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Problem

@ Input: an n node undirected, unweighted graph.

@ Community detection: find a set of nodes that are both
internally cohesive and well separated

o We consider community detection using seed node:

e Given a seed node, find a community around it



Community Detection Using Local Diffusions

A popular framework:
@ Compute a diffusion vector
@ Reweight the vector based on degrees
© Sort the nodes in decreasing order

@ Select a prefix that maximizes (or minimizes) some scoring

function, e.g. conductance ¢(S) = Wﬁvol(g))

Can be rigorously analyzed (Andersen et al., 2006; Chung, 2009)...

... but in practice multiple diffusions/parameters/scores are used to
generate “interesting points” in the combinatorial search space.



PageRank and Heat Kernel Diffusion Vectors

@ Notation:

Ac R™" is the adjacency matrix

D € R"*" is diagonal matrix of degrees

P = AD ™! (random walk transition matrix)
s € R” with 1 at seed, O elsewhere

@ Personalized PageRank:
p=(1—-a)I,—aP)ls

o Heat Kernel:
h=exp{—(I, - P)}s



Diffusion Coefficients

Diffusion vectors can be written as a series:
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Time-Dependent PageRank

x = (1-a)(I,—aP) tstexp {—(I, — aP)} (s—(1—a)(I,—aP)1s)
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Generalized both: o =1 is heat kernel, v — oo is PageRank
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The Importance of Being Local

@ Even if the graph is huge, communities tend to be local
e Running time should be proportional to community size
o Diffusion vectors are typically dense
e Q(n) to compute them exactly
@ However most values are tiny
@ Literature: A reasonably approximation f* to f is one that

D — )l < €

There are sparse vectors that uphold this
(when € is not too small)



Local Algorithms for Local Diffusions

@ Coordinate relaxation approach:
o Write diffusion vector as solution to a linear system
o Use a semi-greedy coordinate relaxation iteration
(related to Gauss-Southwell rule)
o General method for sparse approx of linear system solution
@ Algorithms based on this approach:

o Andersen et al. (2006) - PageRank (“push” alg.)
o Kloster & Gleich (2014) - Heat Kernel (hkgrow)

@ Our contribution: a local algorithm for Time-Dependent
Personalized PageRank

@ Main challenge: it does not translate to linear system

e Do coordinate relaxation on a system of ODEs instead
e Local approximation to system of ODE solution



Underlying Observations

@ x = x(7y) where x(+) is the solution to
X(t)=(1—a)s— (I, —aP)x(t) x(0)=s
@ Let y(-) be an approx solution. The residual of y(-) is
r(t)=(1-a)s — (In— aP)y(t) —y'(t)
Proposition: y(-) is good enough if for all i

(1 - a)die
1 —exp((a = 1))
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Coordinate Relaxation “Algorithm”

Suggests a coordinate relaxation type algorithm:
@ Initialize y(t) =
@ While there exists a violating i

@ Select such an i arbitrarily.
@ Set y;(-) to the solution of the ODE

y'(t) JrozZP,JyJ +(1-a)s; y(0)=s;

However, this “algorithm” requires operations on infinite
dimensional objects, and so is not viable.



From Infinite to Finite Dimension

Use degree N polynomials
N = O(v + log(1 + €)) (see paper for details)

Polynomials are represented as samples on N + 1 scaled and
shifted Chebyshev points

Snlp()1 = [ p(po) -+ p(tn) ]" ;= (cos(m/N) + 1)y/2

@ Need to map operations of the “algorithm”:

o Computing derivative (for residual computation)
o Computing infinity norm of iterates (testing convergence)
e Solving the ODE



Computing Residual (aka Computing Derivative)

@ The residual is a degree N polynomial as well
(derivative of a polynomial is a reduced degree polynomial)

o Derivative is a linear operation, so exists = € R(N+1)x(N+1)
s.t.
Snlp'(-)] = =Swlp(-)]

o Formulas for = is easily derived from well known formulas

(1 +2N2)/12 i=j=0
— ) —(1+2n?)/12 i=j=N
) /(4 =4 i=j;i0<j<N

(1) pi/(2pixi — pix;) P F#J

where x; = cos(mi/N), po = py = 2, and p; = 1 otherwise.



Testing Convergence

@ Amounts to bounding the infinity norm of polynomials
o Can be computed exactly, but expensive (O(N3))
o Proposition:

2
1P()lloo < (1 + —log N)[ISn[P(-)]lloc -
@ Convergence test: for all

(1—a)die

rilloc < (1 — exp((a — 1)7))(1 + 2 log N




Solving the ODE

@ The solution of the ODE is normally not a polynomial
e So ODE can only be solved approximately
@ Write the update as:

Swnlyi(-)] < Swlyi(-)] +d

with boundary condition dy41 =0
@ Residual update is:

Snlri()] <= Swlri(:)] = (= + In41)d
@ Leads to:

mdin ||SN[I‘,()] — (E + IN+1)d||2 s.t. dN+1 =0.

d— < ={Swln()] )

@ Solution is

0



Putting It All Together (sketch, pseudo code in paper)

Keep a queue of violating indices. Initialize with seed.

In each iteration,

pop an index i

Update y; = Sn[yi(-)] and r; = Sn[ri(-)]
Update r; = Sn|r;(+)] for neighboring js
If any violate: add to queue

Most of the y; and r; are zero; do not keep in memory

Only access to graph is via degree and adjacency queries

Discounting hash operations, and with some preprocessing,
O(N? + deg - N) per iteration.



Summary of Experimental Results

@ Alg. tends to produce smaller communities (so presumably
more realistic), with slightly higher conductance.

o Different results even when a = 1.0 (hk) and v — oo (ppr)

e There are many vectors that are “good enough” approx

o Comparable results to hkgrow (Kloster & Gleich, 2014) on
datasets with ground truth.
@ Running time:

o Slower than hkgrow for heat-kernel (o = 1.0)
o Faster with non-degenerate parameters (e.g.
v =5.0,a =0.85).

o Fewer access to edge lists — important for out-of-core.



Conclusions

Efficient local algorithm for Time Dependent PageRank

Also another local algorithm for PageRank and heat kernel.

Experimentally, rankings that are distinct and competitive,
thus a useful addition to the toolset

Core technique: local solution of system of ODEs. Other uses?

Open question: improved approximation bounds using
time-dependent PageRank?

o It generalizes both PageRank and heat kernel...



