Model For Information Retrieval 12

Face Recognition 21

Semi Supervised Learning 21

Reinforcement Learning 17

Privacy Preservation 17

Kernel Methods 22
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where r is a relevant candidate and n is a member of the first R candi-

dates judged non-relevant as retrieved by the system.

In our experiments, we report the results of P@5, P@10, P@20, R-prec, MAP,

and bpref.

5.5 Experimental Results

The presentation of the experimental results is organized in the following

four subsections. First we evaluate the baseline model for expert finding,

and compare the performance of two different representations for the DBLP

collection. Then the experiments are performed to compare the weighted

language models with the paper importance in Section 5.5.2. In Section 5.5.3,

we examine the effectiveness of the graph-based regularization in our model.

Finally, the detailed results are discussed in Section 5.5.4. The experimental

results shown in this section are the average results.

5.5.1 Preliminary Experiments

In order to compare the performance of different representations, we set up

and index two corpora for evaluation. One corpus (“Title”) is collected only

using the paper title, while the other corpus (“Title+GS”) is built based on

the combination of the paper title and its supplemental representation using

Google Scholar. Different representations result in different paper relevance

scores for a given query. As shown in Eq.(5.5), the relevance score is controlled

by the parameter λt. When λt = 1, the score is determined by p(q|θdT
), and

it means the paper is represented only using the publication title dT . When

λt ∈ (0, 1), the score is determined by both p(q|θdT
) and p(q|θdS

), which

means the paper is represented based on the combination of the title and its

supplemental data dS.
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Table 5.4: Experimental results with different representations (%).

P@5 P@10 P@20 R-prec MAP bpref

“Title” 61.18 51.18 44.71 40.30 27.27 33.20

“Title+GS” 72.94 64.12 47.94 43.98 33.06 38.16

We perform the preliminary experiments using the basic language model

LM(bas) with two parameters: λt = 1 (“Title”) and λt = 0.5 (“Title+GS”).

The comparison of the results is reported in Table 5.4. It is quite clear that the

results of “Title+GS” are much better than those of “Title” in all the metrics

from P@5 to bpref, especially the very top precision. For the precision P@5,

“Title+GS” achieves 72.94%, which is about 11.7% higher than the results of

“Title.” According to Table 5.4, it is more effective to represent publications

using Google Scholar for data supplementation. In all these experiments, we

retrieve the top 1,000 most relevant papers and set ν = 10 for Dirichlet prior

smoothing. In the following parts, we set λt to be 0.5 with “Title+GS.”

5.5.2 Language Models with Paper Importance

In this subsection, the effect of paper importance is studied and evaluated.

We compare the performance of the weighted language models with two dif-

ferent weighting methods. As mentioned in Table 5.1, LM(bas) represents

the baseline method with uniform weight wd = 1, while LM(w) is the method

with the common logarithm weight wd = log(10 + nd). Table 5.5 shows the

results for the different methods with “Title” and “Title+GS”, respectively.

First, we inspect the absolute performance of the methods. For the pre-

cision P@5, the basic language model LM(bas) achieves 61.18% and 72.94%

respectively for “Title” and “Title+GS”, while the weighted language models

LM(w) can enhance the precision significantly to 72.94% and 81.18% respec-
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Table 5.5: Evaluation results of language models using different weighting methods

(%). Best scores are in boldface.

“Title” P@5 P@10 P@20 R-prec MAP bpref

LM(bas) 61.18 51.18 44.71 40.30 27.27 33.20

LM(w)
72.94 60.59 48.53 43.22 31.91 36.79

+19.2 +18.4 +8.55 +7.25 +17.0 +10.8

“Title+GS” P@5 P@10 P@20 R-prec MAP bpref

LM(bas) 72.94 64.12 47.94 43.98 33.06 38.16

LM(w)
81.18 65.29 53.24 47.93 37.10 41.60

+11.3 +1.84 +11.0 +8.98 +12.2 +9.01

tively. With reference to the MAP, the LM(w) has a 17.0 percent improve-

ment over the LM(bas) for “Title”, and a 12.2 percent improvement over the

LM(bas) for “Title+GS.” When looking at the overall performance of the

various models, we observe that the weighted language model LM(w) out-

performs the basic language model LM(bas) on all the metrics from P@5 to

bpref, not only on “Title” corpus but also on “Title+GS” corpus.

According to the experimental results, we can argue that it is very im-

portant to consider the prior probability of the document in the model. By

way of taking into account the paper importance and the paper relevance

simultaneously, the weighted language model performs very well and achieves

much better performance than the basic language model with the uniform

weight. Another interesting observation is that the results of “Title+GS” are

better than those of “Title”, which reconfirms the effective representation of

“Title+GS.”
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Figure 5.8: The effect of varying the parameter µα by comparing four different

models, including the basic language model LM(bas), basic language model with

graph-based regularization LM(r), weighted language model LM(w), and its exten-

sion with graph-based regularization LM(w+r).
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5.5.3 Effect of Graph-based Regularization

We have shown the effectiveness and improvement of our weighted language

models in previous subsections. We now consider the question whether the

graph-based regularization framework can further boost the performance of

both LM(bas) and LM(w) models. The objective of the regularization frame-

work is to refine the initial relevance scores, so as to identify the most relevant

papers as well as the relevant experts for a given query. In the unified regular-

ization framework, the parameter µα is used to control the balance between

the global consistency and the initial ranking scores. We study and evaluate

the effect of the parameter µα by setting different values in this subsection.

If µα is set to be 0, the regularization framework boils down to the initial

baseline. When µα → 1, it discards the initial ranking scores, and only takes

into account the global consistency on the graph according to Eq. (5.11).

In order to evaluate the robustness of the proposed regularization frame-

work, we set ten different values (from 0.1 to 0.99) for µα, and examine the

corresponding performance. We compare four different models, including the

basic language model LM(bas), basic langauge model with graph-based reg-

ularization LM(r), weighted language model LM(w), and its extension with

graph-based regularization LM(w+r). The experimental results for different

parameter µα are illustrates in Figure 5.8, and all of these experiments are

performed on “Title+GS.” In this figure, the solid curves denote the results

of LM(r) and LM(w+r), which vary with the parameter µα. The dashed

lines denote the baseline results of LM(bas) and LM(w). When µα = 0, the

results of LM(r) and LM(w+r) are the same as those of LM(bas) and LM(w),

respectively.

Let us look at the MAP metric as shown in Figure 5.8(e) in detail. Com-

pared to the baseline LM(bas), LM(r) can boost its performance when in-

corporating the global consistency in the framework (µα >= 0.2). With the
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increase of µα, the performance becomes better. Meanwhile, similar improve-

ments occur in the results of LM(w+r) by comparing with LM(w). When the

parameter µα is equal to 0.99, the performance of both LM(r) and LM(w+r)

becomes worse than that of the initial LM(bas) and LM(w) methods. This is

because of the overweighted global consistency in the framework if it puts too

much weight on the first term (µα → 1). In terms of the comparison using

other metrics, it has shown similar trends about the parameter µα. The ex-

perimental results demonstrate the effectiveness of the proposed graph-based

regularization framework. Moreover, the regularization framework is rela-

tively robust and may achieve the best results when the parameter µα is set

to be 0.5-0.7. The parameter µα used in Section 5.5.4 is therefore set to be

0.5.

5.5.4 Comparison and Detailed Results

We show the comparison of different models in Table 5.6. The first part shows

the absolute precisions of those models, and the second part illustrates the

percentage of relative improvements. A quick scan of the first part, accompa-

nying with Figure 5.8, reveals that LM(w+r) achieves the best performance

from P@5 to bpref. When looking at the top two lines of the lower part,

we can see that LM(r) improves over the baseline LM(bas) consistently for

all the metrics. The relative improvements of LM(w+r) / LM(w) are less

than those of LM(r) / LM(bas) in most metrics except P@10. The most im-

portant observation is that graph-based regularization can further boost the

performance of the weighted language models. In terms of the relative im-

provements over the baseline LM(bas), we can see that LM(r) improves over

LM(bas) by up to 6.75% for P@20, LM(w) over LM(bas) by up to 12.22% for

MAP, and LM(w+r) over LM(bas) by up to 15.95% for P@20. In general,

LM(w+r) achieves the best performance. According to the experimental re-
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sults, we can argue that it is very essential and promising to consider the

weighted language model with graph-based regularization for expert finding.

To gain a better insight into the details of the results, we compare with

the experimental results of these four methods on each query. Figure 5.9

shows the detailed results of these methods on 17 queries. From the detailed

experimental results, we can see that our LM(w+r) method outperforms the

baseline as well as other two methods in most cases. On the other hand, there

are few cases that LM(w+r) does not make an improvement, for example,

the query “machine learning”, “support vector machine” and “reinforcement

learning” in Figure 5.9(b). However, the overall performance (MAP and

bpref) of those three queries, as shown in Figure 5.9(e) and Figure 5.9(f), are

better than that of the baseline. We also see that the performance (MAP)

in some queries, for instance, the query “ontology alignment”, is not good

enough. This is because most of the data (papers/authors) corresponding to

those queries are uncovered in the collection. From the figure, we can observe

the improvement of our LM(w+r) method is more consistent and promising

when compared to the baseline and the other two methods.

5.6 Summary

In this chapter we present the weighted language model for expert finding,

whose basic idea is to aggregate the expertise of a candidate from the as-

sociated documents. Our proposed model first retrieves the most relevant

documents with respect to a query, and then takes into account not only

the relevance scores, but also the importance of the documents simultane-

ously. Furthermore, we investigate and integrate the graph-based regulariza-

tion method to enhance our model, which leads to a further improvement by

leveraging the global consistency over the graph to refine the relevance scores.

We have conducted an extensive set of experiments on a benchmark dataset
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Table 5.6: Comparison of different methods (%). The percentages of relative improvements are shown in the lower part.

Method P@5 P@10 P@20 R-prec MAP bpref

LM(bas) 72.94 64.12 47.94 43.98 33.06 38.16

LM(r) (µα = 0.5) 77.65 65.29 51.18 46.25 34.86 39.97

LM(w) 81.18 65.29 53.24 47.93 37.10 41.60

LM(w+r) (µα = 0.5) 82.35 68.24 55.59 48.88 37.89 42.60

LM(r) / LM(bas) +6.45% +1.83% +6.75% +5.15% +5.42% +4.75%

LM(w+r) / LM(w) +1.45% +4.50% +4.42% +1.97% +2.13% +2.40%

LM(w) / LM(bas) +11.29% +1.84% +11.04% +8.98% +12.22% +9.01%

LM(w+r) / LM(bas) +12.90% +6.42% +15.95% +11.13% +14.61% +11.63%
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Figure 5.9: Illustration and comparison of the experimental results on each query

for four different methods.
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for evaluating the performance of a number of algorithms with different set-

tings. The promising experimental results validate the effectiveness of our

weighted language model, and demonstrate that it can be further improved

with the graph-based regularization method.

2 End of chapter.



Chapter 6

Enhancing Expertise Retrieval

Motivated by the observation that communities could provide valuable insight

and distinctive information, we investigate and develop two community-aware

strategies to enhance the expertise retrieval. We first propose a new smooth-

ing method using the community context for statistical language model, which

is employed to identify the most relevant documents so as to reflect the ex-

pertise retrieval in the document-based model. Furthermore, we propose a

query-sensitive AuthorRank to model the authors’ authorities based on the

community coauthorship networks, and develop an adaptive ranking refine-

ment method to enhance the expertise retrieval. Experimental results demon-

strate the effectiveness and robustness of both community-aware strategies.

6.1 Motivation

Expertise retrieval has received increased interests in recent years, whose

task is to suggest people with relevant expertise to the topic of interest.

One of the state-of-the-art approaches [8, 37] is the document-based model

using a statistical language model to rank experts. However, one of the

issues is that previous algorithms mainly consider the documents associated

with the experts, while ignoring the community information that is affiliated

121
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with the documents and the experts. Actually, in addition to the associated

documents, there is much other information that can be included, such as

the community context information and the community social information.

Therefore, how to utilize the community-based information to enhance the

expertise retrieval becomes an interesting and challenging problem.

Given a set of documents and their authors, it is possible and often de-

sirable to discover and infer the community information, in which contains a

number of documents and authors for each community. Some existing studies

have been conducted about how to discover community [78, 152], but this is

not the focus of our work: here we focus on the problem of enhancing exper-

tise retrieval with the community information, and suppose the community

information is already existed. As our approach is to deal with the expert-

finding task in a real-world academic domain, it is reasonable to assume the

academic communities have been formed automatically in the form of confer-

ences and journals, in which the researchers publish their papers, exchange

their ideas, and coauthor with each other.

An illustrated graph with two communities is sketched in Figure 6.1.

There are five documents associated with five authors. The edge between

a document and an author means the document is written by the author. We

assume each document di can only belong to one community Ck, and each

author aj of the document is affiliated with the corresponding community Ck.

In this example, d1 and d2 belong to the community C1, and meanwhile d3,

d4 and d5 form the community C2. For the authors of the documents, a1, a2

and a3 are affiliated with the community C1, and a3, a4 and a5 with the com-

munity C2, so a single author may belong to multiple communities. There

is a pair of distributions for each community: one over documents and one

over authors. With such community-based information, the community can

be represented from two different perspectives to obtain the community con-



CHAPTER 6. ENHANCING EXPERTISE RETRIEVAL 123

�� �� ��
�� �� ��

��
��

��
�� �  �

Figure 6.1: An example graph with two communities

text (text information) based on the papers and the community coauthorship

network based on the authors.

In this chapter, we propose two community-aware strategies to enhance the

expertise retrieval. The first one is the community-based smoothing method

for statistical language model, which is employed to identify the most rele-

vant documents so as to reflect the expertise retrieval in the document-based

model. The smoothing method is an important characteristic of the language

model for computing the relevance score. In previous approaches [8, 37],

the document language model is smoothed by the whole collection language

model, which smooths each word equally in all the documents while ignoring

their different community information. However, we argue that the com-

munity context provide more valuable and distinctive information for the

document than the whole collection. For example, as shown in Figure 6.1,

suppose C1 denote a “machine learning” community, and C2 denotes a “infor-

mation retrieval” community. Thus it is likely to contain a higher proportion

of words related to “machine learning” in the context of C1 than the whole

collection, and meanwhile there would be a higher proportion of words related

to “information retrieval” in the context of C2 than the whole collection. This

observation motivates us to conduct the novel smoothing method using the
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community context.

Moreover, the second strategy is developed to boost the document-based

model using the community-sensitive authorities. More specifically, we pro-

pose a query-sensitive AuthorRank to model the authors’ authorities based

on the coauthorship networks, and develop an adaptive ranking refinement

method to aggregate the ranking results. Intuitively, experts usually have

high authorities in some communities, which reflect their general and high-

level expertise in some aspects. In contrast, the document-based model re-

flects more specific and detailed aspects for expertise retrieval, as it mea-

sures the contribution of each document individually. From this point of

view, the community-sensitive authorities should be taken into consideration

along with the document-based model for expertise retrieval, which is re-

ferred to as the enhanced model. To illustrate our methodology, we apply the

proposed methods to the expert finding task using the DBLP bibliography

data [1]. Experimental results demonstrate the effectiveness and robustness

of the community-aware strategies. Moreover, the improvements made in the

enhanced model are significant and consistent.

In this chapter, our major contributions are: (1) the investigation of

the smoothing method using community context instead of the whole col-

lection to enhance the language model for the document-based model; (2)

the introduction of the community-sensitive AuthorRank for determining the

query-sensitive authorities for experts; and (3) an adaptive ranking refinement

strategy to aggregate the ranking results of both document-based model and

community-sensitive AuthorRank, which leads to a significant improvement

over the baseline method.

The rest of this chapter is organized as follows. Section 6.2 describes the

preliminaries of the expertise modeling. Section 6.3 presents the document-

based models smoothed using community context. Section 6.4 describes the
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enhanced models with community-aware authorities. Section 6.5 defines the

experimental setup and reports the experimental results. Section 6.6 summa-

rizes this chapter.

6.2 Preliminaries

Suppose A = {a1, a2, ..., aM} is the set of expert candidates (i.e., authors)

to be retrieved. Let D = {d1, d2, ..., dN} denote a collection of supporting

documents, where di is a paper authored by one or several candidates. Let

C = {C1, C2, ..., CK} denote the collection of corresponding communities,

where Ck consists of a set of papers and their associated authors. As il-

lustrated in Figure 6.1, the relationships between authors, documents and

communities can be represented by the tuple < ai, dj, Ck >, signifying that

author i has a paper j that is published in the community k. Note that each

paper exclusively belongs to one community, while an author may belong to

multiple communities.

For a given query q, the problem of identifying experts is formulated using

a generative probabilistic model, i.e., what is the probability of a candidate

ai being an expert given the query topic q? Using Bayes’ theorem, the prob-

ability can be formulated as follows:

p(ai|q) =
p(ai, q)

p(q)
∝ p(ai, q), (6.1)

where p(ai, q) is the joint probability of a candidate and a query, p(q) is

the probability of the query. The probability p(q) is a constant, so it can be

ignored for ranking purposes. To derive the probability p(ai|q), it is equivalent

to estimate the joint probability p(ai, q).

A number of methods have been proposed to estimate the probability

p(ai, q). One successful method, proposed by Deng et al. [37], decomposes

the joint probability into the product over the supporting documents using a
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Figure 6.2: The document-based model for expertise retrieval.

generative probabilistic model. The basic idea is to model the expertise of an

expert based on the relevance and importance of the associated documents.

As shown in Figure 6.2, the supporting documents D act as a “bridge” to

connect the query q with the candidate a. We follow this approach (document-

based model) to estimate the probability as

pd(ai, q) =
∑

dj∈D

p(dj)p(ai, q|dj)

=
∑

dj∈D

p(dj)p(q|dj)p(ai|dj, q)

=
∑

dj∈D

p(dj)p(q|θdj
)p(ai|dj), (6.2)

where p(dj) is the prior probability of a document, p(q|dj) means the rele-

vance between q and dj, and p(ai|dj, q) represents the association between the

candidates and the documents for a given query. In this equation, we assume

the candidate a is conditionally independent of the query q given a document

d; that is p(ai|dj, q) = p(ai|dj).

6.3 Document-based Models with Community-Aware

Smoothing

As stated before, the task of the expertise retrieval is to retrieve a list of

experts that have expertise for the given query. In this section, we describe
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the document-based models with community-aware smoothing strategy for

the real-world academic domain.

6.3.1 Statistical Language Model

In the document-based model, one of the key challenges is to compute the

relevance between a query and documents. In recent years, statistical lan-

guage model has been widely used in the application of information re-

trieval [60, 108, 145, 148]. To determine the probability of a query given

a document, we infer a document language model θd for each document. The

relevance score of document d with respect to query q is then defined as

the conditional probability p(q|θd). Suppose q = t1...tm and each word t is

generated independently, the relevance score would be,

p(q|θd) =
∏

ti∈q

p(ti|θd), (6.3)

where p(t|θd) represents the maximum likelihood estimator of the word in a

document d.

With such a model, the retrieval problem is reduced to the problem of esti-

mating p(ti|θd). In order to assign nonzero probabilities to unseen words, it is

important to incorporate the smoothing methods in estimating the document

language model. One popular way to smooth the maximum likelihood esti-

mator is the Jelinek-Mercer smoothing method with the collection language

model:

p(t|θd) = (1− λ)
n(t, d)

|d| + λp(t|G), (6.4)

where λ is the parameter to control the amount of smoothing, n(t, d) is the

count of word t in the document d, |d| is the number of the words in d, and

p(t|G) is the collection language model. The collection language model can

be estimated by normalizing the count of words in the entire collection, which
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can be defined as

p(t|G) =

∑

dj∈G n(t, dj)
∑

dj∈G |dj |
. (6.5)

Accordingly, we can define the collection-smoothed language model as

p(q|θd) =
∏

ti∈q

(

(1− λ)
n(ti, d)

|d| + λp(ti|G)

)

. (6.6)

6.3.2 Smoothing Using Community Context

Now we investigate how to use the community information to enhance the lan-

guage model described above. In this subsection, a novel smoothing method

is proposed for the document language model by leveraging the community-

aware information to determine the probability p(q|θd) .

Suppose the community information is already existed for each document.

For example, a conference or journal, which contains a set of publications, can

be treated as a community. Figure 6.3 illustrates the relationships between

the documents, the communities and the whole collection. There are three-

level representations for the language model: the variable θd denotes the

low-level document representation, sampled once per document; the variable

Cd denotes the middle-level community representation, consisted of a set of

documents including d; finally, the variable G denotes the high-level collection

representation, consisted of all the documents.

According to the traditional language model, each word is smoothed by

the same collection language model, which would be treated equally despite

of their different community information. However, the community provides

valuable insight and distinctive information for its documents rather. Be-

cause a document will somewhat share much more common information with

its community rather than the whole collection. Moreover, each community

may have its own distinctive characteristics, which are different from other

communities. Therefore, it would be more reasonable to employ the dis-

tinctive community language model, instead of the whole collection based
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Figure 6.3: A graph representation of the relationships between documents, com-

munities and the entire collection.

smoothing, to smooth different document models. The community language

model is defined as

p(t|Cd) =

∑

dj∈Cd
n(t, dj)

∑

dj∈Cd
|dj|

. (6.7)

For two documents that belong to two different communities, we can define

two distinctive community language models, instead of the same collection

language model, to smooth the document language model. The community-

smoothed language model is obtained by substituting p(t|Cd) for p(t|G) into

Eq. (6.6)

p̂(q|θd) =
∏

ti∈q

(

(1− λ)
n(ti, d)

|d| + λp(ti|Cd)

)

. (6.8)

Note here the document d belongs to the community Cd.

6.3.3 Determining Other Probabilities

We have described two language models for calculating the probability p(q|d),

now we proceed to introduce the estimation of the other probabilities p(d)

and p(a|d). Generally, the document prior p(d) is assumed to be uniform.

In addition, p(d) is interpreted as the document importance in [37], which is

estimated based on the citation of the document. We briefly define these two
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Table 6.1: Combination of different methods.

Model wa cb Ec Remarks

Document-based models

DM(b) B1 0 0 baseline

DM(bc) B1 1 0 community-based smoothing

DM(w) B2 0 0 weighted model

DM(wc) B2 1 0 community-based smoothing

Enhanced models

EDM(b) B1 0 1 enhanced DM(b)

EDM(bc) B1 1 1 enhanced DM(bc)

EDM(w) B2 0 1 enhanced DM(w)

EDM(wc) B2 1 1 enhanced DM(wc)

a uniform weight (B1) or common logarithm weight (B2)

b smoothing using the community (1) or collection (0)

c enhancing with community-aware authorities (1) or no

enhancement (0)
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weight methods as follows,

p(d) ∝











1, (B1)

log (10 + Nc(d)) , (B2)
(6.9)

where Nc(d) is the citation of d, and the constant 10 is used to guarantee the

weight to be greater than 1. The probability p(a|d) indicates the association

between papers and authors. One simple way is to define the probability

inversely according to the number of authors. Suppose a document has mul-

tiple authors in total, each author is assumed to have the same knowledge

about the topics described in the document,

p(a|d) =











1
Na(d)

, (a is the author of d)

0, (otherwise)
(6.10)

where Na(d) is the number of authors for the document.

So far, there are two language models, i.e., as Eq. (6.6) and Eq. (6.8), for

calculating p(q|θdj
), and two methods in Eq. (6.9) for computing p(d) as well.

By considering each method and substituting into Eq. (6.2) separately, four

different models can be combined as shown in the upper part of Table 6.1.

We evaluate and compare the performance of these document-based models

in Section 6.5.3.

6.4 Enhanced Models with Community-Aware Author-

ities

In the academic domain, researchers in similar fields are most likely to form

a community, and to publish relevant articles in the community. Motivated

by the observation that experts usually have high authorities in some com-

munities, we develop and investigate the query-sensitive authorities with an
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adaptive ranking refinement strategy, so as to enhance the expertise retrieval

models.

6.4.1 Discovering Authorities in a Community

In a community, the authors’ relationships can be described using a coau-

thorship network. Coauthorship network is an important category of social

networks, and has been used extensively to determine the structure of scien-

tific collaborations [100]. We consider the weighted directed graph to model

the coauthorship network in which each edge represents a coauthorship re-

lationship. If any two authors coauthored a paper, an edge with a weight

is created. Let us take the community C1 in the Figure 6.1 as an example.

Authors a1 and a2 coauthored paper d1, and a1, a2 and a3 coauthored paper

d2. So a1, a2 and a3 would be connected with each other.

To quantify the edge weight, the coauthorship frequency is proposed in [83],

which consists of the sum of all values for all papers coauthored by ai and aj ,

fij =
N
∑

k=1

δk
i δk

j

nk − 1
, (6.11)

where δk
i = 1 if ai is one of the authors of the paper dk, otherwise δk

i = 0, and

nk is the number of authors in paper dk. This gives more weight to authors

who co-publish more papers together. For the example above, the graph with

the coauthorship frequency is illustrated in Figure 6.4(a). In general, the link

weight wij from ai to aj is defined by normalizing the coauthorship frequency

from ai as

wij =
fij

∑n

k=1 fik

. (6.12)

This normalization ensures that the weights of an author’s relationships sum

to one, as shown in Figure 6.4(b) for C1.

For each community, a weighted coauthorship graph can be easily built.

Intuitively, the generated coauthorship weights express valuable information
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Figure 6.4: Coauthorship graph with: (a) coauthorship frequency, and (b) normal-

ized weight.

which should, and can, be taken into account for discovering the authorities

of the authors within the community. We therefore utilize AuthorRank [83],

a modification of PageRank [18], to measure the authority for the authors

within this community as

p(ai|Ck) = (1− α)
1

Na(Ck)
+ α

Na(Ck)
∑

j=1

wij · p(aj |Ck), (6.13)

where Na(Ck) is the number of authors in the community Ck, and p(ai|Ck) is

the authority (i.e., AuthorRank) of the author ai satisfying
∑

i p(ai|Ck) = 1.

The AuthorRank can be calculated with the same iterative algorithm used

by PageRank.

6.4.2 Community-Sensitive AuthorRank

The AuthorRank described above calculates the authorities for the authors

within a community, but it is independent of any particular query topic. To

identify a set of experts for a given query, we propose a community-sensitive

AuthorRank to generate query-specific authority scores for authors at query

time.
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We precompute the authority scores offline for each community, as with

ordinary AuthorRank. At query time, these authority scores are combined

based on the communities of the query to form a composite AuthorRank score

for those associated authors. Given a query q, we compute the probability

for each community Ck the following:

p(Ck|q) =
p(Ck) · p(q|Ck)

p(q)
∝ p(Ck)

∏

ti∈q

p(ti|Ck), (6.14)

where p(ti|Ck) is easily computed from the community language model as

Eq. (6.7). The quantity p(Ck) is not as straightforward. We model it as

related to the number of authors Na(Ck) and the average citation per paper

Nc(Ck) in the community ck; that is

p(Ck) ∝ Na(Ck) · log(10 + Nc(Ck)). (6.15)

The number of authors reflects the size of the community, and the average

citation per paper reflects the quality of the community. Therefore, the un-

derlying idea is that the community prior is proportional to the size and

quality of the community.

According to Eq. (6.14), we retrieve top-k communities that are highly

related to the query. Finally, we compute the query-sensitive authority score

for each author as follows,

p(ai|q) =
∑

k

p(Ck|q)p(ai|Ck). (6.16)

The authors are ranked according to this composite score p(ai|q). The above

community-sensitive AuthorRank has the following probabilistic interpreta-

tion. Note that Eq. (6.16) can be reformulated as

p(ai|q) ∝
∑

k

p(Ck)p(q|Ck)p(ai|Ck). (6.17)

Suppose Ck be a “virtual” document, it becomes the document based model

as Eq. (6.2). Thus the community-sensitive AuthorRank can be regarded as
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a high-level document-based model that captures the high-level and general

aspects for a given query.

6.4.3 Ranking Refinement Strategy

Based on the document-based model and the community-sensitive Author-

Rank (i.e., community-based model), we obtain two kinds of ranking results

~Rd and ~Rc, which reflect the authors’ expertise from different perspectives.

The ranking list ~Rd captures more specific and detailed aspects matching

with the given query, as it measures the contribution of each document indi-

vidually. In contrast, the ranking list ~Rc reflects more general and abstract

aspects matching with the given query. In other words, if the document-

based model is good for capturing the low-level and specific queries, then the

community-sensitive AuthorRank should be good for capturing the high-level

and general queries. Therefore, we consider the ranking refinement strategy

by leveraging the community-sensitive AuthorRank to boost the document-

based model.

In order to measure the similarity and diversity between two ranking re-

sults, we utilize a measurement, similar to the Jaccard coefficient, which is

defined as the size of the intersection divided by the size of the union of these

two top-k ranking results,

J =

∣

∣

∣

~Rd
⋂

~Rc
∣

∣

∣

∣

∣

∣

~Rd
⋃

~Rc
∣

∣

∣

. (6.18)

This measurement implies the following meanings: a large value is reached if

the community-sensitive AuthorRank could retrieve many common authors

within the top-k results as identified by the document-based model. In this

case, the community-sensitive AuthorRank may contribute a lot to refine the

document-based model; otherwise vice versa. Based on this scheme, we adopt

this measurement for an adaptive ranking refinement as follows. Let Rd(ai)
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be the rank of author ai in ~Rd. Suppose R̂c be the subset of ~Rc consisting

of the intersected authors ( ~Rd
⋂

~Rc), and let R̂c(ai) be the rank of author ai

in R̂c. For each author ai in ~Rd, we define a refined score S(ai) based on the

following function

S(ai) =
1

Rd(ai)
+ δ(ai) · J ·

1

R̂c(ai)
, (6.19)

where δ(ai) = 1 if ai is one of the intersected authors, otherwise δ(ai) = 0.

The intuition behind this method is that the authors, which are identified in

both ~Rd and ~Rc, should be boosted ahead based on the ranking results ~Rd.

The new results are ranked according to the refined score S(ai). By applying

the ranking refinement strategy to the previous four different document-based

models, we obtain four enhanced models as shown in Table 6.1. The perfor-

mances of these enhanced models are evaluated and compared in Section 6.5.3.

6.4.4 Overall Algorithm

By unifying the document-based model in Section 6.3 and the enhanced model

described above, we summarize the proposed algorithm in Algorithm 2. In

the algorithm, note that we first perform preprocessing in a collection, and

precompute the following probabilities p(dj), p(ai|dj), p(Ck) and p(ai|Ck).

At query time, our approach is performed as shown in Algorithm 2. Actu-

ally, the document-based model is approximately performed using the top-k1

relevant documents, and meanwhile the community-sensitive AuthorRank is

implemented using the top-k2 relevant communities as well. In Section 6.5.3,

we investigate and discuss the effect of these two parameters k1 and k2. To

deploy the efficient implementations of our scheme, all of the algorithms used

in the study are programmed in the C# language. We have implemented the

language modeling approach to obtain the initial relevance scores with the

Lucene.Net1 package. For these experiments, the system indexes the collec-

1http://incubator.apache.org/lucene.net/
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tion and does tokenization, stopping and stemming in the usual way.

Algorithm 2 Enhanced Expertise Retrieval Algorithm

Input: Given a query q,

Perform:

1. Retrieve the top-k1 most relevant documents based on the language model

with Eq. (6.6) or Eq. (6.8);

2. Aggregate the expertise p(ai, q) using the document-based model Eq. (6.2),

and then obtain the ranking results ~Rd;

3. Identify the top-k2 most relevant communities according to Eq. (6.14);

4. Compute the community-sensitive AuthorRank with Eq. (6.16), and then

obtain the ranking results ~Rc;

5. Refine with Eq. (6.19) and get the new ranking results.

Output: Return the ranked experts {a1, a2, ..., ak}.

6.5 Experimental Evaluation

We evaluate the performance of our proposed models with different settings

through an empirical evaluation. In this section, we first introduce the exper-

imental setup, including the dataset and evaluation metrics, and then present

the experimental results.

6.5.1 Dataset

The dataset that we study is the DBLP bibliography data, which contains

over 1,100,000 XML records as of March 2009. Each record represents an

paper that is originally published in conferences, journals, books, etc. One of

the XML records is shown in Figure 6.5, and it consists of several elements,
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Figure 6.5: An example of the DBLP XML records.

such as “author”, “title”, “journal/conference”, etc. In total, we gather about

700,000 author names from DBLP XML records, each of which can be an ex-

pert candidate. As the DBLP records are limited to represent the papers,

we conduct a similar method employed in [37] to extend the information us-

ing Google Scholar. For each paper, we use the title as the query to search

in Google Scholar and select the top 10 returned records as the supplemen-

tal data for this paper. The metadata (HTML pages) crawled from Google

Scholar is up to 30GB. This process is done automatically by a crawler and

a parser, and the citation of the paper in Google Scholar is obtained at the

same time. In addition, we collect the community information according to

the journals and conferences, and the total number of valid communities is

3,143. For each community, we regard all the paper titles as the community

context, and construct the community coauthorship network for the affiliated

authors. In summary, the data collection for experiments include 1,184,678

papers, 696,739 authors, and 3,143 communities. Table 6.2 gives the statistics

of the DBLP collection for experiments.

6.5.2 Assessments and Evaluation Metrics

In order to measure the performance of our proposed methods, we manually

created the ground truth because of the scarcity of such data that can be
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Table 6.2: Statistics of the DBLP collection.

Property #of entities

Number of papers 1,184,678

Number of authors 696,739

Number of communities 3,143

examined publicly. For each query, a list of experts is collected through the

method of pooled relevance judgments with human assessment efforts. As

shown in Table 6.3, the benchmark dataset used for the evaluation contains

17 query topics and 17 expert lists.

For the evaluation of the task, three different metrics are employed to mea-

sure the performance of our proposed models, including precision at rank n

(P@n), mean average precision (MAP), bpref [19]. P@n measures the fraction

of the top-n retrieved results that are relevant experts for the given query,

which is defined as

P@n =
# relevant experts in top n results

n
.

R-precision (R-prec) is defined as the precision at rank R where R is the

number of relevant candidates for the given query. Average precision (AP)

emphasizes returning more relevant documents earlier. For a single query,

AP is defined as the average of the P@n values for all relevant documents:

AP =

∑N

n=1(P@n ∗ rel(n))

R
,

where n is the rank, N the number retrieved, and rel(n) is a binary function

indicating the relevance of a given rank. MAP is the mean value of the average

precisions computed for all the queries. Beside the measurement of precisions,

Bpref [19] is a good score function that evaluates the performance from a
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Table 6.3: Benchmark dataset of 17 queries.

Topic #Expert

Boosting 56

Information Extraction 20

Intelligent Agents 29

Machine Learning 42

Natural Language Processing 43

Planning 34

Semantic Web 45

Support Vector Machine 31

Ontology Alignment 55

Probabilistic Relevance Model 13

Information Retrieval 23

Language Model For Information Retrieval 12

Face Recognition 21

Semi Supervised Learning 21

Reinforcement Learning 17

Privacy Preservation 17

Kernel Methods 22
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different view, i.e., the number of non-relevant candidates. It is formulated

as

bpref =
1

R

N
∑

r=1

(1− #n ranked higher than r

R
),

where r is a relevant candidate and n is a member of the first R candidates

judged non-relevant as retrieved by the system. In our experiments, we report

the results of P@10, P@20, P@30, R-prec, MAP, and bpref.

6.5.3 Experimental Results

The presentation of the experiments is organized in the following three as-

pects. First the experiments are performed to compare the document-based

models with different settings. Then we examine the performance of the en-

hanced models after the ranking refinement. Finally, we discuss the effect of

two parameters by the empirical studies, and show some detailed and inter-

mediate results.

Comparison of Document-based Models

To validate the effect of the community-based smoothing method, we evalu-

ate and compare the performance of four document-based methods, including

the basedline DM(b), weighted model DM(w), and their smoothed models

DM(bc) and DM(wc). The results of these four methods are shown in Ta-

ble 6.4. The first part shows the absolute precisions of these methods, and

the second part illustrates the percentages of relevant improvements.

According to the first part, it is obvious that DM(wc) achieves the best

performance among the document-based models in all the metrics, such as

0.5265 for P@20 and 0.3771 for MAP. When looking at the relative improve-

ments, we can see that DM(bc) improves over DM(b) in all metrics, such as

4.4% for P@10 and 4.09% for MAP. Similarly, DM(wc) improves over DM(w)
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from 1.85% to 4.68% in most metrics besides P@10 (it is harder to be im-

proved as DM(w) has been improved a lot over DM(b)). This is because the

smoothing method using community context can boost the performance of

the language model so as to improve the document-based model for expertise

retrieval. The comparisons of DM(w)/DM(b) and DM(wc)/DM(b) show

that DM(w) and DM(wc) greatly improve the baseline DM(b), which con-

firms the importance to consider the document prior in the document-based

model. The above experimental results demonstrate the effectiveness of the

community-based smoothing method.

Comparison of Enhanced Models

In this subsection, we consider the question whether our proposed enhanced

method can boost the performance by incorporating the document-based

model with the community-sensitive AuthorRank. In Table 6.5, we present

the results of four enhanced models. A quick scan of the table reveals that

EDM(wc) always outperforms other methods for all the metrics. In this

table, we can see, as expected, that our proposed enhanced models perform

better than their corresponding document-based models.

As for the MAP metric, we measure a precision of 0.4089 for EDM(wc),

which improves DM(wc) by 8.43%. Similar results are shown in the compar-

isons of EDM(b)/DM(b), EDM(bc)/DM(bc) and EDM(w)/DM(w), and

their relative improvements are 11.44%, 10.85% and 10.92% for MAP, respec-

tively. In terms of the comparisons using other metrics, we observe similar

substantial improvements in the enhanced models. By comparing the pre-

cisions P@10, P@20 and P@30, an interesting observation is seen that the

quantities of improvements in P@20 and P@30 are more significant than

those in P@10. All the experimental results demonstrate the effectiveness of

the enhanced model, which could further boost the performance of document-



C
H

A
P

T
E

R
6
.

E
N

H
A

N
C

IN
G

E
X

P
E

R
T

IS
E

R
E

T
R

IE
V
A

L
143

Table 6.4: Comparison of different document-based methods. The percentages of relative improvements are shown in the

lower part.

Method P@10 P@20 P@30 R-prec MAP bpref

DM(b) 0.5353 0.45 0.3726 0.4316 0.2897 0.3524

DM(bc) 0.5588 0.4647 0.3824 0.4417 0.3015 0.3621

DM(w) 0.6882 0.5029 0.4235 0.4845 0.3633 0.4159

DM(wc) 0.6882 0.5265 0.4314 0.4943 0.3771 0.4279

DM(bc)/DM(b) +4.40% +3.27% +2.63% +2.34% +4.09% +2.78%

DM(wc)/DM(w) 0% +4.68% +1.85% +2.03% +3.79% +2.89%

DM(w)/DM(b) +28.57% +11.76% +13.68% +12.26% +25.43% +18.02%

DM(wc)/DM(b) +28.57% +16.99% +15.79% +14.53% +30.19% +21.44%



CHAPTER 6. ENHANCING EXPERTISE RETRIEVAL 144

based models. Moreover, the improvements made in the enhanced model are

consistent and promising. Therefore, it is very essential and promising to

consider the enhanced models for expertise retrieval.

Discussion and Detailed Results

We have shown the effectiveness and improvement of our proposed document-

based models and enhanced models. The parameters k1 and k2 used in previ-

ous subsections are set to 5,000 and 10, individually. As mentioned before, we

only retrieve the top-k1 relevant documents for the document-based model,

and identify top-k2 relevant communities for the community-sensitive Author-

Rank as well. To investigate the effect of these two parameters, we designed

the following experiments.

To examine the effect of k1, we choose the best document-based model

DM(wc), and evaluate it with 4 different values (from 1,000 to 10,000). The

experimental results for different k1 are illustrated in Figure 6.6(a). In this

figure, we can see the performance becomes better for greater k1 used in

the document-based model. We believe the reason is that more documents

can better capture the complete expertise. However, larger k1 may result in

longer processing time. Therefore, a good tradeoff is to set k1 = 5000. To

investigate the effect of k2, we fix k1 = 5000, and choose to compare the

model EDM(wc) with several different values from 0 to 50. Here, k2 = 0

in EDM(wc) represents its document-based model DM(wc). As shown in

Figure 6.6(b), when incorporating the community-sensitive AuthorRank in

the enhanced model (k2 > 0), the performance is improved compared to the

document-based model (k2 = 0). The precisions first increase then level off

as k2 grows. In general, the enhanced model EDM(wc) is relatively robust

for different k2, and achieves good results when k2 = 10.

To gain a better insight into the proposed enhanced model, we choose
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Table 6.5: Comparison of different enhanced methods. The percentages of relative improvements are shown in the lower part.

Method P@10 P@20 P@30 R-prec MAP bpref

EDM(b) 0.5882 0.4971 0.4196 0.4716 0.3228 0.38933

EDM(bc) 0.5941 0.5059 0.4275 0.4803 0.3342 0.39879

EDM(w) 0.7059 0.55 0.4608 0.5317 0.403 0.45839

EDM(wc) 0.7118 0.5677 0.4628 0.5332 0.4089 0.46241

EDM(b)/DM(b) +9.89% +10.46% +12.63% +9.28% +11.44% +10.49%

EDM(bc)/DM(bc) +6.31% +8.86% +11.79% +8.75% +10.85% +10.12%

EDM(w)/DM(w) +2.56% +9.36% +8.79% +9.75% +10.92% +10.22%

EDM(wc)/DM(wc) +3.42% +7.82% +7.27% +7.86% +8.43% +8.06%
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Figure 6.6: The effect of varying the parameters (k1 and k2) in (a) the document-

based model DM(wc) and (b) the enhanced model EDM(wc).
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Table 6.6: The detailed results of the community-sensitive AuthorRank for the query “machine learning.” The first row is the

top-5 communities for the query, and the rest part lists the top-10 author lists ranked by their authorities in the community.

journals/ML conf/ICML conf/NIPS journals/JMLR conf/ECML

Pat Langley Andrew W. Moore Terrence J. Sejnowski Michael I. Jordan Saso Dzeroski

Robert E. Schapire Sridhar Mahadevan Michael I. Jordan Yoram Singer Johannes Frnkranz

Manfred K. Warmuth Thomas G. Dietterich Geoffrey E. Hinton Tong Zhang Gerhard Widmer

Thomas G. Dietterich Prasad Tadepalli Peter Dayan Francis R. Bach Ivan Bratko

Yoram Singer Michael L. Littman Christof Koch Olivier Bousquet Enric Plaza

Ryszard S. Michalski Pat Langley Klaus-Robert Mller Klaus-Robert Mller Pavel Brazdil

Michael J. Pazzani Andrew McCallum Zoubin Ghahramani Bernhard Schlkopf Birgit Tausend

Dana Angluin Thorsten Joachims Michael Mozer Andr Elisseeff Stephen Muggleton

Avrim Blum Satinder P. Singh Bernhard Schlkopf Koby Crammer Floriana Esposito

Leo Breiman Michael I. Jordan Satinder P. Singh Ingo Steinwart Stan Matwin
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Table 6.7: The top-10 expert lists retrieved by the document-based model DM(wc),

the community-sensitive AuthorRank, and the enhanced model EDM(wc), for the

query “machine learning.”

DM(wc) Authorities EDM(wc)

Pat Langley Pat Langley Pat Langley

Thomas G. Dietterich Robert E. Schapire Thomas G. Dietterich

Sumio Watanabe Manfred K. Warmuth Sumio Watanabe

David E. Goldberg Yoram Singer David E. Goldberg

Tom M. Mitchell Thomas G. Dietterich Avrim Blum

Avrim Blum Michael I. Jordan Tom M. Mitchell

Ivan Bratko Satinder P. Singh Sanjay Jain

Donald Michie Sanjay Jain Ivan Bratko

Carl H. Smith John Shawe-Taylor Donald Michie

J. Ross Quinlan Michael J. Pazzani Michael I. Jordan
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the query “machine learning” as the case to detail the combination of the

community-sensitive AuthorRank and the document-based model, and to

show the intermediate results as well. We first present the detailed results of

the community-sensitive AuthorRank in Table 6.6. According to Eq. (6.14),

the top-5 relevant communities to the query “machine learning” are identi-

fied in the first row of Table 6.6, which are the “Machine Leaning journal”,

“ICML conference”, “NIPS conference”, “JMLR journal”, and “ECML con-

ference.” Using the AuthorRank, we could easily obtain their authorities for

these communities. The top-10 author lists ranked by their authorities are

listed in Table 6.6. As we can see, the proposed method can capture the

right communities as well as the authoritative authors, such as “Andrew W.

Moore” in ICML and “Michael I. Jordan” in NIPS. With the top-k identified

communities, the community-sensitive AuthorRank is employed to generate

the query-sensitive authorities. In this case, the top-10 author list ranked by

the query-sensitive authorities is shown in the second column of Table 6.7.

The other two columns in Table 6.7, reports the top-10 expert lists retrieved

by DM(wc) and EDM(wc), respectively. We observe that a slight change

occurs in the output of EDM(wc) in contrast to that of DM(wc), which

would boost the persons retrieved by both the document-based model and

the community-sensitive AuthorRank.

6.6 Summary

In this chapter we present the community-aware strategies for enhancing ex-

pertise retrieval, including the new smoothing method with the community

context and the community-sensitive AuthorRank based on the coauthorship

networks, which are motivated by the observation that the community pro-

vides valuable and distinctive information along with the documents and the

experts. We not only formally define and quantify these two strategies, but
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also propose the adaptive ranking refinement method to incorporate both

ranking results for an effective enhanced model. We apply the proposed

models to the expert finding task on the DBLP bibliography data. Exten-

sive experiments show that the improvements of our enhanced models are

significant and consistent.

2 End of chapter.



Chapter 7

Conclusions

In this chapter, we summarize the key research results presented in this thesis,

and discuss some possible future research work.

7.1 Summary

This thesis aims to develop a general framework to make use of the content

and graph information effectively by leveraging information retrieval, machine

learning, and knowledge discovery techniques for real-world applications, es-

pecially query log analysis and expertise retrieval. To this purpose, we de-

velop scalable automatic content analysis methods and graph-based models

to analyze a huge amount of data resources including AOL query logs, on-

line DBLP, Google Scholar, etc. and propose several approaches to tackle

various challenging problems. The major achievements and contributions are

concluded in the following.

First of all, a novel entropy-biased framework is proposed for modeling

bipartite graphs, which intends to find better query representations by di-

minishing the effect of noisy links and treating heterogeneous query-URL

pairs differently for click graphs. The intuition behind this model is com-

mon clicks on less frequent but more specific URLs are of greater value than

151



CHAPTER 7. CONCLUSIONS 152

common clicks on frequent and general URLs. Based on this intuition, the

entropy-biased model introduce the inverse query frequency to weigh the im-

portance of a click on a certain URL. Moreover, the inverse query frequency

is incorporated with raw click frequencies and other information together to

achieve better performance. The proposed entropy-biased framework is never

explicitly explored or statistically examined for any bipartite graphs in the

information retrieval literature.

According to the graph information, there is a lack of constraints to make

sure the final relevance of the score propagation on the graph. To tackle

this problem, a general Co-HITS algorithm is developed to incorporate the

bipartite graph with the content information from both sides as well as the

constraints of relevance. Moreover, the algorithm is investigated based on

two frameworks, including the iterative and the regularization frameworks.

For the iterative framework, it contains HITS and personalized PageRank

as special cases. In the regularization framework, we successfully build a

connection with HITS, and develop a new cost function to consider the direct

relationship between two entity sets, which leads to a significant improvement

over the baseline method.

In contrast to the traditional document retrieval, expertise retrieval is

a high-level information retrieval with more heterogeneous information en-

vironment. The objective of this thesis is to propose a general Web mining

framework to combine the content with the graph information as well as other

kinds of information effectively. Therefore, a new expert finding framework

is proposed based on the large-scale DBLP bibliography and its supplemen-

tal data from Google Scholar. In addition, a weighted language model is

employed to aggregate the expertise of a candidate from the associated doc-

uments. The model not only considers the relevance of documents against a

given query, but also incorporates the importance of the documents in the
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form of document priors. Moreover, a graph-based regularization method

is integrated to enhance the model by refining the relevance scores of the

documents with respect to the query.

Previous algorithms mainly consider the documents associated with the

experts, while ignoring the community information that is affiliated with the

documents and the experts. Motivated by the observation that communities

could provide valuable insight and distinctive information, we develop two

community-aware strategies to enhance the expertise retrieval. We first pro-

pose a new smoothing method using the community context for statistical

language model, which is employed to identify the most relevant documents

so as to reflect the expertise retrieval in the document-based model. Fur-

thermore, we propose a query-sensitive AuthorRank to model the authors’

authorities based on the community coauthorship networks, and develop an

adaptive ranking refinement method to enhance the expertise retrieval.

7.2 Future Work

Although a substantial number of promising achievements on Web mining and

its applications have been presented in this thesis, there are still numerous

open issues that need to be further explored in future work.

First, the ultimate goal of query log analysis is to understand what users

want and present to them. As the click graph is an important technique for

describing the information provided in the query log, one natural extension

is to combine the user’s individual click graph and session information for

personalized query log analysis. In addition, it is reasonable to incorporate

the click graph with other information, such as query-flow model and user

modeling. Although we have developed the efficient algorithms for modeling

and analyzing click graphs, there is still a huge challenge to understand a

user’s query intent. Effective query understanding is critical to a successful
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search and navigation application. Therefore, when conducting the search

algorithms, it is important to consider how users will enter their queries and

how they can easily find the needed information. Traditional approaches

have been applied to single intent level, for example, “job intent” or “product

intent”, which can be regarded as a step toward this goal. To identify user’s

query intent in general cases, it is necessary to develop more powerful models

to achieve this goal.

Second, it would be interesting to apply the generalized Co-HITS algo-

rithm to the expertise retrieval task, since the author-paper bipartite graph

with content information can be obtained from the expertise retrieval data. In

order to further improve the performance of the expertise retrieval methods,

some other information related to the researcher people should be utilized and

incorporated into a unified learning process, such as the profile and social in-

formation of the expert candidates (researchers). The challenging problems

include how to find and extract the profile as well as the social information,

and how to integrate different information together.

Third, expertise retrieval currently is limited to a particular domain or

intranet, and a much more challenging task would be to perform expertise

retrieval on the Web. One important task is to identify relevant experts or

trusted people who can offer solutions in a timely and human manner. Fur-

thermore, approaches to create a global expert and friend recommendation

social network should be further studied to not only facilitate Web-scale ex-

pert and social search but also leverage the results to rate online contents.

Another important issue is to develop advanced methodology for identi-

fying and scoring the relevant documents which match the close meaning,

not the exact terms, for the given query. This challenge may be solved if

it is effective to build an automatic matching system between similar words

and concepts with natural language processing and machine translation tech-
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niques. In addition to the combination of content and graph information,

more study is needed for our framework to incorporate with multiple other

sources.

Last, but not least, we may extend our framework by exploring other ma-

chine learning techniques, such as learning to rank. Also we will apply our

methodologies and algorithms to solve a variety of applications in data min-

ing and information retrieval, such as entity retrieval, personalized search,

and online social media search. New search tasks and interfaces for the pre-

sentation of search results, like literature retrieval, expert search, and query

suggestion, come with the need to rank entities, such as persons, organizations

and query, instead of documents or text passages.

2 End of chapter.



Appendix A

List of Publications

1. Hongbo Deng, Irwin King, Michael R. Lyu. Enhancing Expertise

Retrieval Using Community-aware Strategies. In Proceedings of the 18th

ACM Conference on Information and Knowledge Management (Hong

Kong, China, Nov. 2-6, 2009). CIKM 2009.

2. Hongbo Deng, Irwin King, Michael R. Lyu. Entropy-biased Models

for Query Representation on the Click Graph. In Proceedings of the

32nd Annual ACM SIGIR Conference on Research and Development in

Information Retrieval (Boston, MA, USA, July 19-23, 2009). SIGIR

2009. Pages: 339-346. (Acceptance rate: 78/494 = 16%)

3. Hongbo Deng, Michael R. Lyu and Irwin King. A Generalized Co-

HITS Algorithm and Its Application to Bipartite Graphs. In Proceedings

of the 15th ACM SIGKDD Conference on Knowledge Discovery and

Data Mining (Paris, France, June 28th-July 1st, 2009). KDD 2009.

Pages: 239-248. (Acceptance rate: 105/561 = 19%)

4. Hongbo Deng, Michael R. Lyu and Irwin King. Effective Latent Space

Graph-based Re-ranking Model with Global Consistency. In Proceedings

of the 2nd ACM International Conference on Web Search and Data

156



APPENDIX A. LIST OF PUBLICATIONS 157

Mining (Barcelona, Spain, Feb. 9-12, 2009). WSDM 2009. Pages: 212-

221. (Acceptance rate: 29/170 = 17%)

5. Hongbo Deng, Irwin King and Michael R. Lyu. Formal Models for

Expert Finding on DBLP Bibliography Data. In Proceedings of the 8th

IEEE International Conference on Data Mining (Pisa, Italy, Dec. 15-

19, 2008). ICDM 2008. Pages: 163-172. (Acceptance rate: 70/724 =

10%)

6. Hongbo Deng, Jianke Zhu, Michael R. Lyu and Irwin King. Two-

Stage Multi-Class AdaBoost for Facial Expression Recognition. In Pro-

ceedings of International Joint Conference on Neural Networks (Florida,

USA, Aug.12-17, 2007). IJCNN 2007. Pages: 3005-3010.

Under Review:

1. Hongbo Deng, Irwin King, Michael R. Lyu. A Weighted Language

Model for Expert Search with Graph-based Regularization. Submitted

to TKDE journal.

2 End of chapter.



Bibliography

[1] Dblp bibliography. URL: http://www.informatik.uni-trier.de/

~ley/db/, 2007.

[2] Google scholar. URL: http://scholar.google.com/, 2008.

[3] A. Agarwal, S. Chakrabarti, and S. Aggarwal. Learning to rank net-

worked entities. In Proceedings of the Twelfth ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining (KDD),

pages 14–23, 2006.

[4] J. Alpert and N. Hajaj. We knew the web was big... The Official Google

Blog, July 25, 2008.

[5] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval.

Addison-Wesley Harlow, England, 1999.

[6] R. A. Baeza-Yates, C. A. Hurtado, and M. Mendoza. Query recommen-

dation using query logs in search engines. In EDBT Workshops, pages

588–596, 2004.

[7] R. A. Baeza-Yates and A. Tiberi. Extracting semantic relations from

query logs. In KDD, pages 76–85, 2007.

[8] K. Balog, L. Azzopardi, and M. de Rijke. Formal models for expert

finding in enterprise corpora. In Proceedings of the 29th International

158



BIBLIOGRAPHY 159

ACM SIGIR Conference on Research and Development in Information

Retrieval (SIGIR), pages 43–50, 2006.

[9] K. Balog, T. Bogers, L. Azzopardi, M. de Rijke, and A. van den Bosch.

Broad expertise retrieval in sparse data environments. In Proceedings

of the 30th International ACM SIGIR Conference on Research and De-

velopment in Information Retrieval (SIGIR), pages 551–558, 2007.

[10] K. Balog and M. de Rijke. Determining expert profiles (with an appli-

cation to expert finding). In Proceedings of the 20th International Joint

Conference on Artificial Intelligence (IJCAI), pages 2657–2662, 2007.

[11] D. Beeferman and A. L. Berger. Agglomerative clustering of a search

engine query log. In KDD, pages 407–416, 2000.

[12] S. M. Beitzel, E. C. Jensen, D. D. Lewis, A. Chowdhury, and O. Frieder.

Automatic classification of web queries using very large unlabeled query

logs. ACM Trans. Inf. Syst., 25(2), 2007.

[13] M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-

supervised learning on large graphs. In COLT, pages 624–638, 2004.

[14] M. Belkin and P. Niyogi. Semi-supervised learning on riemannian man-

ifolds. Machine Learning, 56(1-3):209–239, 2004.

[15] M. Bilenko and R. W. White. Mining the search trails of surfing crowds:

identifying relevant websites from user activity. In WWW, pages 51–60,

2008.

[16] A. Blum and T. M. Mitchell. Combining labeled and unlabeled sata

with co-training. In COLT, pages 92–100, 1998.



BIBLIOGRAPHY 160

[17] A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsaparas. Link

analysis ranking: algorithms, theory, and experiments. ACM Trans.

Internet Techn., 5(1):231–297, 2005.

[18] S. Brin and L. Page. The anatomy of a large-scale hypertextual web

search engine. Computer Networks, 30(1-7):107–117, 1998.

[19] C. Buckley and E. M. Voorhees. Retrieval evaluation with incomplete

information. In Proceedings of the 27th Annual International ACM

SIGIR Conference on Research and Development in Information Re-

trieval, pages 25–32, 2004.

[20] C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamil-

ton, and G. N. Hullender. Learning to rank using gradient descent. In

Proceedings of the 22nd International Conference on Machine Learning,

pages 89–96, 2005.

[21] Y. Cao, J. Liu, S. Bao, and H. Li. Research on expert search at enter-

prise track of trec 2005. In Proceedings of TREC 2005, 2005.

[22] P. Carrington, J. Scott, and S. Wasserman. Models and methods in

social network analysis. Cambridge University Press, 2005.

[23] S. Chakrabarti. Data mining for hypertext: A tutorial survey. SIGKDD

Explorations, 1(2):1–11, 2000.

[24] S. Chakrabarti, B. Dom, R. Kumar, P. Raghavan, S. Rajagopalan,

A. Tomkins, D. Gibson, and J. M. Kleinberg. Mining the web’s link

structure. IEEE Computer, 32(8):60–67, 1999.

[25] L.-W. Chan. Analysis of the internal representations in neural networks

for machine intelligence. In AAAI, pages 578–583, 1991.



BIBLIOGRAPHY 161

[26] O. Chapelle, B. Schölkopf, and A. Zien. Semi-supervised learning. MIT

press, 2006.

[27] D. Cohn and H. Chang. Learning to probabilistically identify authori-

tative documents. In Proceedings of the 17th International Conference

on Machine Learning, pages 167–174, 2000.

[28] D. A. Cohn and T. Hofmann. The missing link - a probabilistic model

of document content and hypertext connectivity. In Advances in Neural

Information Processing Systems, pages 430–436, 2000.

[29] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,

20(3):273–297, 1995.

[30] N. Craswell, I. Soboroff, and A. de Vries. Overview of the trec-2005

enterprise track. In Proceedings of TREC 2005.

[31] N. Craswell and M. Szummer. Random walks on the click graph. In

SIGIR, pages 239–246, 2007.

[32] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental

comparison of click position-bias models. In WSDM, pages 87–94, 2008.

[33] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma. Probabilistic query ex-

pansion using query logs. In WWW, pages 325–332, 2002.

[34] T. Davis. Direct Methods for Sparse Linear Systems. Society for Indus-

trial Mathematics, 2006.

[35] A. P. de Vries and T. Rölleke. Relevance information: a loss of entropy

but a gain for idf? In SIGIR, pages 282–289, 2005.

[36] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and

R. A. Harshman. Indexing by latent semantic analysis. Journal of the

American Society for Information Science, 41(6):391–407, 1990.



BIBLIOGRAPHY 162

[37] H. Deng, I. King, and M. R. Lyu. Formal models for expert finding on

dblp bibliography data. In Proceedings of the 8th IEEE International

Conference on Data Mining, pages 163–172, 2008.

[38] H. Deng, I. King, and M. R. Lyu. Enhancing expertise retrieval using

community-aware strategies. In Proceedings of the 18th ACM Confer-

ence on Information and Knowledge Management (CIKM), 2009.

[39] H. Deng, I. King, and M. R. Lyu. Entropy-biased models for query

representation on the click graph. In Proceedings of the 32nd Annual

International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR), pages 339–346, 2009.

[40] H. Deng, M. R. Lyu, and I. King. Effective latent space graph-based

re-ranking model with global consistency. In Proceedings of the Sec-

ond ACM International Conference on Web Search and Data Mining

(WSDM), pages 212–221, 2009.

[41] H. Deng, M. R. Lyu, and I. King. A generalized co-hits algorithm and

its application to bipartite graphs. In Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD), pages 239–248, 2009.

[42] F. Diaz. Regularizing ad hoc retrieval scores. In Proceedings of the 2005

ACM CIKM International Conference on Information and Knowledge

Management, pages 672–679, 2005.

[43] C. H. Q. Ding, X. He, P. Husbands, H. Zha, and H. D. Simon. Pagerank,

hits and a unified framework for link analysis. In SIGIR, pages 353–354,

2002.

[44] Z. Dou, R. Song, and J.-R. Wen. A large-scale evaluation and analysis

of personalized search strategies. In WWW, pages 581–590, 2007.



BIBLIOGRAPHY 163

[45] G. Dupret and B. Piwowarski. A user browsing model to predict search

engine click data from past observations. In SIGIR, pages 331–338,

2008.

[46] G. Dupret, B. Piwowarski, C. A. Hurtado, and M. Mendoza. A statis-

tical model of query log generation. In SPIRE, pages 217–228, 2006.

[47] O. Etzioni. The world-wide web: Quagmire or gold mine? Commun.

ACM, 39(11):65–68, 1996.

[48] H. Fang and C. Zhai. Probabilistic models for expert finding. In Pro-

ceedings of the European Conference on Information Retrieval (ECIR),

pages 418–430, 2007.

[49] N. Fuhr. Probabilistic models in information retrieval. The Computer

Journal, 35(3):243, 1992.

[50] E. Garfield. Citation indexing: Its theory and application in science,

technology, and humanities. Wiley New York, 1979.

[51] V. Gudivada, V. Raghavan, W. Grosky, R. Kasanagottu, and D. Mar-

kets. Information retrieval on the world wide web. IEEE Internet

Computing, 1(5):58–68, 1997.
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