
Community Detection Using Time-Dependent
Personalized PageRank

Haim Avron
Joint work with Lior Horesh

IBM T. J. Watson Research Center

32nd International Conference on Machine Learning
(ICML 2015)
July 7, 2015



Problem

Input: an n node undirected, unweighted graph.
Community detection: find a set of nodes that are both
internally cohesive and well separated
We consider community detection using seed node:

Given a seed node, find a community around it



Community Detection Using Local Diffusions

A popular framework:
1 Compute a diffusion vector
2 Reweight the vector based on degrees
3 Sort the nodes in decreasing order
4 Select a prefix that maximizes (or minimizes) some scoring

function, e.g. conductance φ(S) ≡ ∂S
min(vol(S),vol(S̄))

Can be rigorously analyzed (Andersen et al., 2006; Chung, 2009)...

... but in practice multiple diffusions/parameters/scores are used to
generate “interesting points” in the combinatorial search space.



PageRank and Heat Kernel Diffusion Vectors

Notation:

A∈ Rn×n is the adjacency matrix
D ∈ Rn×n is diagonal matrix of degrees
P ≡ AD−1 (random walk transition matrix)
s ∈ Rn with 1 at seed, 0 elsewhere

Personalized PageRank:

p ≡ (1− α)(In − αP)−1s

Heat Kernel:
h ≡ exp {−γ(In −P)} s



Diffusion Coefficients

Diffusion vectors can be written as a series:

f =
∞∑

k=0

αkPks

αpr
k = (1− α)αk αhk

k = e−γ
γk

k!

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

Index

C
o

e
ff

ic
ie

n
t

 

 

PageRank (α = 0.99)

PageRank (α = 0.85)

Heat Kernel (γ = 5.0)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Index

C
u
m

u
la

ti
v
e
 S

u
m



Time-Dependent PageRank

x ≡ (1−α)(In−αP)−1s+exp {−γ(In − αP)} (s−(1−α)(In−αP)−1s)

αtpr
k =

[(
1−

k∑
r=0

αhk
r

)
αpr

k + αkαhk
k

]
Generalized both: α = 1 is heat kernel, γ →∞ is PageRank

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

Index

C
o

e
ff

ic
ie

n
t

 

 

PageRank (α = 0.99)

PageRank (α = 0.85)

Heat Kernel (γ = 5.0)

Time-dependent PageRank (α = 0.85, γ = 5.0)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Index

C
u
m

u
la

ti
v
e
 S

u
m



The Importance of Being Local

Even if the graph is huge, communities tend to be local

Running time should be proportional to community size

Diffusion vectors are typically dense

Ω(n) to compute them exactly

However most values are tiny
Literature: A reasonably approximation f? to f is one that

‖D−1(f? − f)‖∞ < ε

There are sparse vectors that uphold this
(when ε is not too small)



Local Algorithms for Local Diffusions

Coordinate relaxation approach:

Write diffusion vector as solution to a linear system
Use a semi-greedy coordinate relaxation iteration
(related to Gauss-Southwell rule)
General method for sparse approx of linear system solution

Algorithms based on this approach:

Andersen et al. (2006) - PageRank (“push” alg.)
Kloster & Gleich (2014) - Heat Kernel (hkgrow)

Our contribution: a local algorithm for Time-Dependent
Personalized PageRank
Main challenge: it does not translate to linear system

Do coordinate relaxation on a system of ODEs instead
Local approximation to system of ODE solution



Underlying Observations

1 x = x(γ) where x(·) is the solution to

x′(t) = (1− α)s− (In − αP)x(t) x(0) = s

2 Let y(·) be an approx solution. The residual of y(·) is

r(t) ≡ (1− α)s− (In − αP)y(t)− y′(t)

Proposition: y(·) is good enough if for all i

‖ri (·)‖∞ <
(1− α)diε

1− exp((α− 1)γ)



Coordinate Relaxation “Algorithm”

Suggests a coordinate relaxation type algorithm:
1 Initialize y(t) = s.
2 While there exists a violating i

1 Select such an i arbitrarily.
2 Set yi (·) to the solution of the ODE

y ′(t) = −y(t) + α

n∑
j=1

Pijyj(t) + (1− α)si y(0) = si

However, this “algorithm” requires operations on infinite
dimensional objects, and so is not viable.



From Infinite to Finite Dimension

Use degree N polynomials
N = O(γ + log(1 + ε)) (see paper for details)
Polynomials are represented as samples on N + 1 scaled and
shifted Chebyshev points

SN [p(·)] ≡
[

p(p0) · · · p(tN)
]T tj = (cos(jπ/N) + 1)γ/2

Need to map operations of the “algorithm”:

Computing derivative (for residual computation)
Computing infinity norm of iterates (testing convergence)
Solving the ODE



Computing Residual (aka Computing Derivative)

The residual is a degree N polynomial as well
(derivative of a polynomial is a reduced degree polynomial)
Derivative is a linear operation, so exists Ξ ∈ R(N+1)×(N+1)

s.t.
SN [p′(·)] = ΞSN [p(·)]

Formulas for Ξ is easily derived from well known formulas

Ξij =


γ(1 + 2N2)/12 i = j = 0
−γ(1 + 2N2)/12 i = j = N
γxj/(4− 4x2

j ) i = j ; 0 < j < N
(−1)i+jpi/(2pjxi − pjxj) i 6= j

where xi = cos(πi/N), p0 = pN = 2, and pj = 1 otherwise.



Testing Convergence

Amounts to bounding the infinity norm of polynomials
Can be computed exactly, but expensive (O(N3))
Proposition:

‖p(·)‖∞ ≤ (1 +
2
π
logN)‖SN [p(·)]‖∞ .

Convergence test: for all i

‖ri‖∞ <
(1− α)diε

(1− exp((α− 1)γ))(1 + 2
π logN)



Solving the ODE

The solution of the ODE is normally not a polynomial
So ODE can only be solved approximately

Write the update as:

SN [yi (·)]← SN [yi (·)] + d

with boundary condition dN+1 = 0
Residual update is:

SN [ri (·)]← SN [ri (·)]− (Ξ + IN+1)d

Leads to:

min
d
‖SN [ri (·)]− (Ξ + IN+1)d‖2 s.t. dN+1 = 0 .

Solution is

d =

(
Ξ+

1 SN [ri (·)]
0

)



Putting It All Together (sketch, pseudo code in paper)

Keep a queue of violating indices. Initialize with seed.
In each iteration,

pop an index i
Update yi ≡ SN [yi (·)] and ri ≡ SN [ri (·)]
Update rj ≡ SN [rj(·)] for neighboring js
If any violate: add to queue

Most of the yi and ri are zero; do not keep in memory
Only access to graph is via degree and adjacency queries
Discounting hash operations, and with some preprocessing,
O(N2 + deg · N) per iteration.



Summary of Experimental Results

Alg. tends to produce smaller communities (so presumably
more realistic), with slightly higher conductance.
Different results even when α = 1.0 (hk) and γ →∞ (ppr)

There are many vectors that are “good enough” approx

Comparable results to hkgrow (Kloster & Gleich, 2014) on
datasets with ground truth.
Running time:

Slower than hkgrow for heat-kernel (α = 1.0)
Faster with non-degenerate parameters (e.g.
γ = 5.0, α = 0.85).

Fewer access to edge lists – important for out-of-core.



Conclusions

Efficient local algorithm for Time Dependent PageRank
Also another local algorithm for PageRank and heat kernel.
Experimentally, rankings that are distinct and competitive,
thus a useful addition to the toolset
Core technique: local solution of system of ODEs. Other uses?
Open question: improved approximation bounds using
time-dependent PageRank?

It generalizes both PageRank and heat kernel...


