Introduction to Social Computing

Irwin King

Department of Computer Science and Engineering The Chinese University of Hong Kong

> king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king

©2010 Irwin King. All rights reserved.

Sand from Centuries Past Send Future Voices Fast

The Nobel Prize in Physics 2009

"for groundbreaking achievements concerning the transmission of light in fibers for optical communication" "for the invention of an imaging semiconductor circuit – the CCD sensor"

Nobelprize.org

S BACK

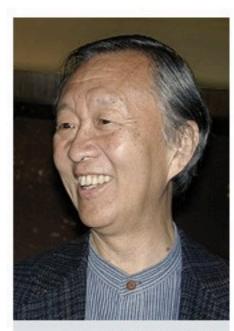
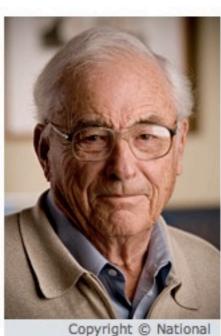
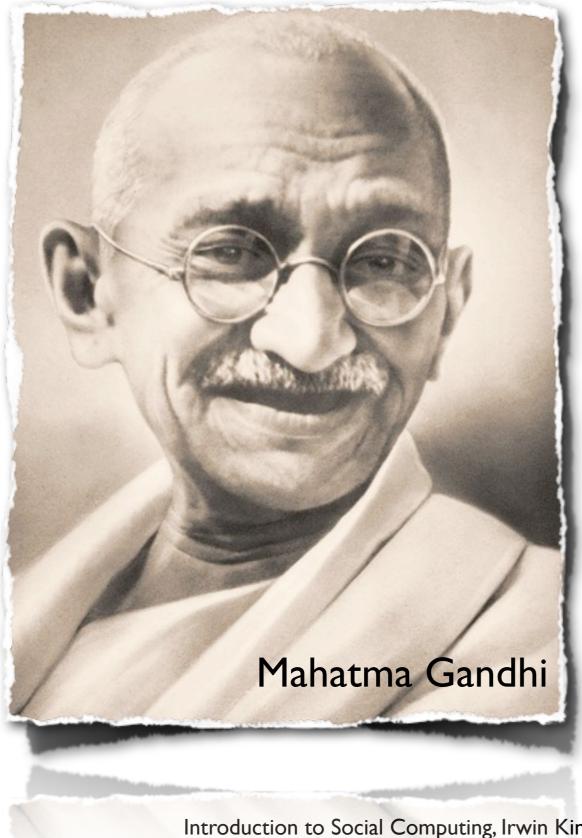



Photo: Richard Epworth

Charles K. Kao

Academy of Engineering

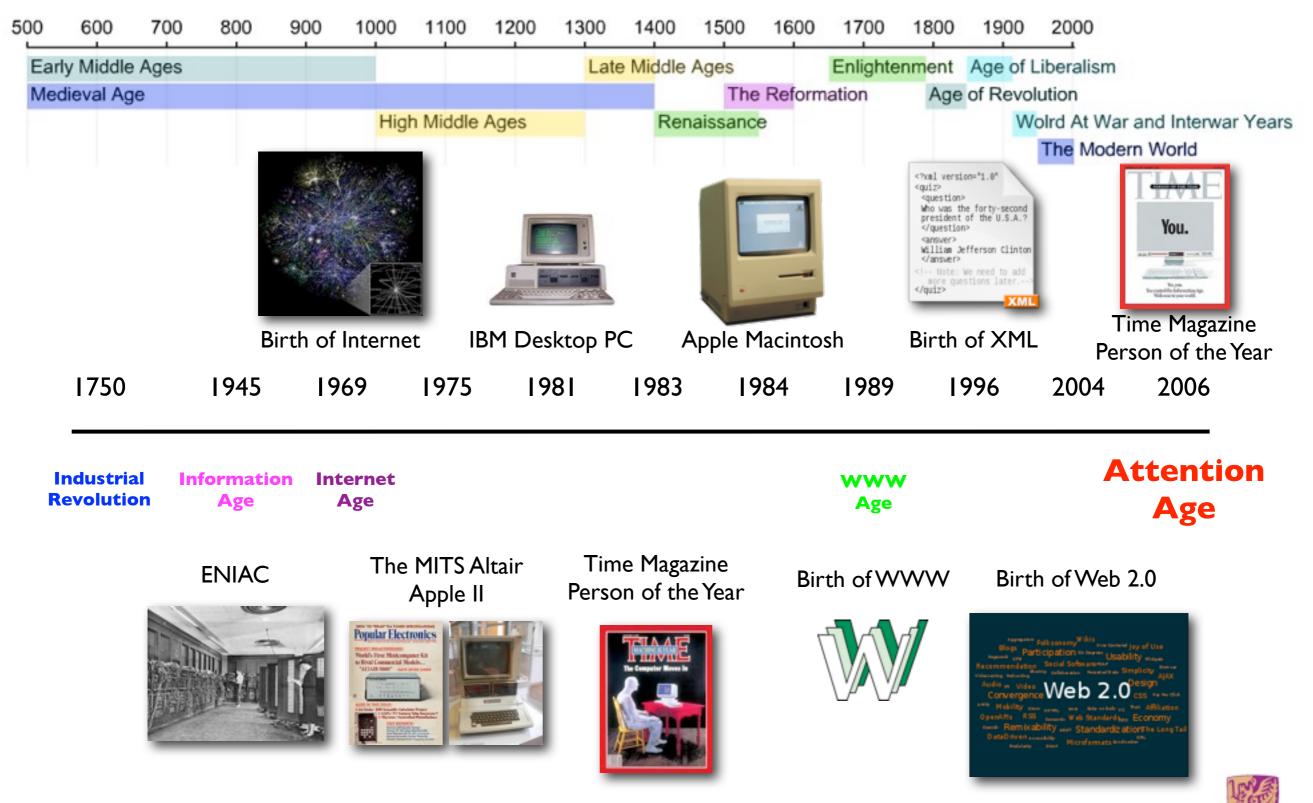
Willard S. Boyle



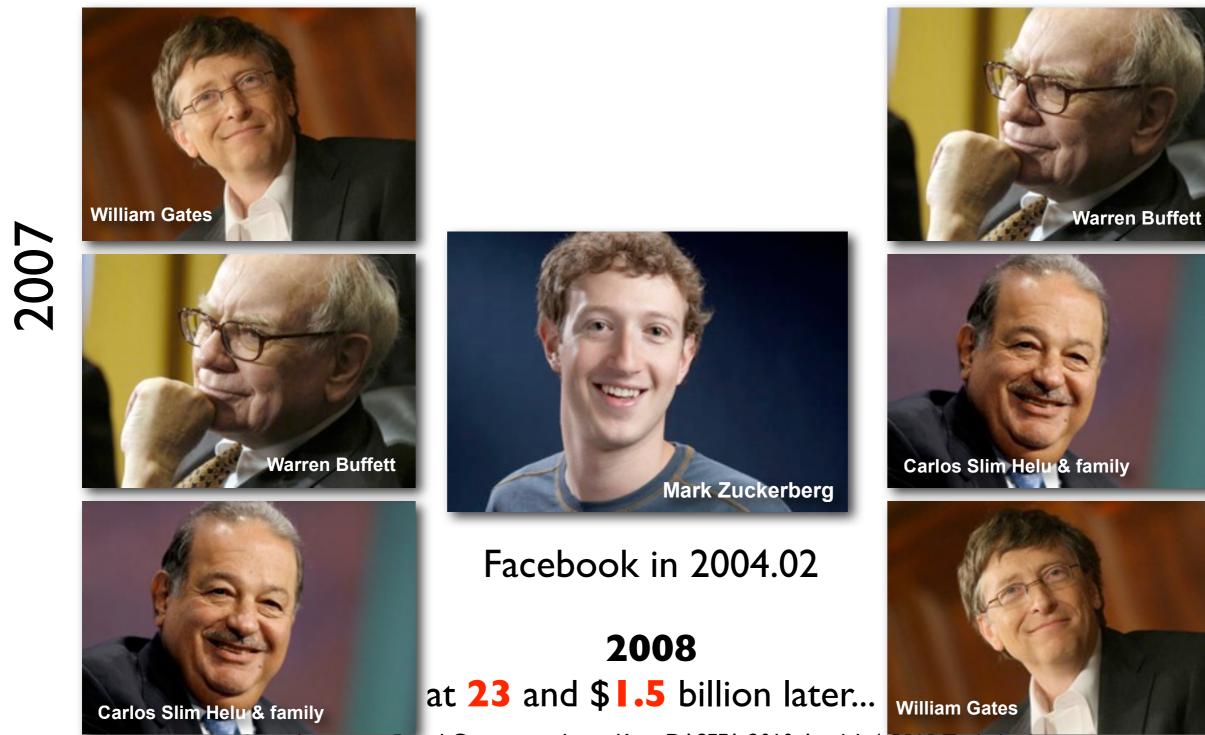
Copyright © National Academy of Engineering

George E. Smith

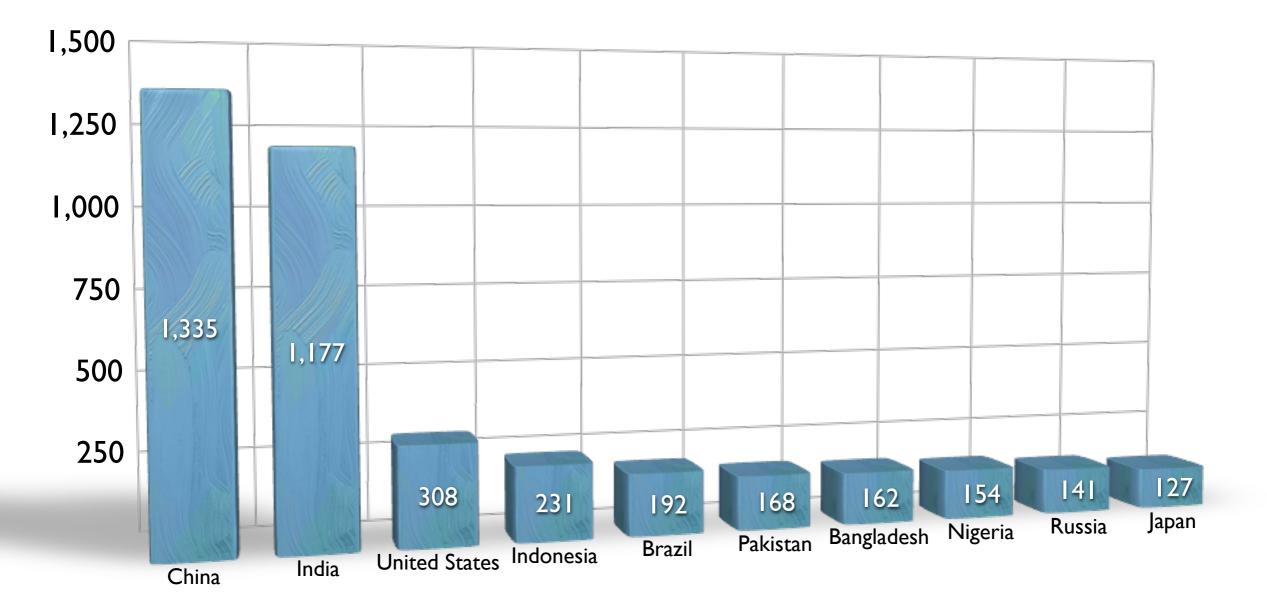
Interdependence is and ought to be as much the ideal of man as selfsufficiency.


Man is a social being.

A Brief History of the World

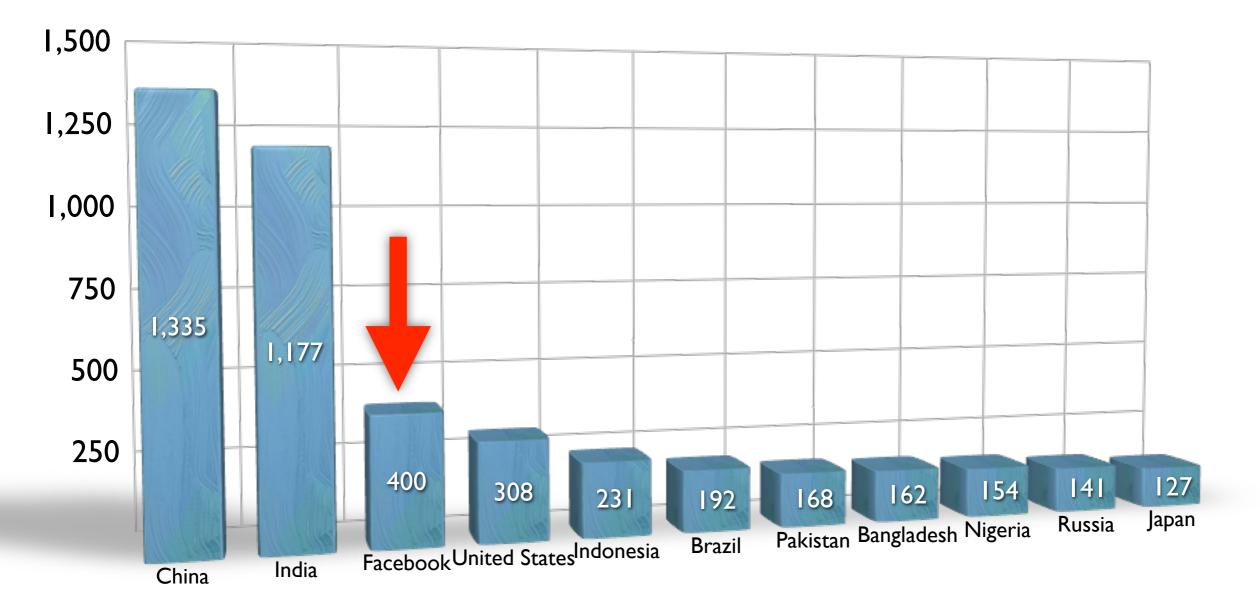

500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000		
Ear	ly Middle	Ages						Late	Middle	Ages		Enlighte	nment	Age of I	Liberalism		
Medieval Age					The Reformation Age of Revolut					lution							
					Hig	h Middle	Ages		Rer	naissanc	e				olrd At War The Moder	and Interwar Years n World	

A Brief History of the World



Billionaires' Shuffle

Top 10 Most Populated Countries


as of July 2009

Top 10 Most Populated Countries

as of February 2010

Millions

Facebook's Global Audience

Global Audience: 316,402,840

Facebook

% Online Population

Social Search

About CheckFacebook.com

Ads by Google

Total Users


Percent Online Users

100

0.02

Q Zoom Out

United States Twitter Blog Marketing Country Audience: 94,748,820 Percent of Global Audience: 29.95% Share This Site 1543 retweet United States Male / Female male female United States Age Distribution <= 13 14-17 18-24 25-34 35-44 45-54 55-64 65+ Not Pictured: Hong Kong, Maldives, Palestine, Singapore, Taiwan

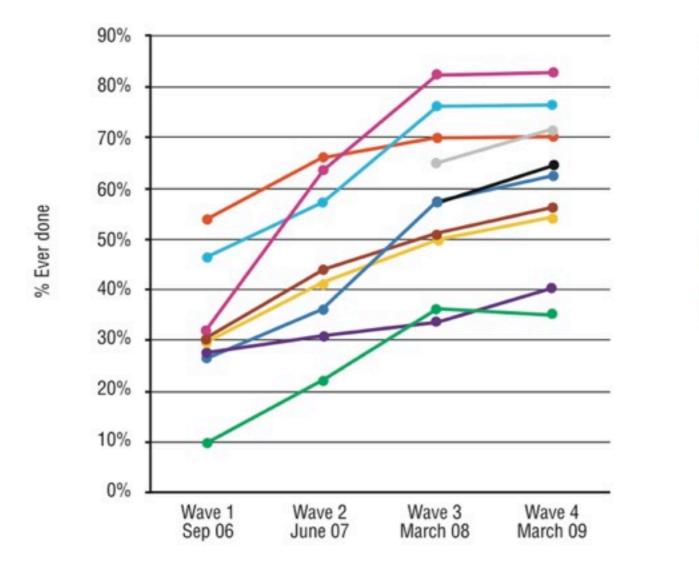
Facebook's Growth Stats

Statistics

Company	More than 400 million active users
Figures	50% of our active users log on to Facebook in any given day
	More than 35 million users update their status each day
	More than 60 million status updates posted each day
	More than 3 billion photos uploaded to the site each month
	More than 5 billion pieces of content (web links, news stories, blog posts, notes, photo albums, etc.) shared each week

10	Largest Countries		10 Fastest Growing Over Past Week					
1.	United States	94,748,820	1.	Poland	12.46 %	137,900		
2.	United Kingdom	22,261,080	2.	Thailand	10.96 %	161,300		
3.	Turkey	14,215,880	3.	Portugal	9.81 %	80,040		
4.	France	13,396,760	4.	South Africa	9.25 %	189,080		
5.	Canada	13,228,380	5.	Taiwan	7.82 %	367,400		
6.	Italy	12,581,060	6.	Romania	7.65 %	28,060		
7.	Indonesia	11,759,980	7.	Germany	7.54 %	350,240		
8.	Spain	7,313,160	8.	Malaysia	7.43 %	236,840		
9.	Australia	7,176,640	9.	Indonesia	6.84 %	752,640		
10.	Philippines	6,991,040	10.	Iraq	6.72 %	6,380		

Global Internet Traffic

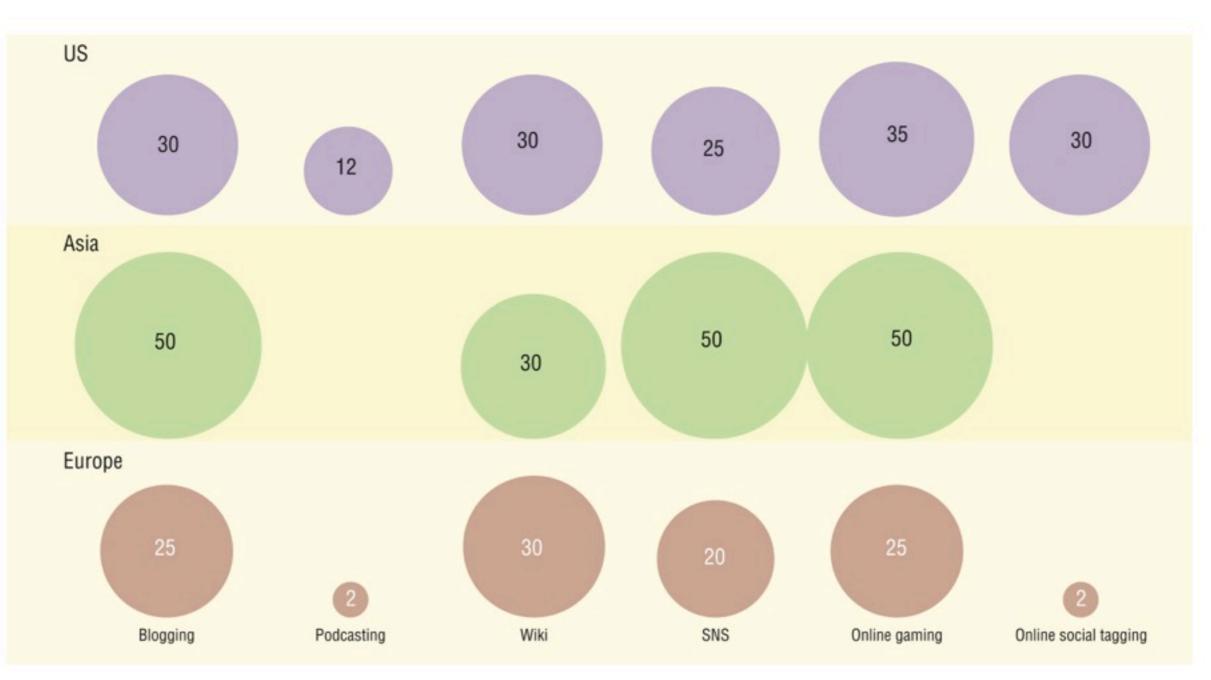

Alexa as of May 2009	China	USA	Japan	India	Brazil	Global	
J	Baidu	Google Yahoo.jp		Google.in	Google	Google	
2	QQ	Yahoo	FC2	Google	Orkut.br	Yahoo	
3	3 Sina		Google.jp	Yahoo	Windows Live	YouTube	
4	4 Google.cn		YouTube	Orkut.in	Universo Online	Facebook	
5	Taobao	Myspace	Rakuten	Rakuten YouTube		Windows Live	
6	163	MSN	Livedoor	Blogger	Globo	MSN	
7	Google	Windows Live	Ameblo.jp	Rediff	MSN	Wikipedia	
8	8 Sohu		mixi	Facebook Google		Blogger	
9	9 Youku		Wikipedia	Wikipedia	Yahoo	Baidu	
10	Yahoo	EBay	Google	Windows Live	Terra	Myspace	

EU Commission on Social Computing

Figure 2: The growth in active usage of social computing applications

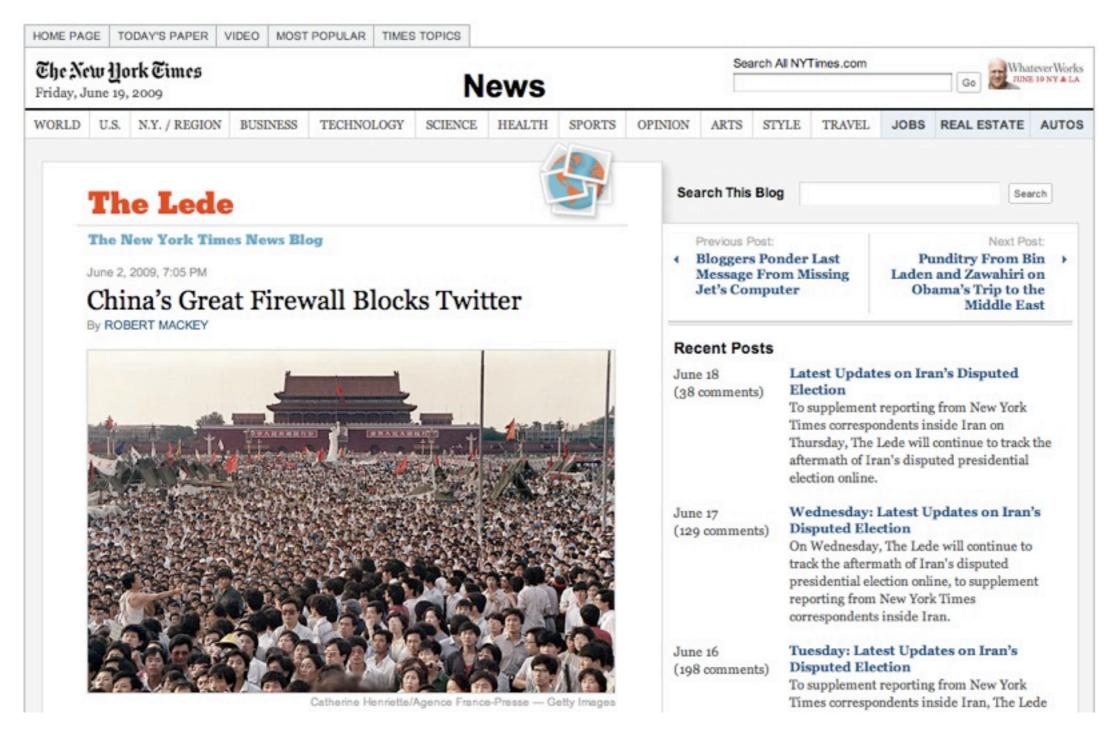
Active internet users: "Thinking about using the internet, which of the following have you ever done?"

- Watch video clips online
- Listen to live radio/audio online
- Visit a friend's social network page
- Read blogs
- Manage a profile on a social network
- Create a profile on a social network
- Leave a comment on a blog site
- Upload my photos to a photo sharing site
- Start my own blog/weblog
- Upload a video clip to a video sharing site


[Ala-Mutka et al. 2009]

Source: (Universal McCann, 2009)

EU Commission on Social Computing


Figure 1: Adoption of Social Computing

[Ala-Mutka et al. 2009]

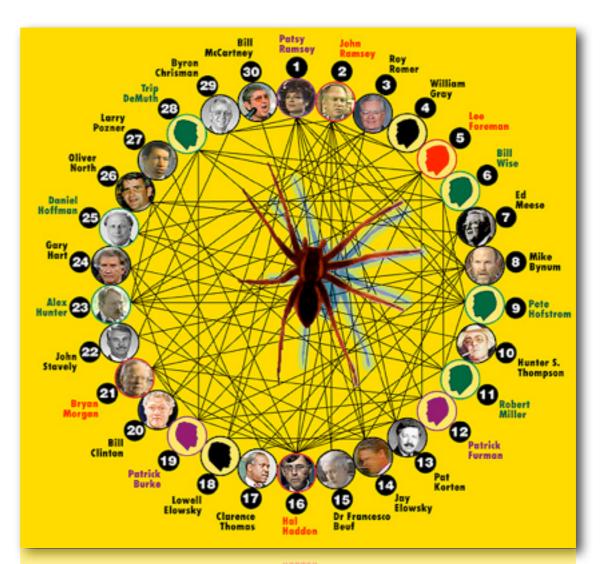
Twitter in Spotlight

Topics in Social Computing

- Social Behavior Analysis and Modeling
- Social Media
- Social Network Theory and Models
- Link Analysis/Graph Mining/ Large Graph Algorithms
- Learning to Rank
- Recommender Systems/ Collaborative Filtering

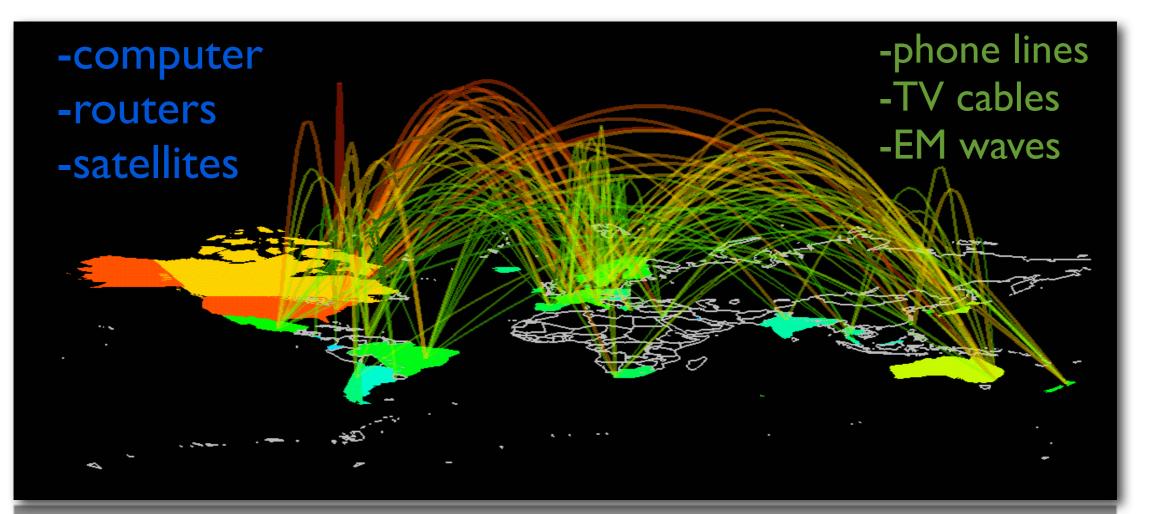
- QA/Sentiment Analysis/ Opinion Mining
- Human Computation/ Crowdsourcing
- Risk, Trust, Security, and Privacy
- Monetization of Social Computing
- Software Tools and Applications
- and many, many more...

Web 2.0


- Web as a medium vs. Web as a platform
- Read-Only Web vs. **Read-and-Write Web**
- Static vs. **Dynamic**
- Restrictive vs. **Freedom & Empowerment**
- Technology-centric vs. **User-centric**
- Limited vs. **Rich User Experience**
- Individualistic vs. Group/Collective Behavior AttentionTrust.org krugle
- Consumer vs. **Producer**
- Transactional vs. **Relational**
- Top-down vs. **Bottom-up**
- People-to-Machine vs. **People-to-People**
- Search & browse vs. **Publish & Subscribe**
- Closed application vs. Service-oriented
 Services
- Functionality vs. **Utility**
- Data vs. Value

Social Networks

Society: Nodes: individuals Links: social relationship (family/work/friendship/etc.)



S. Milgram and John Guare: Six Degree of Separation. Social networks: Many individuals with diverse social interactions between them.

Social Networks

• The Earth is developing an electronic nervous system, a network with diverse nodes and links.

Communication networks: many non-identical components with diverse connections between them.

Social Networking Sites

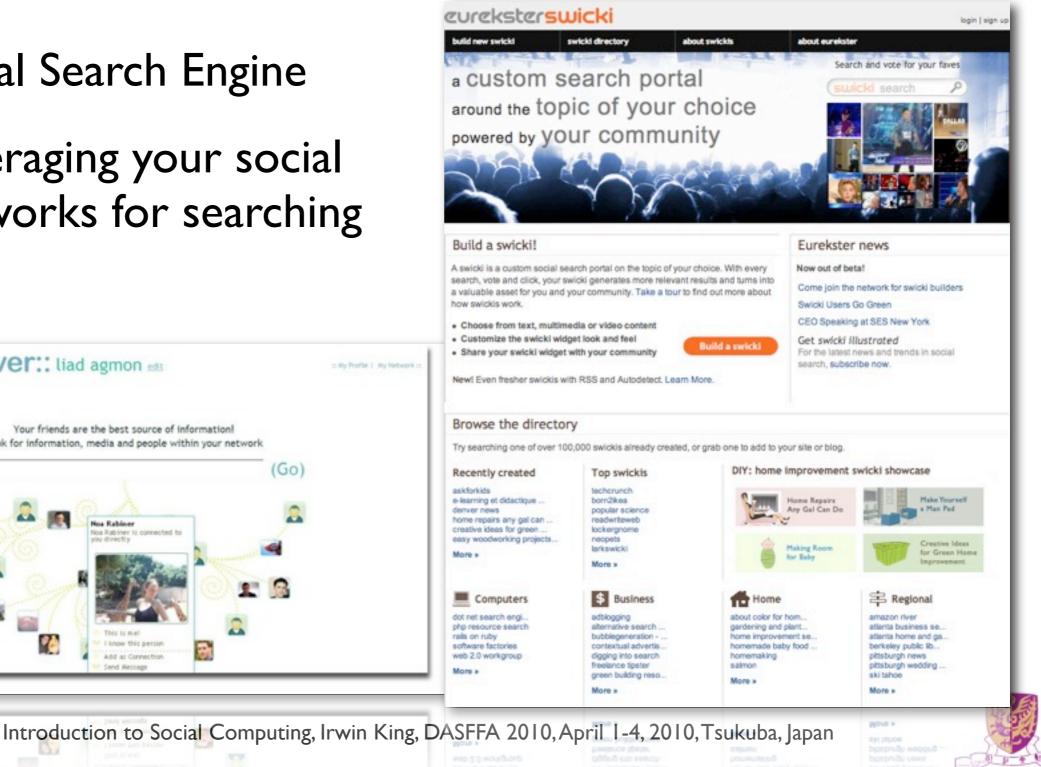
 Example of Social Networking Sites: FaceBook, MySpace, Blogger, QQ, etc.

Social Search

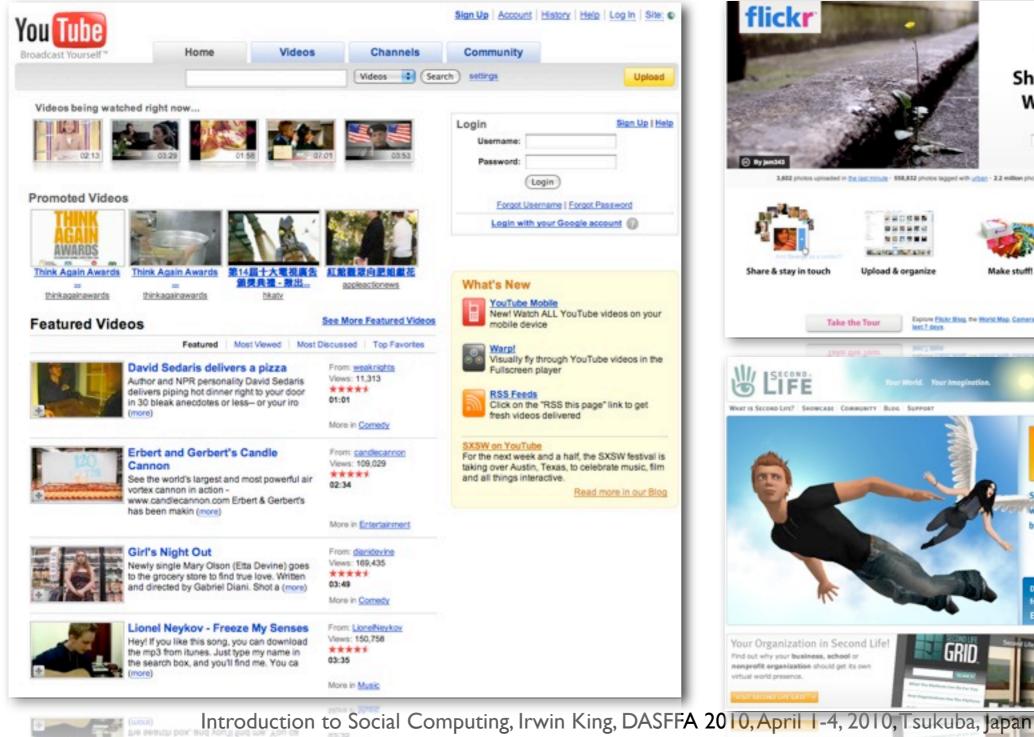
Social Search Engine

delver:: liad agmon at

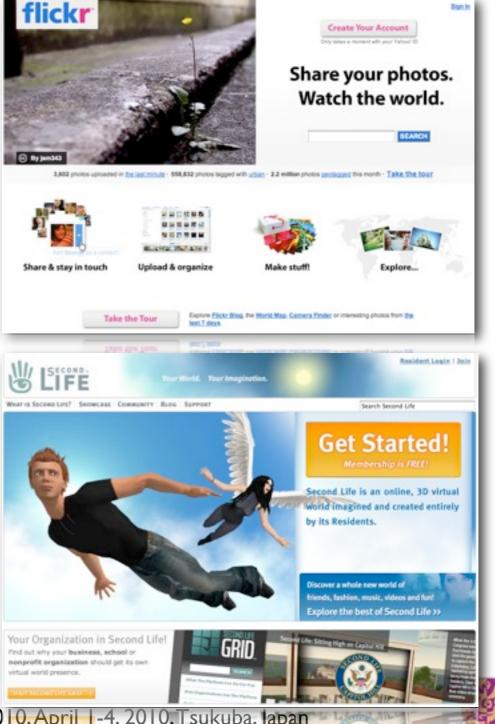
Leveraging your social networks for searching

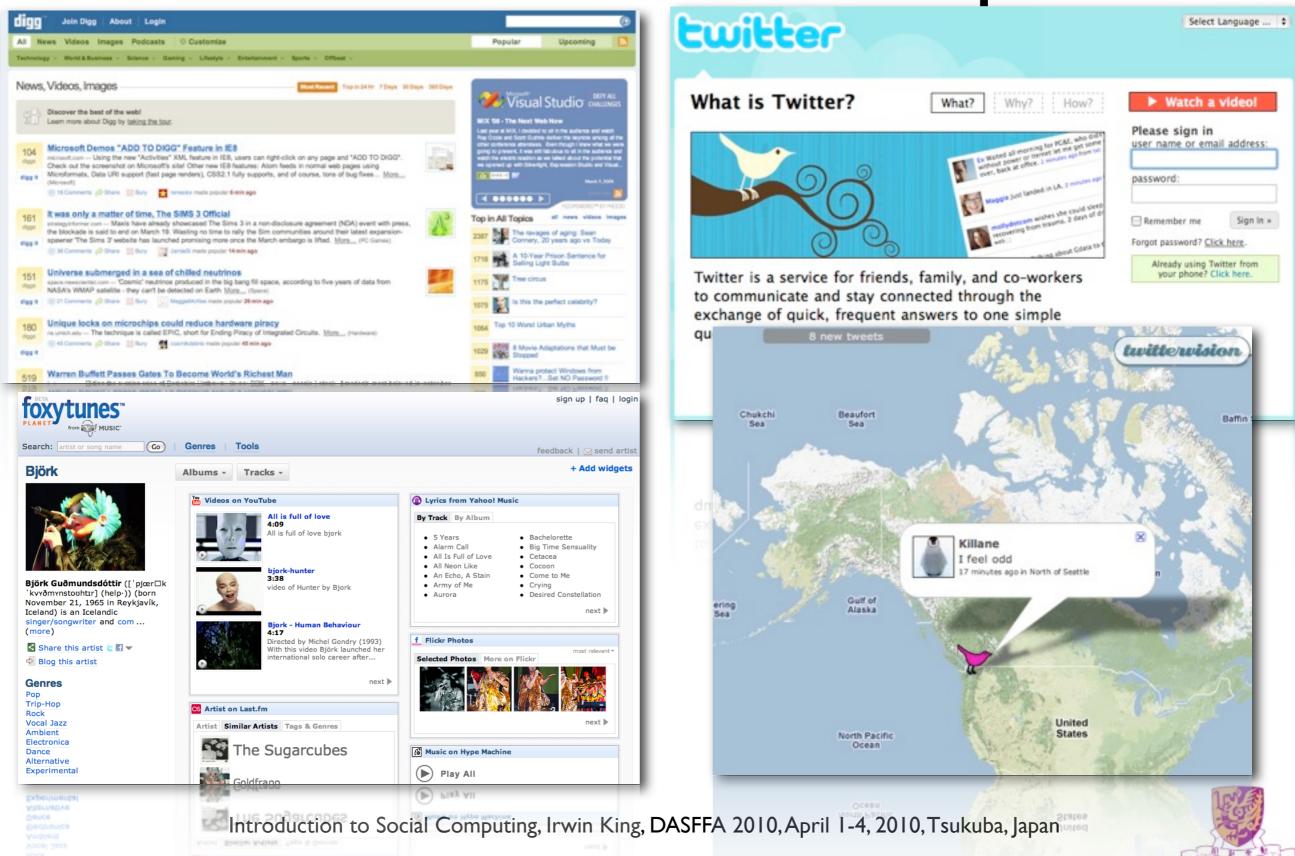

> Your friends are the best source of information! Look for information, media and people within your network

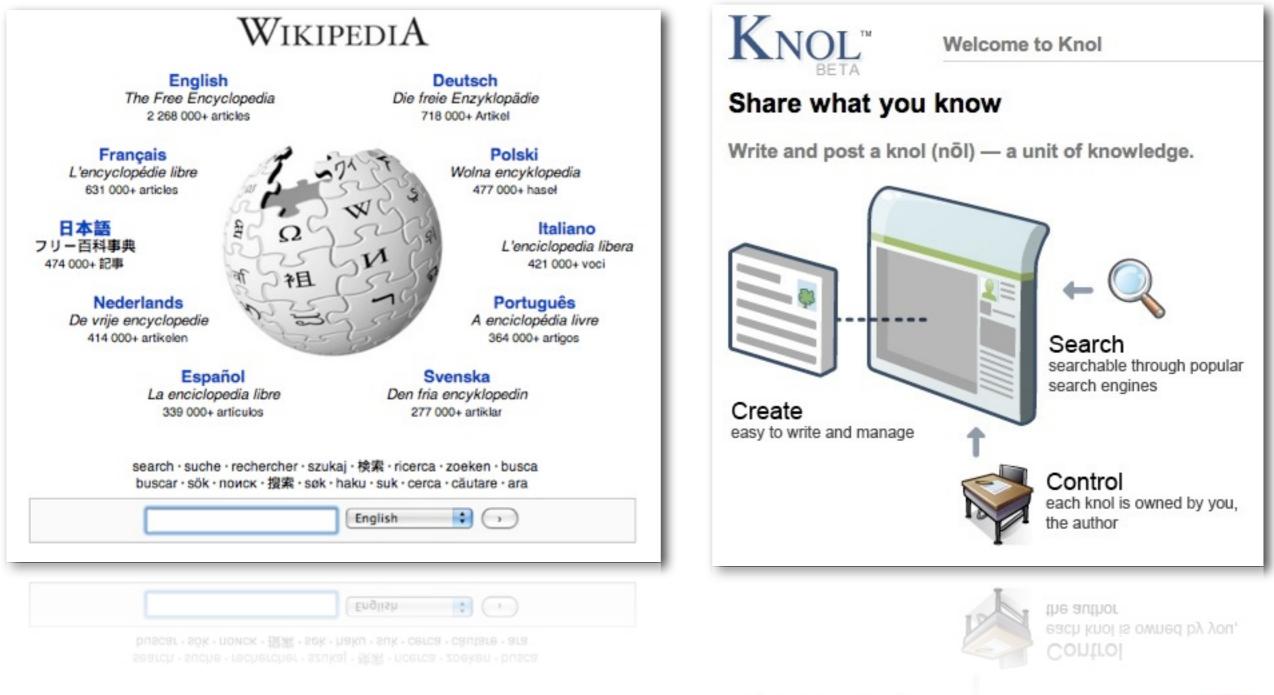
> > Noa Rabiner

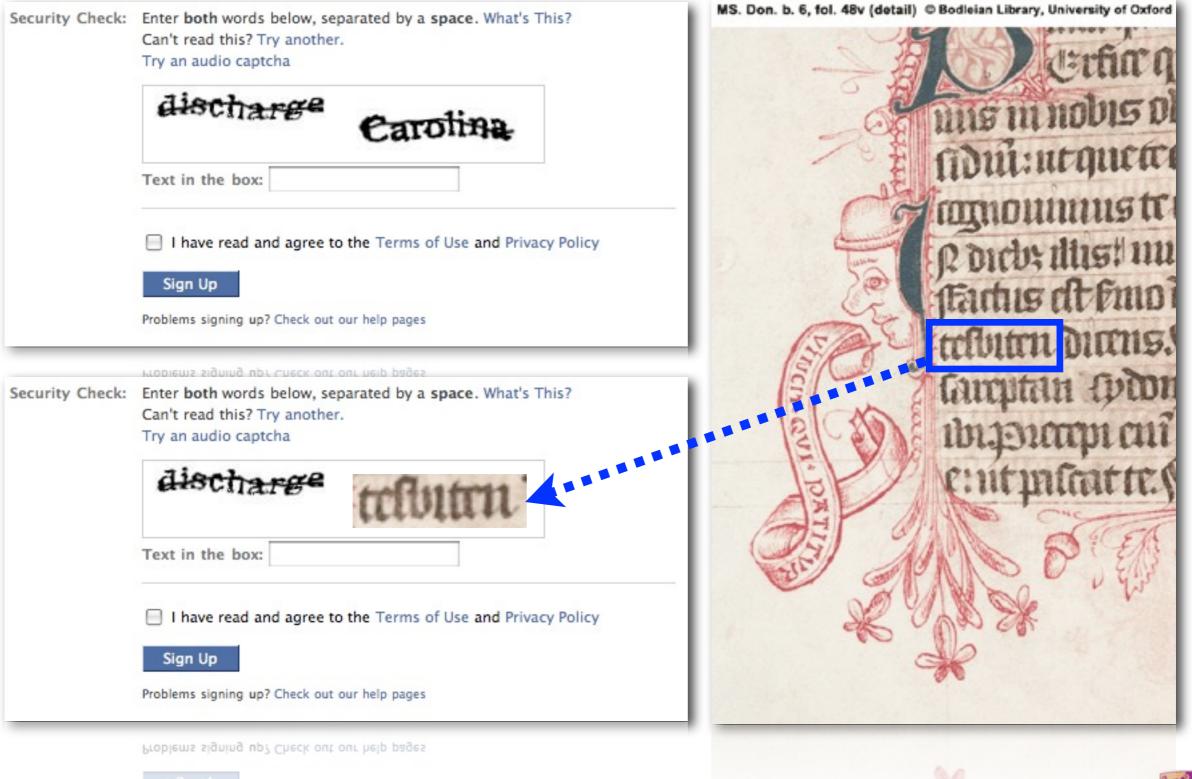

I know that our

Add at Connects


Go)

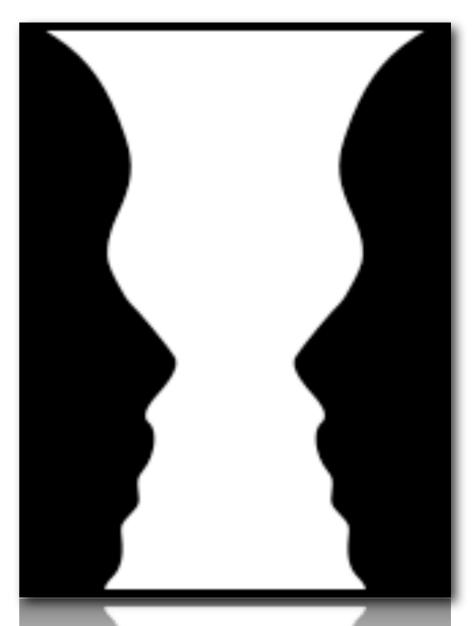

Social Media


the mp3 from itunes. Just type my name in


Social News/Mash Up

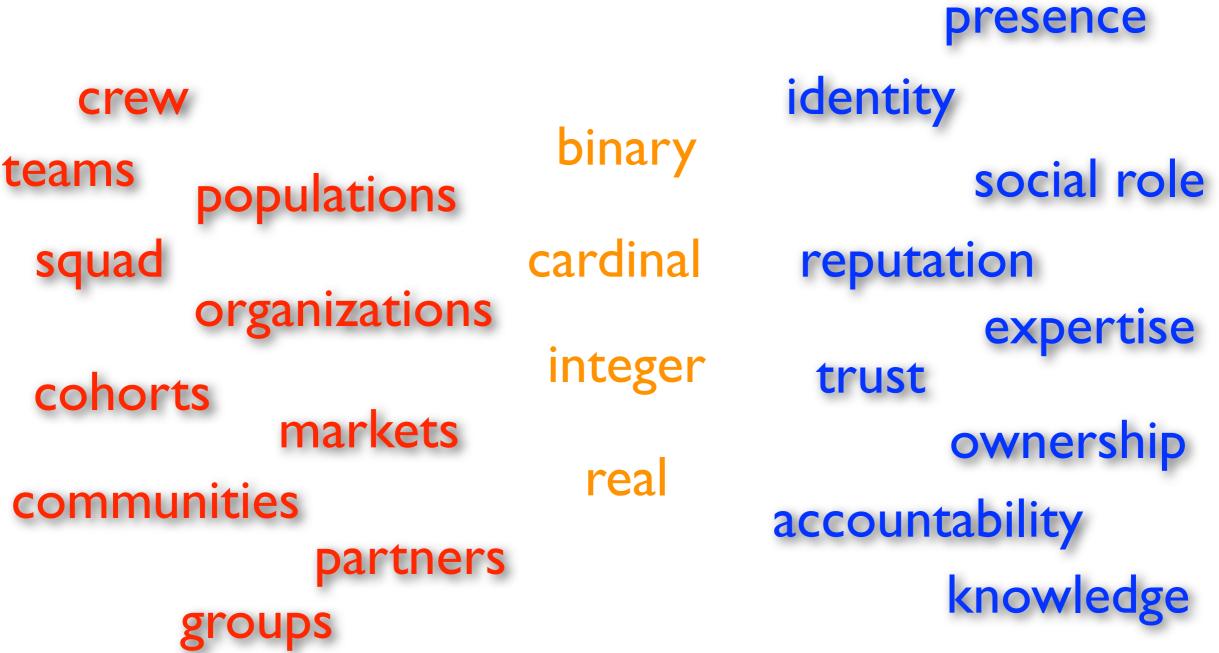
Social Knowledge Sharing

Social/Human Computation

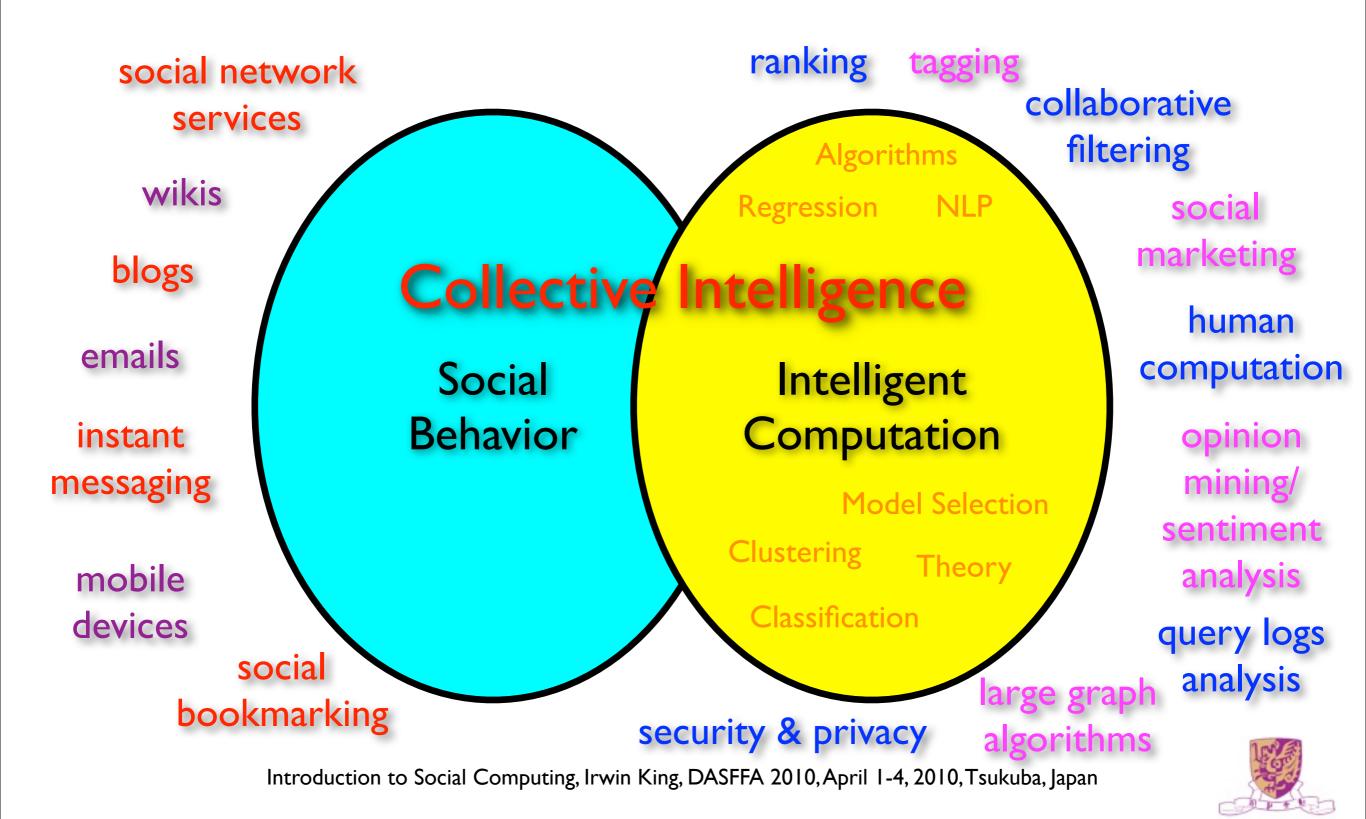

Web 2.0 Revolution

- Glocalization-think globally and act locally!
- Weblication-Web is the application!
- Three C's

Connectivity


Collaboration

Communities



Social Relations

Social Computing

Definition of Social Computing

- Any Computer-mediated communication and interaction
- In the weaker sense: supporting any sort of social behavior
 - blogs, email, instant messaging, wiki, social network services, social bookmarking
- In the stronger sense: supporting "computations" that are carried out by a group of people
 - collaborative filtering, online auctions, prediction markets, reputation systems, tagging, verification games

Emerging Issues

- Theory and models
- Seach, mining, and ranking of existing information, e.g., spatial (relations) and temporal (time) domains
 - Dealing with partial and incomplete information, e.g., collaborative filtering, ranking, tagging, etc.
- Scalability and algorithmic issues
- Security and privacy issues
- Monetization of social interactions

Computational Perspective

- Classification, clustering, regression, etc.
- New insights on the data
 - Social relations are often hidden (latent)
 - Change data from (x,y) to $(x,c_1(x),c_2(x),\cdots,y)$
- c(x) = context in tags, relations, ratings, etc.
- data type = binary, integer, real, cardinal, etc.

Topics in Social Computing

- Social Behavior Analysis and Modeling
- Social Media
- Social Network Theory and Models
- Link Analysis/Graph Mining/ Large Graph Algorithms
- Learning to Rank
- Recommender Systems/ Collaborative Filtering

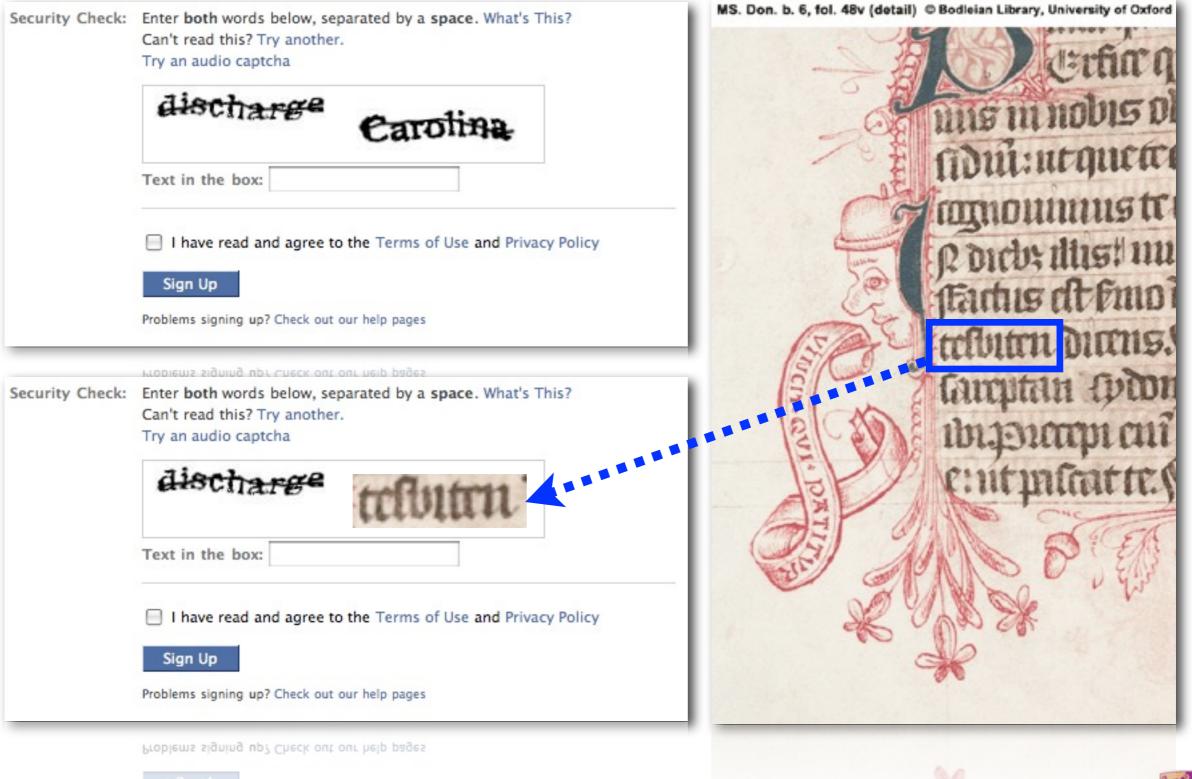
- QA/Sentiment Analysis/ Opinion Mining
- Human Computation/ Crowdsourcing
- Risk, Trust, Security, and Privacy
- Monetization of Social Computing
- Software Tools and Applications
- and many, many more...

Human Computation

Irwin King Department of Computer Science and Engineering The Chinese University of Hong Kong <u>http://www.cse.cuhk.edu.hk/~king</u>

©2010 Irwin King. All rights reserved

Playing/Having Fun - Work/Computation


Idea of Human Computation

 Take advantage of people's desire to be entertained and perform useful tasks as a side effect

Social/Human Computation

Human Computation

Why Is It Important?

- Some statistics (July 2008)
 - 200,000+ players have contributed 50+ million labels.
 - Each player plays for a total of 91 minutes.
 - The throughput is about 233 labels/player/hour (i.e., one label every 15 seconds)
- Idea behind
 - Solve some problems which are difficult to be solved by computers.
 - Take advantage of people's desire to be entertained.
 - Produce useful metadata as a by-product.

Games With A Purpose

- Matchin
 - Image search by aesthetic value
- Babble
 - Translate foreign language into English
- InTune
 - Tags songs with description text
- Squigl
 - Image segmentation
- Verbosity
 - Database of common knowledge description

Background

 Human Computation Systems (HCS) aim to solve Artificial Intelligence (AI) problems through the human human interactions

- In order to ensure the collected information to be useful, we have to:
 - I. guarantee the quality of collected information
 - 2. attract more people to contribute information

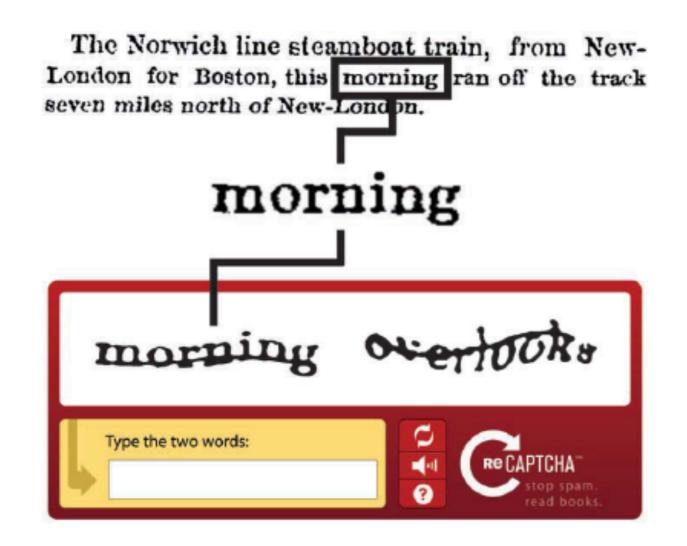
Types of HCS

- The categories of the human computation systems are:
 - I. Initiatory Human Computation
 - 2. Distributed Human Computation
 - 3. Social Game-based Human Computation with volunteers or paid engineers
 - 4. Social Game-based Human Computation with online players

Initiatory Human Computation (I)

- Objective: To complete some tasks that are natural for humans but difficult for computers even computation power increased rapid recently
- Example (I): CAPTCHA
 - A computer generated challenge-response test
 - Objective: To distinguish humans from computers using a common sense problem

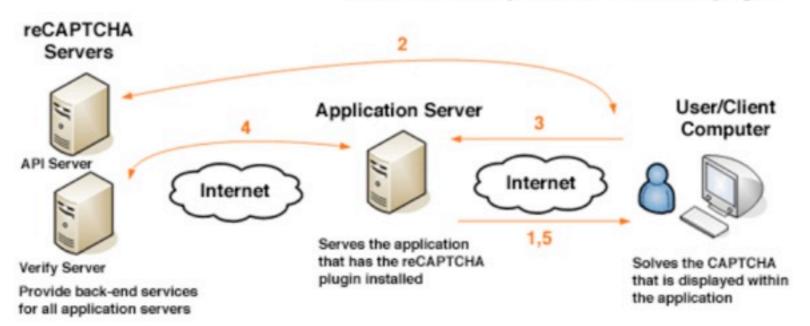
The Yahoo! CAPTCHA.


Initiatory Human Computation (2)

- Example (2): reCAPTCHA
 - Objective: To produce valuable common sense knowledge to improve the OCR quality in digitizing books
 - Combining two words: one identified word; and one unidentified word
 - If a user recognizes the identified word, the answer to the unidentified word is assumed to be correct

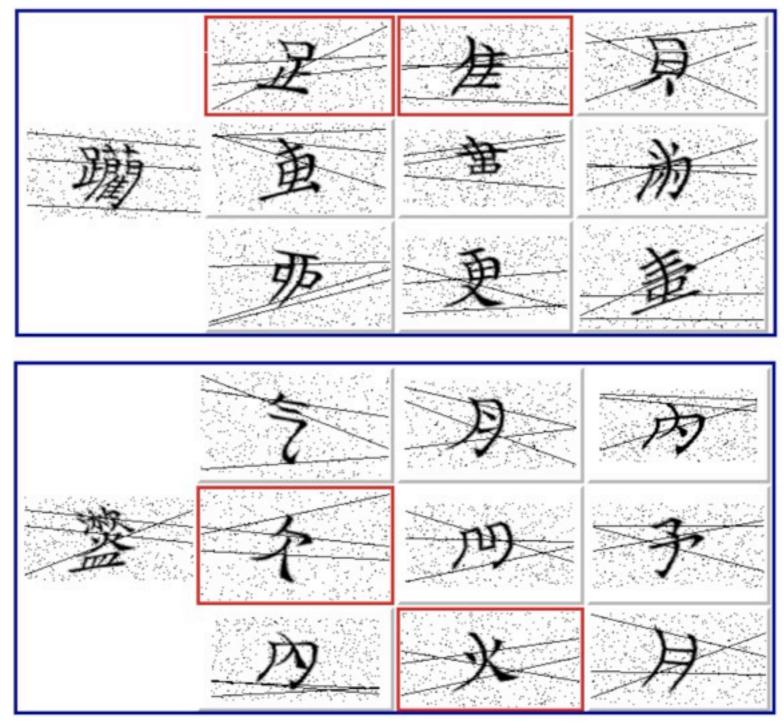
Initiatory Human Computation (3)

• Example (2): reCAPTCHA



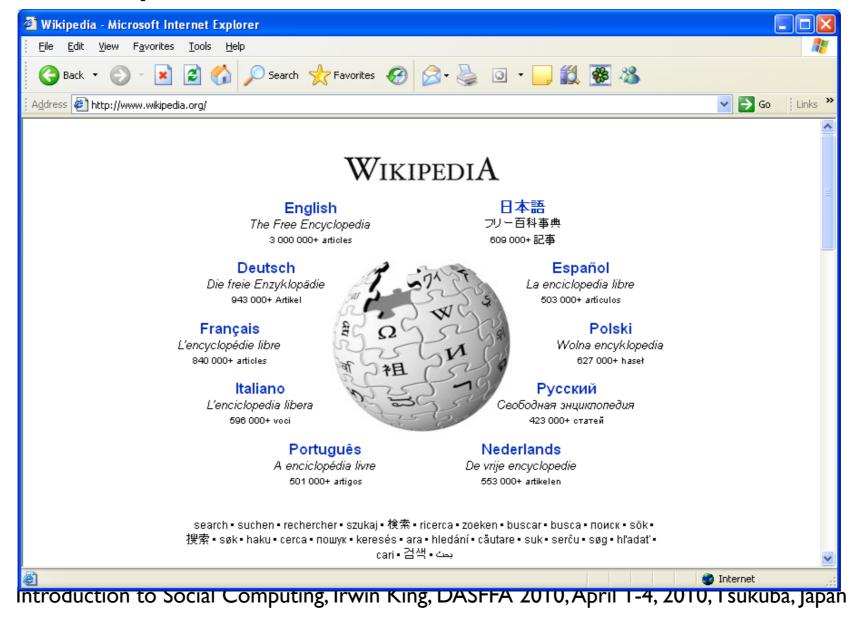
reCAPTCHA

ne sites som roucho Ro usuns me mbs . lone " and remarks 10-003


Client-Server components - reCAPTCHA plugins

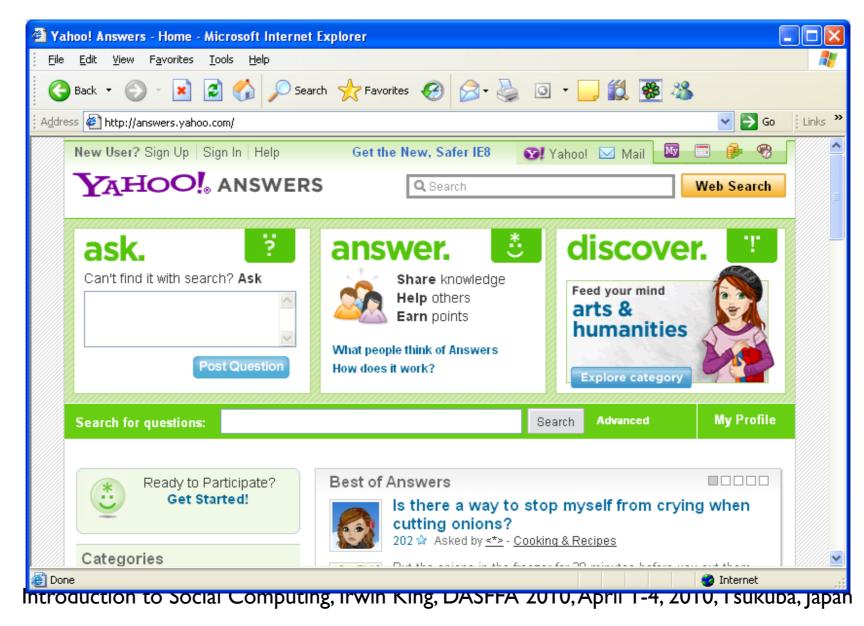
Chinese CAPTCHA

Ling-Jyh Chen, Institute of Information Science, Academia Sinica, Taipei, Taiwan

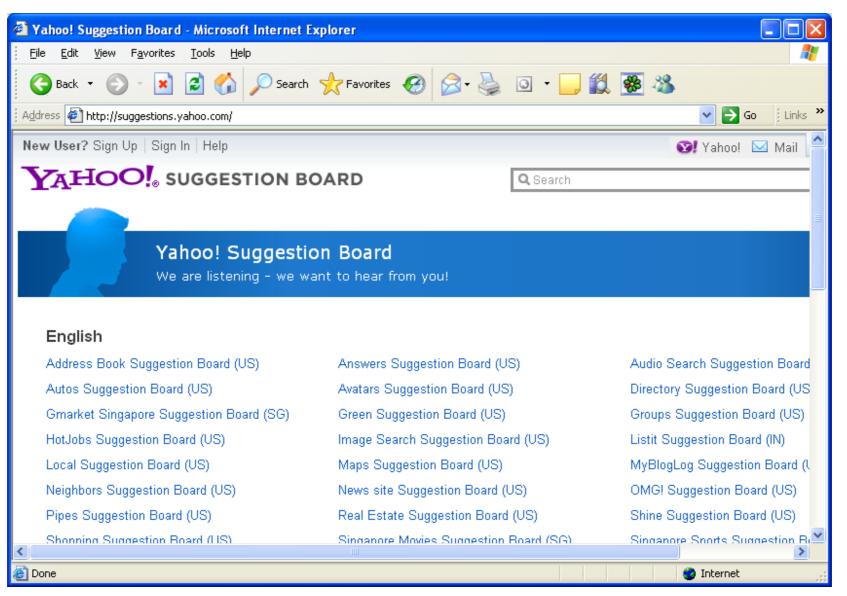

Distributed Human Computation (1)

- Objective: To encourage a huge population of Internet users to contribute to solve the difficult AI problems
- Example (I): Razor
 - To use human votes to determine if a given email is spam (anti-spam mechanism)
- Example (2): Proofreader
 - To give a (small) portion of the image file and corresponding text (generated by OCR) side-by-side to a human proofreader

Distributed Human Computation (2)


- Example (3): Wikipedia
 - The collective knowledge is distributed in that essentially almost anyone can contribute to the Wiki

Distributed Human Computation (3)


- Example (4): Yahoo! Answers
 - To provide automated collection of human reviewed data at Internet-scale

Distributed Human Computation (4)

- Example (5): Yahoo! Suggestion Board
 - An Internet-scale feedback and suggestion system

Distributed Human Computation (5)

- Example (6): Amazon Mechanical Turk
 - It provides monetary rewards for tasks
- Example (7): LabelMe
 - A web-based tool for image annotation
 - Anybody can annotate image using it. You can only have access to the database once you have annotated a certain number of images.
- Example (8): 43Things
 - To collect goals from users and help them to find other users who have similar goals
- Example 9: MajorMiner
 - Music annotation game

Amazon Mechanical Turk

Your Account

HITS

Qualifications

Already have an account? Sign in as a Worker | Requester

Introduction | Dashboard | Status | Account Settings

Mechanical Turk is a marketplace for work.

We give businesses and developers access to an on-demand, scalable workforce. Workers select from thousands of tasks and work whenever it's convenient.

26,113 HITs available. View them now.

Make Money by working on HITs

HITs - Human Intelligence Tasks - are individual tasks that you work on. Find HITs now.

As a Mechanical Turk Worker you:

- Can work from home
- Choose your own work hours
- Get paid for doing good work

Get Results from Mechanical Turk Workers

Ask workers to complete HITs - Human Intelligence Tasks - and get results using Mechanical Turk. Register Now

As a Mechanical Turk Requester you:

- Have access to a global, on-demand, 24 x 7 workforce
- Get thousands of HITs completed in minutes
- Pay only when you're satisfied with the results

FAQ | Contact Us | Careers at Amazon | Developers | Press | Policies ©2005-2009 Amazon.com, Inc. or its Affiliates

An amazon.com. compa

Example of Mechanical Turk

Answer a short survey

- 1. What is your gender?
- Male
- Female
- 2. What is your age?

3. Which of the following best describes your highest achieved education level?

Some High School

4. What is the total income of your household?

Less than \$12,500 \$12,500 - \$24,999 \$25,000 - \$37,499 \$37,500 - \$49,999

5. What is your favorite type of TV Show? (select all that apply)

Sports

- Situational Comedies
- 🗌 Drama
- News
- Music Videos

Find the Website Address for this Restaurant

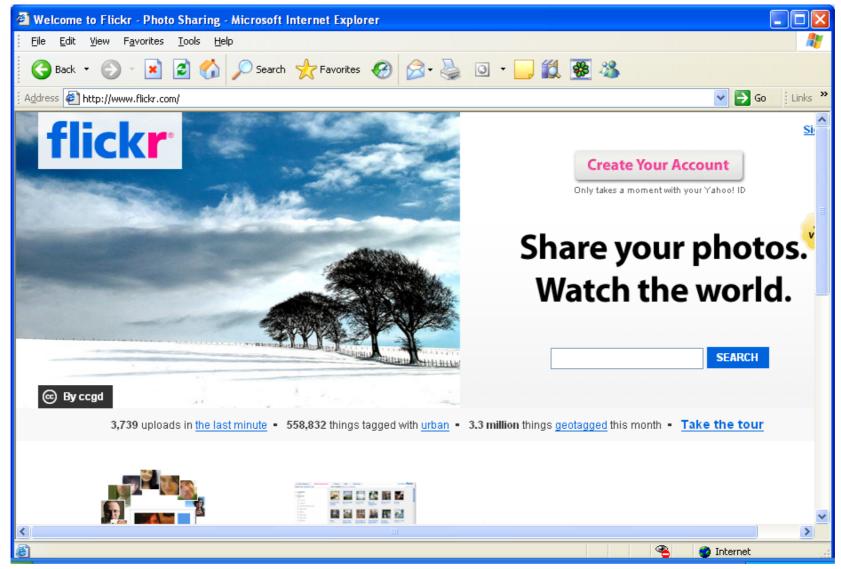
- · For this restaurant below, enter the website address for the official website of the restaurant
- · Include the full address, e.g. http://www.thecheesecakefactory.com
- Do not include URLs to city guides and listings like Citysearch.

Restaurant Name: \${name}

Address: \${address}

Phone Number: \${phone}

Website:


Please provide any comments you may have below, we appreciate your input!


Submit

Distributed Human Computation (6)

- Example (10): Yahoo's flickr
 - It is a photo-sharing site with captions being used as photo tags

Social Game-based Human Computation with Volunteers or Paid Engineers (1)

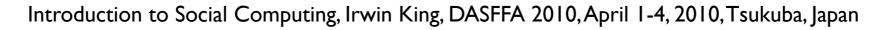
- Recently social games were proposed to collect accurate information from players as a side effect of their playing
- The players are volunteers or paid engineers
- Disadvantages:
 - Rely on online volunteers or paid engineers to enter information explicitly
 - Unable to scale up the system due to high cost
 - No validation mechanism to guarantee that the information collected is accurate

Social Game-based Human Computation with Volunteers or Paid Engineers (2)

- Most of the games at early stage aimed to collect commonsense knowledge.
- Example (I): Cyc
 - To collect information from the input by paid knowledge engineers
- Example (2): Open Mind
 - To collect common sense knowledge from people to develop intelligent software
 - Shortcoming: was too reliant on the unpaid volunteers to donate their time to contribute information

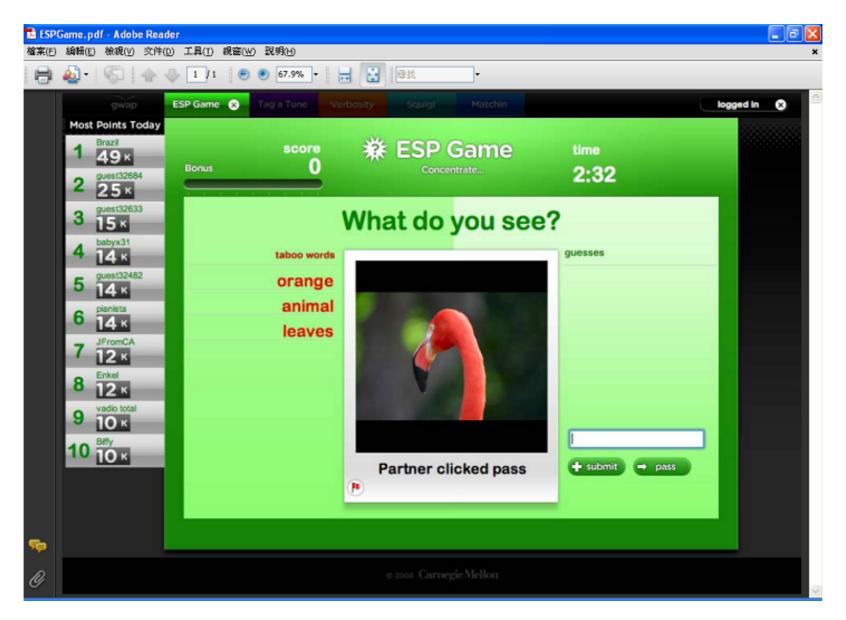
Social Game-based Human Computation with Volunteers or Paid Engineers (3)

• Example (2): Open Mind

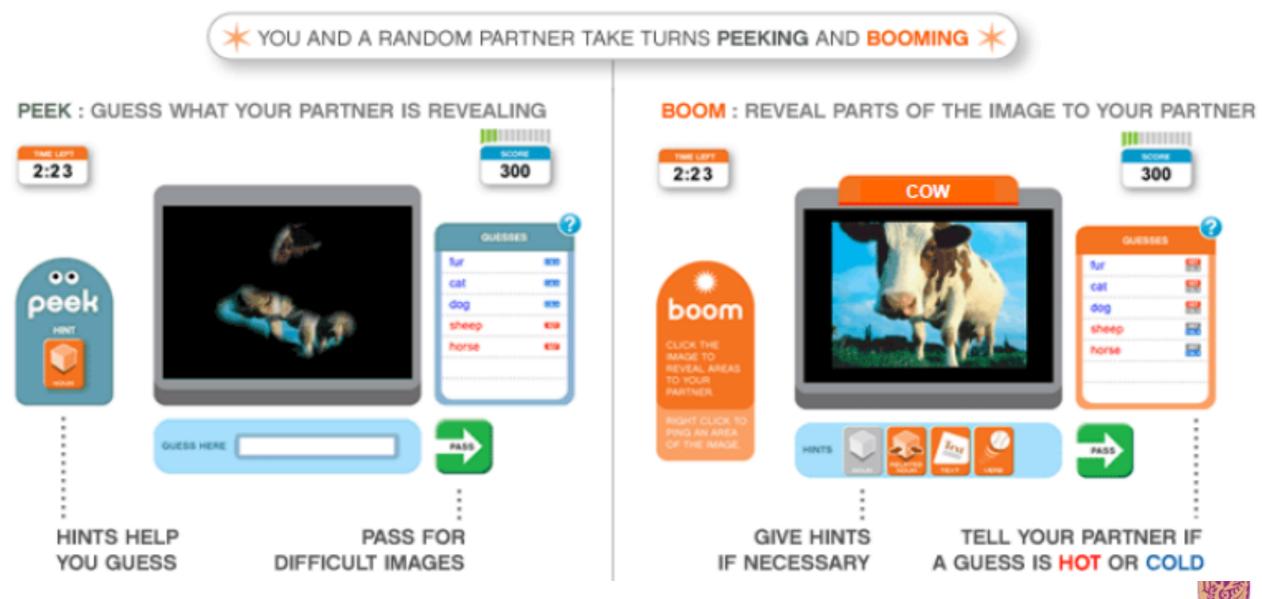

Social Game-based Human Computation with Volunteers or Paid Engineers (4)

- Example (3): Mindpixel
 - Reward those Internet users who consistently validate a fact inline with the other users
 - Shortcoming: the cost is high!
- Example (4): Wildfire wally
 - To solve the maximum clique problem
 - Shortcoming: rely on unpaid volunteers to donate their time to contribute information

Social Game-based Human Computation with Online Players (1)


- Later, social games were proposed to collect information from the players as a side effect of their playing
- Advantage:
 - It encouraged more Internet users to contribute information to solve the AI problems because of the increasingly popularity of online game
- TWO important factors for collecting information effectively from players through a social game:
 - Guarantee the quality of collected information
 - Maintain the enjoyment of players in the game

Social Game-based Human Computation with Online Players (2)


- To collect text information from images
 - Examples (I): ESP game

Social Game-based Human Computation with Online Players (3)

- To collect text information for images:
 - Examples (2): Peekaboom

Social Game-based Human Computation with Online Players (4)

- To collect commonsense knowledge:
 - Examples (3): Verbosity

VERBOSI SCORE: 9999
ECNUS WORD: LAPTOP It contains a <u>KEYBOARD</u>
CARDS: LEFT CLICK TO PLAY, RIGHT CLICK TO REPLACE
CONTENTS PLICEDOSE CONNECT TYPE OPPOSITE BLANK ON

Figure 1. Part of the Narrator's screen. Introduction to social Computing, it with King, האסרה בטוט, הקרוו ו-י, בטוט, Tsukuba, Japan

Social Game-based Human Computation with Online Players (5)

- To collect subjective descriptions of sounds and music:
 - Example (4): Tagatune

Most Points Today 1 Sunshine 173 K 2 Guest40092 86 K	Score 80 Bonus Bonus
3 ^{UtrigleyFilite} 3 50 K 4 24 K 5 SoftParade 5 20 K 6 haim 17 K	Describe the tune Listening to the same tune? 0:10 •••• •••• same different 1 marrow your descriptions your partner's descriptions
7 16 K 8 adaman 9 Amro 10 K 10 S 9,850	male vocal You Correct Partner guitar medieval music 60 points Image: Solo quartet no vocals two females
	+ submit → pass Your partner has chosen.

Social Game-based Human Computation with Online Players (6)

- To learn colleagues' bookmarks in an organizational goal:
 - Example (5): Dogear Game

🖓 The Dogear Game 🛛 🚽					
Main <u>Preferences</u> <u>My Scores</u> <u>About</u> <u>Open Dogear</u> <u>Recommendations</u> 📩 (27 new recommendations)					
Current Score: 2100					
Play the Easy version Play the Hard version					
Ogear Web API Documentation	^				
IBM Travel IBM Ireland Travel HomePage					
Rickr: Photos tagged with lotusphere2007					
Change to the meaning of "subscriptions"					
X Intellectual Property & Licensing Patents					
Art trumps science in dogear?					
X TagCrowd					
Crossing borders: What's the secret sauce in Ruby on Rails?					
🔿 dashboard					
🔀 New York Times Reader Launches					
Signature State St					
🕑 Gecka DOM Reference - MDC					
X Import/export selected bookmarks					
Children and household size					
🔀 CouchSurfing	~				
< III >					

Social Game-based Human Computation with Online Players (7)

- To tag locations in the real world through gameplay in mobile social games:
 - Example (6): Gopher guessing game

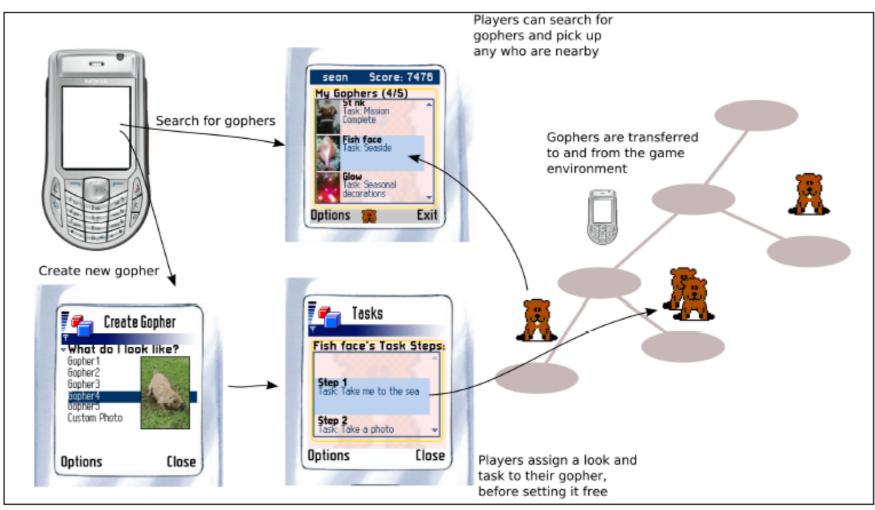


Figure 1. Real world experience, acquiring gophers

Social Game-based Human Computation with Online Players (8)

- To tag locations in the real world through gameplay in mobile social games:
 - Example (7): Gopher guessing game

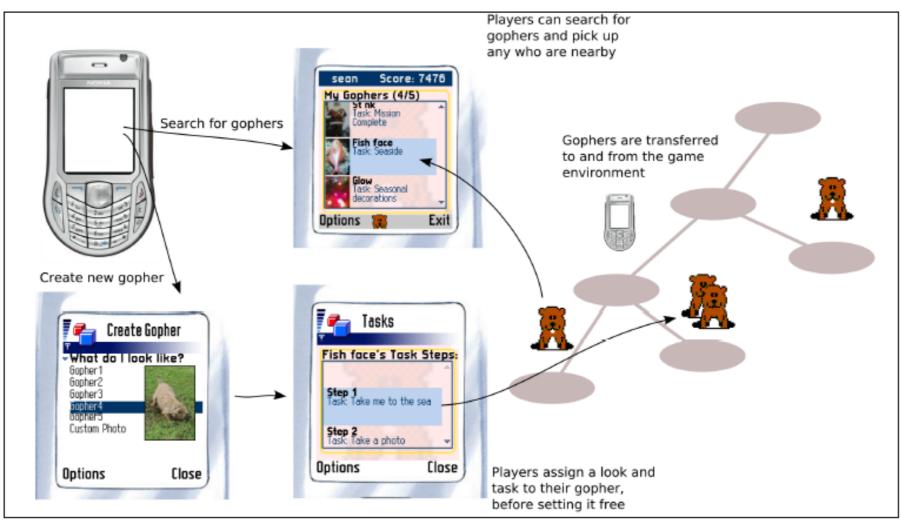
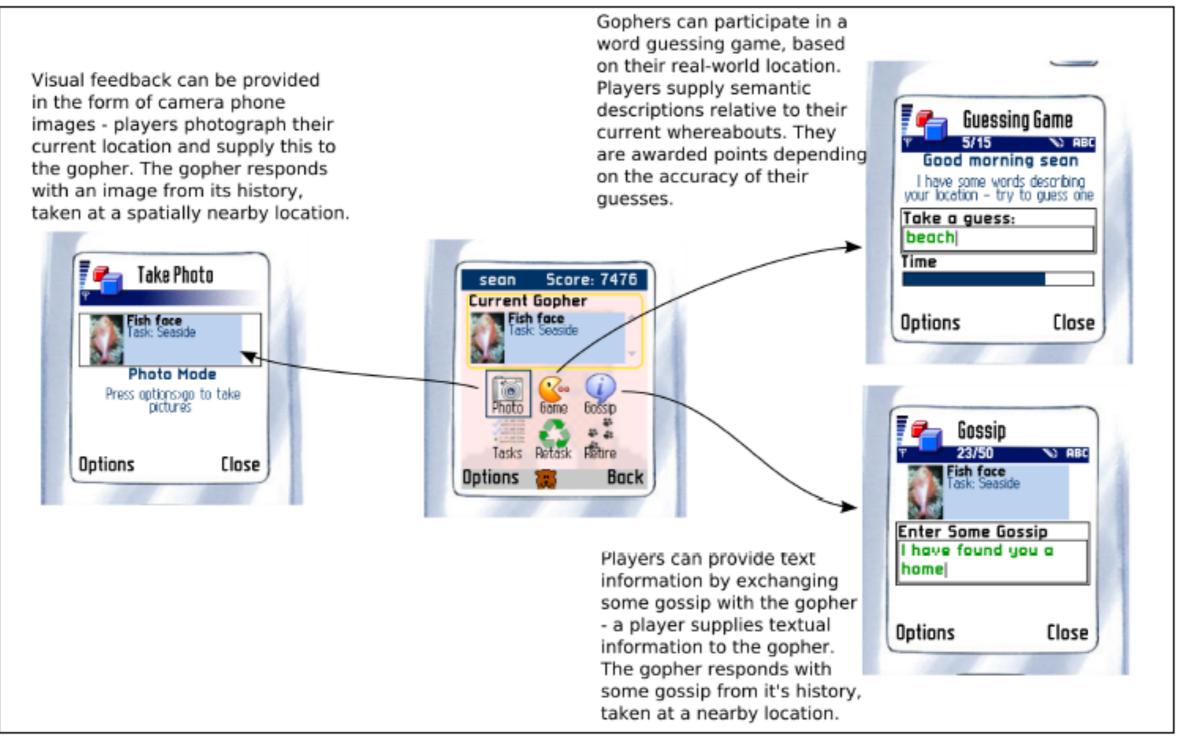



Figure 1. Real world experience, acquiring gophers

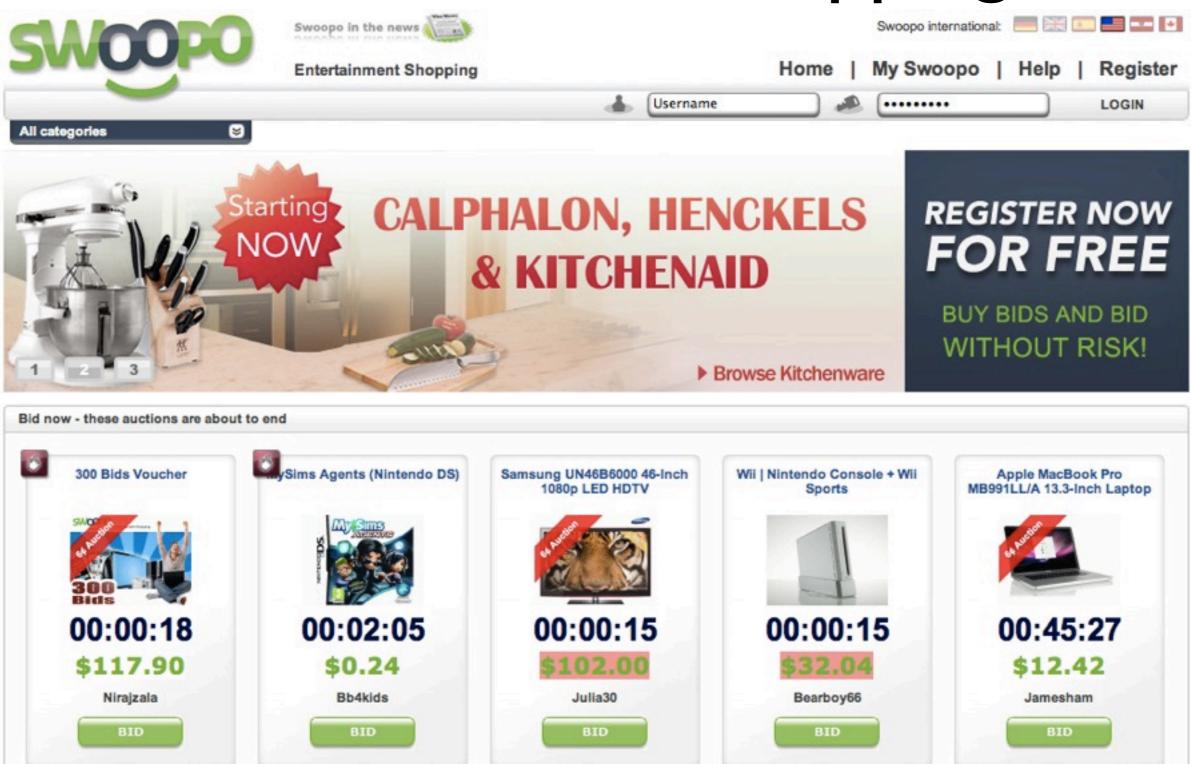


Figure 2. Real world experience, interacting with gophers

Entertainment Shopping

Categorization of Social Games

TABLE I CATEGORIZATION OF SOCIAL GAMES

Game Structure	Verification Method	Game Mechanism		
Output-agreement	Symmetric	Collaborative or Hybrid		
Input-agreement	Symmetric	Collaborative or Hybrid		
Inversion-problem	Asymmetric	Collaborative or Competitive or Hybrid		
Output-optimization	Symmetric or Asymmetric	Collaborative or Competitive or Hybrid		

Summary

TABLE II CATEGORIZATION OF SOCIAL GAMES WITH EXAMPLES

Como Stanotuno	Verification Method	Game Mechanism	Player Requirement		Evenneles
Game Structure			Num of Player	Game Play	Examples
Output-agreement	Symmetric	Collaborative	2	Synchronous	ESP, Matchi, Squigl, OntoGame
		Hybrid	Multi-players	Synchronous	Common Consensus, Social Heroes
		Hybrid	Multi-players	Asynchronous	Gopher Game
Input-agreement	Symmetric	Collaborative	2	Synchronous	TagATune
		Hybrid	N/A	N/A	N/A
Inversion-problem	Asymmetric	Collaborative	1 or 2	Synchronous	Peekaboom, Verbosity
		Competitive	2	Asynchronous	Dogear, CyPRESS, CARS
		Hybrid	1 or Multi-players	Synchronous	Phetch
Output-optimization	Symmetric	Collaborative	2	Synchronous	Restaurant Game
		Competitive	N/A	N/A	N/A
		Hybrid	Multi-players	Synchronous	Diplomacy

Crowsourcing

Sheng-Wei (Kuan-Ta) Chen, Institute of Information Science, Academia Sinica, Taipei, Taiwan

- Crowdsourcing = Crowd + Outsourcing
- Soliciting solutions via open calls to large-scale communities
 - INNOCENTIVE

oDesk

oDesk

- Amazon Mechanical Turk Marketplace for work
- Yahoo! Answers
- Wikipedia

What Are Crowdsourceable?

- Software development USD \$25,000 per job
- Data entry USD \$4.4 per hour
- Image tagging USD \$0.04 per image
- General questions points on Yahoo! Answers
- Image understanding USD \$0.01 to \$0.02 per task
- Human action recognition USD \$0.01 per task
- Linguistic annotations (word similarity) USD \$0.2 per 30 word pairs

Multimedia QoE Assessment

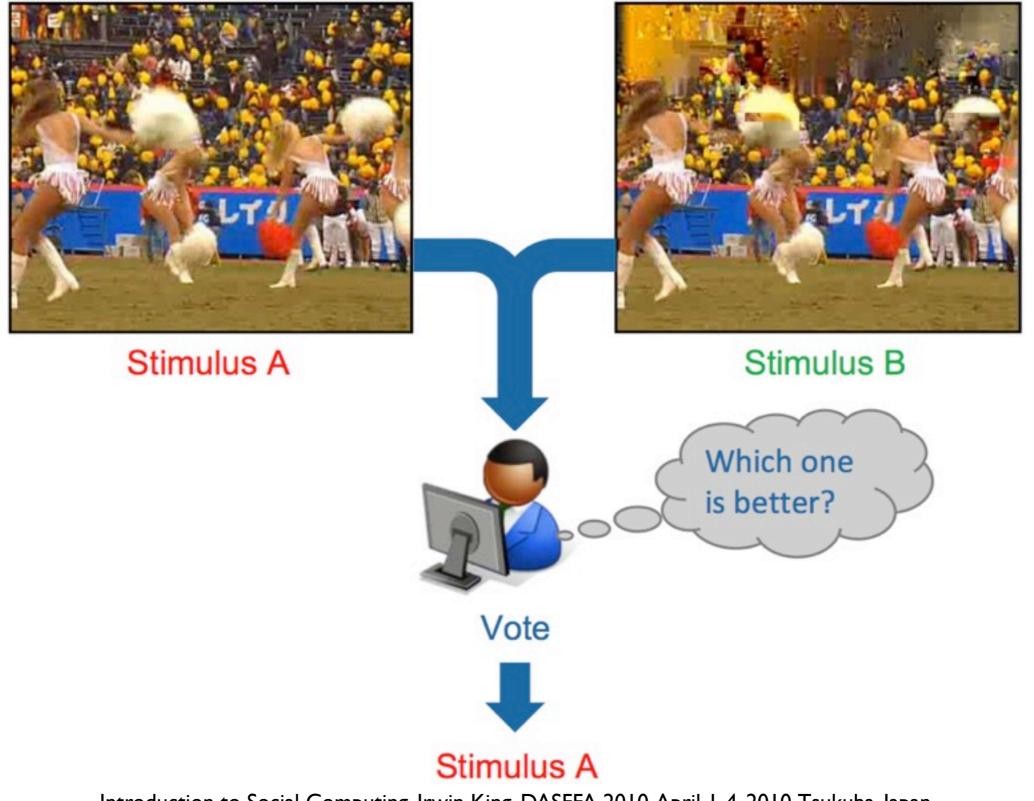
- Quality of Experience (QoE) = User's subjective satisfaction about a service (multimedia content)
- To provide end-user experience, we measure the QoE of multimedia content, e.g, image, voice, video, etc.
 - Efficiency vs. Reliability
 - Objective evaluation approach
 - Subjection evaluation approach

Evaluation Approaches

- Objective Evaluation
 - Cannot capture all the QoE dimensions that may affect users' experiences
 - Cannot include external factors, e.g., quality of headsets, distance between the viewer and the display
- Subjective Evacuation
 - Opinions, e.g., I=bad, 2=poor, 3=fair, 4=good, and 5=excellent
 - Difficult to define the ordinal scales concisely
 - Difficult to verify users' scoring results

Drawbacks of Subjective Evaluation

- High economic cost
 - Participant payment
- High labor cost
 - Supervision labor
- Physical space/time requirements
 - Transportation cost
 - Laboratory space
 - Difficult to find motivated participants



Crowdsourcing Challenges

- Not every Internet user is trustworthy
 - Experiments without supervision so no quality assurance
 - Increased variance and bias
 - Need to find a way to detect problematic inputs!

Paired Comparison Test

Features of Paired Comparison

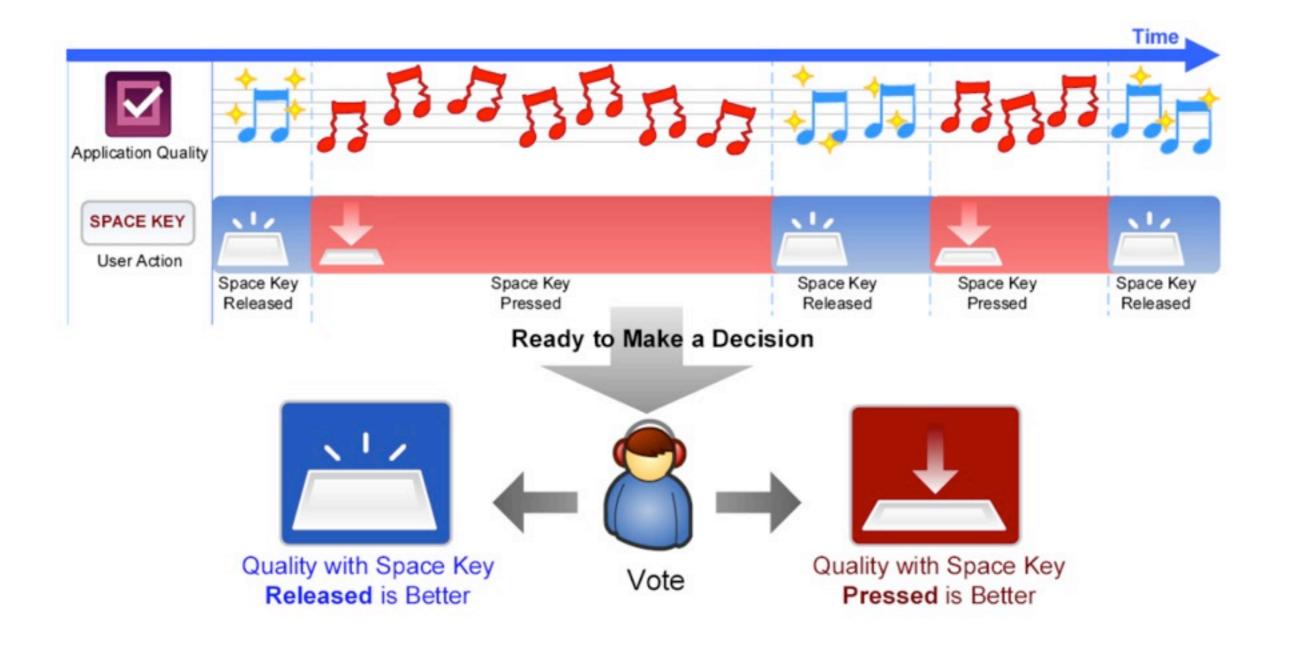
- Generalizable across a variety of multimedia applications
- Simple comparative judgement
- Interval scale QoE scores can be calculated
- Verifiable users' feedback

Verification of Users' Inputs

- Transitivity property
 - If A > B and B > C then A should be > C
- Transitivity Satisfaction Rate (TSR)

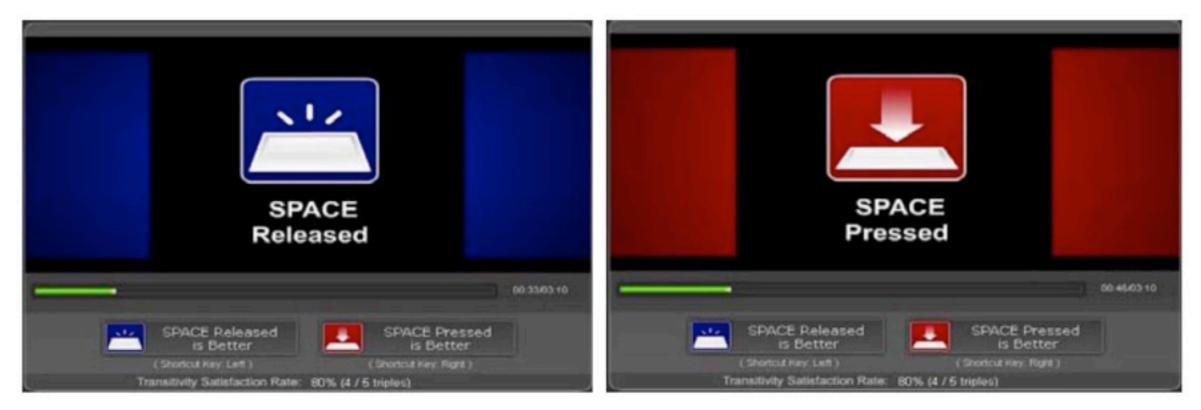
 $\frac{\# \text{ of triples satisfy the transitivity rule}}{\# \text{ of triples the transitivity rule may apply to}}$

- Detect inconsistent judgements from problematic users
 - TSR = I => perfect consistency
 - TSR >= 0.8 => generally consistent
 - TSR < 0.8 => judgement are consistent



Experiment Design

- Suppose our task is to evaluate the effect of n audio processing algorithms, e.g., audio encoding
 - Select an audio clip (source clip) as the evaluation target
 - Apply the *n* algorithms to the source clip and generate *n* different versions of the clip (test clips)
 - Create an Adobe Flash-based system for users to evaluate the *n* test clips
 - A user need to perform 2 out of *n* paired comparison



Concept Flow of Acoustic QoE Evaluation

Which One is Better?

Participant Source

- Laboratory
 - Recruit part-time workers at an hourly rate of USD \$8
- MTurk
 - Post experiments on the Mechanical Turk web site
 - Pay the participant USD \$0.15 for each qualified experiment
- Community
 - Seek participants on the website of Internet community with 1.5 million members
 - Pay the participant an amount of virtual currency that was equivalent to USD \$0.01 for each qualified experiment

Evaluation of the Framework

- Three participant sources
 - Laboratory
 - Amazon Mechanical Turk
 - Community
- Each with different cost structure
- Compare the cost required by each participant and the data quality produced

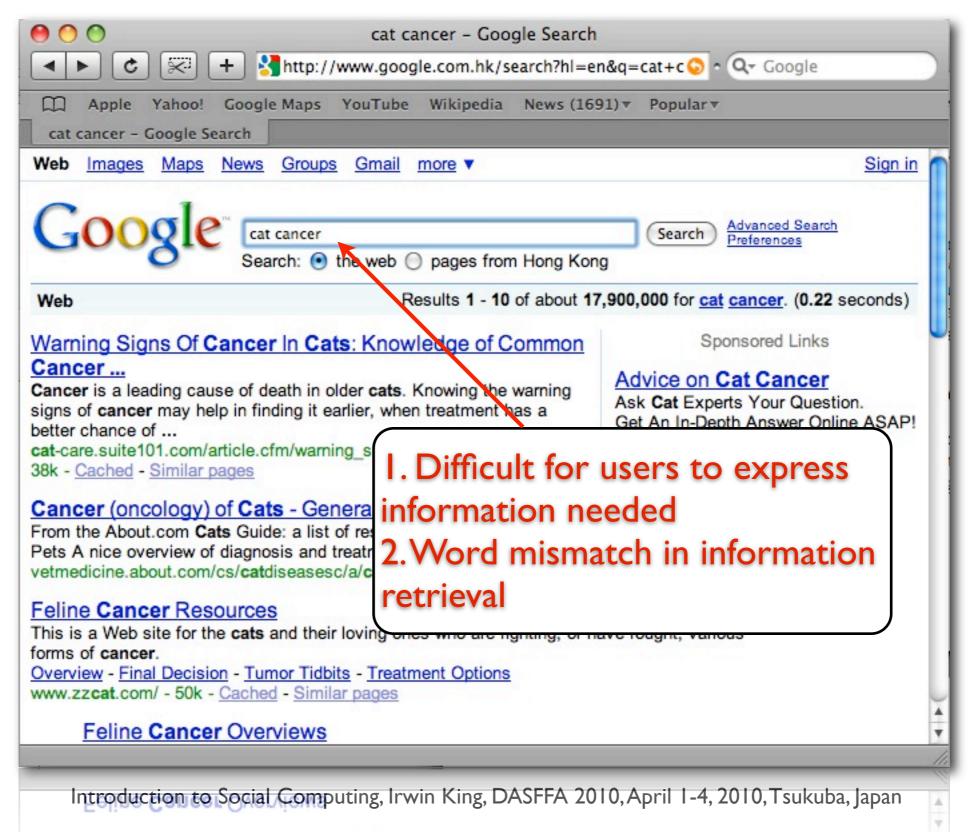
- The first crowdsourcable QoE evaluation framework
- Users' inputs can be verified
 - the transitivity property: A > B and B > C → A > C
 - detect inconsistent judgements from problematic users
- Experiments can thus be outsourced to Internet crowd
 - Iower monetary cost -
 - wider participant diversity
 - maintaining the evaluation results' quality

Experimenter Source	Total Cost (dollar)	# Rounds	# Person	Qualified Rate	Cost / Round (cent)	Time / Round (sec)	Avg. TSR
Laboratory	50.97	1440	10	67%	3.54	16	0.96
MTurk	7.50	750	24	47%	1.00	9	0.96
Community	1.03	1,470	93	54%	0.07	25	0.96
	Source Laboratory MTurk	Experimenter SourceCost (dollar)Laboratory50.97MTurk7.50	Experimenter SourceCost (dollar)# RoundsLaboratory50.971440MTurk7.50750	Experimenter SourceCost (dollar)# Rounds# PersonLaboratory50.97144010MTurk7.5075024	Experimenter SourceCost (dollar)# Rounds# PersonQualified RateLaboratory50.9714401067%MTurk7.507502447%	Experimenter SourceIotal Cost (dollar)# Rounds# PersonQualified Rate/ Round (cent)Laboratory50.9714401067%3.54MTurk7.507502447%1.00	Experimenter SourceTotal Cost (dollar)# Rounds# PersonQualified Rate/ Round (cent)Time / Round (sec)Laboratory50.9714401067%3.5416MTurk7.507502447%1.009

Chen et al, "A Crowdsourceable QoE Evaluation Framework for Multimedia Content," Proceedings of ACM Multimedia 2009.

Summary

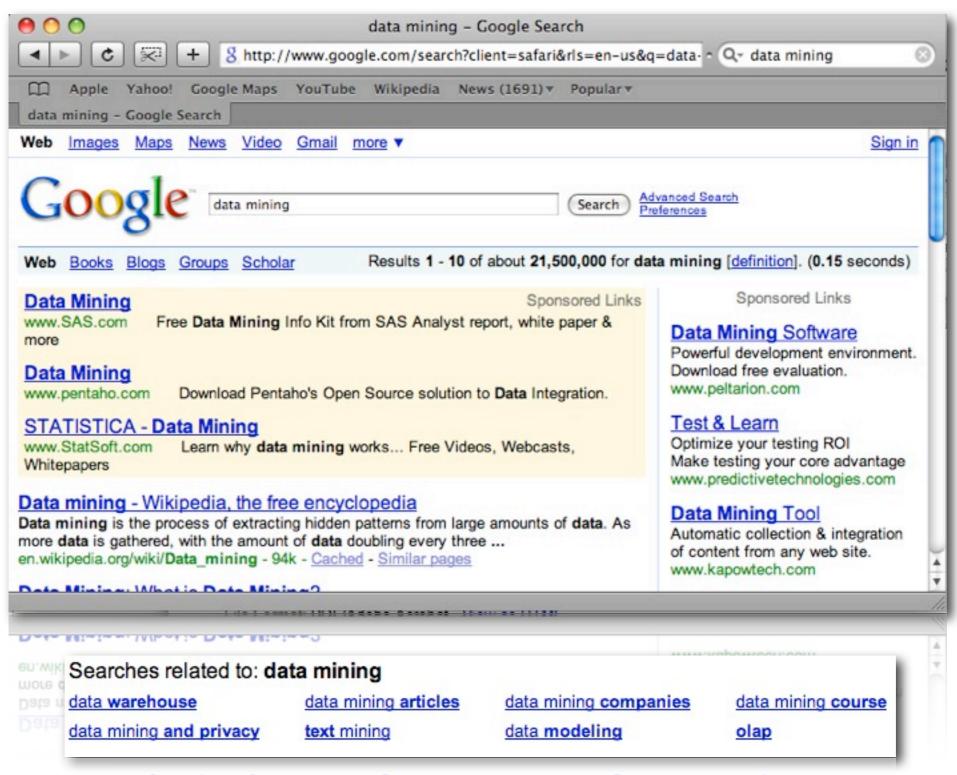
- Human computation is useful can be effective in performing intelligent tasks where computers cannot
- Crowdsourcing provides a new paradigm and a new platform for scientific research
- New applications, new methodologies, and new businesses are emerging with the aid of human computing/crowdsourcing


Query Suggestion

Irwin King Department of Computer Science and Engineering The Chinese University of Hong Kong http://www.cse.cuhk.edu.hk/~king

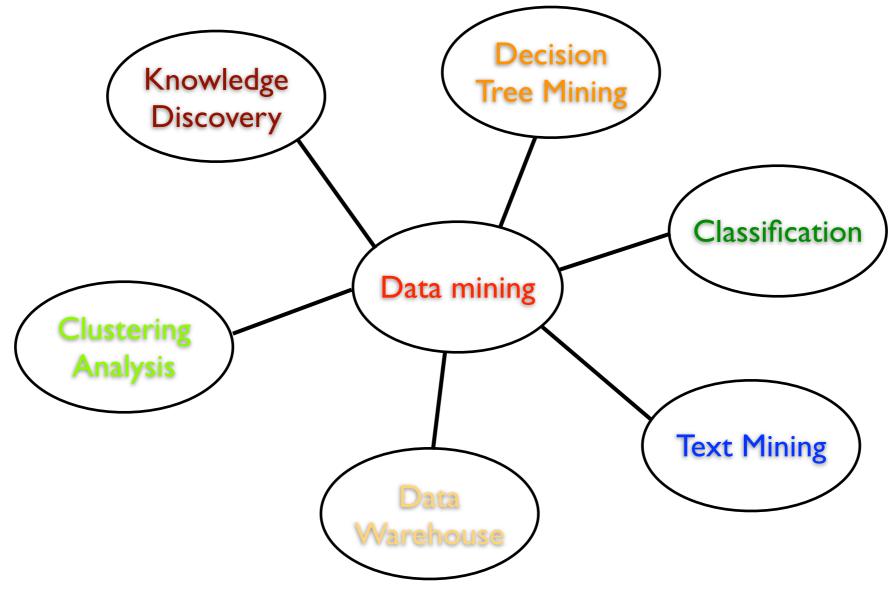
©2009 Irwin King. All rights reserved

Motivation



Motivation

00	cat car	ncer – Google Search
< ► C 🐖	🕂 🛃 http://www.go	oogle.com.hk/search?hl=en&q=c😋 ^ Q+ Google
Apple Yahoo	o! Google Maps YouTub	be Wikipedia News (1691)▼ Popular▼
cat cancer - Google	Search	
('how could I have pre	evented this?'), and it eline_cancer2.pdf - Similar	often feelings of bewilderment and even guilt.
feline squamous cell cancer	squamous cell carcinoma cats	dogs and cats feline oral squamous cell carcinoma
cat cancer symptoms	cat lymph nodes	radiation Iymphoma in cats therapy cats
	G00000 1 2 3 4 5	6 7 1. Accurate to express information needed
	cat cancer	2. Easy to inform information
		vin King, DASFFA 2010, April 1-4, 2010, Tsukuba, Japan


Motivation

Challenges

• Word mismatch: people often use different words to describe concepts in their queries than authors use to describe the same concepts in their documents.

Challenges

- Queries contain ambiguous and new terms
 - apple: "apple computer" or "apple pie"?
 - NDCG:?

- Users tend to submit short queries consisting of only one or two words
 - almost 20% one-word queries
 - almost 30% two-word queries
- Users may have little or even no knowledge about the topic they are searching for!

Classes of Suggestion Relevance

[Jones, 2006]

- Precise rewriting
 - The rewritten form of query matches user's intent
- Approximate rewriting
 - The rewritten form has a direct close relationship to the topic described by the initial query
- Possible rewriting
 - The rewritten form either has some categorical relationship to the initial query or describes a complementary product
- Clear mismatch
 - The rewritten form has no clear relationship to user's intent

Example Queries and Query-suggestion

Class	Score	Examples			
Precise	1	automotive insurance	\mapsto	automobile insurance	
rewriting		corvette car	\mapsto	chevrolet corvette	
		apple music player	\mapsto	apple ipod	
		apple music player	\mapsto	ipod	
		cat cancer	\mapsto	feline cancer	
		help with math homework	\mapsto	math homework help	
Approximate	2	apple music player	\mapsto	ipod shuffle	
rewriting		personal computer	\mapsto	compaq computer	
		hybrid car	\mapsto	toyota prius	
		aeron chair	\mapsto	office furniture	
Possible	3	onkyo speaker system	\mapsto	yamaha speaker system	
rewriting		eye-glasses	\mapsto	contact lenses	
		orlando bloom	\mapsto	johnny depp	
		cow	\mapsto	pig	
		ibm thinkpad	\mapsto	laptop bag	
Clear	4	jaguar xj6	↦	os x jaguar	
mismatch		time magazine	\mapsto	time and date magazine	

Typical Query Suggestion

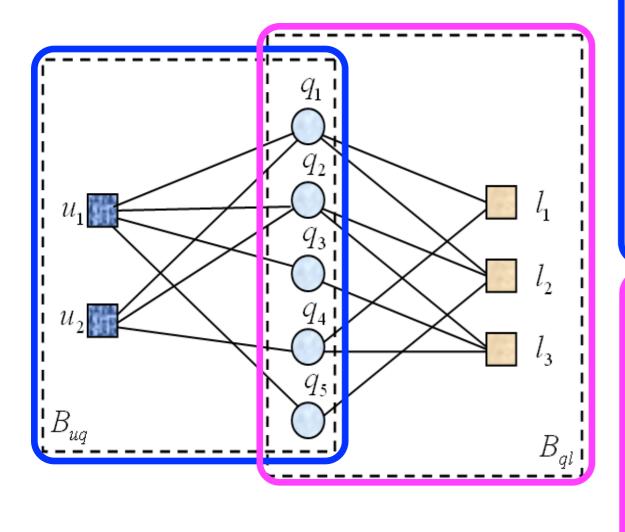
• Global analysis

- Selects expansion terms on the basis of the information on the whole document set
- Relatively robust
- Expensive in terms of disk space and computer time
- Local analysis
 - Formulate expansion terms based on top-ranked results
 - Relatively efficient
 - Perform badly for queries with few relevant documents

Query Suggestion Using Clickthrough Data

Query logs recorded by search engines

$\langle u, q, l, r, t \rangle$


Table 1: Samples of search engine clickthrough data

ID	Query	URL	Rank	Time
358	facebook	http://www.facebook.com	1	2008-01-01 07:17:12
358	facebook	http://en.wikipedia.org/wiki/Facebook	3	2008-01-01 07:19:18
3968	apple iphone	http://www.apple.com/iphone/	1	2008-01-01 07:20:36

 Users' relevance feedback to indicate desired/preferred/ target results

Joint Bipartite Graph

$$B_{uq} = (V_{uq}, E_{uq})$$

$$V_{uq} = U \cup Q$$

$$U = \{u_1, u_2, ..., u_m\}$$

$$Q = \{q_1, q_2, ..., q_n\}$$

$$E_{uq} = \{(u_i, q_j) | \text{ there is an edge from } u_i \text{ to } q_j\}$$
is the set of all edges.
The edge (u_i, q_j) exists in this bipartite graph
if and only if a user u_i issued a query q_j .

$$B_{ql} = (V_{ql}, E_{ql})$$

$$V_{ql} = Q \cup L$$

$$Q = \{q_1, q_2, ..., q_n\}$$

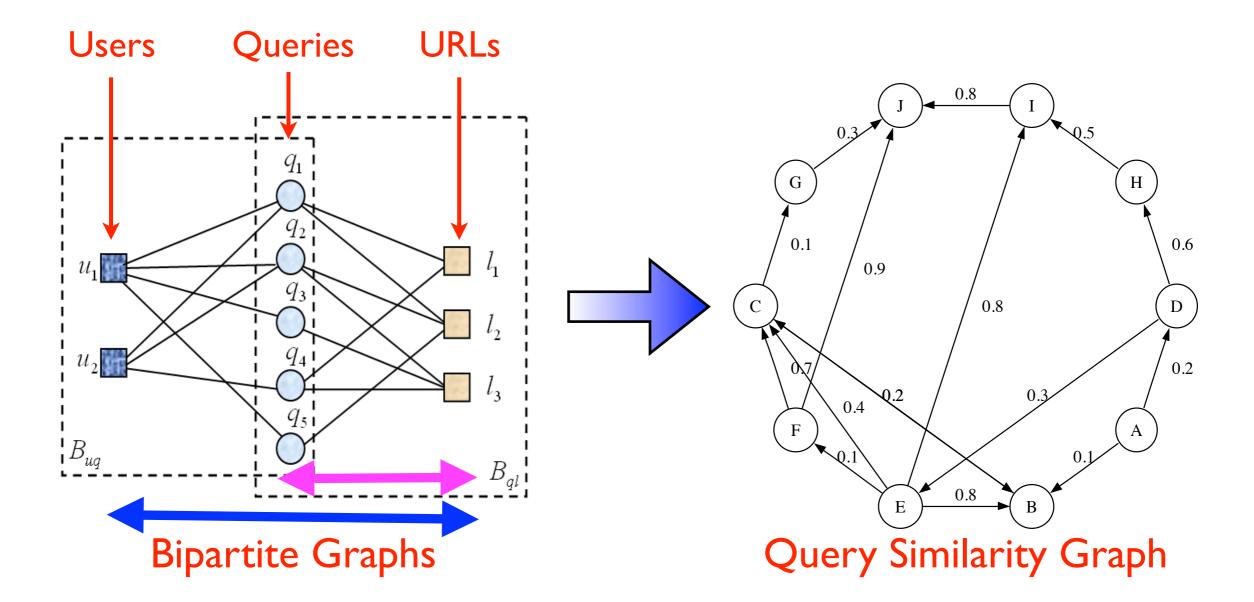
$$Q = \{q_1, q_2, ..., q_n\}$$

$$L = \{l_1, l_2, ..., l_p\}$$

$$E_{ql} = \{(q_i, l_j) | \text{ there is an edge from } q_i \text{ to } l_j\}$$

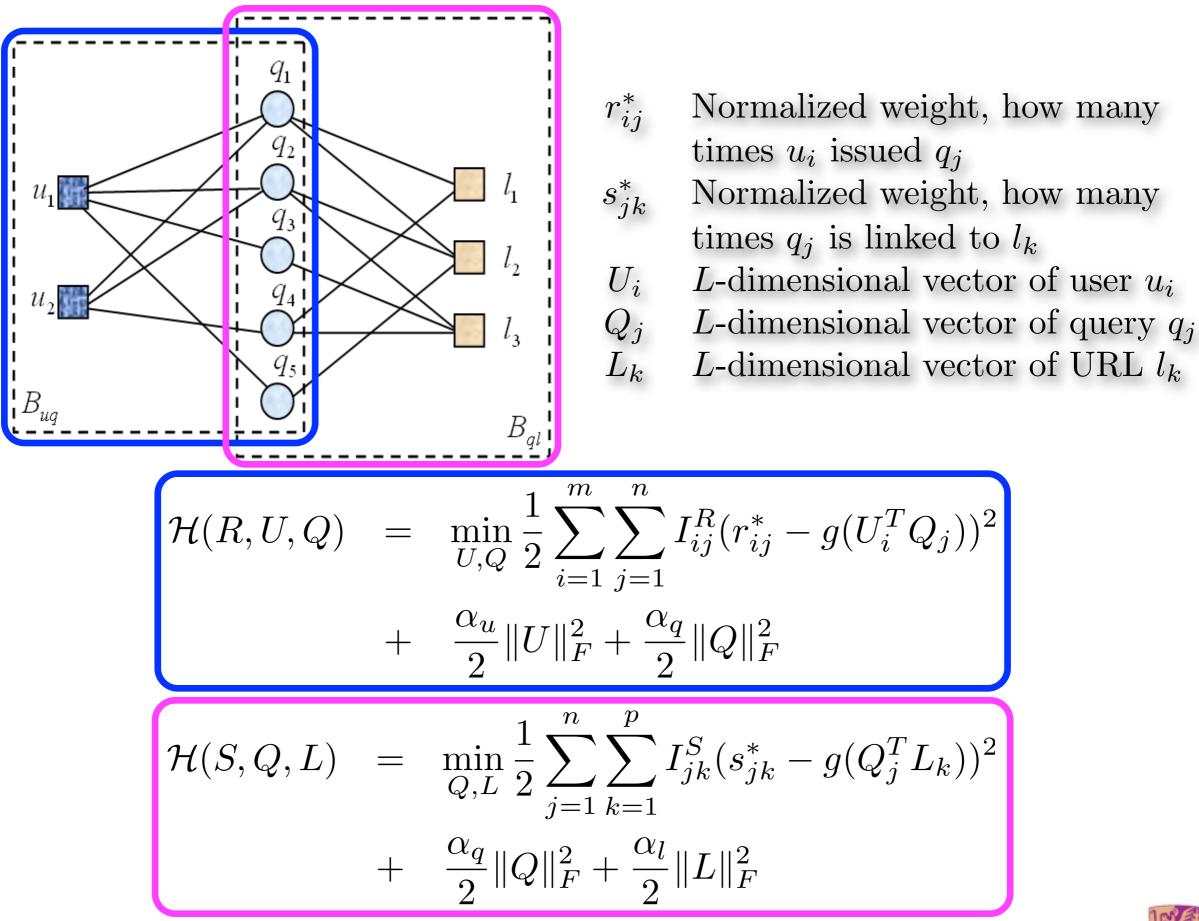
is the set of all edges.

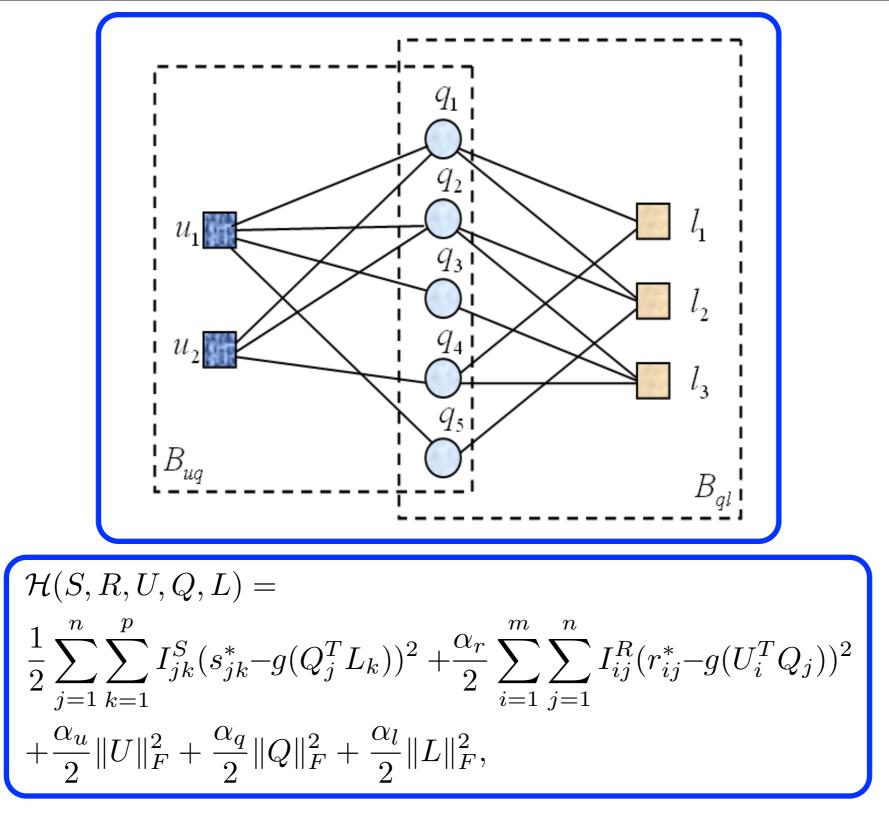
The edge (q_j, l_k) exists if and only if a user u_i clicked a URL l_k after issuing an query q_j .


Key Points

• Two-level latent semantic analysis

Level


- el Consider the use of a joint user-query and query-URL bipartite graphs for query suggestion
 - Use matrix factorization for learning query features in constructing the Query Similarity Graph
 - Use heat diffusion for similarity propagation for query suggestions

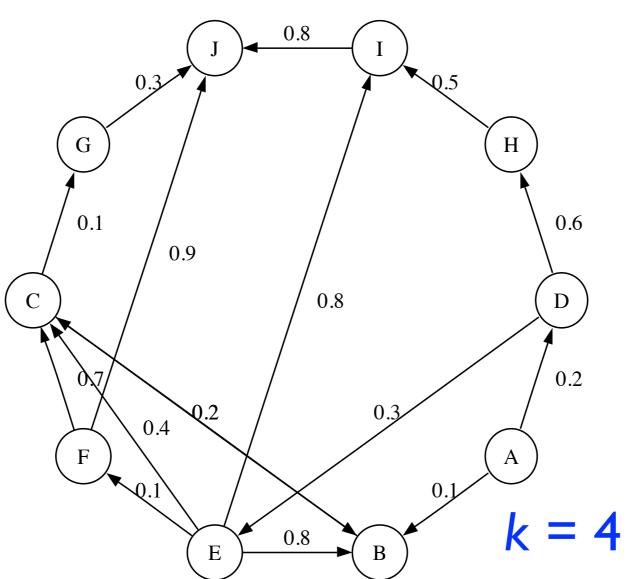


- Queries are issued by the users, and which URLs to click are also decided by the users
- Two distinct users are similar if they issued similar queries
- Two queries are similar if they are issued by similar users

 A local minimum can be found by performing gradient descent in U_i, Q_j and L_k

Gradient Descent Equations

$$\frac{\partial \mathcal{H}}{\partial U_i} = \alpha_r \sum_{j=1}^n I_{ij}^R g'(U_i^T Q_j) (g(U_i^T Q_j) - r_{ij}^*) Q_j + \alpha_u U_i,$$


$$\frac{\partial \mathcal{H}}{\partial Q_j} = \sum_{k=1}^p I_{jk}^S g'(Q_j^T L_k) (g(Q_j^T L_k) - s_{jk}^*) L_k$$

$$+ \alpha_r \sum_{i=1}^m I_{ij}^R g'(U_i^T Q_j) (g(U_i^T Q_j) - r_{ij}^*) U_i + \alpha_q Q_j,$$

$$\frac{\partial \mathcal{H}}{\partial L_k} = \sum_{j=1}^n I_{jk}^S g'(Q_j^T L_k) (g(Q_j^T L_k) - s_{jk}^*) Q_j + \alpha_l L_k,$$
In Only the Q matrix, the queries' latent features, is being used to generate the query similarity graph!

Query Similarity Graph

- Similarities are calculated using queries' latent features
- Only the top-k similar neighbors (terms) are kept

Similarity Propagation

- Based on the Heat Diffusion Model
- In the query graph, given the heat sources and the initial heat values, start the heat diffusion process and perform *P* steps
- Return the Top-N queries in terms of highest heat values for query suggestions

Heat Diffusion Model

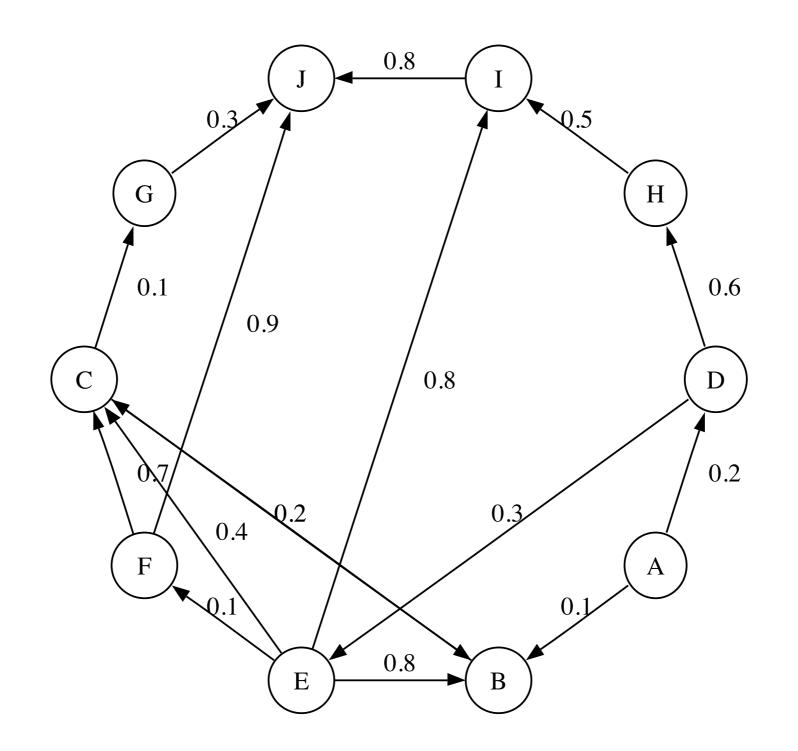
- Heat diffusion is a physical phenomena
- Heat flows from high temperature to low temperature in a medium
- Heat kernel is used to describe the amount of heat that one point receives from another point
- The way that heat diffuse varies when the underlying geometry varies

$$\rho C_P \frac{\partial T}{\partial t} = Q + \nabla \cdot (k \nabla T)$$

Density

 $\frac{\partial T}{\partial t}$

k


 C_P Heat capacity and

constant pressure

- Change in temperature over time
- Q Heat added
 - Thermal conductivity
 - T Temperature gradient
- $\cdot \mathbf{v}$ Divergence

Heat Diffusion Process

Similarity Propagation Model

$$\frac{f_{i}(t + \Delta t) - f_{i}(t)}{\Delta t} = \alpha \left(-\frac{\tau_{i}}{d_{i}} f_{i}(t) \sum_{k:(q_{i},q_{k})\in E} w_{ik} + \sum_{j:(q_{j},q_{i})\in E} \frac{w_{ji}}{d_{j}} f_{j}(t) \right) (\mathbf{I})$$

$$\mathbf{f}(1) = e^{\alpha \mathbf{H}} \mathbf{f}(0) \qquad (\mathbf{2})$$

$$\mathbf{H}_{ij} = \begin{cases} w_{ji}/d_{j}, & (q_{j},q_{i})\in E, \\ -(\tau_{i}/d_{i})\sum_{k:(i,k)\in E} w_{ik}, & i=j, \\ 0, & \text{otherwise.} \end{cases}$$

$$\mathbf{f}(1) = e^{\alpha \mathbf{R}} \mathbf{f}(0), \quad \mathbf{R} = \gamma \mathbf{H} + (1 - \gamma) \mathbf{g} \mathbf{1}^{T} (\mathbf{4})$$

- α Thermal conductivity
- $\begin{array}{ll} d_i & \text{Heat value of node } i \\ & \text{at time } t \end{array}$
- $f_i(t)$ Heat value of node iat time t
- w_{ik} Weight between node *i* and node *k*
- $\mathbf{f}(0)$ Vector of the initial heat distribution
- f(1) Vector of the heat distribution at time 1
 - au_i Equal to 1 if node *i* has outlinks, else equal to 0
 - $\begin{array}{ll} \gamma & \mbox{Random jump parameter,} \\ & \mbox{and set to } 0.85 \end{array}$
 - **g** Uniform stochastic distribution vector

Discrete Approximation

- Compute $e^{\alpha \mathbf{R}}$ is time consuming
- We use the discrete approximation to substitute

$$\mathbf{f}(1) = \left(\mathbf{I} + \frac{\alpha}{P}\mathbf{R}\right)^{P}\mathbf{f}(0)$$

- For every heat source, only diffuse heat to its neighbors within *P* steps
- In our experiments, P = 3 already generates fairly good results

Query Suggestion Procedure

- For a given query q
- I. Select a set of n queries, each of which contains at least one word in common with q, as heat sources
- 2. Calculate the initial heat values by

$$f_{\hat{q}_i}(0) = \frac{|\mathcal{W}(q) \cap \mathcal{W}(\hat{q}_i)|}{|\mathcal{W}(q) \cup \mathcal{W}(\hat{q}_i)|}$$

- 3. Use $\mathbf{f}(1) = e^{\alpha \mathbf{R}} \mathbf{f}(0)$ to diffuse the heat in graph
- 4. Obtain the Top-N queries from $\mathbf{f}(1)$

Physical Meaning of α

- If set α to a large value
 - The results depend more on the query graph, and more semantically related to original queries, e.g., travel => lowest air fare
- If set α to a small value
 - The results depend more on the initial heat distributions, and more literally similar to original queries, e.g., travel => travel insurance

Experimental Dataset

Data Source	Clickthrough data from AOL search	After Pre- Processing
Collection Period	March 2006 to May 2006 (3 months)	
Lines of Logs	19,442,629	
Unique user IDS	657,426	192,371
Unique queries	4,802,520	224,165
Unique URLs	I,606,326	343,302
Unique words		69,937

Pre-processing

- Computer set-up Intel Pentium D CPU, 3.0 Gz, Dual Core with IG memory
- Keep valid words which contains only 'a', 'b',..., 'z' and spaces
- Remove those queries which appear less than three times

Query Suggestions

Table 2: Examples of LSQS Query Suggestion Results (k = 50)

			Suggestions				
Testing Queries		$\alpha = 10$		$\alpha = 1$	$\alpha = 1000$		
	Top 1	Top 2	Top 3	Top 4	Top 5		
michael jordan	michael jordan shoes	michael jordan bio	pictures of michael jordan	nba playoff	nba standings		
travel	travel insurance	abc travel	travel companions	hotel tickets	lowest air fare		
java	sun java	java script	java search	sun microsystems inc	virtual machine		
global services	0	global technical services	staffing services	temporary agency	manpower professional		
walt disney land	v	disney world orlando	disney world theme park	disneyland grand hotel	disneyland in california		
intel	intel vs amd	amd vs intel	pentium d	pentium	$\operatorname{centrino}$		
job hunt	jobs in maryland	monster job	jobs in mississippi	work from home online	monster board		
photography	photography classes	portrait photography	wedding photography	adobe elements	canon lens		
internet explorer	ms internet explorer	internet explorer repair	internet explorer upgrade	microsoft com	security update		
$_{\rm fitness}$	fitness magazine	lifestyles family fitness		womens health magazine	family fitness		
m schumacher	schumacher	red bull racing	formula one racing	ferrari cars	formula one		
solar system	solar system project	solar system facts	solar system planets	planet jupiter	mars facts		
sunglasses	replica sunglasses	cheap sunglasses	discount sunglasses	safilo	marhon		
search engine	audio search engine	best search engine	search engine optimization	song lyrics search	search by google		
disease	grovers disease	liver disease	morgellons disease	colic in babies	oklahoma vital records		
pizzahut	pizza hut menu	pizza coupons	pizza hut coupons	papa johns pizza coupon	papa johns		
health care	health care proxy	universal health care	free health care	great west healthcare	uhc		
v	global flower delivery	online florist	flowers online	send flowers	virtual flower		
wedding	wedding guide	wedding reception ideas	wedding decoration	unity candle	centerpiece ideas		
astronomy	astronomy magazine	astronomy pic of the day	star charts	space pictures	comet		

References

- S. Cucerzan and R.W.White. Query suggestion based on user landing pages. In SIGIR, pages 875–876, 2007.
- H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma. Query expansion by mining user logs. IEEE Trans. Knowl. Data Eng., 15(4):829–839, 2003.
- W. Gao, C. Niu, J.-Y. Nie, M. Zhou, J. Hu, K.-F. Wong, and H.-W. Hon. Cross-lingual query suggestion using query logs of different languages. In SIGIR, pages 463–470, 2007.
- R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substitutions. In L. Carr, D. D. Roure, A. Iyengar, C.A. Goble, and M. Dahlin, editors, WWW, pages 387–396. ACM, 2006.
- H. Ma, H. Yang, I. King, and M. R. Lyu. Learning latent semantic relations from clickthrough data for query suggestion. In CIKM, pages 709–718, 2008.
- Q. Mei, D. Zhou, and K.W. Church. Query suggestion using hitting time. In CIKM, pages 469–478, 2008.
- J. Xu and W. B. Croft. Query expansion using local and global document analysis. In SIGIR, pages 4–11, 1996.

Privacy and Trust in Social Networks

Irwin King Department of Computer Science and Engineering The Chinese University of Hong Kong http://www.cse.cuhk.edu.hk/~king

©2010 Irwin King. All rights reserved

Privacy and Trust Tradeoff

- Privacy
- Need legal rights
- Reveal more data to trustworthy people

• Trust

- Provide access rights
- Gain trust through open sensitive data

Motivation

Published table

	Age	Zip.	Salary	
<	17	12k	1000	
	19	13k	1010	
	20	14k	1020	
	24	16k	50000	
	29	21k	16000	
	34	24k	24000	
	- 39	36k	33000	
	45	39k	31000	

Voter registration list

	Name	Age	Zip.
4	Andy	17	12k
	Bill	19	13k
	Ken	20	14k
	Jane	23	15k
	Nash	24	16k
	Joe	29	21k
	Sam	34	24k
	Linda	- 39	36k
	Mary	45	39k

An adversary


••

Fact: 87% of Americans can be uniquely identified by {Zipcode, gender, date-of-birth}.

k-anonymity

[Sweeney, 2001]

(a) The microdata

(b) Generalization

Not sure about the salary of Andy now!

- k-anonymity
 - Divide tuples into groups
 - Each group has at least k tuples

Problem with k-anonymity [Machanavajjhala, 2001]

	N	Sensitive		
	Zip Code	Age	Nationality	Condition
1	13053	28	Russian	Heart Disease
2	13068	29	American	Heart Disease
3	13068	21	Japanese	Viral Infection
4	13053	23	American	Viral Infection
5	14853	50	Indian	Cancer
6	14853	55	Russian	Heart Disease
7	14850	47	American	Viral Infection
8	14850	49	American	Viral Infection
9	13053	31	American	Cancer
10	13053	37	Indian	Cancer
11	13068	36	Japanese	Cancer
12	13068	35	American	Cancer

Microdata

	N	Sensitive		
	Zip Code	Age	Nationality	Condition
1	130**	< 30	*	Heart Disease
2	130**	< 30	*	Heart Disease
3	130**	< 30	*	Viral Infection
4	130**	< 30	*	Viral Infection
5	1485*	≥ 40	*	Cancer
6	1485*	≥ 40	*	Heart Disease
7	1485*	≥ 40	*	Viral Infection
8	1485*	≥ 40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

A 4-anonymous table

What about we know a person's Zip Code = 13053 and Age = 31? In this case, we can conclude his/her disease is Cancer.

I-diversity

[Machanavajjhala, 2001]

	N	on-Se	Sensitive	
	Zip Code Age		Nationality	Condition
1	13053	28	Russian	Heart Disease
2	13068	29	American	Heart Disease
3	13068	21	Japanese	Viral Infection
4	13053	23	American	Viral Infection
5	14853	50	Indian	Cancer
6	14853	55	Russian	Heart Disease
7	14850	47	American	Viral Infection
8	14850	49	American	Viral Infection
9	13053	31	American	Cancer
10	13053	37	Indian	Cancer
11	13068	36	Japanese	Cancer
12	13068	35	American	Cancer

	N	Sensitive		
	Zip Code	Age	Nationality	Condition
1	1305*	≤ 40	*	Heart Disease
4	1305*	≤ 40	*	Viral Infection
9	1305*	≤ 40	*	Cancer
10	1305*	≤ 40	*	Cancer
5	1485*	> 40	*	Cancer
6	1485*	> 40	*	Heart Disease
7	1485*	> 40	*	Viral Infection
8	1485*	> 40	*	Viral Infection
2	1306*	≤ 40	*	Heart Disease
3	1306*	≤ 40	*	Viral Infection
11	1306*	≤ 40	*	Cancer
12	1306*	≤ 40	*	Cancer

Microdata

A 3-diverse table

- *I*-diversity
 - Divide tuples into groups
 - Each group has at least *I* different sensitive values

(k, e)-anonymity

[Zhang, 2007]

	ID	(Quasi-identi	fiers	Sensitive			Qu	asi-identifie	ers	Sensitive
tuple ID	name	age	zipcode	gender	salary	group ID	tuple ID	age	zipcode	gender	salary
1	Alex	35	27101	M	\$54,000	1	1	[31-40]	271*	*	\$56,000
2	Bob	38	27120	М	\$55,000	1	2	[31-40]	271*	*	\$54,000
3	Carl	40	27130	M	\$56,000	1	3	[31-40]	271*	*	\$55,000
4	Debra	41	27229	F	\$65,000	2	4	[41-50]	272*	*	\$65,000
5	Elain	43	27269	F	\$75,000	2	5	[41-50]	272*	*	\$75,000
6	Frank	47	27243	M	\$70,000	2	6	[41-50]	272*	*	\$70,000
7	Gary	52	27656	M	\$80,000	3	7	[51-60]	276*	*	\$80,000
8	Helen	53	27686	F	\$75,000	3	8	[51-60]	276*	*	\$75,000
9	Jason	58	27635	M	\$85,000	3	9	[51-60]	276*	*	\$85,000

Microdata

A 3-diverse table

Though the salary in group 1 is different, we are sure that Alex's salary is around 55,000

- (k, e)-anonymity
 - Each group has at least k tuples
 - Difference between the maximum and minimum values must be at least e

Outline

- What is privacy and trust?
- Privacy in social network
 - Basic privacy requirement
 - Privacy in graph
- Trust in social network
- Reference

Possible Attacks on Anonymized Graphs

- Attack method [Michael Hay, 2008]
 - Identify by neighborhood information
 - It includes
 - Vertex Refinement Queries
 - Sub-graph Queries
 - Hub Fingerprint Queries

Possible Attacks on Anonymized Graphs

- Attack types [Lars Backstrom, 2008]
 - Active Attacks
 - Create a small number of new user accounts linking with other users before the anonymized graph is generated
 - Passive Attacks
 - Identify themselves in the published graph
 - Semi-passive Attacks
 - Create necessary link with other users

Vertex Refinement Queries

Alice

Bob

Ed

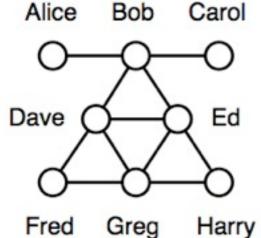
Fred

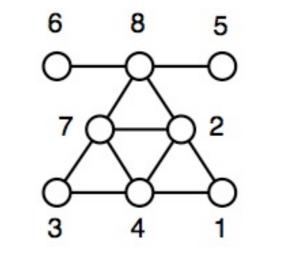
Greg Harry

Carol Dave

6 8

57


2


3

4

1

[Michael Hay, 2008]

Greg Fred

(a) graph

Node ID	\mathcal{H}_0	\mathcal{H}_1	\mathcal{H}_2		
Alice	ε	1	{4}		
Bob	ε	4	$\{1, 1, 4, 4\}$		
Carol	ε	1	{4}		
Dave	ε	4	$\{2, 4, 4, 4\}$	Equivalence Relation	Equivalence Classes
Ed	ε	4	$\{2, 4, 4, 4\}$	$\equiv_{\mathcal{H}_0}$	$\{A, B, C, D, E, F, G, H\}$
Fred	ε	2	{4,4}	$\equiv_{\mathcal{H}_1}$	$\{A, C\} \ \{B, D, E, G\} \ \{F, H\}$
Greg	ε	4	$\{2, 2, 4, 4\}$	$\equiv_{\mathcal{H}_2}$	${A,C}{B}{D,E}{G}{F,H}$
Harry	ε	2	{4,4}	\equiv_A	${A,C}{B}{D,E}{F,H}$

(b) vertex refinements

(c) equivalence classes

H^{*}'s computation is linear in the number of edges in the graph!

Summary

- Data privacy and security is a real and serious issue
- k-Anonymity and *l*-Diversity could help but may not be watertight
- Anonymizing graphs through graph generalization, node partitioning, and graph summarization

References

- L. Sweeney. k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 2002
- Ashwin Machanavajjhala , Daniel Kifer , Johannes Gehrke , Muthuramakrishnan Venkitasubramaniam, L-diversity: Privacy beyond k-anonymity, TKDD, 2007
- Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian, t-Closeness: Privacy Beyond k-Anonymity and I-Diversity, ICDE, 2007.
- Xiao, X., Tao, Y. Dynamic Anonymization: Accurate Statistical Analysis with Privacy Preservation, SIGMOD, 2008.
- Michael Hay, Gerome Miklau, David Jensen, Don Towsley and Philipp Weis, Resisting Structural Re-identification in Anonymized Social Networks, PVLDB, 2008
- Lars Backstrom, Cynthia Dwork and Jon Kleinberg, Wherefore Art Thou R3579X? Anonymized Social Networks, Hidden Patterns, and Structural Steganography, WWW, 2007
- Kun liu and Evimaria Terzi, Towards Identity Anonymization on Graphs. SIGMOD, 2008
- Bin Zhou and Jian Pei, Preserving Privacy in Social Networks Against Neighborhood Attacks, ICDE, 2008

Learning To Rank


Irwin King Department of Computer Science and Engineering The Chinese University of Hong Kong http://www.cse.cuhk.edu.hk/~king

©2010 Irwin King. All rights reserved

Learning to Rank

Booming Search Industry

Learning to Rank

- Given query q and set of docs $d_1, ... d_n$
 - Find documents relevant to q
 - Typically expressed as a ranking on $d_1, ... d_n$
 - Are social signals important?

Widely-used Judgement

• Pointwise

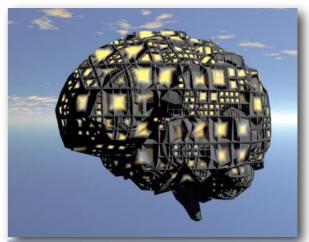
- Binary judgment (Relevant vs. Irrelevant)
- Multi-valued discrete (Perfect > Excellent > Good > Fair > Bad)
- Pairwise
 - Pairwise preference
 - Document A is more relevant than document B w.r.t. query q

Listwise

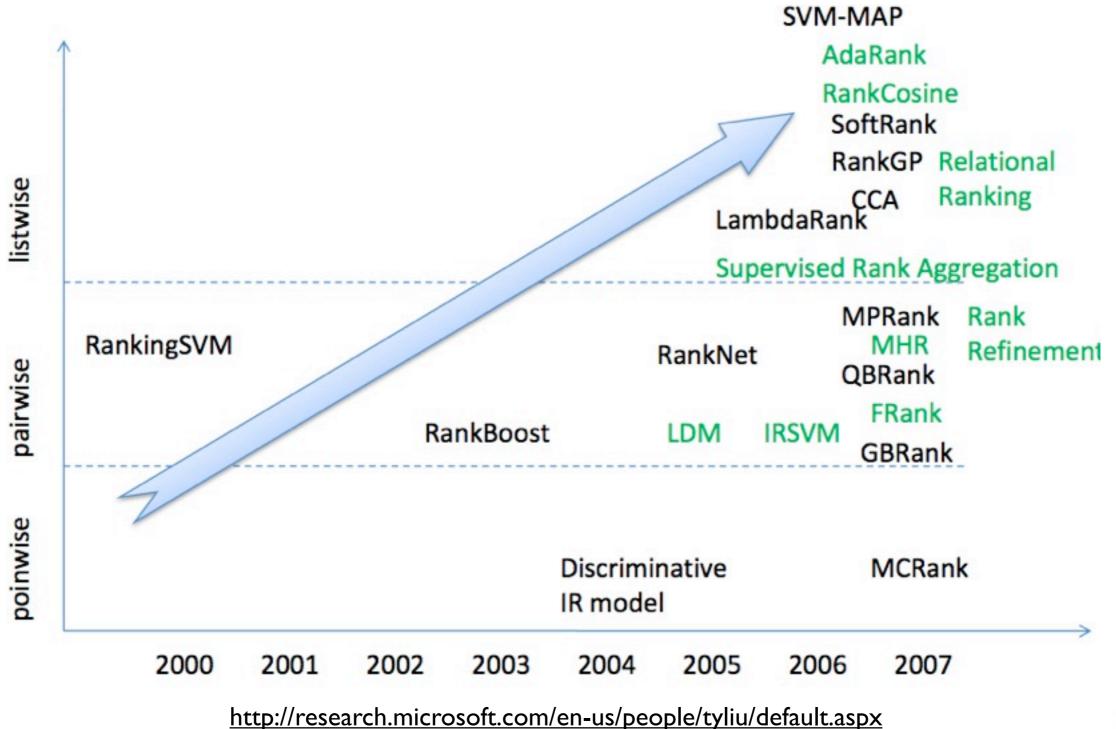
- Partial or total orders
- Could be mined from click-through logs

Conventional Ranking Models

- Content relevance
 - Boolean model, extended Boolean model, etc.
 - Vector space model, latent semantic indexing (LSI), etc.
 - BM25 model, statistical language model, etc.
 - Span based model, distance aggregation model, etc.
- Page Quality
 - Link analysis: HITS, PageRank, TrustRank, etc.
 - Log mining: DirectHITS, BrowseRank, etc


Discussion on Conventional Models

- For a particular model
 - Manual parameter tuning is usually difficult, especially when there are many parameters.
- For comparison between two models
 - Given a test set, it is difficult/unfair to compare two models if one is over-tuned while the other is not.
- For a collection of models
 - There are hundreds of models proposed in the literature.
 - It is non-trivial to combine them to produce a even more effective model


Machine Learning Can Help

- Machine learning is an effective tool
 - To automatically tune parameters
 - To combine multiple evidences
 - To avoid over-fitting (by means of regularization, etc.)
- Learning to Rank
 - Use machine learning technologies to train the ranking model
 - A hot research topic these years

Learning To Rank Techniques

Resources

- LETOR benchmark: a package of benchmark data sets for learning to rank, released by Microsoft Research Asia.
- Current LETOR baselines
 - Ranking SVM
 - RankBoost
 - AdaRank
 - Multiple hyperline ranker
 - FRank
 - ListNet

Define Metric

A metric on a set X is a function (called the distance function or simply distance)

$$d: X \times X \to \mathcal{R} \tag{1}$$

where \mathcal{R} is the set of real numbers. For all $x, y, z \in X$, this function is required to satisfy the following conditions:

- 1. $d(x, y) \ge 0$ (non-negativity)
- 2. d(x, y) = 0 if and only if x = y (identity of indiscernible)
- 3. d(x,y) = d(y,x) (symmetry)
- 4. $d(x,z) \le d(x,y) + d(y,z)$ (subadditivity or triangle inequality)

Define Ranking

A ranking is a relationship between a set of items. Weak order or total preorder.

A total order is a binary relation on some set X. The relation is transitive, antisymmetric, and total. If X is totally order under \leq , then the following statemetrs hold for all a, b, and c in X:

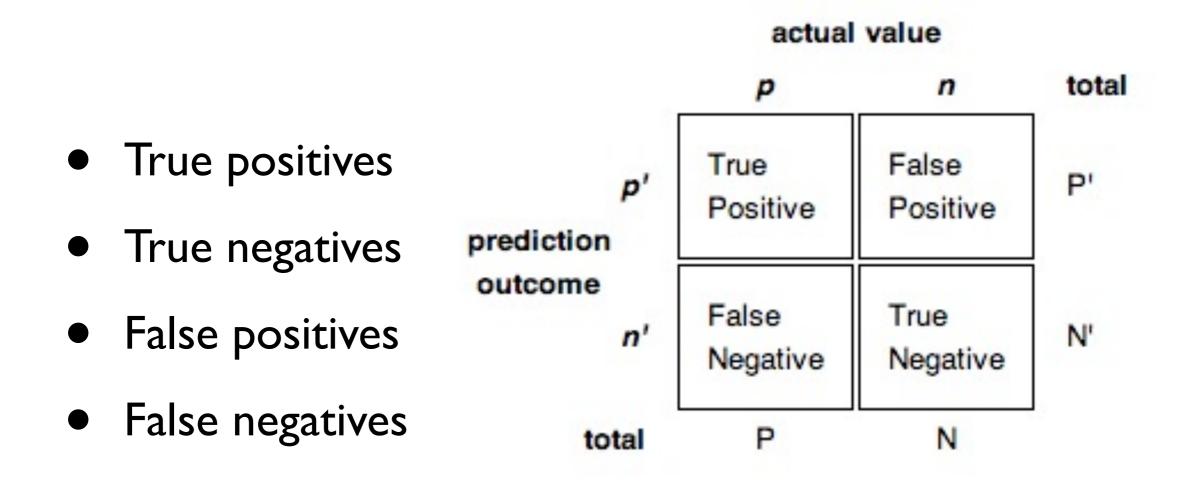
- If $a \leq b$ and $b \leq a$ then a = b (antisymmetry);
- If $a \leq b$ and $b \leq c$ then $a \leq c$ (transitivity);
- $a \leq b$ or $b \leq a$ (totality).

IR Evaluation

- Objective
 - Evaluate the effectiveness of a ranking model
- A standard test set
 - Contain a large number of (randomly sampled) queries, their associated documents, and the labels (relevance judgments) of these documents.
- A measure
 - Evaluate the effectiveness of a ranking model for a particular query.
 - Average the measure over the entire test set to represent the expected effectiveness of the model.

Ranking Evaluation

- Binary judgment
 - Relevant vs. Irrelevant
- Multi-level ratings
 - Excellent > Good > Fair > Poor
- Pairwise preferences
 - Document A is more relevant than document B with respect to query q



Measures

- Precision--measure of exactness
- Recall--measure of completeness
- They are usually linked closely together
- Often, there is an inverse relationship between Precision and Recall
- Increasing one at the cost of reducing the other, e.g., increase its Recall by retrieving more documents, at the cost of increasing number of irrelevant documents retrieved (decreasing Precision)

Confusion Matrix

In Classification

• Precision-the number of true positives divided by the total number of elements labeled as belonging to the positive class

$$Precision = \frac{tp}{tp + fp} \tag{1}$$

It can also be interpreted as the probability that a (randomly selected) retrieved document is relevant.

• Recall—the number of true positives divided by the total number of elements that actually belong to the positive class.

$$\text{Recall} = \frac{tp}{tp + fn} \tag{2}$$

Recall in this context is also referred to as the True Positive Rate. It can also be interpreted as the probability that a (randomly selected) relevant document is retrieved in a search.

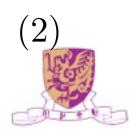
In Classification

• True Negative Rate

True Negative Rate =
$$\frac{tn}{tn+fp}$$
 (1)

• Accuracy

Accuracy =
$$\frac{tp + tn}{tp + tn + fp + fn}$$
 (2)


• Precision In Information Retrieval

 In classification, precision for a class is the number of true positives divided by the total number of elements labeled as belonging to the positive class

 $precision = \frac{|\{relevant documents\} \cap \{retrieved documents\}|}{|\{retrieved documents\}|}$ (1)

- Precision takes all retrieved documents into account
- Precision can also be evaluated at a given cut-off-rank. This is called precision at n or P@n.
- Recall
 - Recall is the fraction of the documents that are relevant to the query that are successfully retrieved.

 $recall = \frac{|\{relevant documents\} \cap \{retrieved documents\}|}{|\{relevant documents\}|}$ Introduction to Social Computing, Irwin King, DASFFA 2010, April 1-4, 2010, Tsukuba, Japan

Fall-Out

• Fall-Out-the proportion of non-relevant documents that are retrieved, out of all non-relevant documents available:

 $Fall-Out = \frac{|\{non-relevant documents\} \cap \{retrieved documents\}|}{|\{non-relevant documents\}|}$ (1)

F-Measure

• F-Measure–Weighted harmonic mean of precision and recall.

$$F = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} \tag{1}$$

This is also known as the F_1 measure since recall and precision are evenly weighted.

For the general F_{β} measure (for non-negative real values of β):

$$F_{\beta} = (1 + \beta^2) \cdot \frac{\text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}}$$
(2)

The F_2 measure weights recall twice as much as precision, and the $F_{0.5}$ measure weights precision twice as much as recall.

Average Precision and Recall

• Average Precision of Precision and Recall–it emphasizes returning more relevant earlier. It is average of precisions computed after truncating the list after each of the relevant documents in turn:

$$AP = \frac{\sum_{r=1}^{N} (P@r \times rel(r))}{\text{number of relevant documents}}$$
(1)

where r is the rank, N the number retrieved, rel() a binary function on the relevance of a given rank, and P@r precision at a given cut-off rank, r.

Given the list of seven retrieved documents as, $\{r_1, nr_2, nr_3, r_4, r_5, nr_6, r_7\}$ where r_i are relevant documents and nr_j are non-relevant documents. The Average Precision is then

$$AP = \frac{1}{4} \cdot \left(\frac{1}{1} + \frac{2}{4} + \frac{3}{5} + \frac{4}{7}\right) \approx 0.67$$
 (1)

Evaluation Measures

- MAP (Mean Average Precision)–averaged AP over all queries in the test set
- NDCG (Normalized Discounted Cumulative Gain)
- MRR (Mean Reciprocal Rank)
 - For query q_i , rank position of the first relevant document: r_i
 - MRR: average of $1/R_i$ over all queries
- WTA (Winner-Take-All)
 - If top ranked document is relevant: 1; otherwise 0
 - Average over all queries

Discounted Cumulative Gain

DCG is a measure of effectiveness of a Web search engine algorithm or related applications, often used in information retrieval. DCG measures the usefulness, or gain, of a document based on its position in the result list. The gain is accumulated cumulatively from the top of the result list to the bottom with the gain of each result discounted as lower ranks.

Assumptions

- Highly relevant documents are more useful when appearing earlier in a search engine result list (have higher ranks)
 - Highly relevant documents are more useful than marginally relevant documents, which are in turn more useful than irrelevant documents.

Cumulative Gain

Cumulative Gain (CG) is the predecessor of DCG and does not include the position of a result in the consideration of the usefulness of a result set. It is the sum of the graded relevance values of all results in a search result list. The CG at a particular rank position p is

$$CG_p = \sum_{i=1}^{p} rel_i \tag{1}$$

where rel_i is the graded relevance of the result at position *i*.

The value computed with the CG function is unaffected by changes in the ordering of search results, i.e., moving a highly relevant document d_i above a higher ranked, less relevant, document d_j does not change the computed value for CG.

Discounted Cumulative Gain

Discounted Cumulative Gain (DCG) The premise of DCG is that highly relevant documents appearing lower in a search result list should be penalized as the graded relevance value is reduced logarithmically proportional to the position of the result. The discounted CG accumulated at a particular rank position p is defined as

$$DCG_p = rel_1 + \sum_{i=2}^p \frac{rel_i}{\log_2 i} \tag{1}$$

The logarithmic reduction factor has not shown any theoretical justification. An alternative formulation of DCG places much stronger emphasis on retrieving relevant documents sooner using a power distribution and is formulated as

$$DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{\log_2(1+i)}$$
(2)

The function is equivalent to the previous DCG function when the relevance values of documents are binary, i.e., $rel_i \in \{0, 1\}$.

The summation $\sum_{i=1}^{p}$ is cumulating, the term $2^{rel_i} - 1$ is the gain, and the term $\log_2(1+i)$ is the position discount.

Normalizing DCG

Search result lists vary in length depending on the query. Comparing a search engine's performance from one query to the next cannot be consistently achieved using DCG alone, so the cumulative gain at each position for a chosen value of p should be normalized across queries. This is done by sorting documents of a result list by relevance, producing an ideal DCG (IDCG) at position p. For a query, the normalized discounted cumulative gain, or nDCG, is computed as:

$$nDCG_p = \frac{DCG_p}{IDCG_p} \tag{1}$$

Note that in a perfect ranking algorithm, the DCG_p will be the same as the $IDCG_p$ producing an nDCG of 1.0.

Presented with a list of documents in response to a search query, an experiment participant is asked to judge the relevance of each document to the query. Each document is to be judged on a scale of 0-3 with 0 meaning irrelevant, 3 meaning completely relevant, and 1 and 2 meaning "somewhere in between". For the documents ordered by the ranking algorithm as

$$D_1, D_2, D_3, D_4, D_5, D_6$$

the user provides the following relevance scores:

$$CG_p = \sum_{i=1}^{p} rel_i = 3 + 2 + 3 + 0 + 1 + 2 = 11$$

Changing the order of any two documents does not affect the CG measure.

DCG is calculated as follows:

i	rel_i	\log_i	$\frac{rel_i}{\log_2 i}$
1	3	N/A	N/A
2	2	1	2
3	3	1.59	1.887
4	0	2.0	0
5	1	2.32	0.431
6	2	2.59	0.772

Now a switch of D_3 and D_4 results in a reduced DCG so a more relevant document is discounted more by being placed in a lower rank.

To normalize DCG values, an ideal ordering for the given query is needed. For this example, that ordering would be the monotonically decreasing sort of the relevance judgments provided by the experiment participant, which is:

3, 3, 2, 2, 1, 0

The DCG of this ideal ordering, or IDCG, is then:

$$IDCG_6 = \frac{DCG_6}{IDCG_6} = \frac{8.09}{8.693} = 0.9306$$

so the DCG_6 of this ranking is

$$DCG_6 = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i} = 3 + (2 + 1.887 + 0 + 0.431 + 0.772) = 8.09$$

Properties of Ranking in IR

- Loss function should be defined on ranked list w.r.t. a query
- Relative order is important
- Position sensitive
- Rank based evaluation

- Pointwise
 - Input: single documents
 - Output: scores or class labels
 - Discriminative model for IR, McRank, ...
- Pairwise
 - Input: document pairs
 - Output: partial order preference

- Ranking SVM, RankBoost, RankNet, FRank, ...
- Listwise
 - Input: document collections
 - Output: ranked document list
 - LambdaRank, AdaRank, SVM-MAP, RankCosine,...

Pointwise Approach

- Reduce ranking to regression or classification on single documents
- Discriminative Model
 - Treat relevant documents as positive examples, while irrelevant documents as negative examples
 - Learning algorithms
 - Maximum Entropy
 - Support Vector Machines

Document Features

$\sum_{q_i \in Q \cap D} \log(c(q_i, D))$	$\sum_{q_i \in Q \cap D} \left(\log\left(\frac{ C }{c(q_i, C)}\right) \right)$	
$\sum_{i=1}^{n} \log(1 + \frac{c(q_i, D)}{ D })$	$\sum_{i=1}^{n} \log(1 + \frac{c(q_i, D)}{ D } i df(q_i))$	
$\sum_{q_i \in Q \cap D} \log(idf(q_i))$	$\sum_{i=1}^{n} \log(1 + \frac{c(q_i, D)}{ D } \frac{ C }{c(q_i, C)})$	

where c(w, D) represents the raw count of word w in document D, C represents the collection, n is the number of terms in the query, $|\cdot|$ is the size-of function and $idf(\cdot)$ is the inverse document frequency.

- and *idf*(·) is the inverse document frequency.
 Vector space model (or term vector model) uses a vector of indexed words to represent a document.
 - Each dimension corresponds to a separate term
 - If a term (keyword, phrase, etc.) occurs in the document, its value in the vector is non-zero.
 - The dimensionality of the vector is the number of words in the vocabulary.

Relevancy Ranking

Relevancy rankings of documents in a keyword search can be calculated, using the assumptions of document similarities theory, by comparing the deviation of angles between each document vector and the original query vector where the query is represented as same kind of vector as the documents. In practice, it is easier to calculate the cosine of the angle between the vectors instead of the angle:

$$\cos\theta = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{||\mathbf{v}_1||||\mathbf{v}_2||} \tag{1}$$

A cosine value of zero means that the query and document vector are orthogonal and have no match (i.e. the query term do not exist in the document being considered). See cosine similarity for further information.

Term Frequency

The **term count** in the given document is simply the number of times a given term appears in that document. This count is usually normalized to prevent a bias towards longer documents (which may have a higher term count regardless of the actual importance of that term in the document) to give a measure of the importance of the term ti within the particular document d_j . Thus we have the **term frequency**, defined as follows.

$$\mathrm{tf}_{i,j} = \frac{n_{i,j}}{\sum_k n_{k,j}} \tag{1}$$

where $n_{i,j}$ is the number of occurrences of the considered term (t_i) in document d_j , and the denominator is the sum of number of occurrences of all terms in document d_j .

Inverse Document Frequency

The **inverse document frequency** is a measure of the general importance of the term (obtained by dividing the number of all documents by the number of documents containing the term, and then taking the logarithm of that quotient).

$$\operatorname{idf}_{i} = \log \frac{|D|}{|\{d : t_{i} \in d\}|} \tag{1}$$

with

- |D|: total number of documents in the corpus
- $|\{d : t_i \in d\}|$: number of documents where the term t_i appears (that is $n_{i,j} \neq 0$). If the term is not in the corpus, this will lead to a division-by-zero. It is therefore common to use $1 + |\{d : t_i \in d\}|$ Then

$$tf-idf_{i,j} = tf_{i,j} \times idf_i$$
(2)

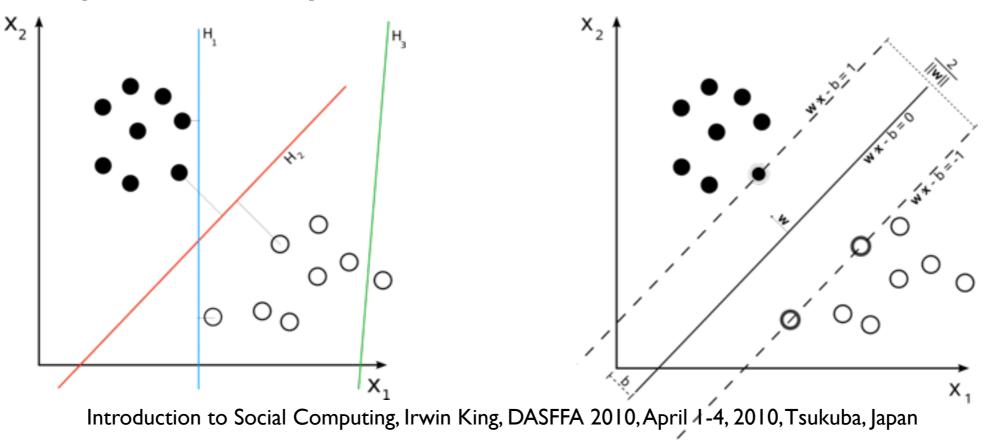
A high weight in tf-idf is reached by a high term frequency (in the given document) and a low document frequency of the term in the whole collection of documents; the weights hence tend to filter out common terms. The tf-idf value for a term will always be greater than or equal to zero. Introduction to Social Computing, Irwin King, DASFFA 2010, April 1-4, 2010, Tsukuba, Japan

Maximum Entropy (ME) Model

- Principle of Maximum Entropy is to model all that is known and assume nothing about that which is unknown.
- Choose a model consistent with all facts, but otherwise as uniform as possible.

ME Probability function is defined as:

$$P(R|D,Q) = \frac{1}{Z(Q,D)} \exp(\sum_{i=1}^{n} \lambda_{i,R} f_i(D,Q))$$
(1)


where Z(Q, D) is a normalizing constant, $f_i(D, Q)$ are the feature functions of the document with weights $\lambda_{i,R}$ and n is the number of features. One can use the log-likelihood ratio as the scoring function:

$$\log \frac{P(R|D,Q)}{P(\bar{R}|D,Q)} = \sum_{i=1}^{n} (\lambda_{i,R} - \lambda_{i,\bar{R}}) f_i(D,Q)$$

Introduction to Social Computing, Irwin King, DASFFA 2010, April 1-4, 2010, Tsukuba, Japan

Support Vector Machine

- A support vector machine constructs a hyperplane or set of hyperplanes in a high-dimensional space, which can be used for classification, regression or other tasks.
- A good separation is achieved by the hyperplane that has the largest distance to the nearest training datapoints of any class.

SVM Formalization

We are given some training data, a set of points of the form

$$\mathcal{D} = \{ (\mathbf{x}_i, c_i) | \mathbf{x}_i \in \mathcal{R}^p, c_i \in \{-1, 1\} \}_{i=1}^n$$

$$(1)$$

where the c_i is either 1 or -1, indicating the class to which the point \mathbf{x}_i belongs. Each \mathbf{x}_i is a *p*-dimensional real vector. We want to find the maximum-margin hyperplane which divides the points having $c_i = 1$ from those having $c_i = -1$. Any hyperplane can be written as the set of points \mathbf{x} satisfying

$$\mathbf{w} \cdot \mathbf{x} - b = 0, \tag{2}$$

where \cdot denotes the dot product. The vector **w** is a normal vector: it is perpendicular to the hyperplane. The parameter $\frac{b}{||\mathbf{w}||}$ determines the offset of the hyperplane from the origin along the normal vector **w**.

We want to choose the \mathbf{w} and b to maximize the margin, or distance between the parallel hyperplanes that are as far apart as possible while still separating the data. These hyperplanes can be described by the equations

$$\mathbf{w} \cdot \mathbf{x} - b = 1, \tag{3}$$

and

$$\mathbf{w} \cdot \mathbf{x} - b = -1,$$

SVM Formalization

By using geometry, we find the distance between these two hyperplanes is $\frac{2}{||\mathbf{w}||}$, so we want to minimize $||\mathbf{w}||$. As we also have to prevent data points falling into the margin, we add the following constraint: for each *i* either

$$\mathbf{w} \cdot \mathbf{x} - b \ge 1 \text{ for } \mathbf{x}_i \tag{1}$$

of the first class or

$$\mathbf{w} \cdot \mathbf{x} - b \le 1$$
 for \mathbf{x}_i of the second. (2)

This can be rewritten as:

$$c_i(\mathbf{w} \cdot \mathbf{x} - b) \ge 1 \text{ for all } 1 \le i \le n.$$
 (3)

We can put this together to get the optimization problem:

$$\min_{\mathbf{w},b} \qquad ||\mathbf{w}|| \qquad (4)$$

subject to $c_i(\mathbf{w} \cdot \mathbf{x}_i - b) \ge 1$ for any $i = 1, \dots, n.$ (5)

SVM

Thus if $\mathbf{f}(D,Q)$ is the vector of features, then the discriminant function is given by

$$g(R|D,Q) = \mathbf{w} \cdot \phi(\mathbf{f}(D,Q)) + b, \tag{1}$$

where

- **w** is the weight vector in kernel space that is learnt by the SVM from the training exmaples,
- \cdot denotes inner product
- b is a constant
- ϕ is the mapping from input space to kernel space

The equation g(R|D,Q) = 0 represents the equation for the hyperplane in the kernel space.

The value of the discriminant function g(R|D,Q) for an arbitrary document D and a query Q is proportional to the perpendicular distance of the document's augmented feature vector $\phi(\mathbf{f}(D,Q))$ from the separating hyper-plane in the kernel space.

Pairwise Approach

- No longer assume absolute relevance
- Reduce ranking to classification on document pairs w.r.t. the same query
- RankNet
 - Use Neural Network as model, and gradient descent as algorithm, to optimize the cross-entropy loss.
 - Evaluate on single documents: output a relevance score for each document w.r.t. a new query.

Ranking with Neural Nets

- Don't need to learn ordinal regression (mapping points to actual rank values); just need to map features to reals
- Train system on pairs (where first point is to be ranked higher or equal to second)
- However must evaluate on single points
- Use cross entropy cost => probabilistic model
- Use gradient descent

RankNet: Notes

- 5 human judged levels of relevance ("bad", ..., "perfect")
- A net with (number of features) inputs and one output
- Sort documents by the score that their feature vectors (which are computed from query + doc + other data)
- Compute NDCG on a set-aside validation set, keep the net that gives the best validation NDCG

RankNet Conclusions

- RankNet is simple to train
- RankNet is fast in test phase
- RankNet gives good results
- For pair-based probability costs (e.g., click rates!) RankNet is very well suited to the problem.
- However, the cost function used is not NDCG: the latter is optimized only indirectly, using a validation set.

Listwise Approach

- Instead of reducing ranking to regression or classification, perform learning directly on document list.
 - Directly optimize IR evaluation measure
 - AdaRank, SVM-MAP, SoftRank, LambdaRank, RankGP, ...
 - Define listwise loss functions
 - RankCosine, ListNet, ListMLE, ...

Concluding Remarks

- Social Computing is here to stay!
- Relations are important!
- Discovering new paradigms by blending different social media and interactions
- Be concerned about computational techniques to search, rank, and mine data and information to achieve collective intelligence/wisdom

Acknowledgments

- Prof. Michael Lyu
- Mr. Patrick Lau
- Mr. Lam Cho Fung
- Mr. Simon Mok
- Mr. Ivan Yau
- Ms. Sara Fok
- Hongbo Deng (Ph.D.)
- Baichuan Li (M.Phil.)

- Zhenjiang Lin (Ph.D.)
- Hao Ma (Ph.D.)
- Mingzhe Mo (M.Phil.)
- Dingyan Wang (M.Phil.)
- Wei Wang (M.Phil.)
- Haiqin Yang (Ph.D.)
- Connie Yuen (Ph.D.)
- Xin Xin (Ph.D.)
- Chao Zhou (Ph.D.)
- Yi Zhu (Ph.D.)

On-Going Research

Machine Learning

- Heavy-Tailed Symmetric Stochastic Neighbor Embedding (NIPS'09)
- Adaptive Regularization for Transductive Support Vector Machine (NIPS'09)
- Direct Zero-norm Optimization for Feature Selection (ICDM'08)
- Semi-supervised Learning from General Unlabeled Data (ICDM'08)
- Learning with Consistency between Inductive Functions and Kernels (NIPS'08)
- An Extended Level Method for Efficient Multiple Kernel Learning (NIPS'08)
- Semi-supervised Text Categorization by Active Search (CIKM'08)
- Transductive Support Vector Machine (NIPS'07)
- Global and local learning (ICML'04, JMLR'04)

On-Going Research

Web Intelligence/Information Retrieval

- A Generalized Co-HITS Algorithm and Its Application to Bipartite Graphs (KDD'09)
- Entropy-biased Models for Query Representation on the Click Graph (SIRIR'09)
- Effective Latent Space Graph-based Re-ranking Model with Global Consistency (WSDM'09)
- Formal Models for Expert Finding on DBLP Bibliography Data (ICDM'08)
- Learning Latent Semantic Relations from Query Logs for Query Suggestion (CIKM'08)
- RATE: a Review of Reviewers in a Manuscript Review Process (WI'08)
- MatchSim: link-based web page similarity measurements (WI'07)
- Diffusion rank: Ranking web pages based on heat diffusion equations (SIGIR'07)
- Web text classification (WWW'07)

On-Going Research

Recommender Systems/Collaborative Filtering

- Learning to Recommend with Social Trust Ensemble (SIRIR'09)
- Semi-Nonnegative Matrix Factorization with Global Statistical Consistency in Collaborative Filtering (CIKM'09)
- Recommender system: accurate recommendation based on sparse matrix (SIGIR'07)
- SoRec: Social Recommendation Using Probabilistic Matrix Factorization (CIKM'08)

Human Computation

- A Survey of Human Computation Systems (SCA2009)
- Mathematical Modeling of Social Games (SIAG2009)
- An Analytical Study of Puzzle Selection Strategies for the ESP Game (WI'08)
- An Analytical Approach to Optimizing The Utility of ESP Games (WI'08)

King · Baeza-Yates (Eds.)

and the set

King · Baeza-Yates (Eds.)

Weaving Services and People on the World Wide Web

Ever since its inception, the Web has changed the landscape of human experiences on how we interact with one another and data through service infrastructures via various computing devices. This interweaving environment is now becoming ever more embedded into devices and systems that integrate seamlessly on how we live, both in our working or leisure time.

For this volume, King and Baeza-Yates selected some pioneering and cutting-edge research work that is pointing to the future of the Web. Based on the Workshop Track of the 17th International World Wide Web Conference (WWW2008) in Beijing, they selected the top contributions and asked the authors to resubmit their work with a minimum of one third of additional material from their original workshop manuscripts to be considered for this volume. After a second-round of reviews and selection, 16 contributions were finally accepted.

The work within this volume represents the tip of an iceberg of the many exciting advancements on the WWW. It covers topics like semantic web services, location-based and mobile applications, personalized and context-dependent user interfaces, social networks, and folksonomies. The presentations aim at researchers in academia and industry by showcasing latest research findings. Overall they deliver an excellent picture of the current state-of-the-art, and will also serve as the basis for ongoing research discussions and point to new directions.

> springer.com

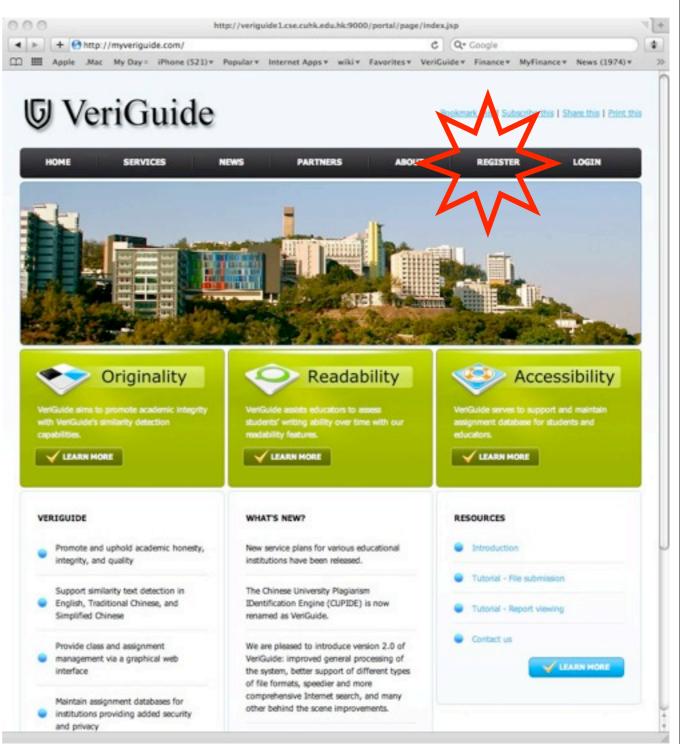
Weaving Services and People on the World Wide Web Irwin King Ricardo Baeza-Yates (Eds.)

> Weaving Services and People on the World Wide Web

Economist Intelligent Unit 2008

In what ways do new technologies pose the greatest challenges and risks to colleges and universities? Select up to three. (% of respondents)

Potential increase in student plagiarism


Potential increase in student plagiarism

51

G VeriGuide

- Similarity text detection system
- Developed at CUHK
- Promote and uphold academic honesty, integrity, and quality
- Support English, Traditional and Simplified Chinese
- Handle .doc, .txt, .pdf, .html, etc. file formats
- Generate detailed originality report including readability

VeriGuide Free Trial

