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ABSTRACT

The problem of point of interest (POI) recommendation is
to provide personalized recommendations of places of in-
terests, such as restaurants, for mobile users. Due to its
complexity and its connection to location based social net-
works (LBSNs), the decision process of a user choose a POI
is complex and can be influenced by various factors, such as
user preferences, geographical influences, and user mobility
behaviors. While there are some studies on POI recommen-
dations, it lacks of integrated analysis of the joint effect of
multiple factors. To this end, in this paper, we propose a
novel geographical probabilistic factor analysis framework
which strategically takes various factors into consideration.
Specifically, this framework allows to capture the geograph-
ical influences on a user’s check-in behavior. Also, the user
mobility behaviors can be effectively exploited in the rec-
ommendation model. Moreover, the recommendation model
can effectively make use of user check-in count data as im-
plicity user feedback for modeling user preferences. Finally,
experimental results on real-world LBSNs data show that
the proposed recommendation method outperforms state-
of-the-art latent factor models with a significant margin.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining

General Terms

Algorithms, Experimentation

Keywords

Location-based Social Networks, Point-of-Interest, Recom-
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1. INTRODUCTION
Recent years have witnessed the increased development

and popularity of location-based social network (LBSN) ser-
vices, such as Foursquare, Gowalla, and Facebook Places.
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LBSNs allow users to explore Point-of-Interest (POIs), such
as restaurants and shopping malls, for better services by
sharing their check-in experiences and opinions on the POIs
which they have checked in. Indeed, the task of POI rec-
ommendation is to provide personalized recommendations
of places of interests to mobile users. It plays an important
role in providing better location based services in location
based social networks. In fact, both LBSN users and POI
owners can benefit from effective POI recommendations. For
mobile users, they can identify favorite POIs and have better
user experiences by the right POI recommendations. Also,
for POI owners, they could exploit POI recommendation for
acquiring more target customers.

There are several unique characteristics of LBSNs which
distinguish POI recommendations from traditional recom-
mendation tasks.

• Tobler’s first law of geography. “Everything is related
to everything else, but near things are more related
than distant thing” [21]. This indicates that geograph-
ically proximate POIs are more likely to share similar
characteristics. Also, the probability of a user for a
POI is inversely proportional to geographic distance.

• Regional popularity. Two POIs with similar or the
same semantic topics can have different popularities if
they are located in different regions.

• Dynamic user mobility. In LBSNs, a user may check in
POIs at different regions. For example, a LBSN user
may travel to different cities. Dynamic user mobility
imposes huge challenges on POI recommendations.

• Implicit user feedback. In the study of POI recom-
mendations, the explicit user ratings are usually not
available. The recommender system has to infer user
preferences from implicit user feedback in terms of user
check-in frequency data.

Indeed, traditional recommender systems usually assume
that the user and item data are independent and identically
distributed. This assumption ignores the interrelationships
among items. In fact, the decision process of a user choose
a POI is complex and can be influenced by many factors.
First, geographical distance plays an important role. Ac-
cording to the Tobler’s first law of geography and the law
of demand, the propensity of a user for a POI is inversely
proportional to the distance between the user and the POI,
which is similar to the probability of purchasing an item is
inversely proportional to the cost. Second, utility matters.
In economics, utility is an index of preferences over some
sets of items and services when a user makes purchase de-
cisions. In other words, a user may prefer a far away POI
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than a nearby one for better satisfaction. Third, popular-
ity affects purchase behaviors. In fact, the probability of a
user purchasing a product is largely affected by the word-
of-mouth about the product. Finally, the LBSN users have
dynamic mobility behaviors, which impose the challenges on
the modeling of check-in decision.

Another unique characteristic of POI recommendations is
that user check-in count data follow a power law distribu-
tion. This is different from the rating data in traditional rec-
ommender systems. In other words, a user can visit a POI
only once and another POI hundreds of times. Since we do
not have explicit user rates for POIs, we can only make use
of implicit user behavior data in the check-in records for POI
recommendations. All the above demands a reconsideration
of the recommendation model.

While there are some studies on POI recommendations,
it lacks of integrated analysis of the joint effect of the above
factors, such as user preferences, geographical influences,
and user mobility behaviors. Therefore, in this paper, we
propose a geographical probabilistic factor analysis frame-
work which can strategically takes various factors into con-
sideration. This framework allows to capture the geographi-
cal influences on a user’s check-in behaviors, effectively model
the user mobility patterns, and deal with the skewed distri-
bution of check-in count data. Specifically, a Gaussian dis-
tribution is used to represent a POI over a sampled region.
This can reflect the first law of geography; that is, similar
POIs are more related than distant POIs. Also, we use a
multinomial distribution over latent regions to model user
mobility behaviors over different activity regions. These la-
tent regions reflect the activity areas for all the users through
a collective influence. Moreover, a latent model is developed
to capture user preferences. This model takes geographical
influence, regional popularity and user mobility into consid-
eration, and can effectively handle the skewed data distri-
bution of POI count data.

Finally, experimental results on real-world LBSNs and
POI data show that the proposed POI recommendation method
outperforms state-of-the-art probabilistic latent factor mod-
els with a significant margin in terms of Top-K recommen-
dation. Also, we provide a location-marketing segmenta-
tion study by comparing the latent regions identified by our
model with those derived from traditional marketing seg-
mentation methods.

2. THE FRAMEWORK FOR POI RECOM-

MENDATION
In this section, we introduce a geographical probabilistic

factor analysis framework for POI recommendations.

2.1 Problem Definition
The problem of personalized POI recommendation is to

recommend POIs to a user. Let U = {u1, u2, ..., uM} be a
set of LBSN users, where each user has a location li and
observable properties xi (e.g. a user’s profile). The user
location li is usually unknown due to user mobility. Let
V = {v1, v2, ..., vN} be a set of POIs, where each POI has
a location lj = {lonj , latj} in terms of longitude and lati-
tude, observable properties xj (e.g. a textual description of
a POI), and a popularity score ρj . Typically, a tiny propor-
tion of check-in records of users for POIs are given with yij
as the number of times user ui visited POI vj . For conve-
nience, we refer i as user and j as POI unless stated oth-

Figure 1: A graphical representation of the proposed model.
The model priors have been excluded for the simplicity of
description.

Table 1: Mathematical Notations

Symbol Size Description
R 1× R latent region set, r is a region in R
ηηη M × R user level region distribution
ρρρ 1×N item popularity
µµµ R

2 mean location of a latent region
ΣΣΣ R

2×2 covariance matrix of a latent region
UUU M ×K user latent factor
VVV N ×K item latent factor
xxx (·)×K user or item observable properties

θθθ,πππ (·)×K user or item topic distribution

erwise. Also, we use POI and item interchangeably. Some
important notations used in this paper are listed in Table 1.

2.2 The General Idea
To learn geographical user preferences, we need a model to

encode the spatial influence and user mobility into the user
check-in decision process. By Tobler’s first law of geography,
POIs with similar services are likely to be clustered into the
same geographical area. To capture this, we assume that
the geographical locations have been clustered into R latent
regions and denoted as R. Also, as shown in Figure 2, LBSN
users are most likely to check in a number of POIs and these
POIs are usually limited to some geographical regions. We
apply a multinomial distribution, r ∼ p(r|ηi), to model user
mobility over the regions R with ηi being a user dependent
distribution over latent regions for user i. Then we assume
a Gaussian geographical distribution for each region r ∈ R,
and the location for POI j is characterized by lj ∼ N (µr,Σr)
with µr and Σr being the mean vector and covariance matrix
of the region.

To model a user’s propensity of a POI, we assume the
following factors that will affect the user check-in decision
process: (1) each user i is associated with an interest α(i, j)
with respect to POI j; (2) each POI j has popularity ρj ;
and (3) the distance between the user and the POI d(i, j).
As a result, the probability of observing a pair (i, j) is di-
rectly proportional to the user interest and the popularity
of the entity, and monotonically decreases with the distance
between them.

p(i, j) ∝ α(i, j)ρ(j)(d0 + d(i, j))−τ (1)

We use a power-law like parametric term (d0 + d(i, j))−τ to
model the distance factor in the decision making process.

1044



(a) All POIs in different regions. (b) A user’s check-ins in different regions. (c) User check-ins in San Francisco.

Figure 2: An example of a typical user check-in pattern: (a) all the POIs; (b) the user’s check-ins over different regions: San
Francisco, Los Angeles, San Diego, Las Vegas, Houston, and New York City; (c) the user’s check-ins in San Francisco area.

This motivated by the following observations: the probabil-
ity user ui checking-in at POI vj decays as the power-law of
the distance between them.

Because we use implicit user check-in count data to model
user preferences and the distribution of check-in counts are
usually skewed, we adapt a Bayesian probabilistic non-negative
latent factor model: yij ∼ P (fij) where fij = α(i, j) · ρ(j) ·
(d0 + d(i, j))−τ for encoding both the spatial influence and
personalized preferences.

2.3 Geographical Probabilistic Factor Model
The check-in decision process of user i for POI j can be

viewed in a generative way. First, a user samples a re-
gion from all R regions following a multinomial distribution
r ∼ Multinomial(ηi), and a POI is draw from the sampled
region lj ∼ N (µr,Σr). Then, depending on user prefer-
ences, the popularity of the selected POI in that sampled
region, and the distance between the user and the POI, the
user makes a check-in decision following certain distribution.
The user i’s preference for POI j can be represented as a
linear combination of a latent factor uuu⊤

i vvvj and a function of
user and item observable properties x⊤

i Wyj . As shown in
Figure 1, the geographical probabilistic generative process
for a user i to choose a POI j can be expressed as follows:

1. Draw a region r ∼ Multinomial(ηi).

2. Draw a location lj ∼ N (µr,Σr).

3. Draw a user preference

a Generate user latent factor uuui ∼ P (uuui; Ψuuui
).

b Generate item latent factor vvvj ∼ P (vvvj ; Ψvvvj
).

c User-item preference α(i, j) = uuu⊤
i vvvj + x⊤

i Wxj.

4. yij ∼ P (fij) where

fij =
(

uuu⊤
i vvvj + x⊤

i Wyj
)

· ρ(j) · (d0 + d(i, j))−τ

In the generative model, uuu and vvv are user and item fac-
tors, xi and xj are user and item observable properties re-
spectively, and W is a matrix that is used to transfer the
observable prosperity space into the latent space to capture
the affinity between the observed features and the user-item
pair. Note that the proposed model is general and can be
extended by different factor models. The model details will
be described in Section 2.4.

2.4 Model Specification
This section introduces detailed model specifications.

2.4.1 A User Mobility Model

A user may check in POIs in different geographical areas
as shown in Figure 2. Indeed, a LBSN user may travel to dif-
ferent regions (Figure 2b), and the recommendation problem

becomes difficult when this user travels to a new place. Also,
it is important to capture users’ mobility behaviors and find
users’ preferences. As shown in Figure 2, LBSN users are
most likely to check in a number of POIs and these POIs
are usually limited to some geographical regions. To model
a user’s propensity of a POI, we first need to choose the
region where the POI is associated. We apply a multino-
mial model [10] to model the region r ∼ p(r|ηi), where ηi
is a user dependent distribution over latent regions for user
i. Each POI location lj is drawn from a region-dependent
multivariate normal distribution: lj ∼ N (µr,Σr).

Also, due to the mobility pattern, the explicit location ℓ(·)
of a user is unknown. We use the region r to represent the
user activity area and model the user-POI distance as

d(i, j) =
√

||µr − lj ||2. (2)

2.4.2 Popularity

Popularity can affect the user check-in behaviors to a great
extent. Usually, an individual’s decision to check in a POI
is largely affected by the word-of-mouth opinions, which can
be represented as the popularity of the POI. We propose to
normalize the popularity score in a region level. On the one
hand, two POIs with similar or the same semantic terms can
be rated differently in a region. On the other hand, as a user
choose a POI from a pool of choices in a region, the popular-
ity score represents the user satisfaction level. A POI with
a higher popularity score potentially provide better user ex-
periences according to word-of-mouth opinions.

For example, in Foursuare, we know the total number of
people have visited a specific POI j, totalPeoj , and total
times they check in there, totalCkj (refer the example in
Table 2). We normalize the popularity score for a POI j in
area r to (0, 1] by the following equation [15].

ρj =
1

2

{

totalPeoj − 1

maxj∈r{totalPeoj} − 1
+

totalCkj − 1

maxj∈r{totalCkj} − 1

}

(3)
where maxj∈r{totalPeoj} and maxj∈r{totalCkj} are the max-
imum total number of people and total check-in number in
the region respectively.

2.4.3 Geographical-Topical Bayesian Non-negative
Matrix Factorization

Latent factor models aim on learning latent factors to
model user-item interactions by associating user latent fac-
tor φi for each user and item latent factors φj for each item.
Then, the rating is modeled as p(yij |i, j) = p

(

yij |φ
⊤
i φj ; Θ

)

.
Latent factor models, such as probabilistic matrix factor-
ization (PMF) [18], have become popular in recommenda-
tion. One drawback of latent factor models is the so called
cold-start problem, in which latent factor models perform
poorly when there are many unseen users or items. Another
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drawback of previous work on using latent factors for rec-
ommendation is that they assume a normal distribution for
p
(

yij |φ
⊤
i φj ; Θ

)

and apply a logistic function to bound the
predicted values. Therefore, it is not suitable for recommen-
dation problems where the user-item data have skewed fre-
quency values. For POI recommendation, the user check-in
frequency data actually follows the power law distribution.

To circumvent these two drawbacks of latent factor mod-
els for POI recommendations, we propose a Geographical-
Topical Bayesian Non-negative Matrix Factorization (GT-
BNMF) model by incorporating the geographical influence
and textual information in terms of topic distribution.

An Aggregated LDA Model.
To better explore the observable features, we first profile

users and POIs through an aggregated LDA model proposed
in our earlier work [15]. The Latent Dirichlet Allocation
(LDA) model [4] is a popular technique to identify latent
topic from a large document collection. In aggregated LDA,
we aggregate all the documents of the POIs, user ui have
checked in, into a user document dui

. The topics of dui
can

represent user ui’s preferences in terms of interest topics.
Each document corresponds to a LBSN user. As a result,
the topic distribution of document dui

represents the inter-
ests of ui. Each user u is associated with a multinomial dis-
tribution over topics, represented by θ. Each interest topic
is associated with a multinomial distribution over check-in
textual terms, represented by φ. The generation process of
the region aware user interest topic is as follows.

1. For each topic z ∈ {1, ..., K}, draw a multinomial dis-
tribution over terms, φz ∼ Dir(β).

2. For the document dui
given a user ui

(a) Draw a topic distribution, θdui
∼ Dir(α)

(b) For each word wd,n in document dui
:

i. Draw a topic zd,n ∼ Mult(θdui
)

ii. Draw a word wd,n ∼ Mult(φzd,n)

Then, we have: (1) Matrix ΘM×K , whereM is the number
of users and K is the number of topics. θij represents the
probability that user i is interested in topic tj . (2) Matrix
ΦK×V where K is the number of topics and V is the number
of unique terms in the dataset. Vector φi· is the probability
distribution of topic i over the V terms. We further infer
the topic distribution πj of POI vj based on the learned user
topic term distribution ΦK×V .
Comments: In our newly proposed geographical proba-
bilistic factor model as described in Section 2.3, we assume
both user and item observable properties xi and xj . Here,
we apply an aggregated LDA model to mine the topic dis-
tribution, and replace xi and xj with topic distributions φi

and πj . The aggregated LDA here does not improve the
computation complexity of the proposed model.

GT-BNMF.
The implicit feedback user-item count matrix Y can be

factorized as Y ∼ P (UUUVVV ), and priors P (uuui; Ψuuui
) and P (vvvj ; Ψvvvj )

can be further specified. Consider the count data character-
istic, we expect user factor UUU and item factor VVV to be non-
negative. Some previous work such as [17, 5] assumed a Pois-
son distribution for Y ∼ P (UUUVVV ) and further placed Gamma
priors on UUU and VVV . Actually, the Poisson factor analysis can
be equal to NMF in certain condition [14]. Euclidean dis-
tance based optimization leads to Gaussian NMF, and KL-

divergence based optimization leads to Poisson NMF. For
computation efficiency purpose, we here adopt a Bayesian
non-negative matrix factorization (BNMF) method [19]; but
our framework is flexible, thus it is also suitable for Poisson
factor model among others.

More specifically, we assume a rectified normal1 distribu-
tion on Y ∼ P (UUUVVV ) with variance σ2I.

Y ∼ NR(Y |UUUVVV , σ2
I), subject to UUU ≥ 0,VVV ≥ 0 (4)

with non-negative constrains. Further, we place an expo-
nential distribution, which is a special case of Gamma dis-
tribution with shape equals to 1, on UUU and VVV , and an inverse
gamma distribution on σ2 with shape a and scale b.

P (UUU |α) =
M
∏

i=1

K
∏

k=1

α · exp(−α · uik),

P (VVV |β) =
N
∏

j=1

K
∏

k=1

β · exp(−β · vjk)

P (σ2) =
ba

Γ(a)
(σ2)−a−1 exp(−

b

σ2
)

(5)

Each element uik ∈ UUU encodes the preference of user i to
“topic”k, and each element vik ∈ VVV reflects the topical affin-
ity of item j to topic k.

Also, we utilize the user topic distribution θi and item
topic distribution πj to ease the cold-start drawback of la-
tent factor models. We add another term depends on θi and
πj . Then we have the following generative process.

1. Generate user latent factor uik ∼ Exp(αk).

2. Generate item latent factor vjk ∼ Exp(βk).

3. User-item preference α(i, j) = uuu⊤
i vvvj + θ⊤i Wπj .

By combining the geographical influence and latent factor,
we have GT-BNMF as

yij ∼ NR(yij |fij , σ
2)

fij =
(

uuu⊤
i vvvj + θ⊤i Wπj

)

· ρ(j) · (d0 + d(i, j))−τ
(6)

Here, W is a matrix that used to transfer the topic space into
the latent space to capture the affinity between the observed
features and the user-item pair.

2.5 Parameter Estimation
Let us denote all parameters by Ψ =

{

UUU,VVV , σ2,W,ηηη,µµµ,ΣΣΣ
}

,
and Ω = {α, β, a, b} be the hyperparamters. Given the ob-

served data collection D = {yij , lj}
Iij where yij is the user

check-in count and lj is the location of vj ; and Iij is the
indicator function with Iij = 1 when user ui visited POI vj ,
and Iij = 0 otherwise. The posterior probability is

P (Ψ, α, β;D) =
∏

D

P (yij , lj |Ψ,Ω) (7)

To estimate the parameters Ψ, we use a mixing Expecta-
tion Maximization (EM) and sampling algorithm to learn
all the parameters. We treat latent region r as a latent
variable and introduce the hidden variable P (r|lj ,Ψ), which
is the probability of lj ∈ r given POI location lj and Ψ.
The algorithm iteratively updates the parameters by mutu-
ally enhancement between Geo-clustering and GT-BNMF.
The Geo-clustering updates the latent regions base on both
location and check-in behaviors; and GT-BNMF learns the
graphical preference factors.

1
http://en.wikipedia.org/wiki/Rectified_Gaussian_distribution
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2.5.1 E-step

In the E-step, we iteratively draw latent region assign-
ments for all POIs. For each POI, a latent region r is firstly
drawn from the following distribution.

r ∼ P
(

r| {y·j , lj} , R
(t),Ψ(t)

)

× P (r|ηηη(t)) (8)

where

P
(

{y·j , lj} |r,Ψ
(t)

)

= P
(

lj |r,Ψ
(t)

)

× P
(

y·j |r,Ψ
(t)

)

(9)

P
(

lj |r,Ψ
(t)

)

= N
(

lj |µ
(t)
r ,Σ(t)

r

)

(10)

P
(

y·j |r,Ψ
(t)

)

=

M
∏

i=1

NR(fij , σ
2) (11)

P (r|ηηη(t)) updates region assignment in terms of user mobil-

ity, P (lj |r,Ψ
(t)) is the location pdf function for multivariate

normal distribution with mean vector and variance matrix
obtained in last iteration, and P (y·j |r,Ψ

(t)) updates region
assignment through collaborative user effects.

2.5.2 M-step

In the M-step, we maximize the log likelihood of the
model with respect to model parameters by fixing all regions
obtained in the E-step. Since we sample the regions in the
E-step, we can update µµµr,ΣΣΣr,ηηη directly from the samples.

µµµr =
1

#(j, r)

D
∑

j=1

I(rj = r)lj

ΣΣΣr =
1

#(j, r)− 1

D
∑

j=1

(

(lj − µr)
⊤(lj − µr)

)

(12)

where #(j, r) is the number of POIs assigned to region r.
Through imposing a conjugate Dirichlet prior Dir(γγγ), we

update ηηη(t+1) by ηηη
(t+1)
ir =

C
(t+1)
ir

+γ

C
(t+1)
i·

+Rγ
where Cir is the number

of POIs being assigned to region r for user i, and Ci· is all
the the number of POIs of all the regions for user i.

After updating region R(t+1), we update Ψ(t+1) that max-
imizes the expectation Q(Ψ|Ψ(t)).

L(UUU,VVV , σ2,W |R(t+1),D)

=

M
∑

i=1

N
∑

j=1

[

1

2
ln σ2 −

(yij − [ρjδj ·UUUVVV ij + ρjδj · θ
⊤
i Wπj ])

2

2σ2

]

−
M
∑

i=1

K
∑

k=1

α · Uik −
N
∑

j=1

K
∑

k=1

β · Ujk −

(

(a+ 1) lnσ2 +
b

σ2

)

(13)

Here δj is the distance factor of user i for POI j as described
in Section 2.4.1.

We apply an iterated conditional modes (ICM) [19] to
update UUU,VVV , σ2

uik =

∑

j=1







yij −
∑

k′ 6=k

uik′vjk′ − ρjδj · θ⊤
i Wπj



 ρjδj · vjk



 − α · σ2

∑

j=1(ρjδj · vjk)2

vjk =

∑

i=1







yij −
∑

k′ 6=k

uik′vjk′ − ρjδj · θ
⊤
i Wπj



 ρjδj · uik



 − β · σ
2

∑

i=1(ρjδj · uik)2

σ2 =

1
2

∑

M
i=1

∑

N
j=1(yij − [ρjδj ·UUUVVV ij + ρjδj · θ⊤

i Wπj ])
2 + b

MN
2 + a + 1

(14)

Since the elements in each column of UUU and VVV are condi-
tionally independent, we can update entire column of UUU and
VVV simultaneously. When M × N × K ≫ (M +N) × K, it
can save a lot of computation. A gradient based method is
applied to update W : W (t+1) = W (t) − ǫ × ∂L

∂W
where ǫ is

the learning rate.
Comments: Note that the region R is updated in each E-
step, so as the popularity and user-POI distance. The model
parameters are updated upon the new region information.

2.6 Recommendation
After parameters Ψ are learned, the GT-BNMF model

predicts the number of check-ins of a user for a given POI
as E(yij |ui, vj) =

(

uuu⊤
i vvvj + θ⊤i Wπj

)

· ρ(j) · (d0 + d(i, j))−τ .
We make recommendations based on the predicted check-in
times, the larger the predicted value, the more likely the user
will choose this POI. Since POI recommendation in LBSNs
is highly location sensitive, the recommendation list should
be within a user’s activity region. Our GT-BNMF model
learn the latent region. Therefore, we make recommenda-
tions based on the learned latent region.

3. EXPERIMENTAL RESULTS
Here, we provide an empirical evaluation of the perfor-

mances of the proposed model. All the experiments were
performed on a large real-world LBSN dataset collected from
Foursquare (www.foursquare.com), one of the most popular
LBSN communities.

3.1 The Experimental Data
The dataset is formulated as follows [15, 7]. Foursquare

users usually report their check-ins of POIs via Twitter.
When a LBSN user posted a Tweet, which shows a check-in
of a POI, we consider it as the user has checked in the POI
physically. As shown in Table 2, for POIs in Foursquare, we
have geographical description information such as location
information, textual information, and popularity informa-
tion in terms of the total number of people and the total
number of check-ins. The dateset includes POIs across the
Unites States (except Hawaii and Alaska), and the geograph-
ical distribution of all POIs is shown in Figure 2a.

Name:Otto Enoteca Pizzeria

Address:1 5th Ave, New York, NY 10003

Tags:pizza wine bar italian olive oil cheese mario batali meat wine pasta

gelato gluten free menu zagat rated pizza

Total people: 3,127, Total check-ins: 4,770.

Table 2: An example POI and its associated information.

According to the Twitter reports from Foursuqre users,
we finalized a dataset of 12, 422 users for 46, 194 POIs with
738, 445 check-in observations. The user POI check-in count
matrix has a sparsity of 99.87%; it is very sparse. Each user
checked in 59.44 POIs on average, only a very small fraction
of all the POIs. The number of check-ins for a POI is ranged
from 1 to 786. This range is very wide as show in Figure 3.

3.2 Evaluation Metrics
Since there is no explicit rating for validation, we evaluate

the models in terms of ranking. We present each user with
N POIs sorted by the predicted values and evaluate based
on which of these POIs were actually visited by the user.
Precision and Recall. Given a top-N recommendation list
SN,rec sorted in descending order of the prediction values in
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Figure 3: An example of wide range user check-in count data
for a randomly chosen user.

a region, precision and recall are defined as Precision@N =
|SN,rec

⋂

Svisited|

N
, Recall@N =

|SN,rec
⋂

Svisited|

|Svisited|
where Svisited

are the POIs a user have visited in the test data. The preci-
sion and recall for the entire recommender system are com-
puted by averaging all the precision and recall for all the
users respectively.
r-Recall and r-Precision. In addition to using absolute
precision and recall for evaluation, we also compare the mod-
els in terms of relative precision and recall. Let C denote the
candidate POIs, the precision and recall in a top-N list of

a random recommender system are |Svisited|
|C|

and N
|C|

. Then,

the relative precision and recall [24] are defined as

rPrecision@N =
Precision@N

|Svisited|/|C|
=

|SN,rec
⋂

Svisited| · |C|

|Svisited| · N

rRecall@N =
Recall@N

N/|C|
=

|SN,rec

⋂

Svisited| · |C|

|Svisited| · N

(15)

The relative precision and recall have the same value. As
a result, we only need to show one of them, and we will
name it as the relative performance, which measures the
improvement over a random recommendation.

3.3 Baseline Algorithms
We first compare our proposed GT-BNMF model with

four traditional recommendation methods: singular value
decomposition (SVD) [12], probabilistic matrix factorization
(PMF) [18], Nonnegative matrix factorization (NMF) [14],
and Bayesian nonnegative matrix factorization (BNMF) [19].
SVD and PMF are the standard algorithms for rating based
recommendations. As mentioned before, the check-in count
date have a wide range, so we also use NMF and BNMF
for comparison. Moreover, we also compare our model with
the fused method [6], which fuse the geographical influence
into factor models. Since BNMF also exploits the count
check-in characteristics, we fuse the geographical influence
into BNMF and denote it as F-BNMF.

3.4 The Method for Comparison
Since POI recommendation in LBSNs is highly location

sensitive, the recommendation should be within the user’s
current region. Therefore, we measure the Top N perfor-
mances by considering the recommendation within a region.
We first cluster all the POIs into R regions. This is the ini-
tialization of the GT-BNMF model. For SVD, PMF, NMF,
BNMF and F-BNMF methods, we make top-N recommen-
dation within the initialized R clustered regions byK-means.
For the proposed GT-BNMF model, we recommend top-N
POIs within each learned latent region.

3.5 Implementation Details
We randomly divided the data into training (80%) and

test(20%) data. We set λU = 0.01 and λC = 0.01 for PMF.

K Pre SVD PMF NMF BNMF F-BNMF GT-BNMF

10
@1 0.0041 0.0034 0.0125 0.0181 0.0192 0.0347

@5 0.0066 0.0062 0.0169 0.0197 0.0208 0.0288

@10 0.0081 0.0080 0.0202 0.0224 0.0237 0.0306

20
@1 0.0052 0.0029 0.0126 0.0147 0.0166 0.0326

@5 0.0067 0.0059 0.0163 0.0160 0.0177 0.0278

@10 0.0088 0.0079 0.0202 0.0197 0.0210 0.0304

Table 3: Precision @N with different latent dimensions K.

K Recall SVD PMF NMF BNMF F-BNMF GT-BNMF

10
@1 0.0008 0.0008 0.0049 0.0077 0.0081 0.0061

@5 0.0038 0.0036 0.0103 0.0121 0.0127 0.0147

@10 0.0060 0.0060 0.0153 0.0167 0.0176 0.0212

20
@1 0.0011 0.0006 0.0046 0.0059 0.0068 0.0060

@5 0.0037 0.0034 0.0098 0.0097 0.0107 0.0144

@10 0.0065 0.0059 0.0151 0.0148 0.0158 0.0210

Table 4: Recall @N with two different latent dimensions K.

We set the topic number Ktopic = 30, α = 50/Ktopic and
β = 0.1 in the aggregated LDA model to derive the user and
POI profile topic distribution. For the GT-BNMF model,
we set α = 1 and β = 1 for latent priors, a = 1 and b = 1
for prior σ2, 1/R for user region multinominal prior γ, and
τ = 1 for the distance model. We set the number of regions
R = 49, which is the number of regions partitioned according
to all the states in USA (except HI and AK).

3.6 Performance Comparisons
In this subsection, we present the performance comparison

on recommendation accuracies between our model and the
baseline methods. We compare the results by setting two
latent dimensions K = 10 and K = 20.
Precision and Recall @N. Table 3 and Table 4 show the
precision and recall@N (N = 1, 5, 10) of all the methods. It
is clear that GT-BNMF is significantly better than all the
baseline methods. For example, for top 10 recommendation
when K = 10, SVD and PMF have precisions around 0.008,
NMF and BNMF improve SVD and PMF about 1.5 times.
F-BNMF can slightly improve BNMF, and GT-BNMF signif-
icantly outperforms F-BNMF. More clear comparisons can
be observed in relative performance as described below.

Relative performance @N. There are two reasons that
relative performance @N serves as a better metric than the
absolute precision and recall. First, please note that for
baseline methods, we make top-N recommendation within
the initialized R clustered regions by K-means; for the pro-
posed GT-BNMF model, we recommend top-N POIs within
each learned latent region. So the candidate POIs can be
different. We need a metric can handle such a change of can-
didate POIs. Second, we need to see how the models actually
outperform a universal baseline, the random recommenda-
tion. The relative performance as defined in Equation (15)
can satisfy these two requirements. A relative performance
value equal to 1 indicates a random recommendation.

The relative performances as shown in Table 5 give a
more clear comparisons between our GT-BNMF and base-
line methods. The relative performance values for SVD and
PMF are around 1, which means that the performances of
these two methods are close to a random guess. For top-
1 recommendation, when latent dimension K = 10, GT-
BNMF can achieve a 41.8 times improvements as compared
3.7 for NMF, 7.1 for BNMF, and 7.3 for F-BNMF. For top-5
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K @N SVD PMF NMF BNMF F-BNMF GT-BNMF

10
@1 0.8729 0.7280 4.7736 8.1243 8.3408 42.8835

@5 0.9345 0.8251 2.5871 3.0713 3.2956 21.0357

@10 0.9829 0.8856 2.4480 2.8588 2.9585 16.1661

20
@1 1.0148 0.7124 4.1618 5.8585 6.6864 42.0183

@5 0.9287 0.8271 2.6095 2.6219 2.8506 20.4742

@10 1.0084 0.9067 2.5131 2.4717 2.6043 16.0662

Table 5: The relative performance @N with two different
latent dimensions (initiated by K-means). It measures the
improvement over a random recommendation.

and top-10 recommendation, our proposed method can also
achieve 20.0 times and 15.1 times improvements respectively,
which are significantly better than all the baselines2. The
improvements can be clearly observed.

Summary. Due to the assumption of a Gaussian over the
product of user and item latent factors uuu⊤vvv, SVD and PMF
perform poorly as they cannot handle the skewed count data.
Some previous studies, such as [18], suggest to normalize the
data through some transfer function and bound the results
by a logistic function. This can work well if the data range
is small. However, when the data is skewed, this method
can make the normalized values indistinguishable. Thus, we
call for a reconsideration of the recommendation assumption
when we face the wide range count data in implicit feed-
back recommendation scenarios. We observe improvements
by NMF and BNMF over SVD and PMF. The F-BNMF
method which exploits an ad hoc two-steps to fuse the ge-
ographical influence into user preferences can only slightly
improve BNMF. Therefore, an integrated analysis of multi-
ple factors is needed for POI recommendations.

The GT-BNMF model not only considers the geographical
information of POIs, regional popularity and user mobility
patterns for recommendation, but also updates the latent
regions by considering these three sources of information.
The learned regions reflect the collaborative user activity
pattern. As a result, we can observe significant improve-
ments over all the baseline algorithms.

3.7 Implications of Latent Regions
In addition to improving recommendation performances,

our proposed model also provides an unique perspective on
POI marketing segmentation in the form of the learned re-
gions. Traditional geographic segmentation for target mar-
ket is segmented according to geographic criteria such as
states [13] and K-means. Here, we intend to answer how the
proposed method with learned latent regions improves the
method based on traditional geographic segmentation ac-
cording to administrative region division (states)? The rec-
ommendation comparisons initialized byK-means are shown
in Section 3.6.
Performance Comparisons. We first evaluate whether
the GT-BNMF model is robust to region initiations. We
compare the relative performances initiated byK-means and
initiated by administrative region partition (state). Instead
of using K-means for initial region clustering, we initialize
our model with region partition according to administra-
tive region division of states. Table 6 shows the relative
performance comparisons of our proposed GT-BNMF model

2
The best relative performance reported in [24] is 11. This provides

an average relative performance value even though we have a different
recommendation task here.

K @N SVD PMF NMF BNMF F-BNMF GT-BNMF

10
@1 1.4271 0.6106 4.4885 6.0672 6.1341 48.4512

@5 0.9628 0.8550 2.5644 2.9042 3.1243 17.4855

@10 0.9161 0.8354 2.5335 2.3370 2.5497 18.9053

20
@1 1.1717 0.5414 3.7472 6.1969 6.5094 46.8855

@5 1.1172 0.7180 2.7691 2.9479 3.0560 17.4738

@10 0.9642 0.8181 2.5067 2.5391 2.6679 18.8852

Table 6: The relative performance @N initialized according
to administrative region partition.

and baseline methods. The comparison results are similar
as discussed before. For baseline methods, we make top-
N recommendation within the initialized regions according
to administrative region division (states). For the proposed
GT-BNMF model, we recommend top-N POIs within each
learned latent region by the model. We can observe simi-
lar performance improvements of our proposed method over
baselines as that initiated by K-means.

Figure 4 shows the relative performance initiated by two
methods. We can see that GT-BNMF initiated by states out-
performs GT-BNMF initiated by K-means for top 1 and top
10 recommendation, but GT-BNMF initiated by K-means
outperforms GT-BNMF initiated by states for top 5 recom-
mendation. In general, the GT-BNMF model can achieve a
relative stable performance initiated by two methods. Note
that the GT-BNMF model can update the latent regions
towards a region segmentation that reflects geographical in-
fluence and user activity efforts.
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Figure 4: Relative performance of GT-BNMF initiated by
K-means and initiated according to state partition.

Latent Region Analysis. We then analyze the latent re-
gions identified by our model. Figure 6 shows the Voronoi vi-
sualization of regions identified by the proposed GT-BNMF
model compared with two different initiations, K-means and
according to state partition. Figure 6b shows the regions
identified by GT-BNMF vs its initiation by K-means (Fig-
ure 6a). Figure 6d shows the region update by GT-BNMF
vs its initiation according to state partition (Figure 6c).

We take a representative hotspot, California, as an exam-
ple to analyze the region update learned by the GT-BNMF
model. Figure 5 shows the zoom in visualization of latent
regions (Figure 5b) learned from our model vs its initiation
by K-means (Figure 5a) in California. Though we have no
ground truth about an optimal POI region segmentation, we
can infer the user activity regions in CA through the collab-
orative check-in behaviors of users who have visited CA and
view the region clusters formulated by collaborative check in
effort as ground truth (as shown in Figure 5c). Through an-
alyzing the collaborative check-in frequency by those users,
as shown in Figure 5c, we can see two clear clusters in north
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(a) K-means. (b) Latent region. (c) Ground truth.

Figure 5: Voronoi visualization of POI segmentation in Cal-
ifornia area. (b) latent regions learned from our model and
(a) initiation by K-means. (c) true user collaborative activ-
ity clusters. Deeper color (red) indicates more check-ins for
a POI, as contrary to light color (green). Best view in color.

California area among other scattered POIs around, one in
Los Angeles area, one in San Diego, and some scattered POIs
between south and north California. K-means only depends
on POI distances to cluster POIs for region segmentation.
As shown in Figure 5a, K-means segments north California
area into four different regions, and segments Los Angeles
into two regions. However, by considering the user check-
in behaviors and geographical factors, our model identified
a more meaningful region partition as shown in Figure 5b,
which is more coherent to real user activity as shown in
Figure 5c. Similar results can also be observed in Figure
6 when GT-BNMF is initiated according to administrative
region partition. GT-BNMF initiated by K-means leads to
better POI segmentation. We can see that GT-BNMF mod-
els not only improves recommendation performances, but
also provides an interesting perspective on POI marketing
segmentation in the form of the learned regions.

4. RELATED WORK
Recommender systems can be developed based on explicit

user feedback. In other words, users rate items and the user-
item preference relationship can be modeled on the basis of
the user ratings. In contrast, recommender systems can also
be developed based on implicit user feedback [11], such as
the search and click on a web site [17, 5], and the check-in be-
haviors in LBSNs as we discussed in this paper. In this case,
the recommender system has to infer user preferences from
implicity user feedback. Here, latent factor models which
are suitable for implicit user feedback are preferred. For in-
stance, NMF [14] based method is used in recommendation
due to its effectiveness in modeling implicity user feedback.
Some studies [17, 5] assumed a Poisson factor model with
Gamma priors. Actually, the Poisson factor analysis can
be equal to NMF in certain condition [14]. Euclidean dis-
tance based optimization leads to Gaussian NMF, and KL-
divergence based optimization leads to Poisson NMF. For
the purpose of efficiency, we adopt a Bayesian probabilistic
non-negative matrix factorization (NMF) method [19]. One
drawback of latent factor models is the so called cold-start
problem, in which latent factor models perform poorly when
there are unseen users or items. Recent works such as [22,
1, 2] incorporated side information into latent factor models
by exploring user observable features and item observable
features. In this paper, we applied a topic model to get the

observable user features and item features, and leverage the
topic distribution for the cold-start problem.

Some previous studies on POI recommendations mainly
relied on user trajectory data to infer user preferences. For
example, previous works [27, 26, 9, 16] applied collabora-
tive filtering (CF) based method to recommend locations
and travel packages based on user trajectory data. Actually,
these works only consider one dimension factor of user POI
check-in decision process. More recent works, such as [23,
3], began to explore user preferences, social influence, and
geographical influence for POI recommendations. However,
it only used a simple CF algorithm to fuse these information,
and thus lacking a comprehensive way to model how these
information collectively influence user POI check-in decision.
Work [15] tried to explore side information to improve POI
recommendations, but it does not explore user mobility in-
formation and does not take the skewed data characteristics
of implicit user check-in counts into the consideration.

More recently, Cheng et al. [6] considered the geographi-
cal influence, the multi-center of user check-in patterns, the
skewed user check-in frequency and social networks for POI
recommendation. However, this work applied an ad hoc two-
step method to fuse the geographical influence into user pref-
erences. It considered the multi-center pattern of user check-
in behaviors, but it did not really consider the user mobility
and lacked an integrated consideration of factors that can in-
fluence POI recommendation. Moreover, the greedy cluster-
ing method applied to derive the personalized multi-centers
would easily lead to overfitting problems in that it focuses
on the regions a user has visited. Instead, our work is an
integrated analysis of geographical influences, user mobility,
word-of-mouth and skewed data for POI recommendation.

In addition, our work has a connection with recent works
on mobility modeling [10, 8]. However, their tasks were
different. Work [10] used similar multinomial assumption
over different regions to model geographical topics in Twit-
ter stream, paper [8] investigated human mobility for social
network analysis. Also, people have used gaussian geograph-
ical distribution to model region over locations [20, 25, 10].

As described above, while there are some studies on POI
recommendation, it lacks of an integrated analysis of the
joint effects of multiple factors that influence the decision
process of a user choosing a POI. These factors include user
preferences, geographical influences, user mobility pattern,
word-of-mouth, and the skewed implicit user check-in counts
data. The proposed method strategically takes all these fac-
tors into consideration and presents a flexible probabilistic
generative model for POI recommendations.

5. CONCLUSION
In this paper, we presented an integrated analysis of the

joint effect of multiple factors which influence the decision
process of a user choosing a POI and proposed a general
framework to learn geographical preferences for POI rec-
ommendation in LBSNs. The proposed geographical proba-
bilistic factor analysis framework strategically takes all these
factors, which influence the user check-in decision process,
into consideration. There are several advantages of the pro-
posed recommendation method. First, the model captures
the geographical influence on a user’s check-in behavior by
taking into consideration of geographical factors in LBSNs,
such as the regional popularity and the Tobler’s first law of
geography. Second, the methods effectively modeled the user
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(a) (b) (c) (d)
Figure 6: Voronoi visualization of POI segmentation comparisons. Latent regions (b) identified by our model GT-BNMF vs
its initiation by K-means (a); Latent regions (d) updated by GT-BNMF vs its initiation according to administrative region
partition (c). We exclude the POI points here, please refer to Figure 2a for geographical POI distributions.

mobility patterns, which are important for location based
services. Third, the proposed approach extended the latent
factor in explicit rating recommendation to implicit feedback
recommendation settings by considering the skewed count
data characteristic of LBSN check-in behaviors. Last but not
least, the proposed model is flexible and could be extended
to incorporate different later factor models which are suit-
able for both explicit and implicit feedback recommendation
settings. Finally, experimental results on real-world LBSNs
data validated the performances of the proposed method.
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