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Abstract

A Probabilistic Cooperative�Competitive Hierarchical Search Model

by

Wong Yin Bun� Terence

Master of Philosophy

The Chinese University of Hong Kong

Stochastic searching methods have been widely applied to areas such as global op�

timization and combinatorial optimization problems in a vast number of disciplines� To

name a few� science� engineering� and operations researches� Representatives of these

methods are Simulated annealing �SA�� Evolution type algorithms like Genetic algo�

rithms�programming �GA�GP�� Evolution programming�strategy �EP�ES�� and so on�

Their developments are all inspired from nature� physical annealing process� genetic�

evolution� and ecology� Interestingly enough� they put little emphasis on the impor�

tance of the past searching information and the property of the landscape at the time

of searching�

Motivated by this� a new probabilistic searching model is developed� On the struc�

tural aspect� the search space is divided into �nite number of n�dimensional partitions�

These partitions are then organized into a hierarchy� Subordinates are said to be rep�

resenting the �ner details of the landscape while the superordinates are said to be

representing the gross structure of the landscape� This structural organization of the

search space provides a foundation for the development of algorithms exploiting the

dynamic viewing of landscape� On the algorithmic side� a population�based bottom�up

self�feedback algorithm coupled with two key ideas stemmed from the nature� Cooper�

ation and Competition is adopted� Although they are not new ideas in computational

intelligence� they were used separately without emphasing their complementary nature�

In this thesis� the results on evaluating this algorithm empirically are presented�

Numerical function optimization is used as the test bed owing to the simplicity and the

ease of manipulation� Numerical functions of di	erent characteristics are used to show

its robustness� The �rst part of this thesis covers the current research done in the �eld�

The second part of this thesis present the basic algorithm and illustrating its behavior�

The third part of the thesis concentrates on the use of cooperation and competition to

equip the basic algorithm� Finally� we show with experimental results that our model is

versatile enough to work cooperatively with genetic algorithms�
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Chapter �

Introduction

Stochastic searching is a category of techniques commonly used in tackling large�

scaled global optimization problems in many disciplines such as engineering� science

and operations research� VLSI layout design� scheduling ����� resource�task allocation

���� ���� network optimization ����� optimal management ���� and even the complex op�

timizations of physical and biological systems are typical applications� Global optimiza�

tion is to �nd an optimal set of objective variable instances in a search space constructed

by enumerating the objective variables� Here is a de�nition of global optimization�

Given D � X � O� where X is the set of all instances of the domain input
variables �objective variables�� O is the set of all output of the domain� and a
criterion�evaluation F � O � R� where R is set of all �scores� of the domain
outputs� a global optimization problem G � F � D is de�ned as �nding x � X
such that r � R is maximized�minimized�

Usually� a �tness landscape�cost surface is said to be formed by the objective variables

and their evaluated scores� This landscape�surface is usually huge and high dimensional�

making the optimization task di�cult� The di�culty is further increased by the high

ruggedness �modality� of the landscape�

Di	erent stochastic searching methods are proposed to handle global optimization

problems� To name a few� Monte Carlo method �commonly known as pure random

search�� greedy descent�ascent with random multi�start methods� simulated annealing�

and evolutionary methods� All these methods explore the search space directly to lo�

cate the optimal solution� Monte Carlo method is the simplest one which explores the

landscape by taking samples from the solution space one in each iteration in a random

fashion� Since this method is purely random� the global convergence of this method is

guaranteed by keeping the best�so�far solution� This method is quite slow� though global

optimal is guaranteed given in�nite long time� Contrary to the Monte Carlo method�

greedy descent�ascent methods are very fast local deterministic optimization technique

exploiting local advantages only� Since the moves made by these methods are always
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�downhill� or �uphill�� they end up at the local optima only� Hence� an iterative random

restart strategy is used whenever a local optimum is reached� in order to jump out of

the local optimum� Simulated annealing is a method simulating the physical annealing

process that a sample obtained with less score is accepted with a certain probability �ac�

ceptance probability� while higher score samples are accepted with probability ���� The

acceptance probability is subject to change monotonically by a cooling schedule� Again�

global convergence is guaranteed given in�nite amount of time� Evolutionary methods

are originated from biological genetics and evolution that in each iteration� a new pop�

ulation is generated by successively applying genetic operators on the individuals of the

old population� The standard set of genetic operators consists of crossover� mutation�

and selection operators� Basically� all these methods keep solving the static landscape

representing the whole search space of the problem at the highest resolution� and search

without memorizing the past information obtained�

In this thesis� a new stochastic searching model is presented� It quantizes the

continuous search space into partitions� which are organized into a binary hierarchy�

Partitions located upper in the hierarchy represent larger portions of the landscape�

and hence the gross details of the landscape� Partitions located lower in the hierarchy

represent the landscape in �ner details� By doing so� the bene�ts are twofold� Firstly�

the rugged problem landscape can be smoothed� as the hierarchy allows di	erent levels of

resolution� The di�culty due to the ruggedness can be decreased� Secondly� it provides

a basis to implement algorithms which dynamically change the �view� of the landscape

on the way of searching� The property of the landscape at di	erent resolutions can be

very di	erent� For example� at low resolution �the macroscopic view�� the landscape

may be roughly unimodal� but at high resolution �the microscopic view�� it may be

highly multimodal� Thus� it is reasonable to adopt appropriate searching strategies at

di	erent resolutions� This involves the development of an algorithm capable of zooming

at di	erent resolutions dynamically� In this thesis� a stochastic bottom�up �population�

based cooperative� self�feedback algorithm with memory developed to serve this purpose

is presented� Moreover� this algorithm is designed to be general enough to rely on

minimal a prior information about the problem� Hence� information is going to be

gathered� memorized and used on the course of searching� The information gathering

process is achieved cooperatively by a population of agents which sample the solution

space simultaneously� in order to reduce the stochastic error�

When facing the high�dimensional problems and deceptive problems� the model

is further equipped with two complementary strategies� cooperation and competition�

By cooperation� we mean the cooperation among various objective variables to seek

an optimum� Simply speaking� an objective variable instance� the presence of which

can promote the score of a solution gets higher cooperative �tness than the one which

cannot� Under this strategy� the searching is no longer a simple landscape traversal�
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but a number of cooperative single�objective�variable traversal� In other words� the

global optimization problem becomes �nding a set of objective variable instances which

have the highest cooperative �tness� However� it is a single�optimum�seeking method

that only one global solution will be found� It would fail in the deceptive problems�

Brie
y� deceptive problem is de�ned as the presence of one or more than one deceptive

attractors which mislead the search algorithm that they are the true global solution�s��

From this de�nition� we can see that deceptive problem consists of a minimum of two

optima� Tackling this kind of problem� redundancy and competition are introduced�

By redundancy� we mean the presence of more than one population �subpopulation� to

gather the landscape information separately� By competition� we mean the competition

among these subpopulations� In the presence of competition� di	erent subpopulations

are forced to search diversely to occupy di	erent areas of the landscape� The occupancy

of a certain area of the landscape by a subpopulation is said to mask out that area� If

there are several subpopulations� some of them will be attracted to and mask out the

deceptive optima� leaving the global optimum prominent�

��� Thesis themes

�	�	� Dynamical view of landscape

Observer staying outside of the searching process would conclude that he got the

landscape of the problem� What they get is the static view of the whole problem space�

However� as the algorithm converges� the region of interest gets more restricted and

�ner details of the landscape should be revealed� In other words� if we de�ne landscape

as the view of the algorithm on the problem at particular time� the landscape is said

to be dynamically changing� In the rest of this thesis� we keep using this meaning for

the word landscape� On referring to the original and the widely accepted meaning of

landscape� �static landscape� is used instead� An immediate implication of this de�nition

of landscape is that the property of the landscape is also changing dynamically� This is

one of the motivations of this work�

�	�	� Bottom�up self�feedback algorithm with memory

The search property of the memoryless algorithms would stay unchanged regard�

less of the changes in the landscape view� Take genetic algorithm as an example� the

transition matrix which de�nes the probability transiting from one con�guration to its

neighbor stays unchanged throughout the evolution� That means how the algorithm

act given a particular landscape is static and the information about the landscape is

assumed to be available� This motivates the second theme of this thesis� gathering of

landscape information on the course of searching� and using this information �feedback�
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to further guide the searching� The use of bottom�up approach �cooperative work of a

population of agents� is to increase the robustness�

�	�	
 Cooperation and competition

High�dimensional problems pose a challenge to the searching algorithms� Besides

the exponential raise in the search space size� the dependency among dimensions de�

creases the extend of reducing search space size by heuristic� In the context of genetics�

the phenotype of two genes can only be revealed when they come together� Existing

technique dedicated to exploit this dependency is cooperation� In evolutionary compu�

tation� �tness is the sole measure to qualify the individuals in a population� Fitness in

the context of the problem can be de�ned di	erently� To accomplish the dependency

of dimensions� the �tness measure should be de�ned in such a way to promote the

cooperative improvement�

Deception is another challenge to searching algorithms� This is a concept of relative

sense� Roughly� a problem can either be deceptive or non�deceptive� It depends on

the algorithm to be used� Pure random search is an exception� since it is the only

one stochastic algorithm which can be classi�ed as non�heuristic in nature� Any other

algorithms are said to be heuristic and is bound to be deceived� Competition which

originates in nature is employed in evolutionary computation to deal with this challenge�

To �t into the model developed based on the �rst two themes mentioned above� a kind

of competition is developed sharing some similarities to the sharing methods in genetic

algorithms� One of the advantages of the developed competition model is the removal

of the niche radius parameter�

�	�	� Contributions to genetic algorithms

The motivation of this work comes from the missing characters found on some

existing stochastic algorithms �GAs� SA� and MGDs�� Thus� the model is designed to

provide these missing characters� It is believed that the integration of the developed

model and any one of the evaluated algorithms is bene�cial� The last theme of this

thesis is going to integrate them so as to gain the strengths from both�

��� Thesis outline

Chapter � The research of stochastic searching�optimization algorithms and related

techniques are so mature that a complete survey involves huge amount of the relevant

literatures� Hence� in this chapter� we only provide reviews on those aspects which are

relevant to our main theme in large extend� several commonly used optimization algo�

rithms namely pure random search� simulated annealing� multistart greedy approaches�
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and genetic algorithms are discussed�

Chapter � The �rst half of the chapter is devoted to the model developed to serve

the purpose mentioned previously� how the search space is partitioned and organized in

a hierarchical way� how the self�feedback algorithm is designed with dynamic landscape

view in mind� and what essential enhancement features are used� In another half of the

chapter� experimental results are presented to illustrate the behaviors of the algorithm�

giving some basic ideas of how the algorithm can be tuned� Finally� the strengths and

the weaknesses of the algorithm is discussed�

Chapter � and � These two chapters covers two complementary techniques� which

are cooperation and competition� The reasons why these two techniques are employed

are stated separately in these two chapters� Experimental results dedicated to illustrate

the usefulness of them are shown�

Chapter � Instead of contrasting the features of our model to the existing techniques�

we look for the possibility of integration by making use of their similarities� In this

chapter� we present how integration of our model and genetic algorithms �GA� is made

possible� Experimental results are presented to show that the integration is bene�cial�

��� Contribution at a glance

�	
	� Problem

� Many problems in engineering� science� operation research� scheduling� planning

and so on can be considered as optimization problems�

� Stochastic methods to optimization is found to be e	ective in handling large�scale

problem with lots of local optima� Examples are simulated annealing� genetic

algorithms� and multi�start greedy methods�

� These methods� however� have common drawbacks�

�� They search �optimize� the solution space at the highest resolution�

�� They search �optimize� without memorizing past information �or with weak

memory only��

� The objective of this research is to tackle these drawbacks by providing a new

model and methodology�
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�	
	� Approach

To achieve the stated objective� a new model called Probabilistic Cooperative�

Competitive Hierarchical Search �pccBHS� is proposed� The main features are as follows�

� Partitioning of search space and organizing the partitions into a hierarchical struc�

ture�

� Exploitation of the partition hierarchy by an iterative stochastic bottom�up algo�

rithm� The algorithm features feedback and memory�

� Incorporation of cooperation and competition simultaneously to cater for high�

dimensionality and deceptiveness� in addition to making use of their complemen�

tary nature�

�	
	
 Contributions

� Provided �� a basis for resolution control� �� search space smoothing and �� search

space reduction by hierarchically organizing the search space and algorithmically

utilizing the hierarchy�

� Introduced memory into stochastic search�

� Enhanced canonical GA by integrating the model with the GA�
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Chapter �

Background

��� Iterative stochastic searching algorithms

Iterative stochastic search is one of the important paradigms in global optimiza�

tion� Pure random search �PRS�� multistart�singlestart greedy descent�ascent� simulated

annealing �SA� ���� ��� and evolutionary methods ���� ��� ��� ��� ��� �� are well�known

approaches of this paradigm� Before discussing their characteristics and the internal

details� we show in Figure ��� the overview of this paradigm�

�	�	� The algorithm

Search algorithms of this paradigm consist of four main parts sequenced in a cyclic

way�the generation of new candidate solutions� the evaluation of the new solutions� the

selection of solutions from both the current and the new solutions� and the checking for

termination conditions�

� Generation of new candidate solutions

The �rst part of the paradigm is the generation of new candidate solution set

given a current one� New solution can be generated in two ways� ��� transforming

the current solution�s� by specially designed operators� and ��� picking up from

the solution space regardless of the what the current solution�s� is�are� Among

the mentioned approaches� it is only the PRS that belongs to the later case� For

evolutionary approaches� new solutions are generated by means of various genetic

operators such as crossover and mutation� SA lies somewhat in�between PRS and

evolutionary approaches that new solution is generated randomly similar to PRS�

but it is only the solutions that belong to the neighborhood of the current solution

are considered� It should be noted that the generation can be biased if heuristic

about the problem to be solved is available �see ��� ����

� Evaluation of the new candidate solutions

�



Algorithm Iterative stochastic search

Initialize S

While true

S� � generate a new solution set of size N given S

R� � evaluate each of the solutions in the new solution set S ��

S � select totally N solutions from both S and S � based on R and R��

if stopping criteria are met then

stop

End if

End while

End algorithm

Figure ���� Iterative stochastic search

The second part of the paradigm is the evaluation of the new candidate solution set�

This evaluation process reveals the quality of the solutions by giving score to each

solution in the population� Strictly speaking� the evaluation process consists of

two separate processes� The �rst of these two processes� which is compulsory� is to

evaluate how good the solutions are in solving the objective problem� This process

generates what we call raw �tness� Raw �tness is usually problem�speci�c and is

meaningful within the context of the problem� Giving solely the raw �tness without

associating it with a problem has no idea of how good the solution is� The second

of the two processes which is optional �but commonly used� is to assign �tness

values f � ����� ���� to the solutions� The range of this �tness is arbitrary� but the

usual practise is to choose a range from ��� to ��� with ��� representing the worst

and ��� the best� However� this �tness assignment process is employed only in

evolutionary approaches which use �tness proportionate selection scheme� because

algorithms such as SA and greedy descent�ascent do not normally need a quanti�ed

solution quality in the third process �discussed later�� the selection process� In

evolutionary approaches� there are various �tness assignment methods ���� such as

�tness ranking� �tness shifting� and �tness windowing�

� Selection of right candidates for the next iteration

The third part of the paradigm is a process which selects right candidates from both

the new and the current solution sets� With the presence of the selection force� any

mentioned search approaches will be able to converge to any optimum� as it is the

ultimate convergence force generator� It should be noted that selection does not

generate new solutions� It just provides a bias towards some solution instances�
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Thus� designing an appropriate selection scheme for the problem at hand would

become the design to compromise the convergence speed and the solution quality�

i�e� the balance between exploration and exploitation� A scheme with strong bias

�highly greedy� would increase the convergence speed and at the same time reduce

the diversity� Premature convergence would be resulted� A scheme with weak

bias would slow down the convergence speed� favoring diversi�cation and hence

the chance to converge to the global optimum� In both the evolutionary and

greedy descent�ascent approaches� the convergence force is �xed once the scheme

is chosen� However� it is not the case for SA� The cooling schedule used in it is a

selection scheme which increases the greediness monotonically�

� Checking for termination conditions

The �nal part of the paradigm is to check for the termination condition� T orn

and !Zilinskas ���� has given a detailed description of how stopping condition can

be designed� As the name suggested� it is used to decide when the algorithm

is going to be terminated� The design of the termination condition is crucial to

the performance of all iterative stochastic searching algorithms in practise� It is

because this kind of algorithms have no solution quality guarantee in �nite time�

so conditions have to be de�ned to determine the computation that is allowed

to expense� The common termination condition is or�ing any of the following

commonly used conditions�

� Condition �� The speci�ed number of iterations is reached�

� Condition �� The prescribed error bound is reached�

� Condition �� The prescribed solution is reached�

� Condition �� The best�so�far solution persists for a �xed number of itera�

tions�

� Condition �� The expectation �probability� of improving the best�so�far

solution is too low to be realized by a reasonable amount of computation�

�	�	� Stochasticity

As the name suggested� iterative stochastic algorithms are modeled in a probabilis�

tic way� Generally speaking� the �decisions� made in the algorithm� such as selecting�

accepting and rejecting candidate solutions� are done in a probabilistic way� Since ran�

domness is introduced in the algorithms� di	erent results would be obtained given the

same condition �except the random number seed�� In devising general algorithm to

tackle global optimization problems� we consider the target optimization problems as

black�boxes with little or even no problem�speci�c information� It is very likely that the

��



problem to be solved are multimodal� Stochasticity would be a better approach over

deterministic methods �such as greedy descent�ascent�� owing to the fact that it is more

capable of and e	ective in jumping out of the local optima�

� In simulated annealing� stochasticity is used in generating new candidate solution�

In the unbiased case� all solutions belonging to the neighborhood of the current

solution have equal chance of being selected� In the biased case� heuristic is used

to favor for some solutions� Besides� the selection of the new generated candidate

solution or the keeping of the current solution is subject to the current acceptance

probability� The acceptance rule is generally speci�ed as follows� Denote x and x�

as the current and the new solutions�

Probfkeeping xg � exp

�
�fc�x��� c�x�g

Tg

�
� �����

Probfaccepting x�g � �� Probfkeeping xg

where c��� gives the cost��tness of the solution� Tg is the temperature at the iter�

ation g�

� In evolutionary approaches� stochasticity is extensively used in the genetic opera�

tors� Crossover operators which mimic the exchange of genetic materials between

two chromosomes determine crossover points �positions where crossover are taking

place� in a probabilistic way� For example� in one�point crossover� two chromo�

somes picked out from the population will cross with each other with probability

P��the crossover probability�at a position along both chromosomes� If the chro�

mosome length is l� crossover point may be any one from � to l��� In the simplest

case� this crossover point is chosen in a random uniform way� It is only when the

heuristic is available or the way the problems are formulated that crossover points

are chosen non�uniformly� Mutation is another operator that generates new chro�

mosomes by transforming the genes of the chromosomes in the population� The

transformation is determined by a mutation probability P�� It is usually set equal

to ��l where l is the chromosome length such that each chromosome of the popu�

lation will be transformed into any one of its neighborhood probabilistically� Se�

lection is another genetic operator with probabilistic nature� As discussed before�

it provides a convergence force towards the desired area of the search space� Oper�

ating in a deterministic way would immediately turns it into a greedy method� so

all selection operators� such as proportionate selection and tournament selection�

are designed in such a way that the probability of a chromosome being selected

depends on the chromosome �tness�

� The basic optimization method used in single�start�multi�start greedy descent�ascent

can only �nd local optimal point owing to their greedy nature� In order to �nd
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the global optimal point without exhaustive search� they randomly generate new

starting point whenever local optimum is reached�

��� Fitness landscapes and its relation to neighborhood

�	�	� Direct searching

When the searching is achieved by transforming a �set of� sample�s� from the sample

space into another �set of� sample�s� by means of operators in a successive way �see

Figure ����� it is said to be a direct search method� Greedy descent�ascent� simulated

annealing� and evolutionary methods all belong to this paradigm� It should be noted

that pure random search does not strictly have any operator to transform the samples

obtained to samples elsewhere is the sample space� but it is also classi�ed as a direct

search method� It is because it is also a method that searches for the global solution by

explicit sample space navigation� T orn and !Zilinskas ���� also classi�es random search

methods �pure random search and its variants�� simulated annealing and descent�ascent

methods as direct search methods owing to the fact that these methods utilize only

local information �function value� for function optimization problems�� To elaborate�

given the obtained samples� these algorithms traverse the sample space by using only

the information available to generate samples in the next iteration� For simple �not

necessarily easy� problems� such as function optimization� the samples plus their function

values are the local information to be used by the direct search methods� The samples

are used in the transformational process in generating new samples� While their function

values are used in the acceptance �selection� process� Continuously repeating this process

produces a trajectory from the initial sample points to the �nal one� The samples are

said to be navigated explicitly by the operator�s� on the search space� Hence� search

methods that are iterative� having operators to transform samples and the use of local

information are direct search methods�

�	�	� Exploration and exploitation

One of the central issues in direct search methods is the compromise between two

contradictory search strategies� exploration and exploitation� Exploration means visit�

ing of the untouched areas of the search space� It is essential to all search algorithms

looking for global solution� Given �nite time� there is no guarantee on no better result

that can be found in the next �several� iterations� Usually� methods of this kind guar�

antee in�nite time global optimality only ����� In practical applications� constrained by

the maximum allowed computation time� the optimal strategy is to maximize the chance

of locating the global solution� To achieved this� maximizing the search coverage� i�e��

exploration� is the most common way employed by the direct search methods to max�
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imize the solution quality using no or minimal a�prior knowledge about the problem�

Although this strategy is crucial to the problem�solving in global sense� the speed of gen�

erating better solution is rather slow� Exploitation� which is a greedy strategy� means

making use of the information currently available to search for the best possible solution

locally� The local search component of the searching algorithms are all considered as

exploitation� For instances� hillclimbing� crossover operators of genetic algorithms� and

greedy descent�ascent in single�start and multi�start random search are all components

providing exploitation features� Exploitation can locate the local best solution very fast

�compared to the exploration strategy�� However� this strategy deals nothing to the

optimality in global sense� unless the problem consists of one single optimum� We can

see that the strengths of one strategy is the weakness of the another strategy� They have

to be compromised to bene�t from both� In fact� the compromise is di�cult to make

and is problem�dependent� Research was done in revealing the properties of the various

implementations of exploration and exploitation� providing guidelines for practical use

only�

�	�	
 Fitness landscapes

Given a search problem� a landscape representing all the possible outputs of the

problem can be constructed� In appendix B� there shows several landscapes of the test

problems used in this thesis� For one�dimensional problems �with one objective vari�

able�� their landscapes are lines with x�axis representing the objective variable values

and y�axis representing the corresponding function values� For two�dimensional prob�

lems �with two objective variables�� their landscapes are surfaces� The landscape of

a problem tells several pieces of information� It illustrates not only the mapping of

function variables and function values� but also the characteristics of the problem in

relevance to searching� such as the modality and the deceptiveness� This information is

normally used to describe the di�culty of the search problems� Generally� the higher

the modality and the higher the deceptiveness of the problem� the more di�cult the

problem is� Modality describes the ruggedness of the landscape� Smooth landscape

usually composes of one �unimodal� or a few modals �multimodal�� Landscape that is

highly or even massively multimodal consists of many or numerous modals� Figure ���

shows examples of landscapes of di	erent modalities�
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�a� �b� �c�

Figure ���� Landscapes of different modalities� �a� Unimodal� It consists
of a single optimum� �b� Multimodal� It consists of more than one optima�
�c� Highly �massively� multimodal� It consists of numerous optima� It
should be noted that there is no clear cutting points between the three
categories of modalities�

Search problems with landscapes of high modality are di�cult to solve by direct

search methods� Recall that direct search methods search for the optimal solution by

traversing the landscape explicitly� In the presence of many local optima� extensive

exploration is required to avoid trapping in the local optima �due to exploitation�� As

mentioned before� exploration is a slow process� hence long searching time is expected

to be spent to attain solution of reasonably high quality� Deceptive problems are those

having local optima which are more favorable than the global optima� Since all practical

searching algorithms are heuristic algorithms that some of them are more suitable in

solving some kinds of problems� they would easily be deceived if the heuristic used

is inappropriate� Besides the modality and the deceptiveness of the landscapes� the

general shape of the landscape would also pose di�culty to search algorithms� To be

more precise� some algorithms are more suitable to solve problems with landscape in

certain shapes while some other algorithms are suitable for landscapes of another shape�

In ���� landscapes are roughly classi�ed into four di	erent categories according to their

shapes �see Figure �����

� Category � Big�valley with one single optimum�

� Category � Smooth surface �with mid 
uctuations� composed of several big and

distinct local optima�

� Category � Surface with many well�correlated local optima�

� Category � Golf�hole �inverted� like�
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�a� �b� �c� �d�

Figure ���� Four kinds of landscapes classified according to shape� �a��
Unimodal� �b�� Smooth surface composed of several big and distinct lo�
cal optima� �c�� Surface with many well�correlated local optima �the
correlation is not shown in precise and accurate way�� �d�� Golf�hole
�inverted� like�

It is obvious that greedy methods� such as simple hillclimbing� are the most e	ective

method in tackling problems in category �� since the landscape has one single opti�

mum that hillclimbing algorithms guarantee �nite time optimality� It is because any

better samples are de�nitely nearer to the global optimum� Although exploitation�only

method �which is the common practise in hillclimbing algorithms� is enough in solving

the problem� exploration is believed to be useful at the early stage of an optimization

run when the initial sample�s� is�are poor� Landscapes of the second category favor for

multistart strategies� since they consists of a few distinct and connected optima which

make a few restarts to reach the true global optimum� Landscapes of the third category

favor for simulated annealing and evolutionary methods� but not greedy methods� The

presence of the numerous local optima makes greedy methods impossible to reach the

global solutions without exhausting the search space� Simulated annealing and evolu�

tionary methods are di	erent� Simulated annealing is capable of escaping local optima

by the random jump at high temperature and home in the �possibly� global optimum at

the �nal stage of the cooling schedule� The forth category is the hardest to all search�

ing algorithms� As the name suggested� landscapes of this category have uncorrelated

optima resting on a relatively 
at surface� The experience �in whatever way� obtained

in the course of searching would have little helps in the future search� In other words�

heuristics are not applicable in this kind of problems� Exhaustive search and random

search are the last resorts�

Strictly speaking� the possible outputs of a problem is simply a set and the ele�

ments of which are unordered� Jones ���� pointed out that the formation of a landscape

requires an ordering of the set in some way� otherwise� the landscape of a problem is

unde�ned� So far� we have assumed the presence of the ordering� although it is not
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Figure ��	� �a�� Landscape shown with ascending x order� �b�� Landscape
shown with ascending odd x order and the ascending even x order�

important to know what the ordering is as far as the previous discussion is concerned�

For numerical problems such as function optimization� the numerical ascending order

is normally adopted� However� it is possible to have more than one ordering for a set

and hence� more than one landscape for a single problem� In Figure ���� we show two

di	erent landscapes representing the same problem by two di	erent orderings�

�	�	� Neighborhood

Neighborhood is an important concept in iterative stochastic search� It lays the

basis for the design and operation of the search operators� It also de�nes a landscape

for the problem� In fact� neighborhood is essential to the performance of a searching

algorithm� It is because neighborhood de�nes the landscape and hence� the modality�

deceptiveness and the various landscape properties� The landscape of a problem can be

multimodal �see Figure ����a��� and at the same time be unimodal �see Figure ����b��

depending on how neighborhood is de�ned� Simply speaking� given the set X of all

solutions constituting the whole sample space� de�ning neighborhood is to de�ne for

each solution x � X a solution set � � X which are admissible from x in one operation�

The neighborhood de�ned for the problem shown in Figure ����a� is �a � fRX �x �

��� RX�x " ��g while that in Figure ����b� is a bit complicated� It is basically �b �

fRX �x � ��� RX �x " �g� Special handling of the boundary cases as required� The

function RX ��� is a remainder function�

Given the sample space of size V n� there are V n number of neighborhoods� The

neighborhoods are overlapped meaning that some members of a neighborhood are the

members of other neighborhoods� The cardinalities j�aj and j�bj are �� In many cases�

the cardinalities are larger than �� particularly when the problems are of high dimension�
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� Pure random search The neighborhood de�ned for pure random search is sim�

ple� � � X � i�e�� all samples are admissible in one single step�

� Greedy decent�ascent The neighborhood de�nition for greedy descent�ascent

methods are the same as the generic one described before� The neighborhood size

of a usual de�nition equals the dimensionality of the problem� i�e�� � � n� Things

become complicated when it goes to the multistart case� The size is n for the

greedy part while that for the multistart is X �

� Simulated annealing The neighborhood size depends on how the neighborhood

is de�ned�

� Evolutionary methods Evolutionary methods are more complicated� Some

members like genetic algorithms and genetic programming� use more than one

operator in each iteration� The operators are crossover and mutation� Some prac�

tical implementations even use more than these� Designing an operator means

de�ning a neighborhood for the whole sample space� and hence the landscape�

The presence of more than one operator in action means introducing more than

one neighborhood�landscape� Fortunately the operators are operated in a sequen�

tial manner with the input and output drawn from the same set of samples� Thus�

the operators can be added together generating one single landscape only�

��� Species formation methods

Speciation can be thought of as a phenomenon of the formation of groups of indi�

viduals having distinct characteristics to the individuals in other groups� The formation

of species is made possible by the genetic di	erentiation plus the selection force from

the environment� The idea of speciation is borrowed by GA community to cater for the

problems with landscapes that are multi�modal or deceptive in nature� A number of

speciation algorithms were proposed� namely� crowding ����� deterministic crowding �����

sharing ���� ���� and dynamic niching �����

�	
	� Crowding methods

Crowding

Crowding ���� is a competition model to maintain population diversity to prevent

premature convergence rather than a species formation method� It is an extension to the

preselection method of Cavicchio ���� Di	erent varieties of individuals are maintained in

the population� but the di	erentiation among individuals in not very distinct� Crowd�

ing is achieved as follows� for each o	spring� parents from a set of size CF �crowding
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factor� chosen randomly from the old population are compared for similarity� The most

similar one with lower �tness than the o	spring is replaced by the o	spring� The ratio�

nale behind this method is that individuals which are similar are said to share similar

niche and compete for the same resources� Expelling the similar individuals with lower

�tness away from the niche e	ectively maintains a high quality and diverse population�

Although less �t �and similar� individuals are kept replacing� only mild speciation ef�

fect is produced and it is empirically shown to be not e	ective in solving multimodal

problems ����� The computational complexity of this method is O�nm��

�	
	� Deterministic crowding

Developed by Mahfond ���� to improve the high computational requirement of De�

Jong�s crowding method� One of the weaknesses of DeJong�s crowding method is the

expensive computation used in the replacement of parents by o	springs� The replace�

ment method of deterministic crowding is that only parents and their direct descendants

are compared for similarity and replaced� when the descendants have higher �tness� Gen�

erally� there are two o	springs that are produced for each pair of parents and hence two

di	erent parent�o	spring pairings are possible� The one that has higher total similarity

is used for replacement� The computational complexity is reduced from nm to �n�

�	
	
 Sharing method

With sharing ��rstly introduced by Holland ���� and expanded by Goldberg and

Richardson ������ species are formed according to the similarity among individuals in

the population and the pre�set niche radius� Similar to all other speciation methods

presented so far� it is achieved by the competition of limited resources among individ�

uals within the same niche� Individuals sharing the same �or similar� features� either

genotypically or phenotypically� belong to the same niche and their �tness should be

shared based on the following sharing function�

Sh�di�j� �

�
�� �

di�j
�share

��� if di�j � �share

�� otherwise

where di�j is the similarity distance between individuals i and j� This similarity distance

is de�ned such that the more similar they are� the shorter the distance between them�

This sharing function de�nes a symmetric niche area �e�g� circular niche area for two�

dimensional function� with �share the radius and individual i the center� The parameter

� allows the sharing function to have di	erent shape� However� there is no literature

reporting research result about this parameter and intuitively� this parameter should

have limited usefulness and is normally set to ����

Based on this sharing function� a set of individuals can be identi�ed as sharing

the same niche with an individual� Summing up all the sharing values of this set of
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individuals become a niche count� This niche count determines the resulting fraction of

the �tness remained�

fshi �
frawi

mi
�����

We can see that the resulting shared �tness depends on i� how many individuals falling

in the niche of the individual in consideration� and ii� the similarity distance of those

individuals�

Regardless of the popularity and e	ectiveness of the sharing method� there are

several issues that should be mentioned�

�� Estimation of the number of peaks of the function is di�cult� It accounts for the

availability of domain knowledge� This leads directly to the di�culty of determin�

ing niche radius �share�

�� The single �xed�value �share implies that niches are all of same size and at the

same resolution level� In fact� most of the functions that people are interested in

are highly unstructured with peaks of di	erent sizes positioned irregularly�

�� The computational complexity required in calculating shared �tness and deter�

mining niche count is O�n��� These computation expenses sustain throughout the

evolution�

�	
	� Dynamic niching

Dynamic niching is developed by Miller and Shaw ���� to reduce computational

requirement of the standard sharing method� The two assumptions that are used in

the standard sharing method apply in this method� ��� the number of niches q can be

estimated� ��� niches are separated �non�overlapped� and located at the same resolution

level� The model is based on an observation on GA with sharing that individuals tend

to populate the niches as time passes by� This phenomenon can be explained by the fact

that once the niche radius �share is set� the number of niches is more or less �xed� Dy�

namic niching identi�es these niches and uses these niches to categories the individuals�

i�e�� either belonging or not belonging to the niches� In the standard sharing method� all

individuals in the population are considered as niche centers� For population of size N �

there are �xed number of N niches� Similarity measurement will be taken by every pair

of individuals� The complexity due to this exhaustive similarity measurement is O�n���

Based on the observation mentioned above� dynamic niche sharing �rstly identi�es q

niches at the time concerned �that is why this method is named�� and categorizes the

individuals which belongs to the niches using the same similarity measurement� Since

the number of niches is now q but not N � the complexity will be dropped to O�nq��
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q � N � A greedy approach is used to identify the niches �see Algorithm ��� for de�

tail�� Instead of having one niche count for each individual� there is one common niche

count for each dynamic niche� Standard �tness reduction is then applied to each of the

dynamic niches using their respective common niche counts� Those individuals which

cannot be categorized are catered for by the standard sharing method�

Algorithm �
� Dynamic niche sharing� Greedy dynamic peak identi�cation� The aim

of this part of the algorithm is to identify a dynamic niche set� i�e�� the set of top q

number of peaks�

Algorithm Dynamic niching� Greedy dynamic peek identi�cation

�� P s is the sorted population�

� Sort��F �P � sorts P in decreasing F order�

� q is a pre�set parameter indicating the number of dynamic niches�

� �share is the pre�set niche radius�

� Y is the dynamic niche set� the elements of which are individuals of the current population�

� da�b is the similarity distance between a and b�

��

P s � Sort��F �P � �� Sort in decreasing fitness order ��

y � �� Y � � �� Initial dynamic niche set is null ��

i � �

Loop

j � �

Loop

if dP s
i �Y�j�

� �share then

Insert P s
i into Y

end if

j � j " �

y � y " �

until j � N or P s
i � Y

i � i" �

until y � q or i � N

end Algorithm

The method is more e�cient than the standard sharing method� The computa�

tional requirement in each generation is those required to identify the dynamic niche

set plus the similarity measurements needed to categorize the population� Both of them

have O�nq� complexity� Generally� the initial population should be more or less evenly
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distributed over the sample space� Most of them should be categorized as not belonging

to the dynamic niches� Thus� the overall computational complexity should be O�n��

as if the standard sharing� Later� clusters begin to form and more and more individu�

als are being classi�ed as belonging to the dynamic niches� The overall computational

complexity should be dropped to O�nq��

��� Summary

In this chapter� centering around three important algorithms� namely greedy de�

scent� simulated annealing� and evolutionary algorithms� a brief overview of iterative

stochastic searching algorithm is given� Iterative stochastic searching algorithm is a

probabilistic algorithm which does not guarantee an optimal solution in �nite time�

There are three main components� namely the generation� the evaluation� the selection

of candidate solutions and the checking of the ful�llment of the termination conditions�

The important issue of iterative stochastic search lies on the idea of �tness landscape

and its relation to neighborhood is presented�
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Chapter �

The basic algorithm

In this chapter� a stochastic searching model called pBHS �Probabilistic Binary Hi�

erarchical Search� ��� is presented� Structurally� it transforms the optimization problem

into a selection problem by quantizing and organizing the continuous search space into

a binary hierarchy of partitions� Solving an optimization problem becomes locating the

partition in which the optimal solution is resided through a series of branch selections

in a top�down manner� Algorithmically� it is an iterative stochastic bottom�up search�

ing algorithm with feedback and memory� In each iteration� samples obtained from

the sample space are assembled together forming part of the past experience �mem�

ory�� The memory is used in the next iteration as a searching guide to obtain new

samples� Besides being a searching guide� the memory also acts as a convergence speed

moderator�adaptive remembrance scheme� Using this iterative stochastic algorithm� in�

formation about the static landscape is accumulated� The behavior and the performance

of this basic model is illustrated with the use of function optimization problems�

��� Introduction

Global optimization approaches under the category of stochastic methods such as

simulated annealing �SA� ���� ��� and evolutionary algorithms �EAs� ���� ��� ��� ��

and those under the category of heuristic search methods such as multistart greedy

descent strategies �MGDs� ���� ��� ��� have several characteristics� �i� for SA and MGDs�

they try to �nd the global optimal solution by searching the large sample space in the

�nest detail� and �ii� they search without memorizing past global information� These

characteristics could in some instances be undesirable� Motivated by their shortcomings�

we provide our model as both an alternative and�or a complementary approach�

Direct searching for global solution Simulated annealing �SA� traverses a huge

sample space from one con�guration to another neighboring con�guration to search
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for the global optimal solution� Searching of a large sample space in this manner is

ine�cient� although global optimality is theoretically guaranteed given in�nite amount of

time� MGDs search for the global optimal solution simply by pushing every con�guration

picked out �randomly� to the reachable local optimum� The best local optimum obtained

is treated as the global one� Theoretically� to the limit of trying all samples in the sample

space� MGDs guarantee global optimality� Since the heuristic used in MGDs is local

optimization technique� MGDs will have good performance particularly when the �tness

landscapes of the problems are smooth and have few optima�

Lacking of good global information The di�culty of global optimization lies on

a facts that global information is not available� Operators in SA� which move the

existing con�gurations to the neighbors� can only exploit local advantages� The situation

is slightly better for methods of population�based searching paradigm such as EAs�

since they have a population of con�gurations� The occupancy of the population in

the sample space is the result of past convergence force acted upon the population�

Although the occupancy re
ects to a certain extend the global picture� they are merely

the sample points in the space recording limited past searching experience� Hence the

reliability of which in obtaining global solution is rather limited� Moreover� methods

that are dedicated to local optimization such as gradient descent and the variants are

used together with multistart strategy hoping that one of the initial points can reach

the global optimum� Unfortunately� method to determine initial points in order to

maximize the expectation of getting the best �not necessarily the optimum� obtained

solution is quite rare� Distributing uniformly the initial points on the search space

becomes the best available strategy to maximize the coverage and hence to maximize

the expectation of global optimization� We consider such approach rather pessimistic�

despite its robustness and simplicity� Instead of waiting for the solution� we suggest that

global information should be collected in the course of solution �nding�

To deal with these limitations� we organize the sample space into a binary hierarchy

separating the huge space into pieces of manageable size and adopt a paradigm called

emergent computation ����� Figure ��� illustrates the idea of emergent computation�

The main theme of this paradigm is the emergence of global properties or patterns from

the collective behaviors of many local interactions�� This paradigm paves the way for

us to obtain the inaccessible global information�
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Figure ���� Search space reduction �First view�

��� Search space reduction with binary hierarchy

Given a balanced binary hierarchy �Figure ���� of l levels�� there are l number of

branch layers� l " � number of node layers and �l number of leaf nodes� Each non�leaf

node has two branches radiated out� To locate a leaf node� we go through l number of

branches starting at the root� If we need to make a decision on which branch to traverse

next� we will have to make l number of such decisions� Since a branch of the hierarchy

leads to a unique non�overlapping sub�hierarchy below it� after making a decision on the

branch to go� in principle we just need to consider the corresponding sub�hierarchy in the

next decision� Making decision at the root� we face the whole hierarchy with �l number

of leaf nodes �the outer region enclosed by the dashed line in Figure ����� On deciding

the subsequent branch at any one of the �rst level nodes� we just face �l�� �i�e� half

of the whole hierarchy� number of leaf nodes �the shaded region in Figure ����� It is

because half of the total leaf nodes are already pruned in the previous decision� It is

clear that the size of the hierarchy we are facing is diminishing with the decision made

�Our current investigation modi�ed the paradigm slightly in such a way to suit our problems at hand�
Details are covered in the rest of the paper�
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Figure ���� Search space reduction �Second view�

towards the bottom�

Viewing the hierarchy in another way� if we cut the hierarchy into � halves lon�

gitudinally at node level bl��c as shown in Figure ���� the number of leaf nodes faced

by all sub�hierarchies at the upper half are reduced to �bl��c� Those in the lower half

are� however� kept unchanged as mentioned before� In general� if we cut the hierarchy

successively at each node level in a top�down manner� total number of �leaf nodes� faced

are �l� It can be seen that the apparent size of the hierarchy can be reduced drastically�

The formation of such a hierarchy basically de�ned l " � number of resolution

levels of the solution landscape� Node level upper in the hierarchy represent a coarse

landscape revealing the general macroscopic view� while node level lower in the hierarchy

represent a �ne landscape revealing the detail� This resolution hierarchy allows an

algorithm designed to concentrate on the searching at the lower resolution� which is

easier� locating the promising area �rst and to drive into the precise optimum later at

the higher resolution when it is converging�

��� Search space modeling

In this section� we express our problem in terms of unconstrained function optimiza�

tion �subject to bound constraint only�� Given a n�dimensional continuous real�value

function

F � X �� R where X � Rn

and xl � X � xu �����

to optimize� we need to �nd x� � X such that F �x�� is maximized �or minimized��

�We de�ne a �level� as a layer of branches but not as a layer of nodes�
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Figure ��	� Labeling of partitions� Partitioning

Depending on the required solution precision �precision of variables in x��� we quan�

tize the n�dimensional search space into V n number of partitions �each of them is of

n�dimension� of equal size� By creating this sample space with V n partitions� the op�

timization problem can then be modeled as a searching and approximation problem

with V n number of choices� Imposing a restriction on V that it should be equal to �l

where l � N� a binary number labeling scheme is then introduced to label the parti�

tions� For the sake of simplicity� we restrict our consideration to the one�dimensional

case �rst� Extension to the n�dimensional case� which is fairly straightforward� will be

done afterwards�

Denoting S as the set of all binary strings of length l in the form of bl�� bl�� 	 	 	 b��

where bi � f�� �g� we can label the partitions of the sample space of the one�dimensional

function by assigning consecutive binary strings from � to V �� to consecutive partitions

as illustrated in Figure ���� For instance� if l equals to �� the partitions are represented

sequentially as ���� ���� ���� � � �� ���� and ��� in an increasing x direction� Based

on this labeling scheme� we noticed that the one�dimensional search space is not only

divided into V partitions� but also a hierarchy of partitions with each bit demarcating

the partition inherited from the immediate more�signi�cant bit into two halves �see

Figure ����� �The digits at the upper part of Figure ��� show the partition hierarchy

formed by the di	erent signi�cant bits�� The top layer �the most signi�cant bit� consists

of two bit�values which represent the right and the left half of the whole sample space�

The second layer consists of four bit�values representing the four partitions divided from

the two in the previous layer� Partitioning in this way allows us to treat each partition

as a sequence of bits so that �nding an optimal partition can be done by optimizing each

bit� Then the problem becomes so simple that it accounts for just a series of l selections

between � and ��

Dealing with the n�dimensional functions� we simply apply the same labeling scheme

to each of the variables in x� Then� having n number of variables� there are n number
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� Labeling of partitions� �b� Formation of hierarchy

of such separate binary hierarchies� The optimization problem would then become n

simultaneous series of l selections�

To locate the optimal solution� we need a way to explore the hierarchies� Exploring

in an exhaustive way can give the optimal solution� but computationally it is unrealis�

tically expensive� While exploring in a random fashion has an unacceptably low chance

of getting the optimal solution� Probabilistic search� then� becomes a reasonable choice�

To do the probabilistic search� we give scores to the states of each bit bi� Since we are

considering a binary system� two scores am�k and am�k��� k � ��l���i� are assigned one

to each state indicating how well the states perform in that bit position in the past� Us�

ing these scores� a reasonable bit�value selection scheme �probabilistic search� becomes

possible� We now restate our problem as follows�

The original problem is to �nd x� � X where X � Rn such that


x � X �

�
F �x�� � F �x� if Maximization�

F �x�� � F �x� if Minimization�
�����

After the transformation� it becomes a problem to �nd probabilistically an optimal

vector of binary strings s� � Sn to where x� belongs�

max Prob�select s��

� max
n��Y
m��

Prob�select s�m�

� max
n��Y
m��

�Y
i�l��

Prob�select b�m�i� �����

where s�m � S is the m�th component in vector s��
b�m�i is the i�th signi�cant bit of binary string s�m�

It can then be re�formulated as �nding b�m�i such that for � � m � n and � � i � l�

b�m�i � arg max
k

f am�k � k � ��l���i� " bm�i g� �����
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��� The information processing cycle

To solve the problem formulated in the last section� we present in this section an

iterative algorithm based on an information processing cycle characterized by a pop�

ulation of homogeneous searching agents and a searching environment� Speci�cally� a

population of N binary string vector s each with n number of components sm are gener�

ated and tested for optimality in each iteration� In the population� there might be some

information related to the global picture of the objective function that we can extract�

The information is gathered in each iteration of search to a reliable extend that the

agents� based on this global information� can produce the optimal solution�


	�	� Local searching agents

Each agent is designed to generate in each time step n number of binary strings

through n sequences of bit�value selection probabilistically� We treat the set of scores

am�k�t� � ����� ���� at time t stated in Eq� ����� as our global information accumulated

up to time t� For each function variable xm� we de�ne a vector

Am�t� � � am���t� am���t� am���t� 	 	 	 am��l���t� � �����

composed of �l number of am�k�t� �two consecutive am�k�t� for one bit in binary string

of length l�� For an n�dimensional problem� the whole set of scores would be

A�t� � � A��t� A��t� 	 	 	 An���t� �T � �����

In order to make the selection possible� a correspondence is drawn between Am�t�

and our binary string sm� Every non�overlapping pair of two consecutive am�k�t� is used

to represent a single bit� For instance� elements am���t� and am���t� correspond to the

most�signi�cant bit bl��� am���t� and am���t� correspond to the second most�signi�cant

bit bl�� and so on� For each such pair of elements� we dedicate the former one as the

score for bi � � and the later one as the score for bi � �� For instance� am���t� is

the score of � in bit bl�� and am�� is the score of � in bit bl��� Figure ��� shows the

correspondence of a binary string and Am�t�� In fact� it is not necessarily that Am�t�

and the correspondence be de�ned as above� Di	erent applications can have di	erent

de�nitions�

Speci�cally� the generation of a binary string starts at the most�signi�cant bit and

proceeds one bit at a time towards the least�signi�cant one� carrying the meaning of

dividing the search space into half successively following the sample space hierarchy�

The probability of selecting a bit�value at the i�th bit bm�i of the m�th string sm is

de�ned as follows�

Prob �bm�i � 	� �

�
am�k�t�� 	 � ��

�� am�k�t�� 	 � ��
�����

��
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As shown in Eq� ������ the selection of bit�value depends in a straightforward way

on the respective global information complying with Eq� ����� and Eq� ������ The larger

the am�k value� the higher the chance the corresponding bit�value is selected�

After generating the binary strings sm� � � m � n for all function variables xm� we

have an n�dimensional partition picked out� Since the ultimate goal is to optimize the

original function stated in Eq� ������ practically� we need a function value x from the

partition for evaluation� The function value x for the partition is chosen according to�

xm �
sm
V

�xum � xlm� " xum� �����

i�e�� the minimum x in the region� Unless speci�ed otherwise� we use xm and sm in�

terchangeably� Now we have a means of evaluating the partition by evaluating the

representative instead�


	�	� Global environment

Given a reliable global information A�� the searching agents described in the above

section should be able to �nd s� with probability approaching ��� ful�lling Eq� ������

i�e�� Prob�select s�� � �� The question is how to make A� reliable# We approach this

question as follows�

Every binary string generated will be evaluated to give a function value F �x�� This

function value is the raw �tness of the binary string vector� Assuming that the good

performance of a binary string vector is contributed by the underlying components of

each constituting binary strings� we assign the raw �tness of the binary string vector to

the constituting components� The previously de�Ned correspondence between Am and

a binary string basically treats each bit as a single constituting component� Then� two

��



vectors of length l for the raw �tness values of both states gained by a binary string are

de�ned� We denote um � � um�� um�� � � � um�l�� � as a vector indicating the raw �tness

of the bits with bit�values equal to � for sm and wm � � wm�� wm�� � � � wm�l�� � as the

vector indicating the raw �tness of bits with bit�values equal to �� Fitness assignment

to the states of each component is as follows�

For the m�th binary string sm of the solution x� and � � i � l��
um�i � F �x� and wm�i � � if bm�l���i � ��

um�i � � and wm�i � F �x� if bm�l���i � ��
�����

It is obvious that a single sample is not reliable enough in terms of getting the global

view� Hence� we distribute a population of searching agents trying di	erent partitions

simultaneously� Their raw �tness values are added together forming another quantity

called component �tness� The more partitions are tried� the more reliable the component

�tness values are� The assembling is done in the following way�

For a population of size N � we have two sets of N raw �tness vectors um and wm�

Summation of all the same components of the N vectors of the respective sets gives the

component �tness for the respective states� Denoting uj�m�i and wj�m�i as the raw �tness

values for states � and � in the �l���i��th bit gained from evaluating the j�th binary

string in the population for variable xm respectively� the component �tness values for

both states of the �l� �� i��th bit bm�j��l���i� resulted from the population are�

Um�i �

PN��
j�� um�j�i

j$m�i��j
� Wm�i �

PN��
j�� wm�j�i

j$m�i��j
� ������

where $m�i�� � fj � f�� �� � � � � N��g � bm�j�l���i � 	g and 	 � f�� �g�

While Um and Wm are vectors with l number of vector components�

Um � � Um�� Um�� 	 	 	 Um�l���� ������

Wm � �Wm�� Wm�� 	 	 	 Wm�l���� ������

Vectors Um and Wm are normalized such that Um�i "Wm�i � �� � � i � l� Putting

Um and Wm together� we obtain a vector of combined component �tness with the same

structure as Am�

Hm � � Um�� Wm�� Um�� Wm�� 	 	 	 Um�l�� Wm�l�� �� ������

Using this current component �tness values to make decision� the searching agents

should be able to produce better binary strings� as they now have an immediate past

searching experience to rely on� Continuously using the newly produced component

�tness means forgetting the past searching experience except the immediate one� Instead

of forgetting completely the past� we retain all the past information� The past component

��



�tness values for the m�th function variable are retained as follows� denote hm�k�t���

as the k�th component of Hm at time t��� � � i � l�

am�k�t� � 
m�i�t��� 	 am�k�t��� " ���
m�i�t���� 	 hm�k�t��� ������

where k � ��l� �� i� for state �� and k � ��l� �� i� " � for state ��

Practically� we keep every antagonistic pair inside Am�t� normalized� am�k�t� "

am�k���t� � �� The newly introduced quantity 
m�i�t� is called remembrance� It deter�

mines the fraction of the past collected information am�k�t��� to be retained in the gen�

eration t� It is de�ned in such a way that di	erent bits can have di	erent remembrance

values� There are two reasons why di	erent bits should have di	erent remembrances�

�� Intuitively� the more signi�cant bits controlling larger common partitions should

have more reliable information collected than the less signi�cant bits controlling

smaller shattered partitions given same number of samples tried� Losing more

past information to accommodate for the new one at the more signi�cant bits to

increase the speed of convergence becomes plausible� Hence� the more signi�cant

the bit� the smaller the remembrance it should be�

�� The hierarchical structure has an advantage on search space reduction �see sec�

tion ����� Brie
y speaking� reduction occurs at a level of the hierarchy when

su�cient information is collected at all upper levels� For instance� if the most�

signi�cant bit bm�l�� collected enough information� either am���t� or am���t� will

have very high value� Say if am���t� has a higher value� it is highly probable that

the right partition contains the global optimum� Searching should then be concen�

trated on that region� In other words� the size of the search space is reduced by

half� suggesting a smaller remembrance value be used to speed up the convergence�

Therefore� we devised an adaptive remembrance scheme to speedup the convergence�

Let � denote a threshold value above which means converged and vice versa and 
 denote

the minimum allowed remembrance� Suppose the r�th bit bm�r of binary string sm for

function variable xm is the �rst bit encountered starting from the most signi�cant side

that satis�es the following�

j ���� am���l���r��t� j � � 
 j ���� am���l�r��t� j � �� ������

Then the remembrance value used in each bit of sm is set according to�


m�i�t� �

��
�


�t� l � i � r�
r � i" 
�t�
r� i" � r � i � ��

������

This scheme� basically� keeps the remembrance for the converged bits �bl�� to br���

constant at 
� while interpolates the rest from 
 to �r " 
���r " ��� Figure ��� shows

the remembrance settings at di	erence stages of convergence�
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	�	
 Cooperative re�nement and feedback

It becomes apparent now that an information processing cycle is formed� The

pseudo�code shown in Algorithm ��� summaries the basic algorithm comprising the two

components� �� a group of searching agents who search independently� and �� a global

environment� The algorithm starts out without any global information for the searching

agents to rely on� The most promising searching strategy for the agents would then be

random search� Gradually� global information emerges due to the interaction between

the agents and the environment � the feedback from the environment to agents and the

re�nement of the environment by the agents�

Algorithm �
� The information processing cycle

Procedure InformationProcessingCycle

global environment � Empty

While stopping criteria are not met

Loop

For each searching agent do

search result � Search� global environment �

End For

global environment � Modify�collection of search result�

global environment �

End While

End Procedure

��



��� Enhancement features


	�	� Fitness scaling

The model should be able to handle functions with landscapes of various shapes

and features at di	erent scales� However� judging from the model described before� we

noticed that the raw �tness used is not a good choice to achieve the goal just stated� It

is because in order to better di	erentiate the excellence of the binary strings� their raw

�tness should be di	erent distinctively� When their raw �tness values are very similar

or getting closer to each other� they cannot be distinguished easily� This leads to a

problem of insu�cient convergence power for 
at landscape� Having a close minimum

and maximum raw �tness values� 
at landscape will mislead the algorithm that the

population is converged to an optimum� The same problem exists in sharp landscape

when the population is converged to a tiny point at the sharp peak� The more the

population converged �but not yet reached� towards the peak� the more di�cult to

home in the optimal solution� We can see that convergence driven by raw �tness is not

only landscape dependent� but also depends on the stage of convergence�

The same problem has already mentioned and tackled by ��� ��� They analyzed a

number of �tness re�mapping schemes such as �tness scaling� �tness windowing� and

�tness ranking� However� their main concern is to �nd a good �tness re�mapping such

that the �tness proportionate selection scheme in GAs would work well� They should

then be very careful about the presence of a super��t individual in a relatively poor

population�

Our concern� as stated above� is to maintain a stable �tness range whatever the

objective function is and wherever the current population is� Hence� we devised a very

simple �tness measure capable of zooming at di	erent scales �di	erent resolution levels�

to cope with both the prominent di	erence of �tness values in high gradient landscape

and the nearly indistinguishable �tness values in plateau�like landscape� Even if the

landscape is mixed with both features� the �tness measure can still provide equal and

enough convergence power� The �tness measure used is de�ned as follows�

fj �
F �xj�� Fmin

Fmax � Fmin
������

where Fmax � max �� i �N F �xi�� and Fmin � min �� i �N F �xi��

E	ectively� raw �tness values equal to Fmax will be scaled to ���� while those equal

to Fmin will be scaled to ���� No matter where the population goes and how close the

population raw �tness values are� the relative �tness of each of the searching agents can

best be revealed and hence enhancing the e	ect of information gathering� To achieve

our goal stated at the beginning of this section� we modify the current component �tness

��



stated in Eq� ����� by the new scaled �tness fj ��
um�i � fj and wm�i � � if bm�l���i � ��

um�i � � and wm�i � fj if bm�l���i � ��
������


	�	� Elitism

The generic model depends very much on the small number of searched samples�

If the samples happen to be very poor� the global information gathered will be poor

and produce poor and misleading guide to the future search� Successive dependence

on the poor information would eventually cause the search to get stuck in the poor

local optimum� Hence� we employ a well�known strategy in evolutionary computation

to pull the deceived population away from the wrong guidance� The strategy used is

elitism �see ���� ��� ��� ��� for the importance of this strategy�� which is a heuristic

making use of the �ttest individual found in the course of generations to guide the

search� This heuristic is used with an assumption that the chance of �nding a �tter elite

is greater or equal at the region of the elite currently obtained than the region currently

occupying� There are di	erent variants of elitism� We implement ours as follows�

Throughout the searching process� we keep an elite se � Sn which is the best binary

string vector found so far�

f e � F �xe� ������

� F ��xe�� Fmax�

� ��

The elite is used as a reference to evaluate the population� In the presence of the

adaptive �tness measure mentioned in section ������ the samples currently found will

have �tness values relative to this elite� Fmax � F �xe� � �� Regardless of what the raw

�tness of the elite is� its scaled �tness is ��� and all other samples will have scaled �tness

below ���� E	ectively� this heuristic eliminates poor samples �in a relative sense� by

giving them low relative �tness values� Poor samples will then share smaller amount of

percentage in the component �tness hm�k than that revealed by their raw �tness values�

Guidance provided by the the gathered global information will become more reliable� It

should be noted that it is not a threshold type of elimination� but a smooth and gradual

type� We have two reasons why this kind of elimination is a better choice than the

threshold�type elimination�

�� Poor samples are not necessarily bad�

They can be the source of new and better partitions� The presence of poor samples

would stabilize the population and make the algorithm less greedy�

��



�� Avoidance of an extra parameter

A clear�cut threshold type of elimination requires a parameter to determine where

to do the elimination� In fact� we have no way to justify the use of any threshold

value�

Apart from being a reference point for evaluation� the elite can take an active role in

shaping the global information A as in ����� We consider the elite an extra but standing

searching agent of the population� In other words� the elite contributes to the component

�tness hm�k as if a normal searching agent� i�e�� depending on the bit values of the binary

strings in se� N��	f elite is added to either one of the component �tness pair� hm�k and

hm�k��� The quantity � is the strength of elite� Factor N�� keeps the strength of elite

unchanged in di	erent population size N � Without this factor� the e	ect of the elite will

be overwhelmed by large population�

��� Illustration of the algorithm behavior


	
	� Test problem

In this section� trying to illustrate the basic properties� we present simulation re�

sults solving an arti�cial one�dimensional function AF� �Figure ����� The arti�cial ��D

function is designed with the sub�optima and the exceptionally sharp global optimum far

apart� Also� it has many local optimal points� This problem is designed for illustrating

the algorithm behavior only� The question on the suitability of using the algorithm to

solve this problem is out of the consideration� For ��� � x � ����

FAF��x� � ��� jx� � ���j�	�"

������� x� sin���
�x� x� " �������"

����� cos���
��� x�� " ������ " ����� ������

The function is composed of three parts� The �rst part produces the exceptionally

sharp peak at x � ������������� It is where the global maximum is located� The second

and the third part are two amplitude�decreasing and frequency�increasing sine and cosine

functions respectively� The latter one superimposes on the former one� creating local

optima on the global landscape� Three optima that are of interest are listed in Table ����

This experiment demonstrates the basic behavior of the algorithm by showing the

global information gathering behavior� Since the purpose of this experiment is not going

to determine the optimal parameter settings nor displaying completely the algorithm

performance� we tried a set of parameters selected after carrying out the experiment

described later in section ������ N � f��� ��� ��g� 
 � f����� ����� ����� ����g� � � ��

� � ���� l � ��� maximum allowed iterations T is �����
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Table ���� Objective function values and locations of the first � optima

f� x

Global optimum �����	������	����� ��
���������

First sub�optima ��

	����	�������


����	��������
����	��������
����	�������

Second sub�optima ��
��������	������
������	�
��	�
������	�
���
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Figure ���� Average raw fitness under different remembrances

Figure ��� shows the convergence under di	erent remembrance� Remembrance

equals to ��� behaves as if a random search that the average raw �tness shows strong jerk�

iness and stays at low values �� ���� without converging� With non�zero remembrance�

all converge similarly reaching nearly the optimal values� Decreasing the remembrance

from ���� to ���� the �nal converged average raw �tness drops� but the speed of conver�

gence increases� re
ecting the role of remembrance being a moderator between quality

and speed�

Figure ���� compares the behavior of the algorithm under di	erent population sizes�

It is just another view of Figure ���� Another conclusion that can be drawn from

Figure ���� is that using large population size� better result �on average� can be obtained�

Figure ���� shows the convergence pro�le of the best run in each of the parameter

set� Besides supporting the arguments above� the pro�le demonstrates a resolution con�

trol behavior� convergence starts at the more�signi�cant bit representing the landscape

in lower resolution and �nish at the least�signi�cant bit representing the landscape in

higher resolution� Proceeding from the ���th bit to ��th bit� the values of the global

information am�k approach to either one of the extremities steadily at the beginning and

then quickly at the later stage�


	
	� Performance study

This experiment demonstrates the algorithm performance� �� the e	ect of popula�

tion size on the con�dence of getting global optimum� and �� the e	ect of remembrance
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on the con�dence getting global optimum� The experimental settings are as follows� N

� f��� ��� ��� ��� ��g� 
 � f����� ����� ����� ����� ����g� � � �� � � ���� and l � ���

We tried each parameter set ��� times allowing maximally T � ���� iterations� The

same ��D function is used� Tables ��� and ��� shows the percentage of runs out of ���

getting the global optimum and the �rst sub�optima� Throughout the experiment� we

get none of the second sub�optima� In this experiment� getting the optimum means

getting exactly the partition to where the optimum resides� In our case with bit�string

of length ��� our goal is to get a solution with all �� bits correct� i�e�� search for one

solution out of ���� Tables ��� and ��� shows the average number of iterations taken to

get the optima�

Table ���� Percentage of trials getting the global optimum



N

�� �� �� 	� 
�

�
�� ���� ���� ���� ���� ����
�
	� ����� ����� ����� ����� �
���
�
�� ���� ����� ����� ����� �����
�
�� ���� ����� �	��� ����� �
���
�
�� ���� ����� ����� ����� �����

Table ���� Percentage of trials getting the first sub�optima



N

�� �� �� 	� 
�

�
�� ���� ���� ���� ���� ����
�
	� ����� ����� ����� ����� �����
�
�� 	���� ����� �	��� ����� 	����
�
�� ����� ����� �	��� 
���� �����
�
�� ����� 	���� ����� �
��� �����

E�ect of population size

Tables ��� and ��� show that by using a larger population size� the sharp and rela�

tively di�cult�to��nd global optimum can be found with greater con�dence while using

less iterations� This implies that when large population size is used� each update of
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Table ��	� Average iterations required to reach the global optimum
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Table ��
� Average iterations required to reach the first sub�optima
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the global information is more e	ective in the sense of information quality� Increasing

population size means increasing sample size per iteration and more information can

then be gathered before every actual update� making the newly added information more

reliable� However� greediness as well as convergence speed are reduced owing to the

removal of bias produced by small population� In spite of this� the algorithm can still

spend less iterations to produce the level of performance unattainable by small popula�

tion size� re
ecting the power of collective behavior� However more function evaluations

are expected to pay for the low greediness�

Remembrance

The result we obtained shows the usefulness of the availability of global information

on handling global optimization� In general� the performance on getting the sharp and

narrow global optimum drops on decreasing 
 which can be explained as the decreasing

dependence of global information� To illustrate this point� we can compare the results

obtained for 
 equals ��� and the rest �except ����� With 
 equals ���� it is solely the cur�

rent component �tness that is inherited to the next generation while losing completely

those gathered previously� Having limited guidance provided by the current component

�tness� the unsatisfactory performance of the algorithm is understandable� Despite the

total loss of past global information except passing only the currently obtained informa�

tion to the next generation� there is still a weak dependence of each generation to the

past� This successive dependence explains the level of con�dence achieved� Evolutionary

algorithms �EAs� basically are the methods falling in this scenario�
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Table ���� Percentage of trials getting the global optimum � large re�
membrance� �Shaded entries� � �
���
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Using large 
� say ����� a signi�cant portion ����� of the gathered global informa�

tion is preserved in each generation� In other words� most of the information obtained in

many previous generations can be accumulated� The information becomes so rich that

it gives a rather strong and correct guidance for the future search� Generally speaking�

the larger the 
 value� the stronger the dependence of each generation to the past and

the more reliable the gathered information will be� Hence the probability of selecting

s� stated in Eq� ����� can be increased�

Random search

The worst performance obtained with 
 � ��� is as expected �already illustrated in

Figure ����� Remembrance equals exactly to ��� means none of the gathered information

is lost� and at the same time� no information can be gathered� Since the algorithm starts

out with equal ak values for both states� the algorithm ends up selecting the states with

equal chances� i�e�� random search�

According to our argument on the advantage of using large remembrance� we look

further into the performance with remembrances between ��� and ����� Keeping all

the experimental settings unchanged� we tried another two sets of remembrance val�

ues� 
 � f����� ����� ����� ����g and 
 � f����� ����� ����� ����g� The results shown

in Tables ���� ���� ��� and ��� demonstrate the improved solution��nding capability of

the algorithm� supporting our argument on using large remembrance values� Table ����

summaries the algorithm behavior that using large population and remembrance can

improve the global solution �nding performance of the algorithm�
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Table ���� Percentage of trials getting the first sub�optima � large
remembrance�
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Table ��
� Average iterations required to reach the global optimum �
large remembrance
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Table ����� Percentage of trials getting the global optimum and the
first sub�optima � Lump sum
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 Benchmark tests

In this experiment� we tried another four problems listed in Table ����� They are

commonly used in testing global optimization algorithms� We tried� N � f��� ��� ��g�


 � f����� ����� ����� ����g� � � �� � � ���� l � �� for R�� GP� and H� problems� For

S�� we tried� N � f��� ��� ��g� 
 � f����� ����� ����� ����g� � � �� � � ���� l � ���

Tables ���� and ���� show the percentage of trials and average iterations required

to get the global optima of the respective functions� We obtained ���� success rate

�reaching the prescribed f�� on S� and GP� functions under majority of our experi�

mental conditions� While for R� and H� functions� the low success rates for some test

conditions can be explained by their rugged landscapes and the raise in dimensionality�

��� Discussion and analysis


	�	� Hierarchy of partitions

Solution precision Apart from the search space reduction� the hierarchical structur�

ing of search space allows function optimization to increase precision without increasing

the di�culty in the same pace� Any increase in precision by one single bit would double

the search space size� As shown in Figure ����� the convergence is carried out in a more

or less bit�by�bit fashion� Regardless of doubling of the search space� the convergence of

a bit concerns only about the two regions separated immediate from the partition under

its control� The increased precision is the subject matter of the added bit only� In fact�

the di�culty is mainly determined by the ruggedness of the partition under control� So�

if it is the partitions under the control of the additional bits that are highly rugged� the

increased di�culty is attributed to these bits only and the convergence in the rest of the

hierarchy �the part above the added bits� will not be adversely a	ected�
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Table ����� Benchmark test for pBHS� Test problems

Problems n f� x� �evaly

S� 
 Shekel � ������	��� ��	
�
	�� �
R� 
 Rastrigin � ������ �� �� �

GP� 
 Goldstein
price � 
������� �� 
�� ��� ��	�
H� 
 Hartman� � ��
	 ������� ��

�
 ��
���� ����� �
�

y� Average number of function evaluations
�� Number of iterations
�� See the entry GA in the table below�

Algorithms
Function evaluations
S� R� GP� H�

MS 
 ���	 ���� ����
CRS 
 
 ���� ����
SA 
 
 �	� ����
SAsde 
 
 ���� ���	
HGA 
 
 ��	 ���
ARS 
 
 ��� 

NP 
 
 ��	 ����
PE 
 
 ���	 

GA
 ��
��� �	�	 �	���	 ���

�� Number of iterations
�� Experiments carried by ourselves� See the following table for the experimental conditions�


� No results reported�
MS 
 Multistart ���� ���
CRS 
 Controlled random search ����
SA 
 Simulated annealing ��	�
SAsde 
 SA based on stochastic di�erential equations ���
ASA 
 Adaptive simulated annealing ��	�
HGA 
 Hybrid genetic algorithm ����
APRS 
 Adaptive partitioned random search ��	�
NP 
 New Price�s algorithm �
�
PE 
 Perttunen�s method ����
GA 
 Genetic Algorithm

Experimental conditions for the GA test

S� R� GP� H�
Population size �� �� �� ��
Mutation probability P� ��nl � l � ��
Crossover probability P� ��� �Two
point�
Fitness Fitness scaling
Selection �
Tournament
Replacement Proportional
Success rate ����
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Table ����� Percentage of trials getting the global optimum for S�� R��
GP�� and H�
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Table ����� Average number of function evaluations required to reach
the global optimum for S�� R�� GP�� and H�
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	�	� Availability of global information

The hierarchical structuring of search space is essential to our algorithm in global

optimization� However� in the absence of global information� the structuring is almost

useless in global problem solving� We know from the hierarchical structure that those

most�signi�cant bits controlling the main direction of the later search determines the

possibility of �nding the global solution in that run� That means the fate of that run is

determined to a large extend at the very beginning� Unless in the presence of reliable

global information� the result obtained cannot be explained satisfactorily�


	�	
 Adaptation

Adaptive remembrance scheme The successfulness of applying our adaptive re�

membrance scheme as justi�ed by the results obtained lies in the reasons behind the

��



design of the scheme� Taking a typical 
 setting� ����� we can see the initial 
uctuation

of the convergence curves �Figure ����� of those less signi�cant bits� This re
ects a

fact that the information collected in these bits are not reliable enough initially� They

will converge prematurely and incorrectly if we use small and constant 
 value for all

bits throughout the generations� Using larger 
m�i for less signi�cant bits� however� can

prevent the bits from converging too fast to mislead the global information gathering at

the more signi�cant bits� Only when the most signi�cant bits have converged that the


m�i values for the remaining bits are allowed to increase� In fact� the maximum allowed


m�i for the less signi�cant bits can be larger than the more signi�cant bits� owing to

the reduced sample space� However� presently we do not have a good scheme to decide

how large the 
m�i should be� Therefore� we employed a conservative way which sets the

maximum allowed 
m�i to 
�

Fitness measure The ability to converge to the extend that the optimal binary string

is generated should be attributed to our �tness measure� Representing numbers ranged

from ��� to ��� using ���bit binary string allows numbers be distinguished in a very

precise way� Regardless of how powerful the algorithm is in locating the promising area

where the global solution resides� pushing a nearly converged population� for instance�

with several least signi�cant bits diverged� to the exact optimum is extremely di�cult�

The sole reason is the weak convergence power generated by the nearly converged popu�

lation� Our �tness measure is designed in such a way to cope with this kind of problem�

The high percentage of trials reaching the exact optimal regions as shown in Table ���

and ��� clearly indicates the power of the �tness measure�

��	 Summary

In this chapter� the basic pBHS algorithm is presented� The algorithm is based on

a hierarchical view of sample space subdivision� Coupled with this partition hierarchy�

the information processing cycle created by the collective contribution of samples and

the global searching environment makes the crucial global information accessible� The

experimental results proved this point that the computational expenses of pBHS on

problems of low dimension are similar or even less than the existing advance techniques�

However� the capability of this model on solving high�dimensional problems are quite

limited as reported� We attribute this limitation as the ine�ciency introduced by the

one�to�one mapping of the samples among dimensions� In chapter �� we introduce

cooperation among the samples of each dimension to overcome this problem�

This basic model keeps one set of component �tness values as the global infor�

mation� Such �tness values can only indicate the bit values of one optimal solution�

That means the algorithm is incapable of locating more than one optimum simultane�
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ously as required in multi�modal function optimization and deceptive problem�solving�

A straightforward way to extend the algorithm to overcome this de�ciency is to keep

several sets of component �tness values� Each set should have a separate and inde�

pendent group of searching agents responsible for information gathering� Introducing

multiple groups of searching agents and component �tness values� we ought to have a

way to prevent them from converging into the same optimal point �unless the function

is unimodal�� Having multiple number of groups� interactions among them should be

encouraged to increase the diversity as in GAs� Chapter � is devoted to the discussion

on the introduction of multiple number of groups�

��



Part III

Cooperation and Competition



Chapter �

High�dimensionality

High�dimensionality poses a great challenge to all optimization algorithms� in par�

ticular searching algorithms� It is not only the exponential scale�up of the search space

size� but also the presence of di	erent degrees of dependency among the dimensions�

This chapter describes how the pBHS can be extended to become pcBHS �Probabilistic

Cooperative Binary Hierarchical Search� to handle high�dimensional problems by de�

coupling the dimensions to form subpopulations and by using a cooperation technique�

Decoupling of dimensions allows individuals in di	erent subpopulations to form solutions

freely with each other in a cooperative manner� The employed cooperation technique

is used to provide an appropriate �tness measurement so as to promote good coopera�

tion� This extension is shown empirically to be useful to increase the e�ciency over the

basic pBHS model� The scaling property as well as the performance of the model are

also studied� The results indicate that the extended model performs satisfactorily when

compared with the existing advanced stochastic techniques�

��� Introduction

�	�	� The challenge of high�dimensionality

The basic model presented in chapter � is rather limited and ine�cient� though it

can locate the global optimum accurately� The basic pBHS creates a population of N

complete solutions to the problem� In the one�dimensional case� a complete solution is

a vector consisting of one element only� While� in multi�dimensional problems� a single

complete solution consists of a vector of multiple elements� The probability of generating

n elements �a complete solution� simultaneously so as to optimize a single objective is

much lower than optimizing them individually� � The probability of �nding the optimum
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vector x� � � x�� x
�
� 	 	 	 x

�
n�� � for the two cases are shown respectively as follows�

Prob�x�� �

������
�����

nY
i��

Prob�x�i � Optimize together

nX
i��

Prob�x�i � Optimize individually

�����

Optimization of the objective variables together is capable of overcoming the dif�

�culty imposed by the presence of dependency among variables� The tradeo	 is the

e�ciency of the algorithm� To optimize the objective variables separately� we can raise

the probability dramatically even in the low dimensional cases� What is sacri�ced is the

solution quality when there is a strong dependency among various dimensions�

�	�	� Cooperation � A solution to high�dimensionality

In a population of complete solutions� it is possible that some xi in some solutions

is x�i and some xj in some other solutions is x�j � where both x�i and x�j are optimal

solution of the i�th and j�th dimension� However� these solutions may have low �tness

values owing to their recessive nature� Unless in the presence of some speci�c solution

composition that their contributions and hence their �tness can be revealed� Since the

complete solutions in which they reside have low �tness� they are subject to be lost�

The coupling of the dimensions in the pBHS model then limits the chance of the good

solutions to reveal their �tness� Extra computation has to be used to regenerate the

lost solutions�

If we treat each of the n dimensions as a single subpopulation of size N instead

of a population of N complete solutions� and each individual in a subpopulation does

not tie with any individual in other subpopulations� they are said to be free and they

are allowed to join any individual in other subpopulations to form complete solutions�

By this way� it is easier to have good combinations� In the next section� a probabilistic

cooperative binary hierarchical search �pcBHS� is presented based on this idea�

��� Probabilistic Cooperative Binary Hierarchical Search

�	�	� Decoupling

In the basic pBHS model� a population is de�ned as a group of sample points

consisting of samples from all n sub�spaces� In the following� sample point is referred

to as a complete solution while a sample from a sub�space is referred to as a solution

fragment� For instance� a complete solution for a three�dimensional function F �x� is a

vector �x� x� x�� which consists of three solution fragments� x�� x� and x��

�What is mean by �optimizing them individually� does not mean optimizing them separately�

��
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pBHS model
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Figure 	��� Decoupling

In pcBHS� decoupling is taken such that each sub�space exists as its own and a single

population becomes n subpopulations� The size of each subpopulation is still kept at N

in order to maintain the same varieties of solution fragments as in pBHS� The situation

is illustrated in Figure ���� The shaded region enclosed by two dotted lines indicates a

single complete solution in the basic pBHS model� In pcBHS� all solution fragments in

a subpopulation are not tied with any solution fragment in other subpopulations� What

we have are n sets of N solution fragments�

This decoupling allows a lot of 
exibility on the formation of complete solutions�

The basic pBHS model actually is a special case of pcBHS that the choice of solution

fragments combination is restricted to a dedicated one fragment from each subpopula�

tion� Enumerating all possibilities is another scheme to fully utilize the information in

all subpopulations� However� the quality of the information extracted may not justify

the computational expenses required� Hence� in order to exploit e�ciently the advantage

of the decoupling� complete solutions are generated by employing the scheme in �����

�	�	� Cooperative �tness

Before describing how to combine solution fragments� the issue on �tness measure�

ment should be discussed �rst� The ordinary �tness measurement as used in pBHS

becomes inappropriate in the cooperative model� Raw �tness is meaningful only when

a single complete solution exists� After decoupling� fragments representing the problem

sub�spaces are created� Their �tness values are unde�ned� Cooperative �tness as de�

�ned in ���� is employed to evaluate the solution fragments� Given n arbitrary solution

fragments fx�� x�� 	 	 	 � xn��g from each subpopulation� each of their raw cooperative �t�

ness equals F �x� where x � �x� x� 	 	 	 xn���� Suppose that the same set of solution
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fragments are given with xn�� replaced by x�n��� their raw cooperative �tness become

F �x�� where x� � �x� x� 	 	 	 x�n����

�	�	
 The cooperative model

The cooperative pcBHS model di	ers from the basic pBHS model in three aspects�

�tness evaluation� �tness scaling� and elitism� Owing to the change in the interpretation

of the generated solution fragments� the use of cooperative �tness is introduced� Hence�

we have to de�ne how the �tness is going to be scaled and accumulated� We also have

to de�ne how elites can be formed and used� Algorithm ��� gives an overview on the

di	erences between the two models� As shown in the algorithm� it is Steps ��� of the

basic pBHS model �see Appendix A� that have to be modi�ed�

Algorithm �
� pcBHS overview

Step �� Initialization
Step �� Generation of a new population
Step �� Evaluation �% modi�ed in pcBHS %� See Algorithm �
�
Step �� Fitness scaling �% modi�ed in pcBHS %� See Equation �
�

Step �� Information gathering �% modi�ed in pcBHS %�
Step 	� Information deposition
Step �� Adjustment of remembrance values
Step 
� Goto Step � if

�i� max� generation is not reached� and
�ii� stopping criteria not met�

Fitness measurement and �tness scaling

As discussed in the previous sections� raw �tness is replaced by cooperative �tness

owing to the decoupling of solution fragments� Suppose that there is a global elite

xe � � xe� x
e
� 	 	 	 xen�� �� the cooperative �tness of each solution fragment xm�j in each

subpopulation m is de�ned as cF �xm�j � x
e�� Function cF is simply the objective function

F applied to a complete solution formed by replacing the m�th element in xe by xm�j �

Algorithm ��� shows how it is implemented� Under this scheme� there are n �N number

of complete solutions centered around xe formed� These raw cooperative �tness cF of

each solution fragments are scaled within their subpopulations only� Denoting cf as the

scaled cooperative �tness� the cf of the j�th individual in the m subpopulation is�

cf�xm�j � x
e� �

cF �xm�j � x
e�� cFmin

m

cFmax
m � cFmin

m

�����

where cFmax
m � maxf F �xe�� max �� j�N�� cF �xm�j � x

e�g
cFmin

m � minf F �xe�� min �� j�N�� cF �xm�j � x
e�g

��



In Equation ����� it is fj that is fed back into the system� We now use the scaled

cooperative �tness cf � Given a binary string sm of the m�th dimension� and � � i � l�

the component �tness for the �l� �� i��th bit is determined as follows��
um�i � cf�xm�j� x

e� and wm�i � � if bm�l���i � ��

um�i � � and wm�i � cf�xm�j � x
e� if bm�l���i � ��

�����

Algorithm �
� pcBHS � Cooperative fitness assignment and local elites up�

dating� This procedure assigns �tness �cooperative �tness� to all solution fragments�

In each subpopulation� if the best fragment is better than the elite fragment x�em� it be�

comes the new elite fragment� It should be noted that the current elite xe is not changed

in this procedure�

Procedure CoopEvaluation

For each subpopulation Pm� � � m � n

x�em � xem �% x�em� Elite fragment of the m�th subpopulation %�

For each solution fragment xm�i in Pm

x � replace the m�th element of xe by xm�i

cf�xm�i� x
e� � F �x�

if cf�xm�i� x
e� � cf�x�em� x

e� then

x�em � xm�i

End if

End for

End for

End Procedure

Elitism

Under this model� the elitist strategy used in the basic pBHS model have to be

modi�ed� Since each subpopulation is individually responsible for a single unique di�

mension� elitism is applied separately to each subpopulation �see Algorithm ���� in each

generation producing a set of new local elites fx�e� � x
�e
� � 	 	 	 � x

�e
n��g� The new global elite

x��e is selected from the following�

� No�change

The existing global elite xe with raw �tness F �xe��

� Local

Any one of the local elite x�em in cooperation with the existing global elite xe�
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� Random

The best of n complete solutions formed be cooperating randomly picked solution

fragment xrm with the global elite xe� The cooperative �tness of a complete so�

lution formed by cooperating a randomly selected solution fragment in the m�th

subpopulation with the global elite is denoted as cf�xrm� x
e��

� Multiple

A complete solution formed by combining the existing global elite xe and those

x�em whose cf is greater than F �xe��


m� � � m � n � cf�x�em� x
e� � F �xe� �����

Suppose that the set of local elites satis�es this criterion is � � fx�e� � x
�e
� g� the

complete solution would be fxe��x
�e
�
� xe��x

�e
�
� 	 	 	 � xen��g and its cooperative �tness

is denoted as cf��� xe��

The global elite is replaced by any one of them with the maximum cooperative

�tness�

F �x��e� � max fF �xe�� cf�x�em� x
e�� cf�x�em� x

r�� cf��� xe� g �����

The inclusion of the last two set of choices �random and multiple� is intended to

lower the greediness of the simple no�change"local scheme of CCGA�� as illustrated

in ����� Although the replacement scheme is still a winner�take�all strategy� the random

scheme may introduce new solution fragments which may lead to a new and possibly

optimal path� while themultiple scheme allows multiple�subspace movement in one single

step�

��� Empirical performance study

�	
	� pBHS versus pcBHS

In this section� the performance of the basic pBHS model and the cooperative

pcBHS model are compared� Since the capability of the basic pBHS model on multi�

dimensional problems is not satisfactory enough� the problems used for comparison are

of low dimensions� They are listed in Table ��� with some key information about the

problems� Details can be found in Appendix B�

Result

The results of this test are shown in Tables ������� and Figures �������� Judging

from the result� we have the following conclusion� For all the tests� both the average

��



Table 	��� pBHS versus pcBHS� Test problems

Problems	 n f� Conditions�

R� 
 Rastrigin � �������
N � �����������������

 � �����������������
�����
����
�����


H� 
 Hartman � ��
	���
N � ��������������

 � �����������������
�����
����
��

M� 
 Michalweitz � ��	
���
N � ��������������

 � ��������������������

SP
 
 Sphere � 
������
N � ���������������

 � �����������
����
�������������	�

�� see Appendix B for details
�� ��� consecutive independent runs� l��	

Table 	��� pBHS vs� pcBHS� Success rate ��� for Rastrigin �n���



pBHS pcBHS

�� �� ��� ��� ��� �� �� ��� ��� ���
�

�� 	� �� ��� ��� ��� 
� ��� ��� ��� ���
�

�� �� �� �� ��� ��� 
� �� ��� ��� ���
�

�� �
 �� �� ��� ��� �� �� �� ��� ���
�
�	� �
 �	 �� �� ��� 		 ��� �
 �� ��
�
��� �� 
� �� �� ��� 	� �� ��� �	 ��
�
��� �� 		 
	 �	 �� �� �� �	 �
 ��
�
��� �� �� 
� �� �� �� �� �� �� ��

number of iterations and the average number of function evaluations required to reach

global optimum using pcBHS is several times lower than those using pBHS under the

same experimental conditions� The di	erence for the number of function evaluations

required is diminishing towards the smaller population size� This observation tells us

two things�

�� pcBHS has higher potential of gaining speedup by parallelization�

�� pcBHS has better performance compared with pBHS on using large population

size� That means for large problems that require larger sampling� pcBHS �using

large population size� would be a better choice�

The second observation is that pcBHS is comparatively insensitive to the remem�

brance parameter� Decreasing the remembrance value carries the meaning of speeding

up the convergence� It produces the e	ect on pBHS that the number of iterations and

the function evaluations are both decreasing� However� it is not the case for pcBHS�

Both the number of iterations and function evaluations 
uctuate between a small range�

It is especially true when using large population�

��



Table 	��� pBHS vs� pcBHS� Success rate ��� for Hartman �n���



pBHS pcBHS

�� �� ��� ��� �� �� ��� ���

�

�� ��� ��� ��� ��� �
 �	 �� �

�

�� ��� ��� ��� ��� �� �� �� �

�

�� �� ��� ��� ��� �
 �� �	 ��
�
�	� �
 ��� ��� ��� �� 
� �� ��
�
��� �� ��� ��� ��� �� 
	 

 ��
�
��� �	 �� ��� ��� �� �� �� ��
�
��� �� �� �� ��� �� 

 
� ��

Table 	�	� pBHS vs� pcBHS� Success rate ��� for Michalweitz �n�
�



pBHS pcBHS

�� ��� ��� ��� �� ��� ��� ���
�

�� � 
 �� �� �� ��� ��� ���
�

�� � 
 �� �� �� ��� ��� ���
�

�� � � � �	 �� �� ��� ���
�
�	� �� � � � �� �� �� ���

Table 	�
� pBHS vs� pcBHS� Success rate ��� for Sphere �n�
�



pBHS pcBHS

�� �� �� 	� ��� �� �� �� 	� ���
�

� �	 
� �� �� �
 �� �� ��� ��� ���
�

� 
� �� ��� ��� ��� �� ��� ��� ��� ���
�
�� �� �� ��� �� ��� �� ��� ��� ��� ���
�
�� �� �� �
 ��� ��� �� �� ��� ��� ���
�
	� �� �� �� �� ��� �� �� ��� ��� ���
�
	� � �� �� �� ��� 

 �
 ��� ��� ���
�
�� � 	� 
	 �	 �� 
� ��� ��� ��� ���

��



0

10

20

30

40

50

60

70

80

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

A
ve

ra
ge

 it
er

at
io

ns

Remembrance

pBHS vs. pcBHS on Rastrigin (n=2): Iterations

10

50

100

150
200

10

50
100

150
200

’pBHS.’
’pcBHS.’

�a�

0

1000

2000

3000

4000

5000

6000

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

A
ve

ra
ge

 n
um

be
r 

of
 fu

nc
tio

n 
ev

al
ua

tio
ns

Remembrance

pBHS vs. pcBHS on Rastrigin (n=2): Function evaluations

10

50

100

150

200

10

50

100

150

200

’pBHS.’
’pcBHS.’

�b�

Figure 	��� pcBHS vs� pcBHS on Rastrigin �n���� �a� Average iterations
and Average �b� number of function evaluations

0

5

10

15

20

25

30

35

40

45

50

55

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

A
ve

ra
ge

 it
er

at
io

ns

Remembrance

pBHS vs. pcBHS on Hartman (n=3): Iterations

30

50

100

150

30-150

’pBHS.’
’pcBHS.’

�a�

0

500

1000

1500

2000

2500

3000

3500

4000

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

A
ve

ra
ge

 n
um

be
r 

of
 fu

nc
tio

n 
ev

al
ua

tio
ns

Remembrance

pBHS vs. pcBHS on Hartman (n=3): Function evaluations

30

50

100

150

30

50

100

150

’pBHS.’
’pcBHS.’

�b�

Figure 	��� pcBHS vs� pcBHS on Hartman �n���� �a� Average iterations
and Average �b� number of function evaluations

��



0

50

100

150

200

250

0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95

A
ve

ra
ge

 it
er

at
io

ns

Remembrance

pBHS vs. pcBHS on Michalewitz (n=5): Iterations

50

100

150

200

50
|

200

’pBHS.’
’pcBHS.’

�a�

0

5000

10000

15000

20000

25000

30000

35000

40000

0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95

A
ve

ra
ge

 n
um

be
r 

of
 fu

nc
tio

n 
ev

al
ua

tio
ns

Remembrance

pBHS vs. pcBHS on Michalewitz (n=5): Function evaluations

200

150

100

50

200
|

50

’pBHS.’
’pcBHS.’

�b�

Figure 	�	� pcBHS vs� pcBHS on Michalewitz �n�
�� �a� Average itera�
tions and Average �b� number of function evaluations

0

50

100

150

200

250

300

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
ve

ra
ge

 it
er

at
io

ns

Remembrance

pBHS vs. pcBHS on Sphere (n=8): Iterations

10-100

10

30
50-70

’pBHS.’
’pcBHS.’

�a�

0

5000

10000

15000

20000

25000

30000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
ve

ra
ge

 n
um

be
r 

of
 fu

nc
tio

n 
ev

al
ua

tio
ns

Remembrance

pBHS vs. pcBHS on Sphere (n=8): Function evaluations

10

30

50

70

100

10

|

100

’pBHS.’
’pcBHS.’

�b�

Figure 	�
� pcBHS vs� pcBHS on Sphere �n�
�� �a� Average iterations and
Average �b� number of function evaluations

�	
	� Scaling behavior of pcBHS

The purpose of this experiment is going to show how the cooperative pcBHS model

scale with the problem size� Two areas that are of interest are� mean iterations andmean

function evaluations� To serve this purpose� several test problems listed in Table ��� are

used with di	erent dimensionalities ranging from n � �� to n � ���� The experimental

conditions are stated in Table ����

The results shown in Figures ������� illustrate clearly that the algorithm scales

��



Table 	��� Scaling pcBHS� Test problems

Problems� n f�

An 
 Ackley �������������� 
�����
��
SPn 
 Sphere 
��	����	����
 
������
Rn 
 Rastrigin ����������������� 
�����

approximately linearly with the problem dimension of the three test problems�

Table 	��� Scaling pcBHS� Experimental conditions and Results

Conditions	 Results

Problems 
 Succ
 rate Figure
An 
 Ackley ���� 
��

�� ��	
SPn 
 Sphere ���� ���� ���
Rn 
 Rastrigin ���� ���� ��


�� ��� consecutive independent runs� l � �	� N � ���� � � �
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 Benchmark test

In this experiment� several problems with problem size up to ��� dimensions are

tried� These problems are commonly used in testing global optimization algorithms�

Each family of problems possesses characteristics quite di	erent from each other� A

brief summary of the test problems used are listed in Table ���� Detailed description of

these problems can be found in Appendix B�

The results listed in Table ��� shows that the performance of our algorithm is

comparable with the existing advanced techniques such as Breeder GA �BGA� ���� and

Evolutionary Algorithm with Soft genetic operators �EASY� ���� ���� Both variants of

GAs are said to be highly e	ective yet a general model for evolutionary algorithms�

However� the performance of the algorithm on the Shekel family is comparatively poor

��



Table 	�
� Benchmark� Test problems

Problems� n f� �eval Ref


S� 
 Shekel � ��� ����� �

S� 
 Shekel � ��� ���
	 �
S�� 
 Shekel � ��� ��
	� �

H� 
 Hartman � ��
	 ����� �

A�� 
 Ackley �� ����� ������������� y
A��� 
 Ackley ��� ����� ���	�
����
	� y
R�� 
 Rastrigin �� ��� 	���
���	�
 y
R��� 
 Rastrigin ��� ��� �����
������� y

�� see Appendix B for the description of the problems
�� A clustering technique� New Price�s algorithm �
�
y� EA with soft genetic operators�Breeder GA �EASY�BGA� ��
�
f�� Function values at which the algorithms stop�
�eval� Number of function evaluations�

than those from the existing techniques We attribute this poor performance as their

golf�hole�like landscapes� The �gure shows that S� has � prominent optima resting on

a plateau� all of which has similar basin of attraction� Landscapes of this kind provides

no useful information for guidance� The reason why the successful rate drops from S�

to S�� is due to the raise in the number of prominent optima�

Table 	��� Benchmark test� Results

Problems f� attained �eval �z Conditions�

S� ��������� �����	��� ��� 
����� N���
S� ��������	 ����	
�	� ��� 
����� N���
S�� �����		�� ��������� ��� 
����� N���

H� ��
	�	�	 ����
� ���� 
����� N���

A�� 
������
 �
�	���	
 ���� 
����� N���
A��� 
������� �
���	��� ��� 
����� N���

R�� 
���
�
� �������� ���� 
����� N���
R��� 
������
 �������
	 ���� 
����� N���

z� Percentage of runs reaching f� stated in Table ��
�
�� ��� independent consecutive runs� l � �	�

��� Summary

High�dimensionality poses a great challenge to all kinds of optimization algorithms�

including the basic pBHS model� In this chapter� we have presented an extended model�

pcBHS�which is based on the idea of decoupling of dimensions� In principle� it allows the

��



solution fragments in each dimension to form complete solution with other dimensions

freely� The main reason for the decoupling is to increase the chance for good solution

fragments to come together� The basic pBHS is said to be a special case of the extended

model� as it allows the formation of complete solution with one single unique solution

fragment from each subpopulation� Owing to this major extension� three areas of the

basic model have to be modi�ed� namely the �tness evaluation� the �tness scaling and

the elitism�

The improvement on the performance over pBHS have been studied which showed

that pcBHS can reach the same accuracy with much computation saved� Since pcBHS

is devised to cater for high�dimensional cases� we have studied its scaling property� The

results showed that it scales approximately linear with problem dimension in all of the

functions we have tested� Moreover� pcBHS is compared with the well�known advanced

stochastic search�based techniques in solving optimization problems� It is comparable

with �and even outperforms in some cases� those algorithms�

However� both the basic pBHS model and the cooperative pcBHS model are single�

optimum�seeking models as if SA� The whole population cooperatively constructs a single

piece of information�the global environment� which indicates where the global optimum

is� Since both models rely on the information obtained on the course of searching to

construct the global environment� it is easy for some deceptive problems to mislead the

algorithm to construct an environment indicating the sub�optima only� To cater for

this problem� we have to introduce redundancy of some kind� For instance� instead of

constructing a global environment with one piece of information� we can build one with

several pieces of information� In chapter �� we will discuss how to introduce redundancy

into the model�

��



Chapter �

Deception

The basic design of both pBHS and pcBHS models are� ��� distribution of a popula�

tion of individuals who search cooperatively for a single global optimum� and ��� assump�

tion of no �or minimal� a�prior information about the problem to be solved� However�

this design would make both algorithms easily be deceived� because ��� when the land�

scape of a problem has multiple number of similar basin of attractions� and ��� the

landscape of a problem to be solved provide misleading information� In this chapter� we

will present an extension of the pcBHS model to cater for these two cases by introducing

redundancy and competition�

��� Introduction

�	�	� The challenge of deceptiveness

Deception has been discussed rigorously in GA community ���� ��� ��� ��� ��� ���

��� ��� in the last decade� Brie
y� deceptive problems contain deceptive attractors which

mislead the algorithm to search for sub�optima� Figure ��� shows a typical fully deceptive

function for simple GAs on a maximization problem�� As shown in the �gure� the global

optimum and the suboptimum are located far apart with a big valley in�between� The

basin of attraction favoring for the suboptimum is much larger than the one favoring

for the global one� making the problem deceptive� Intensive analysis and the de�nition

of deception in the context of GA can be found in ���� ���� Qualitatively� the degree

of deception varies according to the comparative size of the global attractor and the

sub�optimal attractors�

Full deception occurs when the size of the global attractor approaches zero �one

global optimum only� when comparing with that of the sub�optimal� while the marginal

deception occurs when the size of the global attractor is comparable with the deceptive

attractors� The su�cient conditions for the full deception to occur in the folded�trap

�The objective variable is the unitation of a chromosome� i�e� number of ���s bits�

��
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function f�u�� where u � f�� �� � � � � lg is the unitation of binary strings of length l shown

in Figure ��� is given in ���� as follows�
Condition �� Primary optimality

f��� � f�l�
Condition �� Primary deception

f�l�� f��� � f���� f�l� ��
Condition �� Second deception

f�i� � f�j� for dl��e � i � l � � and l� i � j � i

These conditions state that the function favors for large unitation �conditions � and ��

for all unitations except � and l �condition ��� which are the global optimum and the

deceptive optimum respectively�

Deception is� in fact� a relative term� Giving the same problem� some algorithms

would be deceived while the others would not� All stochastic searching algorithms�

except pure random search� applied to optimization are classi�ed as heuristic search

methods� What heuristic here means is not the domain speci�c knowledge� but the

characteristics of the �tness landscape of the problems �see ��� for the simple classi�cation

based on landscape characteristic�� In the study of the relationship of operators and

landscapes by Jones ����� it is the operator�s� of the algorithms that de�ne�s� the �tness

landscape to be faced� A stochastic operator � is de�ned in ���� as � �M�R��M�R��

�� 	 	 	��� meaning that a set of con�gurations of the search space is transformed into

another set of con�gurations with certain probability by a single application of the

procedures de�ned in that operator� In other words� a neighborhood is de�ned for

every con�guration of the search space� It is this neighborhood that determines the

shape�appearance of the problem landscape �see Chapter � for more information on

�tness landscape�� Hence� a problem is deceptive to an algorithm because the landscape

constructed by the operators of the algorithm is deceptive�

In the aforementioned discussion on deception� we can see that the e	ort to tackle

deception should not be put on designing operators that can handle both normal and

��



deceptive cases� as it seems fruitless� On the contrary� operator design should be con�

centrated in handling the normal cases� leaving the deception problem tackled by other

techniques�

�	�	� Competition� A solution to deception

Niching ���� ��� ��� ��� ��� ��� ��� is a technique stemmed from the nature to tackle

multi�modal optimization problems in GA community� Solving the problems having

multiple number of �peaks� in their landscapes using simple GAs would end up locating

one of those peaks �not necessarily the global one�� It is because of genetic drift� which

can be thought of as stochastic 
uctuation� Niching was then introduced to extend the

capability of simple GAs in this kind of problems to locate as many peaks as possible�

Besides the application to multimodal function optimization� niching is also used to

cater for the deception problem in GAs� In general� problems that are deceptive to GAs

comprises of deceptive attractors� By using niching� both the deceptive attractors and

the true global attractor can be located and exploited simultaneously�

Existing niching techniques are� crowding ����� deterministic crowding ����� shar�

ing ���� ���� and dynamic niching ����� The central idea of all these niching techniques is

competition� Individuals in a populations compete with each other for the occupancy of

territories� Those who fail to occupy the territories will have smaller chance of survival�

making the population more diverse� The side�e	ect of this mechanism is the domi�

nance of individuals who can occupy territories� i�e� locating multiple number of peaks

simultaneously�

In the following section� the idea of competition is employed in the cooperative

pcBHS model to produce what we called probabilistic cooperative�competitive binary

hierarchical search �pccBHS� model�

��� Probabilistic cooperative
competitive binary hierarchi


cal search

In this section� an enhanced model named pccBHS incorporating redundancy and

competition into the cooperative pcBHS model is presented� The competition model

shares similarities with the existing sharing mechanism� The strength of the model

over sharing mechanism is the avoidance of the requirement of specifying niche radius�

Niche radius inherently limits the niching mechanisms to be applied to problems that

requires locating niches at di	erent resolution levels simultaneously� The drawback of

the pccBHS model� at present� is that the number of niches to be occupied is bound by

a prescribed number�

��
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�	�	� Overview

The main structural characteristic of the pccBHS model is the division of a whole

population into a number of subpopulation groups �subgroups� to provide redundancy�

They are allowed to gather their own set of global information� The one with the highest

�tness is considered as the global solution�

In the course of searching� these subgroups are allowed to compete with each other

for exclusive occupancy of territories� The aim of the competition is to force them to

search di	erent areas by separating them in the n�dimensional space� The competition

is achieved by generating a repulsive force when two subgroups come together in the n�

dimensional space� The closer the two subgroups� the greater the repulsive force� Once

they are separated� the force disappears�

E	ectively� pccBHS re�models the function landscape in such a way that the decep�

tive attractor is made hidden by another subgroup �see Figure ����� What each subgroup

faces is a unimodal or non�deceptive landscape�

�	�	� The cooperative�competitive model

Suppose there are G number of subgroups gr� � � r � G� Each of these subgroups

is the same as a single population in pcBHS model� The only di	erence is the size of

each subgroup which is equal to bN�Gc� The cooperative pcBHS is a special case of the

pccBHS model that G � ��

For the sake of clarity� the model is presented using two subgroups only� Given two

subgroups g� and g�� we �rst check if all of their dimensions are overlapped� since two

subgroups are said to be overlapped only when they are overlapped in all dimensions�

Two metrics that are required to calculate the repulsive force are �i� degree of overlapping

and �ii� proximity�

For each dimension m� we measure the distance Fm which is the maximum distance

of all pairs of binary strings from the two subgroups in consideration �see Figure �����
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��� Overlapping of two subgroups

Denote g�min
m and g�max

m as the minimum and the maximum of the m�th dimension so�

lution fragments of g� respectively� g�min
m and g�max

m as the minimum and the maximum

of m�th dimension solution fragments of g�m respectively� The distance Fm is�

Fm � maxfg�max
m � g�max

m g �minfg�min
m � g�min

m g� �����

Minimum possible value of Fm is � when all of the m�th dimension solution fragments in

g� and g� are identical� i�e� both g� and g� are merged together in the m�th dimension�

Maximum possible value of Fm is xum�x
l
m� i�e� the full range of the m�th dimension of x�

We also measure the distance Om of the region where they overlap �the shaded region in

Figure ����� Overlapping distance Om equals � when g�max
m � g�min

m or g�max
m � g�min

m �

Degree of overlapping Dm�g�� g�� between the same dimension m of g� and g� is de�ned

as�

Dm�g�� g�� �
Om

Fm
�����

There are three distinct situations�

�� Disjoint

g� and g� are totally separated�

Dm�g�� g�� � � when Om � � �����

�� Enclosure

g� is totally enclosed by g� or vice versa�

Dm�g�� g�� � � when

�
g�min

m � g�min
m � g�max

m � g�max
m � or

g�min
m � g�min

m � g�max
m � g�max

m

�����
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�� Overlapping

g� and g� are overlapping�

� � Dm�g�m� g�m� � � when

�
g�min

m � g�min
m � g�max

m � g�max
m � or

g�min
m � g�min

m � g�max
m � g�max

m

�����

The quantity Dm serves two purposes� �i� decides whether the repulsion exists� and

�ii� determines the level of force required if repulsion exists� However� it does not re
ect

the fact that individuals farther away from the overlapping subgroup should receive less

repulsive force� Thus� a proximity value is then introduced�

For the m�th dimension� proximity value Pm�g�� xm�j� is de�ned over the j�th indi�

vidual xm�j of g� and its overlapping neighbor subgroup g� as the normalized distance

between xm�j and the center of g� �see Figure �����

Pm�g�� xm�j� �
jxm�j � xemj

Fm
�����

where xem is the m�th solution fragment of the elite in g� and Pm�g� xm�j� � ��� ��� Being

the driving force within a subgroup� the subgroup elite is considered as the center�

Repulsive force Rm�g�� xm�j� � ��� �� experienced by the binary string xm�j of g�

due to the overlapping with g� is de�ned as�

Rm�g�� xm�j� � Dm�g�� g��� ��� Pm�g�� xm�j��� �����

Finally� another quantity interaction �tness Im�xm�j � x
e� is de�ned to indicate how

well an individual performs in the competition� For the mth dimension�

Im�xm�j � x
e� �

cf�xm�j � x
e�

Rm�g�� xm�j�
�����

where cf�xm�j � x
e� is the cooperative �tness of xm�j �see Eq� ����� Instead of feeding

back cf into the system� Im should be used��
um�i � Im�xm�j � x

e� and wm�i � � if bm�l���i � ��

um�i � � and wm�i � Im�xm�j � x
e� if bm�l���i � ��

�����

��� Empirical performance study

�	
	� Goldberg�s deceptive function

In the discussion of deception problem in GAs ���� ���� the su�cient condition for

deception and the way to construct deceptive optimization function are presented� One

of the functions that they have constructed is the �l�bit bipolar deceptive function ��l

is the length of the chromosome�� This function is a fully deceptive function for GA�
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�bit bipolar deceptive function �unitation view�� a����� b�����
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However� this function is probably not deceptive to our algorithm� As discussed in

the following� the deceptive function is basically designed to deceive algorithms using

bit�mutation operator� Since our algorithm does not have such operator� it will not

be deceived as if GA� In spite of this� the �l�bit bipolar deceptive function is still a

di�cult function to our algorithm� because of the misleading information around the

global optima and its multimodality �see Figure ����a��� The bipolar deceptive function

f�u� for evaluating the binary strings is de�ned as follows �see Figure �����

f�u� � g�ju� lj��

g�e� �

��
�

a

z
�z � e�� if u � z

b

l� z
�e� z�� otherwise�

������

where l is half of the length of a binary string� In this experiment� l equals to � �i�e�

binary string of � bits long�� Unitation u of a binary string which is de�ned as the number

of ones ����� the string contains� For instance� the unitation of a string �������� is ��

Constants a� b� and z are used to de�ne the shape of the function� The values used are

a � ���� b � ���� and z � �� The landscapes in the increasing x order and in the grouped

unitation view are shown in Figure ����a� and �b� respectively� Based on the argument

in ���� that the landscape of a problem is tied to the operator used� the landscape of the

function that GAs have to face should be the one shown in ����b�� provided that the

mutation operator probability is ���l� chromosome length � �l �i�e� Hamming distance

� ���

As mentioned� this bipolar function is probably not deceptive to our algorithm�

we modi�ed it to make it more di�cult to our algorithm� The modi�cation is to use

the binary number equivalent instead of unitation as the function variable value� The

function variable u in Eq� ���� is replaced by u �
P�l��

i�� �i�bi� Accordingly� z is changed

to ����� so as to keep the ratio of the size of both attractors �the deceptive one and the

global one� the same as the �l�bit bipolar deceptive function� This modi�ed function is

shown in Figure ����
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��� Modified ���bit deceptive function

The purpose of this experiment is to examine the global optimization capability of

the pccBHS model on the modi�ed bipolar function under di	erent number of subgroups�

Experiment on Goldberg�s bipolar deceptive function is carried out to support our claim

that it is not deceptive to our algorithm� Three criteria are used in evaluating this

capability which are the success rate� the number of iterations and the number of function

evaluations required on locating any one of the two true global optima� For both testings�

the experimental conditions are set as� N � f��� ��� ��g� G � f�� �� �g� 
 � ����� � � ��

� � ��� and all are tried for ��� consecutive independent runs� The results are shown

in Tables ��� and ���� Two conclusions can be drawn from the result� ��� Goldberg�s
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Table 
��� Result on the modified ���bit deceptive function and the Gold�
berg�s bipolar deceptive function� Success rate ���

G
Modi�ed function Goldberg�s function
�� �� �� �� �� ��

� �� �	 �� �	 �� ��
� �� 

 �	 �
 �	 ��
� �� �� �� �� �� �


Table 
��� Result on the modified ���bit deceptive function and the Gold�
berg�s bipolar deceptive function� Number of function evaluations

G
Modi�ed function Goldberg�s function
�� �� �� �� �� ��

� �
��� ������	 ������� ����	 ����� �
���
� 	���	 ����� ������� ����� ����� ��
�

� 	���� ���	��� ���		�
 �	��� ����� �����

bipolar deceptive function is not deceptive to our algorithm at all� and ��� it is useful to

introduce multiple number of groups in our algorithm to handle deceptive problems� The

high success rates obtained on solving Goldberg�s function using one subgroup ��rst row

of Table ���� implies that the function is not deceptive to our algorithm� This argument

is further supported by the observation that the success rate is immune to the number

of subgroups used� However� it is not the case for the modi�ed function� The success

rates obtained on using one subgroup is especially low� but they increase when multiple

subgroups are used� We attribute the low success rates for the N � �� case to the

large stochastic error introduced when small population size is used� in addition to the

deceptive nature of the function�

�	
	� Shekel family � S�� S�� and S��

Besides handling GA deceptive problems� pccBHS improves the performance of

pcBHS on problems having golf�hole�like landscape� Problems selected for testing belong

to Shekel family�S�� S� and S��� The landscapes of these three functions share a

commonality� several sub�optima with similar basin of attractors sitting on a large 
at

plateau� The sizes of these attractors are so similar that no useful information can be

Table 
��� Shekel family� Problems

Problems� n
pcBHS result

f� �eval Succ
 rate ���

S� 
 Shekel � ��������� �����	��� ���
S� 
 Shekel � ��������	 ����	
�	� ���
S�� 
 Shekel � �����		�� ��������� ���

��



Table 
�	� Shekel family� Conditions

Problems f� G Conditions	

S� ��� ����������	���
 N � ���
S� ��� ����������	���
 N � ���
S�� ��� ������	�
��������� N � ���

�� ��� consecutive independent runs� � � �� 
 � ����

obtained about where the global one is� This kind of landscape is normally referred as

�golf�hole��landscape�

A summary of these functions can be found in Table ���� while the experimental

conditions are listed in Table ���� The purpose of this experiment is to illustrate the

usefulness of redundancy with competition in improving the pcBHS model� Moreover� we

examined the e	ect of di	erent number of subgroups on the algorithm performance for

these problems� The result is listed in Table ���� It shows clearly that by increasing the

number of subgroup� the success rate can be increased� though using more computation�

��� Summary

In this chapter� we have discussed the challenges posed by deceptive problems and

problems with golf�hole�like landscapes� The limitation of the basic pBHS and the

cooperative pcBHS model in handling these two kinds of problems have been pointed

out� This limitation is caused by the fact that only a single piece of information is

carried by the global information� Both redundancy and competition are introduced

in enhancing the model� By redundancy� we mean gathering of more than one piece of

information of the global environment� By competition� we mean using of more than one

population �subpopulation� to search for di	erent areas of the landscape� Competition

is introduced among them such that each subpopulation can search for a single sub�

optimum with other sub�optima being masked out�

We have demonstrated the capability of this cooperative�competitive model in han�

dling two deceptive problems and the Shekel family� One of the deceptive problems is

Goldberg�s bipolar deceptive function� The other one is the modi�cation of it� We have

shown that our algorithm can easily solve this GA�deceptive problem� owing to the fact

that it is probably not deceptive to our algorithm� For the second deceptive function�

which is especially designed to deceive our algorithm� we have to raise the number of

subpopulations in order to increase the success rate� demonstrating the usefulness of this

redundancy and competition model� Using the cooperative pcBHS model in handling

the Shekel family� we got low success rate� but on using the enhanced model� they can

be solved with high success rates�

��



Our competition model has a limitation� It requires a pre�set value indicating

the number of sub�populations� It is disastrous that the model cannot be applied to

problems that require the algorithm to locate all the optima� However� GAs su	er from

the same di�culty�

��



Table 
�
� Shekel family� Results

S�
G Succ� rate ��� f� �eval

� �� ��������	 ��
	��	
� �� ��������� �������
� 	
 �������	� 	������
� 
	 �������	� ���
��	
� 
� ��������� �������
	 �� ��������� �������	
	 

 ��
��
��� ����
�
�


 �� ��������� �������


S�
G Succ� rate ��� f� �eval

� �� ������
�� ��	����
� �� ��������� ��

���
� 		 �������	� 	������
� �� ��������� 	�
����
� 
� ������	�� �������
	 �� �������
� �������
� �� �����
��� ���
�	��
� 

 ��
������ ������
�

S��
G Succ� rate ��� f� �eval

� �� �����

	
 �������
� �� ����
�			 ��
	
��
� �� ������
�� ����	��
	 �� ��������� ���
����

 

 ��������� ��������
�� �� ����	���� ��������
�� 

 ��
������ ������
�

�� �� ��������� ���
�
��

f�� Average function value reached
�eval� Number of function evaluations
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Chapter �

A new genetic operator

Being modeled as a population�based stochastic search using binary encoding� the

basic pBHS is said to be easily integrated with canonical genetic algorithm� In this

chapter� how GAs and our model are integrated is presented with experimental results

to illustrate the bene�t of the integration�

��� Introduction

In chapter �� we pointed out that although GAs are e	ective algorithms� they rely on

a large population size to keep the global information about the problem� By increasing

the population size� the reliability of the global information can be increased� One of

the advantages of our model is the use of memory� Generally� the longer the memory�

the more reliable the global information� It can be seen that the approaches of both

methods are complementary to each other� Consider the size of the population and the

length of the convergence as two di	erent dimensions� width and depth� GAs try to be as

�wide� as possible� while our model tries to be as deep as possible� Being complementary

in nature� they are integrated so as to gain bene�ts from both�

Although GA and pBHS are two full�
edged algorithms� the integration is still

easy owing to the fact that they are similar in several aspects� Firstly� both of them

are classi�ed as the same class of algorithm� iterative probabilistic search� Secondly�

chromosome�binary string is the basic object to be manipulated� Thirdly� they are

population�based approach�

In the following� we provided three variants of one integration model ���� which is

based on the basic pBHS and canonical GA�
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��� Variants of the integration

In this section� three variants of a GA�pBHS integration model are presented� Before

describing the integration model� we list below their main characteristics�

� Merging of populations from both parties are taken� A control parameter called

mix ratio � is introduced to control the proportions of the chromosomes of GA

and the binary strings of pBHS to be passed to the next generation�

� The operator pBHS is di	erent in nature to the basic GA operators such as

crossover and mutation� These basic GA operators can be said to be transfor�

mation functions mapping a population of chromosomes into another population

of the same universal set� pBHS is di	erent in that it generates a complete new set

of binary strings instead of transforming the set from the last generation� Hence�

in one aspect� the integration model has two cycles �GA cycle and pBHS cycle�

running in parallel� In another aspect� pBHS can be viewed as an operator plugged

into the GA cycle�

To aid in understanding� we show the integration model in Figure ���� On the left

hand side of the �gure� there shows a 
owchart illustrating the standard components

�selection� crossover� and mutation operators� of a typical canonical GA� In addition

to these� we have pBHS at the end of the GA cycle� Since the basic pBHS model has

memory e	ect� the ultimate function of this operator is to memorize�accumulate the

searching experience gained in the genetic search� How to use the memory is subject to

the design on speci�c usage� On the right hand side of the �gure� the internal details

of the pBHS operator is illustrated� The internal details of the operator is the same as

that of the standalone basic pBHS algorithm except the followings�

� The introduction of a Merging component�

� It is the samples coming from both parties that are used for information gathering�

� The samples from both parties will become the next generation chromosomes of

the GA� as opposed to the ordinary pBHS that all the samples are discarded�

This integration is 
exible in that it is easy to be adapted to a pure GA� the pure

pBHS or the integration of both� It is made possible by the mix ratio � � ����� ����

mentioned before� This parameter determines the proportions of chromosomes of GA

and binary strings of pBHS to be merged in the Merging component� Given a � and a

population size N � the merged population� i�e�� the output of the Merging component�

will have �N of chromosomes from GA and �����N from pBHS� To turn the algorithm

into a pure GA� one can switch o	 the pBHS operator totally by using � � ���� The

merged population will not have any binary strings generated from pBHS� Similarly� to

��



turn the algorithm into a pure pBHS� one can switch o	 GA totally by using � � ����

With any other mix ratio� ��� � � � ���� the integrated model with varying fractions of

GA chromosomes and pBHS binary strings will be resulted� The integration model is

summarized in the Algorithm ����

Algorithm �
� The integration of GA and pBHS� This algorithm is intended to show

the logic of the integrated model� so the presence of multiple subpopulations and the

competition are assumed�

Algorithm GA"pBHS

�� PGA�t� �� Population generated by GA at time t

� PpBHS�t� �� Population generated by pBHS at time t

��

t � �

Loop

t � t" �

�� GA ��

P��t�� Crossover�P �t� ���

P��t�� Mutation�P��t��

FGA�t�� Evaluation�P��t��

PGA�t�� Selection�P��t�� FGA�t��

�� pBHS ��

PpBHS�t�� pBHS Generation�a�t� ���

FpBHS�t�� pBHS Evaluation�PpBHS�t��

�� Meeting point ��

�P �t�� F �t��� Merging�PGA�t�� PpBHS�t�� FGA� FpBHS�

a�t�� Information gathering�P �t�� F �t��

until stopping criteria are met�

end Algorithm

So far� we have not discussed the detail of the merging component besides the

fraction of chromosomes�binary strings from both parties� In the following� we pro�

vided three merging methods� ��� Fixed�fraction�of�all� ��� Fixed�fraction�of�best� and

��� Best�from�both�
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	�	� Fixed�fraction�of�all

The idea behind this variant is to ensure a �xed proportion of contributions from

both GA and pBHS� Since the samples generated are the main source of information in

creating the searching environment� contribution is de�ned as the amount of samples of

each party �GA and pBHS� injected into the next iteration� In this variant� both GA

and pBHS will generate the amount of chromosomes�binary strings determined by mix

ratio �� The size of the intermediate populations such as P��t�� P��t�� and PGA�t� are

�N � while that of PpBHS�t� is �� � ��N � After merging �see Algorithm ����� the size

of the resultant population P �t� will become N � Since the population generated in the

current generation will become the population of the GA cycle in the next generation�

it is necessary to restore the large population back to �N � We can either restore it by

the crossover operator or by the selection operator� The advantage of the former one

is saving computation by mutating� evaluating and selecting a smaller population� The

disadvantage is the loss of some possibly good genes� The advantage and disadvantage

of the latter one are that the larger gene pool can stay longer in the population and

the needs of a considerable amount of computation �the manipulation of �N versus N�

respectively� In order to save computation� we chose the former method�

Algorithm �
� Merging� Fixed fractions of all from both

�� PGA�t� �� � Population from GA at time t��

� PpBHS�t� �� � Population from pBHS at time t��

� PGA�t� � New population to GA at time t

� PGA�i��t� � The i�th element of the new population to GA at time t

��

Function Merging� PGA�t� ��� PpBHS�t� �� �

PGA�i��t� � PGA�i��t� ��� 
 i � � �� �N � � �

PGA�j " �N��t� � PpBHS�j��t� ��� 
j � � �� ��� ��N � � �

return PGA�t�

end Function


	�	� Fixed�fraction�of�best

This merging scheme is similar to the Fixed�fraction�of�all scheme that the param�

eter mix ratio � is required to control the relative proportions of GA chromosomes and

pBHS binary strings� However� the �N chromosomes from GA are the best selected chro�

mosomes from a size N GA population while the ����N� binary strings from pBHS are

the best selected chromosomes from a size N pBHS population� To make this scheme

possible� both GA and pBHS have to maintain a population of size N respectively� This

��



merging scheme is shown in Algorithm ����

Algorithm �
� Merging� Fixed fractions of best from both

�� PGA�t� �� � Population from GA at time t��

� PpBHS�t� �� � Population from pBHS at time t��

� PGA�t� � New population to GA at time t

� PGA�i��t� � The i�th element of the new population to GA at time t

��

Function Merging� PGA�t� ��� PpBHS�t� �� �

Sort PGA�t � �� in descending order �for maximization� according to raw �tness

Sort PpBHS�t� �� in descending order �for maximization� according to raw �tness

PGA�i��t� � PGA�i��t� ��� 
 i � � �� �N � � �

PGA�j " �N��t� � PpBHS�j��t� ��� 
j � � �� ��� ��N � � �

return PGA�t�

end Function


	�	
 Best�from�both

This merging method is similar to the Fixed�fraction�of�all scheme with the follow�

ing two di	erences�

� Removal of the parameter � mix ratio ��

� Each of the two parties �GA and pBHS� have to generate and evaluate N individ�

uals in each iteration as if the Fixed�fraction�of�best scheme�

The purpose of the removal of the mix ratio parameter is to allow a dynamic mixing of

chromosomes and binary strings� In the �xed fraction model� some individuals which

have higher �tness than some individuals are not selected for merging owing to the quota

imposed by the fraction parameter �� In order to make use of all the best individuals

found in both models� the fraction parameter is removed and the bestN individuals from

both populations are selected for the population of the next generation� It is illustrated

in Algorithm ����

��� Empricial performance study

The purpose of this study is to illustrate the performance of the integrated model�

The three variants discussed in the previous sections were tested using a number of

��



Algorithm �
� Merging� Best from both

�� PpBHS�t� � Population of pBHS at time t

� PGA�t� � Population of GA at time t

� PGA�i��t� � The i�th element of the new population to GA at time t

��

Function Merging� PGA�t� ��� PpBHS�t� �� �

Sort PGA�t � �� in descending order �for maximization� according to raw �tness

Sort PpBHS�t� �� in descending order �for maximization� according to raw �tness

k � �� j � �� i � �

for i� ��� N���

if PGA�j��t� �� � PpBHS�k��t� �� then

PGA�i��t� � PpBHS�k��t� ��

k � k " �

else if PGA�j��t� �� � PpBHS�k��t� �� then

PGA�i��t� � PGA�j��t� ��

j � j " �

else if RAND� � ��� then

PGA�i��t� � PpBHS�k��t� ��

k � k " �

else

PGA�i��t� � PGA�j��t� ��

j � j " �

end if

end for

return PGA�t�

end Function

��



Table ���� Performance study on the Integration model� Experimental
setup

Test functions
Conditionsy

f� N 
z G

Rastrigin �n��� ������ �� ��
����
������ �
Hartman �n��� 
��
	� �� �������������� �
Shubert �n��� �
	��� 	� �������
����
� �
Shekel �n��� ��� �	 ���
���������� ��

y� Common condition� � � f����� ����� ����� ����� 	���g

z� a
b
c means the � values for the �xed�fraction�of�all� the �xed�fraction�of�best and the

best�from�both merging schemes are a� b� and c respectively�

Table ���� Performance of the hybrid model � Rastrigin function �n���

� Fixed�fraction�of�all Fixed�fraction�of�best Best�from�both

Succ� rate �eval� Succ� rate �eval� Succ� rate �eval�

���� �� �
�
�� �� ������

�
 ��	
��

���� �� �
���� �� �	�
�

���� ��� ���
�� �� ������
���� ��� ������ ��� ������
���� ��� �	�	�� ��� �	�	��

Condition� N � ��� 
 � ����
���� �� ��	��� �� ��	���

commonly used low dimension functions� Rastrigin function �n���� Hartman func�

tion �n���� Shubert �n��� and Shekel �n��� functions� In order to illustrate the ef�

fect of di	erent proportions of pBHS and GA mixture� we tried � di	erent proportions

� � f����� ����� ����� ����� ����g� As mentioned before� � equals ��� is a pure GA� while �

equals ��� is a pure pBHS� The experimental setup is shown in Table ��� and the results

are shown in Tables �������� The �ve mix ratio � used are listed on the leftmost column

of each of the result tables� Subsequent columns show the success rates �percentage of

consecutive trials out of ��� trials reached the prescribed f�� and the average number

of evaluations required for each of the merging schemes� The results of the two �xed�

fraction schemes for � � ���� and � � ���� are the same �unless the 
 values used are

di	erent�� since pure pBHS and pure canonical GA need no merging and hence should

have no theoretically di	erence under both schemes� For the Best�from�both merging

scheme� only one result is reported for each test function� It is because the mix ratio �

is not applicable� At the bottom of each result table� there is a row reporting a result

for � � ���� and the corresponding experimental condition� This result is reported espe�

cially for comparison� To be more speci�c� in Table ���� the result reported for � � ����

is ������ number of function evaluations on average to achieve ��� success rate� Since

��



Table ���� Performance of the hybrid model � Hartman function �n���

� Fixed�fraction�of�all Fixed�fraction�of�best Best�from�both

Succ� rate �eval� Succ� rate �eval� Succ� rate �eval�

���� �	 �
��� �	 �����

�� 
�	��

���� �� �
��	 �� ����

���� �� ����� �� �����
���� �	 ����	 �� �����
���� 

 �����	 
� �����	

Condition� N ���� 
 �����
���� ��� ����� ��� �����

Table ��	� Performance of the hybrid model � Shubert function �n���

�
Fixed�fraction�of�all Fixed�fraction�of�best Best�from�both

Succ� rate �eval� Succ� rate �eval� Succ� rate �eval�

���� �� ������ �� ��	���

�� ���
�	

���� �� ��
��	 �	 ������
���� �� ������ �� �����

���� �� 		�
�� �	 	��	��
���� �� ������ �� ������

the algorithm using � � ���� is essentially a pure pBHS algorithm� to compare the pure

pBHS and the hybrid algorithms� we have to report the number of function evaluations

to achieve the same level of performance as the hybrid algorithms� The bottom row of

result table is dedicated for this purpose�

From the experimental results� there are three observations�

� The canonical GA performed poorly compared to the rest of the hybridized cases

�� � f ����� ����� ���� g� in all of the functions tested�

� The hybridized cases �� � f ����� ����� ���� g� perform similarly to the pure

pBHS model� For some tests� the hybridized cases outperformed pBHS� One im�

plication of the result is that the performance of the canonical GA is not good

enough to dominate the pBHS operator� It is suggested that a good balance of

the performance of both parties is needed�

Table ��
� Performance of the hybrid model � Shekel function �n�	�

�
Fixed�fraction�of�all Fixed�fraction�of�best Best�from�both

Succ� rate �eval� Succ� rate �eval� Succ� rate �eval�

���� 
� �
	���� �� �	�����

�� �������

���� 
� ����
�� 
� ������

���� �� ������� �� ���
��	
���� �� ������� 
� �������
���� �	 	������ �� 	��	���

��



� Both the Fixed�fraction�of�best and the Best�from�both merging scheme showed no

advantages over the Fixed�fraction�of�all scheme� It is because both the pBHS and

the GA have to generate populations of sizeN � The number of function evaluations

required in each iteration is doubled and hence the drop in performance� The result

indicates that the extra computation used in both the Fixed�fraction�of�best and

the Best�from�both schemes are not justi�ed�

� The performance of the Fixed�fraction�of�best is generally outweigh that of the

Best�from�both merging scheme� It is possibly due to the high greediness of the

latter approach that extra computation has to be used to overcome local traps�

��� Summary

In this chapter� the model of incorporating pBHS into the canonical GA as an

genetic operator has been presented� The role of the pBHS operator is �rstly� the

accumulation of searching experience of the past which includes those from the GA�

and secondly injecting new and diverse binary strings into GA population� The re�

sult showed that the hybrid model outperformed canonical GA while having similar or

slightly outperformed the pure pBHS algorithm� This hybridization is a preliminary

trial and obviously requires substantial improvements� However� the increase in perfor�

mance� though minimal� indicates that the hybridized model worth further investigation�

For example� di	erent merging techniques besides the �xed�fraction and best�from�both

schemes are required�

��



Chapter �

Conclusion and Future work

In this thesis� a new iterative stochastic searching algorithm called probabilistic

cooperative�competitive binary hierarchical search pccBHS is proposed� It divides the

n�dimensional search space into partitions and organizes the partitions into a binary

hierarchy� As discussed� this organization provides a basis for resolution control and

reduction of search space size� To bring these two features into reality� an algorithm

has to be designed to take the advantages of the hierarchical organization� Hence� we

have presented an algorithm which is an information processing cycle� In the cycle�

a population of searching agents cooperatively search for the best possible result and

construct a global environment in a collaborative manner� This global environment is

the information representing the global nature of the problem to be solved� This global

information is in turn used by the agents in the searching and the global environment

construction� This cycle goes on continuously until the desired solution is obtained�

The aim of the construction of global information is to provide reliable guidance to

the agents in the future search� In fact� the reliable guidance is made possible by the

e	ective pruning of sub�optimal areas of the search space and the smoothing of the

rugged surface �the local optima are known to be traps of searching algorithms�� By

gathering information to construct the global information� sub�optimal search space can

be eliminated from consideration� By organizing the search space hierarchically with

resolution increasing towards the bottom of the hierarchy� the di�culty caused by the

rugged surface can be lowered�

The positive feedback nature of the algorithm allows locating the solution very fast�

However� it makes the algorithm trap inside the local optima easily� Competition has

been introduced to level o	 the strong exploitation e	ect� By competition� we mean

the use of multiple number of populations to search separately while keeping a repulsive

force among them� By this way� each population can search in high speed to exploit the

information gathered and at the same time maintain the solution quality by searching

diversely� Besides this main purpose� this competition model has one advantage over

��



existing techniques is that it does not need a pre�de�ned radius which inherently limits

the algorithm from �nding optima in di	erent resolutions simultaneously� Nevertheless�

it has limitations� One of the limitations is that it favors for functions with few big

optima� It does not mean that it is not applicable to massively multimodal functions�

In fact� we have demonstrated the performance of the algorithm in solving a massively

multimodal function� If the functions exhibit correlation among neighboring points�

the algorithm is still capable of solving it� To remind� our algorithm is designed with

resolution control in mind� Massively multimodality would not be a di�culty�

Dealing with high�dimensional functions� we have adopted a decoupling scheme�

Simply� for a n�dimensional function� each of the n dimensions is handled by a single

population �subpopulation�� A n�dimensional solution is constructed by picking solution

one from each subpopulation� The function value is no longer the sole and determining

criterion in evaluating the n�dimensional solutions� Instead� cooperative �tness which

favors for solutions that can produce better function value is used� The decoupling

scheme improves the algorithm signi�cantly on solving high�dimensional function�

Unless the algorithm is fully adaptive� algorithm parameter is not only unavoid�

able� but also vital to the versatility of the algorithm� Our algorithm provides several

parameters� such as population size� remembrance� and the number of subpopulations�

for controlling its properties�

Being categorized in the iterative stochastic search� our algorithm and GA share

similarities� They have been integrated to form a hybrid algorithm� The hybrid al�

gorithm is designed with GA being the backbone and our algorithm being a special

genetic operator� Chromosomes injected from GA into the special genetic operator will

be passed to the global information gathering component in which the information of

the chromosomes are extracted� New chromosomes are generated by our algorithm� The

GA chromosomes and those newly generated are mixed in di	erent proportions� They

are then passed back to the GA in the next generation� The preliminary result reported

indicates that the hybrid algorithm can improve the performance of GA�

In this work� we exploited very minimal potential of the resolution control property

of the hierarchy and the gathered global information� Hence� one of the future work

would be the design of a better adaptive learning algorithm and a better searching mech�

anism to exploit the potential� Another future work would be the improvement of the

GA"pBHS integration model such as providing new merging schemes and investigating

the e	ect on using di	erent GA algorithms�

��



Appendix A

The pBHS Algorithm

The following is the basic pBHS algorithm in detail� Algorithmic complexity of the

algorithm is analyzed� For the ease of reading� the algorithm is presented in two levels

of abstraction�

A�� Overview

Step �� Initialization O�nl�
Step �� Generation of a new population O�Nnl�
Step �� Evaluation O�N F �x��
Step �� Fitness scaling O�N�
Step �� Information gathering O�Nnl�
Step 	� Information deposition O�nl�
Step �� Adjustment of remembrance values O�nl�
Step 
� Goto Step � if

�i� max�generations is not reached� and
�ii� stopping criteria is not met

Figure A��� Basic pBHS algorithm overview

As shown in above� steps � to � are enclosed in a loop running continuously for

the maximum allowed generations speci�ed or until the stopping criteria are met� so

the maximum allowed generations T is taken into consideration on analyzing the com�

plexity� On the whole� the algorithmic complexity of the algorithm is O�T N n l � if the

algorithmic complexity of the function to be optimized is less than or equal to O�n l ��

Otherwise� it is equal to O�T N F �x� ��

A�� Details

��



Algorithm A
� Step � algorithmic complexity� O�n 	 l�



 Step 	� Initialization 



for m � � to n��

for i � l�� to �

am�k � ���

am�k�� � ���

end for

end for

Algorithm A
� Step � algorithmic complexity� O�N 	 n 	 l�



 Step �� Generation of new population 



for j � � to N � �



 Generate for all variables 



for m � � to n � �



 Generate a binary string 



for i � l�� to �

if RAND� � am�k

bj�m�i � �

else

bj�m�i � �

end if

end for

end for

end for

Algorithm A
� Step � algorithmic complexity� O�N 	 F �x��



 Step �� Evaluation 



for j � � to N � �

for m � � to n � �

xj�m � sj�m�V � �x maxm � x minm� � x minm

end for

fj � F �xj�

end for

��



Algorithm A
� Step 	 algorithmic complexity� O�N� if N � m or O�m�

otherwise�



 Step �� Fitness scaling 





 Find min� and max� �tness 



Fmin � f�� Fmax � f�

for j � � to N � �

if fj � Fmin then

Fmin � fj

else if fj � Fmax then

Fmax � fj

best of population � j

end if

end for

if elitism is used then

if fbest of population � Felite then

Felite � fbest of population

for m � � to n� �

selite�m � sj�m

end for

else

Fmax � Felite

end if

end if



 Scale �tness values 



for j � � to N � �

fj � 	fj � Fmin
 � 	Fmax � Fmin


end for

��



Algorithm A
� Step 
 algorithmic complexity� O�N 	 n 	 l�



 Step �� Information gathering 



for j � � to N � �

for m � � to n� �

for i � l�� to �

if bj�m�i �� �

hm�k �� fj

else

hm�k�� �� fj

end if

end for

end for

end for

if elitism is used

for m � � to n� �

for i � l�� to �

if belite�m�i �� �

hm�k �� N��

else

hm�k�� �� N��

end if

end for

end for

end if

Algorithm A
� Step � algorithmic complexity� O�n 	 l�



 Step �� Information deposition 



for m � � to n� �

for i � l�� to �



 Normalization 



hm�k � hm�k � 	hm�k � hm�k��


hm�k�� � � � hm�k



 Update 



am�k � �m�i am�k � ��� �m�i�hm�k

end for

end for

��



Algorithm A
	 Step � algorithmic complexity� O�n 	 l�



 Step �� Adjustment of remembrance values 



for m � � to n� �



 Search for the last converged point 



r � l � �

for i � l�� to �

if j ���� am���l���i�j � � �

j ���� am���l�i�j � � then

r � i

break

end if

end for



 Update �m�i 



for i � l�� to �

if i �� r then

�m�i � �

else

�m�i � �r � i � ����r � i� ��

end if

end for

end for

��



Appendix B

Test problems

Shekel family

For ��� � xj � ����� � � j � n�

Fs�x� �
mX
i��

�

�ki�x� ai��� " ci
� �B���

� S�� n � � ���� ���

The one�dimensional Shekel function has the global optimum Fs�x� � ����������

located at x � ���������� where m � ��

i ai ki ci i ai ki ci
� ����� ���
� ����� � 
�	�� ����	 ���
�
� ����
 ����
 ����� 	 ����� ��
	
 ���
�
� ��	�� ����� ����� � ����
 ����
 �����
� ����� ���	
 ����� 
 	���� ����
 ���


� 	���� ����	 ����� �� ����� ���	
 ����	

� Sm� n � �� m � f�� �� ��g ����

There are three members of dimension equal to four in the Shekel family� All have

global optimum approximately equals to ��c� at a��

i ai ci i ai ci
� � � � � ��� � � � � � ��	
� � � � � ��� 	 � � � � ���
� 
 
 
 
 ��� � 
 � 
 � ���
� 	 	 	 	 ��� 
 	 � 	 � ���
� � � � � ��� �� � ��	 � ��	 ���

��



Ackley family

Only one member �A��� of dimension �� �n � ��� in the family was used� For

����� � xi � �����

FA�� � �� exp����

vuut�

n

nX
i��

x�i � " exp�
�

n

nX
i��

cos��
xi��� ��� e� �B���

Rastrigin family

� R� n � � The two�dimensional Rastrigin function is a function having �� optima

with one global optimum Fr�x� � �������� located at x � ��� ��� For ���� � xi �

���� i � �� ��

FR��x� � �x�� � x�� " cos���x�� " cos���x��� �B���

� Rn� n � f��� ��� ���� ���� ���g ����

For ������ � xi � ����

FRn�x� � ��n"
nX
i��

�x�i � �� cos��
xi��� �B���

Goldstein
Price function

� GP� n � �

For ���� � xi � ���� i � �� ��

FGP� � ��� " �x� " x� " ������� ��x� " �x�� � ��x� " �x�x� " �x���� 	

��� " ��x� � �x��
����� ��x� " ��x�� " ��x� � ��x�x� " ��x������B���

The global optimum is f� � ������ at x � �� � ���

Michalewitz family

� M� n � �

For � � xi � 
�

FM
 �
nX
i��

sin�xi� sin��i" ��x�i �
�
�m �B���

The global optimum is f� � ������

��



Sphere family

Five members of this family are used� SP
� SP�	� SP��� SP	�� SP��
� For ����� �

xi � �����

FSPn�x� �
nX
i��

�xi � ���� �B���

Hartman family

Only one member of this family ���� is considered�

� H�� n � �� For ��� � xj � ���� � � j � ��

FH��x� � �
�X
i��

ci exp��
nX
j��

ai�j�xj � pi�j�
��� �B���

a �

�
				


������� ������� �������

������� ������� �������

������� ������� �������

������� ������� �������

�
����
 p �

�
				


� �� ��

��� �� ��

� �� ��

��� �� ��

�
����
 c �

�
				


�

���

�

���

�
����
 �B���

Goldberg�s bipolar deceptive function

Binary strings of eight bits long is used� Given �l � �� a � ����� b � ����� and

z � ��

Fbpd�u� � g�ju� lj��

g�e� �

�
a
z �z � e�� if u � z
b
l�z �e� z�� otherwise�

u is the unitation of a binary string� It is de�ned as the number of ones in the string�

For a binary string of length �l� u � ��� �l�� Global optimum is ����

Modi�ed Goldberg�s bipolar deceptive function

Binary strings of eight bits long is used� Given �l � ��� a � ����� b � ����� and

z � ������

Fbpd�u� � g�ju� lj��

g�e� �

�
a
z �z � e�� if u � z
b
l�z �e� z�� otherwise�

u � ��� ������ is the decimal equivalent of the binary number� Global optimum is ����
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