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Abstract

Recently, the Support Vector Machine (SVM) has shown its powerful abil-
ities to perform classification, estimation, and regression. The major task in
the SVM training procedure is to locate the points, or rather support vectors,
based on which we construct the discriminant boundary in classification task.
But one of its potential drawbacks is its slow training procedure. During the
process of locating the support vectors, reducing the size of the training set
for SVM will speed up the training procedure. In this thesis, we approach to
the solution by reducing the size of the reference set from the computational
geometry perspective. In particular, we propose the F-neighbor edited algo-
rithm which locates a set of “edited” set that can be used to locate support
vectors in order to achieve that target. To further speed up the (-neighbor
edited algorithm, we propose two approaches: one through parallelism re-
duction and the other through a structural reduction using spatial indexing
techniques. Furthermore the combination of the two approaches is applied
in the implementation of the F-neighbor edited algorithm to accelerate the
editing step. We compare the classification methods, including SVM method,
k-Nearest Neighbor method and (C'4.5, in which the “edited” set is used as

the training dataset, against with the classification methods with the original
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training dataset. Reduced SVM, an improved algorithm of SVM to reduce
the training time, is also compared to our approach in this thesis. From our
experiments, we show that with the “edited” set as the training set the clas-
sification methods can preserve the high prediction accuracy. With the aid of
parallelism and spatial indexing structure, our method in which we first edit
the training set and then do SVM ftraining on the reduced training set (edited

set), reduces the real training time for the large dataset.
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Chapter 1

Introduction

1.1 Introduction to Classification

(Classification plays a key role in many areas of nature science, finance and
industry, such as health-care outcome, marketing and automatic article classi-
fication, etc. Here is an example of classification. In a hospital, doctors want
to predict whether a patient, hospitalized due to a heart attack, will have a
second heart attack. The prediction is made based on demographic, diet and
clinical measurements for that patient. In this scenario, we have two outcome
categories (heart attack/no heart attack), which we wish to predict based on
a set of features (diet and clinical measurements). We have many existing
medical records (a set of data), in which we observe the outcome and feature
measurements for a set of objects (patients). Using the data, we build a pre-
diction model, or c¢lassi fier, which enables us to predict the outcome for new
unseen objects (patients to be diagnosed).

Classification is the process of finding a set of models (or functions) that de-
scribe and distinguish data categories, for the purpose of being able to use the
model to predict the class of objects whose categorical value is unknown [43].

We typically denote X, a d-dimensional vector, as the combination of fea-
tures, in which each component is transferred to be real-valued. The categori-

cal variable indicating outcome is denoted by Y. Observed values are written
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in lowercase, i.e., the ith observed value of X is denoted by x;. The model
yields predictions, f(z;6), where 6 represents the parameters of the model
structure.

(Classification involves two major steps (See Figure 1.1).

1. Build a classification model using training data. Every object in the
dataset must be preclassified, i.e. its class label must be known in ad-
vance. Many classification algorithms, which will be discussed later, can
be used to build the model. The model is represented in the form of

classification rules or mathematical formulae [43].

2. Assign a class label to each object in a test dataset by the model con-
structed in the preceding step. Each sample of test data is also prepro-
cessed and preclassified in advance. The accuracy of the classification
model is determined by comparing true class labels of the testing data

with those assigned by the model.
Trai ni ng

Training NModel
Dat a Construction

Cl assification
Model

Testi ng

Testing
Dat a

Model
Esti mati on

|
|
|
|
Figure 1.1: Classification Process from Training to Testing

Consider the nature of the mapping function f in the classification model
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for a simple problem in two-dimensional X space. The mapping in effect
produces a piecewise constant surface over the plane; that is only in certain
regions does the surface belongs to one predefined class. The union of all such
regions is known as the decision region for that class.

Knowing where these decision regions are located in the X plane is equiva-
lent to knowing where the decision boundaries between the regions lie. Thus
we can think of the problem of learning a classification function f as being
equivalent to learning decision boundaries between classes.

We can make simple parametric assumptions about the functional form of
the boundaries. For example, a classic approach is to use a linear hyperplane in
the d-dimensional X space to define a decision boundary between two classes.
That is, the model partitions the X-space into disjoint decision regions (one
for each class), where the decision regions are separated by linear boundaries.
A more complex model means to allow higher-order terms, which yield polyno-
mial decision boundaries. The neural network classifiers can be used to build
the non-linear boundaries directly [84]. Another way to allow flexible forms
for non-linear boundary is to combine multiple simple local models, such as
decision tree classifiers [81]. The Nearest-Neighbor classifier is to classify a
new unclassified data point according to the label of its nearest neighbor in
the training samples. Although this technique is generally considered as a
method rather than a model, it does in fact implicitly define a piecewise linear
decision boundary (when using Euclidean distance to define neighbors) [44].

There are also many other classification techniques, providing different
ways to model decision boundaries, such as Bayesian method [62] [34], and
support vector machine [94] [53], etc.

A good classifier is one that accurately predicts the class label for new
unseen objects. A performance of a classifier not only depends on its mechan-
ics, but also on the characteristics of the data. Even on the same pattern,

different classifiers may behave quite diversely. The user has to choose the
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most appropriate method for the problems in various situations. A large re-
search effort has been focused on comparative studies of various classifiers in
the context of different applications. One of the most extensive efforts was
the Statlog project [69], in which a wide range of classifiers was tested using
a large number of different data sets. The project tried to relate performance
of algorithms to characteristics of datasets and verified that the performance

of the various algorithms is much influenced by the particular application.

1.2 Problem Definition

Support vector machine has come to play a very dominant role in data classifi-
cation using a linear or nonlinear classifier [13] [25]. There are three problems
that impelled the initial development of SVM. They are the bias variance
tradeoff [39], capacity control [42], and overfitting [70]. In fact, the three prob-
lems share the same root. Roughly speaking, for a given learning task, with a
given finite amount of training data, the best generalization will be achieved
if the right balance is struck between the accuracy attained on that particular
training set, and the “capacity” of the machine (the ability of the machine to
learn any training set without any error). The exploration and formalization
of these concepts forms the basis for the Statistical Learning theory [93] [20].
The following section is an introduction to support vector machine.

We are given the training data, {z;,y;}, 2 = 1,-- -, m, in which each exam-
ple has d inputs (z; € R?), and one of two values (y; € {—1,1}) as the class
label. In SVM, all the hyperplanes in R? are parameterized by a vector w and

a constant b, expressed in the equation
w-xr+b=0, (1.1)

where w is the vector orthogonal to the hyperplane. We define the margin as

the sum of the distances from the separating hyperplane to the closest points
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in two classes [20]. In fact, the basic concept behind SVM is to find the tradeoff
between the largest margin (distance) and training errors, so the generalized
optimal separating hyperplane is regarded as the solution to Eq. (1.2) as fol-
lows [94],

.1 .
min( Lol + € 356 (1.2
i=1
subject to y;(z-w+b) > 1—¢,& > 0.

For solving high dimension problems, SVM maps z into higher space through
a mapping function ¢ in such a way that ¢(z)- ¢(y) = K(z,y) for some known
and easy-to-evaluate set of functions, K [94]. These functions, K, are called
kernel functions.

Although using SVM can achieve high performance and optimal solution
in the real-life classification problems, there are still some deficiencies in the

SVM method.

1. Iterative Procedure For Solving Problems

SVMs are constructed on the basis of quadratic optimization techniques
for the objective function. There are a number of methods for solv-
ing quadratic optimization problems. For example, methods can be
constructed based on the conjugate gradient procedure [55], the inte-
rior point method [92], the projection procedure [95], the decomposition
method [53] [51] [76]. Any of these can be used for constructing an SV
machine. But in all procedures, an iterative procedure for solving the
quadratic problem is required. This makes the speed of the convergence

difficult to control.

2. Model Selection and Parameter Setting

The difficulty for SVM used in practice is the selection of the kernel func-

tion type and the parameters of the objective function. For example, the
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popular kernel functions are RBF (Radial Basis Function) [78], polyno-
mial function [94], two-layer sigmoidal neural network [94]. In general,
each function has its own parameters, whose values are in a wide range.
Users like to tune the parameters which can lead to the best general

performance. This process is time consuming.

All existing works on improving the performance of SVM in practice is to
refine the algorithm of SVM itself, such as revising the method for solving
the quadratic optimization problem [49], auto model selection [59], randomly
selected portion of the dataset in the procedure of solving quadratic optimiza-
tion: RSVM [60]. In this thesis we reduce the training point set by performing
preprocessing on the dataset. Recall that only the training examples that
become support-vectors are actually needed in determining the optimal hy-
perplane. If there are some ways to throw out the data points, which are
not support vectors, we can reduce the problems size. Yang [101] provides
a method to determine the data points (potential support vectors) by solv-
ing a series of Linear Programming problems, which are more efficient than
conventional methods using QPs.

Are there any other methods to reduce the size of training data set? Are
those reduced set suitable for SVM training? Can we do some improvements
on those methods?

All these issues motivated and directed our research.

1.3 Major Contributions

In this paper, the contributions are:

1. Show a concrete connection between SVM and some concepts in Com-

putational geometry [104].

2. Based on the connection, a preprocessing step using [3-neighbor edited
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Table 1.1: Four Trials for the Testing Idea
Non-parallel Parallel

Non-index original B-neighbor,,q
SR-tree Index | SRtree-3-neighbor | SRtree-(3-,,,,

algorithm is proposed to reduce the training dataset for SVM from the
geometric viewpoint [103]. As a result, the computation of SVM is low-
ered while the convergence is speeded up, with the high performance

preserved.

3. Make improvements on the geometric method with some effective tech-
niques, such as parallelism and SR-tree indexing [22]. Four kinds of

experiments are conducted to confirm our theoretical claims [102] (See

Table 1.1).

1.4 Thesis Organization

In the next chapter, we will present the main classification methods in statis-
tical field, neural network and decision tree. Chapter 3 presents the related
topic with SVM from the viewpoint of Computational Geometry. Ideas of data
editing and the effective techniques to speed up the editing procedure will be
introduced in Chapter 4. In Chapter 5, we conduct a series of experiments
on different data sets and compare the performance of the different classifiers.

Lastly, we conclude and make some final remarks in Chapter 6.



Chapter 2

Literature Review

A wide variety of approaches has been developed towards classification task. In
this chapter, three main historical strands of research are illustrated: statistical
method, decision tree, and neural network (See Fig. 2.1). Those have largely
involved different professional and academic groups, and emphasized different
issues. However, all groups have had some objectives in common [69]. They

have all attempted to derive procedures that would be able:

e to equal, if not exceed, a human decision-maker’s behavior, but have the

advantage of consistency and, to variable extent, explicitness;

e to handle various problems and, given enough data, to be extremely

general;

e to be used in practical cases with proven success.

2.1 Fisher’s Linear Discriminant

This is one of the oldest classification methods, and is the most commonly
implemented in computer packages. It is a classification method that projects
high-dimensional data onto a line and performs classification in this one-

dimensional space. The projection maximizes the distance between the means
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Cl assification Mt hod

\4

Deci sion Tree Statistical Method Neur al Net wor k
4
C4.5 Fisher’s NN SVM RBF
Li near
Di scri m nent

Figure 2.1: Review of Classification Methods

of the two classes while minimizing the variance within each class. This defines
the Fisher criterion [31], which is maximized over all linear projections, p,:

_ [m1 — mo|?

2 2
81 + 85

J(p) : (2.1)

where m represents a mean, s represents a variance, and the subscripts denote

the two classes.

2.2 Radial Basis Function Networks

RBF networks emerged as a variant of artificial neural network in late 80’s [19].
RBFs are embedded in a two layer neural network, where each hidden unit im-
plements a radial activated function. The output units implement a weighted
sum of hidden unit outputs. The input into an RBF network is nonlinear
while the output is linear. Their excellent approximation capabilities have

been studied in [74] [77]. Due to their nonlinear approximation properties,
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RBF networks are able to model complex mappings, which perceptron neural
networks can only model by means of multiple intermediary layers [46].

In order to use a RBF network we need to specify the hidden unit activation
function, the number of processing units, a criterion for modelling a given task
and a training algorithm for finding the parameters of the network. Finding
the RBF weights is called network training. After training, the RBF network
can be used with data whose underlying statistics is similar to the training set.
RBF networks have been successfully applied to a large diversity of applications

including speech recognition, chaotic time-series modelling, etc.

2.3 Decision Tree

In this section we briefly review a large class of nonlinear classifiers known
as decision trees. They are multistage decision systems in which classes are
sequentially rejected until we reach a finally accepted class. To this end, the
feature space is split into unique regions, corresponding to the classes, in a
sequential manner. Upon the arrival of a feature vector, the searching of the
region to which the feature vector will be assigned is achieved via a sequence
of decisions along a path of nodes of an tree, appropriately constructed. Such
schemes perform well especially when a large number of classes are involved.
The most popular decision trees are those that split the space into hyperrect-
angles with sides parallel to the axis. The sequence of decisions is applied to
individual features, and the questions to be answered are of the form “is fea-
ture x; < a?” where « is a threshold value. Such trees are known as ordinary
binary classification trees (OBCT) [87]. We can also build other types of trees,
which split the space into convex polyhedral cells or into pieces of spheres.
The basic idea of an OBCT can be demonstrated via the simple example
(See Fig. 2.2). By a successive sequential splitting of the space we have created

regions corresponding to the various classes. Fig. 2.3 shows the respective
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XL
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Wy
|
1 2 3 X1

Figure 2.2: Decision Tree Partition

binary tree with its decision nodes and leaves.

In general, in order to construct a decision tree, a splitting criterion (i.e.,
optimizing function) may be adopted for each node. For further information
and a deeper study of this class of classifiers the interested reader may consult
the seminal book [18]. A nonexhaustive sample of later contributions in the
area is given by [24] [85] [81] [30].

Finally, it should be stated that there are close similarities between the
decision trees and the neural network classifiers. Both of them aim at forming
complex decision boundaries in the feature space. A major difference lies in
the way decisions are made. Decision trees employ a hierarchically structured
decision function in a sequential fashion. In contrast, neural networks utilize
a set of soft (not final) decisions in a parallel fashion [87].

Furthermore, their training procedures are activated by different philoso-

phies. However, despite their differences, it has been shown that linear tree
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Figure 2.3: Decision Tree Classification

classifiers (with a linear splitting criterion) can be adequately mapped to a

multi layer perceptron structure [86] [85] [75].

2.4 Nearest Neighbor

kNN method was first given in an unpublished report by Fix and Hodges [32].
There i1s a very extensive literature on Nearest Neighbor classifiers, much of
which is reviewed or reprinted in [26].

C'lose is measured by Euclidean distance function here. The basic steps of
nearest neighbor method to do classification are described as follows. When
NN method wants to classify a new point, z, it simply finds out the £ data
points in the training dataset closest to x. Then, they assign the new point,
x, to the class that has the majority of points among these & points.

In theoretical terms, we are taking a small volume of the space of variables,
centered at z, and with radius the distance to the kth nearest neighbor. Then
the maximum likelihood estimators of the probability that a point in this small
volume belongs to each class are given by the proportion of training points in

this volume that belong to each class. The k-nearest neighbor method assigns
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a new point to the class that has the largest estimated probability [44].

This simple outline leaves a lot unsaid. In particular, we must choose
a value for k£ and a metric through which to define close. The most basic
form takes £ = 1, but this makes a rather unstable classifier (high variance,
sensitive to the data), and the predictions can often be made more consistent
by increasing k (reduces the variance, but may increase the bias of the method
since there is more averaging). However, increasing k& means that the training
data points now being included are not necessarily very close to the object to
be classified. This means that the “small volume” may not be small at all.
Since the estimates are estimations of the average probability of the value at
any particular point within the volume and this deviation is likely to be larger
as the volume is larger. The dimensionality d plays an important role here: for
a fixed number of data points m, we increase d (adding attributes) to the data
points and then the data points become more and more sparse. This means
that the predicted probability may be biased from the true probability at the
point in question [44].

2.5 Support Vector Machine

Support Vector Machine [94] has been extensively used in machine learning
and data mining [66] [16] [15]. It was introduced by Vladimir Vapnik and
colleagues. The earliest mention was in [93], but the first main paper seems
to be in [94]. In the classification problem, we attempt to classify points
coming from different classes by a linear or nonlinear separating surface. The
learning process of classification utilizes the data point in the training set to
generate a separating surface which assigns each training input data point to
the appropriate category. The separating surface is then tested on the unseen
data. Now let us consider how SVM performs classification in the following

cases.
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2.5.1 Linear Separable Case

Given a set of input points, {z;,y;},(i = 1,---,m, y; € {—1,1}, z; € R?),
suppose there exists a hyperplane which could separate the positive from the
negative examples. It means that the points = which lie on the hyperplane
satisfy w - 2 + b = 0, where w is normal to the hyperplane, |b|/||w]|| is the
perpendicular distance form the hyperplane to the origin, and ||w]| is the Eu-
clidean norm of w. The margin is defined as the sum of the distance of the
separating hyperplane to the closest positive and negative points [20]. For the
linearly separable case, SVM simply finds the separating hyperplane with the

largest margin. It could be formulated as follows:
w-r;+b>+1, for y;=+1 (2.2)

w -z, +b< =1, for y, =-—1. (2.3)

These can be combined into a set of linear constraints for all the training data
points:

Yilw-z; +b)—1>0, V. (2.4)

From Fig. 2.4 and Eq. (2.4), we can calculate the margin as 2/ ||w||. Then we
can find the separating hyperplane with the largest margin under the constraint
in Eq. (2.4) by

min%HwHQ (2.5)

subject to y;(z-w+0b) > 1,0 =1,---,m.

In short, the training of this classifier is achieved by solving a linearly con-
strained optimization problem. Let a;,2 = 1,---,m be the m nonnegative La-
grange multipliers, one for each inequality constraints in Eq. (2.4), the solution
to Eq. (2.5) equals to the solution to the constrained quadratic optimization
problem using the Wolfe dual theory [20] as,

1
LP = 5 Zaiajyiyj;z:isz:j — E a; (26)

0]
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Figure 2.4: Linear Separating hyperplanes for the Separable Case
subject to 0 < a; < 1,20%2%' = 0.

This is a quadratic programming (QP) problem, and all constraints are
linear. Then we can apply various techniques to solve the QP problem and

obtain the optimal solution for SVM.

2.5.2 Non Linear-separable Case

The above algorithm for separable data, when applied to non linear-separable
data, will give no feasible solution. So we need extend these ideas to handle
non linear-separable data by introducing some non-negative slack variables
£i,1=1,---,m and allowing some points to be misclassified (Fig. 2.5). Eq 2.5

becomes:

yilr-w+b) > 1-=¢,
& > 0 Vi

Clearly, when an error occurs, & must exceed zero. So >, & is an upper
bound of the number of training errors. Therefore considering the extra cost for
errors, the objective function will be changed from %HwHQ to %HMHQ +C(X: &),

where C' is a parameter chosen by users to decide the penalty rule.
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In the soft margin (non linear-separable case) formulation of [94], the gen-

eralized optimal separating hyperplane is the solution to Eq. (2.7) as follows,
.1 =

min(L o]+ O3 €) @7)
! i=1

yi(zi-w+b) > 1-¢,

Ei 2 07
i= 1,,m,
C > 0,

where C' is the penalty parameter. When data are not linear separable, there
is a penalty term C'3°7" | & which can reduce the number of the training errors.
The basic concept behind SVM is to find a balance between the regularization
term (maximum margin) %HwHQ and the training error. Furthermore, the «
value is bounded by €', which will limit the search space for the QP problem
above, i.e. the possible range for the a; value.

It can be proven that, for any misclassified training data, x;, the corre-
sponding «; must lie at the upper bound. This can be understood by imaging
that a particular data point tries to assert a stronger influence on the bound-
ary so that it can be classified correctly, by increasing the corresponding «;
value. When the «; value reaches its maximum bound, it cannot increase its
influence further, hence this point will stay misclassified. This analogy is con-
sistent with the fact that (', the upper bound for a;, is the trade-off between
maximum margin and classification error. A larger (' corresponds to assigning
a higher penalty to errors, and consequently « is allowed to have a larger value;
in this manner, each misclassified data can assert a stronger influence on the
boundary.

Similarly, the corresponding Lagrangian formulation is defined as
1
Lp = §Hw”2—|—C’Z& (2.8)

=2 aiyi(wi - w) +6) =1+ &} = D ik
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Figure 2.5: Handling Non Linear-separable Case with Slack Variables

The optimal solution to this problem satisfies Karush-Kuhn-Tucker (KKT)

conditions [94]. Then all the following conditions are satisfied:

w= Zaiyi$iazaiyi =0,C0 —a; = i,
yz(”czw—l—b)—l—l—fz ZO,OSOZZ SC,
ai{yi(w -z +0) =1+ &6 = 0,6 =0, (2.9)
luia& > 07Z = 17"'7m70> 0.
Some of the conditions above can be substituted into Eq. (2.8) to give the

new Lagrangian in Eq. (2.10).

1
Hblin52a¢ajyiijﬂ;j — Zai (2.10)
R i

subject to 0 < a; < C,Zaiyi =0.

Solving Eq. (2.10) will give the value for all ;. b is found by using Eq. (2.9),
by selecting any training data with nonzero «; value when those free variables

exist.
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2.5.3 Nonlinear Case

So far the SVM classifier can only have a linear hyperplane as its decision
surface. This formulation can be further extended to build a nonlinear decision
SVM. The motivation for this extension is that an SVM with nonlinear decision

surface can classify nonlinearly separable data (See Fig. 2.6).
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Figure 2.6: Nonlinear Case for SVM

For solving nonlinear separable problems, SVM maps the training data
from R? to a Hilbert space H of a higher dimension (maybe infinite), and fits
an optimal linear classifier in H. Then the linear SVM formulation above can
be applied to these data.

In the SVM formulation, the training data only appear in the form of
dot products, z; - z; and the same is true in the decision function w -z + b
(w = Y, a;yiz;). These can be replaced by dot products in Euclidean space
H, i.e. ¢(x;)- P(x;), where ¢ is a mapping function: R"—H

K(zi, ;) = ¢(z:) - p(x;) (2.11)
The dot product in the high dimension space can also be replaced by a kernel
function, 2.11. By computing the dot product directly using a kernel func-

tion, one avoid the mapping ¢(x). This is desirable because H has possibly

infinite dimensions and ¢(x) can be tricky or impossible to compute. Using
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Table 2.1: Some Possible Kernel Functions and the Types of Decision Surface
They Define

‘ Kernel Function ‘ Type of Classifier ‘
K(X,y):exp(—“%“i) Gaussian RBF

K(x,y)=(z-y+1)* | Polynomial of degree d

a kernel function, an SVM that operates in infinite dimensional space can be
constructed. Furthermore, set Q;; = yiy; K(z;, z;), the objective function is
changed as follows
1
R(a) = 5&-@-@—2%. (2.12)

For any kernel function suitable for SVM, there must exist at least one pair
of {H, ¢}, such that Eq. (2.11) is true, i.e. the kernel function represents the
dot product of the data in H. The kernel that has these properties satisfies the
Mercer’s theorem [94]. By using kernel functions in the dual SVM problem,
SVM can efficiently and effectively emulate many types of well known classifiers
which are introduced in [73], as shown in Table 2.1.

The primary appeal of SVM is that it can be simply and elegantly applied
to nonlinear discrimination. With only minor changes, SVM methods can
construct a wide class of two-class nonlinear discriminants by solving a single
QP problem. The basic idea is that data points in the training dataset are
mapped to a higher dimensional space so that the dual SVM problem is used to
construct a linear discriminant in the higher dimensional space that is nonlinear

in the original attribute space.

2.5.4 Multi-class SVM

The solution of binary classification problems using support vector machine
(SVM) is well developed, but multi-class problems with more than two classes

have typically been solved using voting scheme methods based on combing
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many binary classification decision functions [97] [17]. Currently there are two
approaches to solve multi-class problem. One approach is by constructing and
combining several binary classifiers, while the other is a formulation of SVM

which solves the multi-class problem in a single optimization [48].

+ +
++ o+ 4+
+ + - -
+ + + - - - - -
+ - - - -
+ o+ 4+ - - - -
* 0% -
* X % - - -
*  x % -
* *  x  %*
*x X % %
*x X *x % % *

Figure 2.7: Multi-class Case with One-against-one Method

Here, we consider the multi-class SVM problem as the combination of
many binary classification problems. Based on binary classifications, the “One-
against-one” method is introduced in [58]. For this method, (@) classifiers
can be constructed, separating each class from each other, where £ is the num-
ber of categories. Each classifier is trained on data from the two classes. For
example, we solve the following binary classification problem with the data

points in the training set from class ¢ and class j:
. 1 ij ij ij
MAN i1 pis ¢is 5((.0 )W+ O (2.13)
t
subject to

(@) - dla) +07 2 1=, w=1i;

(@) de) + b1 < —1+€), w=
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& > 0.

There are many different methods to do the future testing after all k(k —
1)/2 classifiers are constructed. A majority vote across the classifiers or some
other measure can be applied to classify a new point. For example, the fol-
lowing voting strategy suggested in [33]: if sign ((w") - ¢(z¢) + bY) says z is in
the ith class, then the vote for class z is added by one. Otherwise, the vote
for class j is increased by one. Then we predict x to be in the class with the
largest vote. The voting strategy is also called “Max Wins”. If two classes
have the same votes, we simply select the one with smaller index.

In practice, we solve the dual problem of Eq. (2.13) whose number of vari-
ables is the same as the number of data points in two classes. Hence if in
average each class has m/k data points, we have to solve k(k — 1)/2 quadratic

programming problems where each of them has about 2m/k variables [48] (See

Fig 2.7).

2.5.5 RSVM

The motivation for RSVM (Reduced Support Vector Machine) comes from
the practical objective of generating a nonlinear separating surface for a large
dataset which requires a small portion of the dataset for its characterization.
When confronting the large data classification by a nonlinear kernel, the major
problem is the size of the mathematical programming problem that needs to be
solved and the time it takes to solve [60]. The key point of RSVM is to reduce
the matrix @ in Eq. (2.12) from m xm to m xn, where n is the size of randomly
selected subset of the training data considered as candidates of support vectors.
RSVM is different from directly solving smaller SVM problems with a subset
of training data, because the m constraints in the primal problem 2.7 are still
kept during the optimization process [64].

We describe the main procedure of modifying standard SVM to RSVM in
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the following. First, the 1-norm of the slack variable £ minimized with weight
C' is replaced by the square of 2-norm of the slack variable £. In addition,
the distance between the two bounding planes is measured in the (d + 1)-
dimensional space of (w, b)€ R¥*!, which is similar to that of [14] [36] [35] [61].
Measuring the margin in this (d + 1)-dimensional space instead of R? has little
or no effect on the problem as shown in [67]. The experimental results in [50]
also verify that. Using twice the reciprocal squared of the margin instead, the

modified SVM is as follows:

min %(w-w—l—bQ)—l—CZ@Q (2.14)

wbg i=1
subject to  y;i(w- P(x;) +b) > 1—¢&,.

Its dual form becomes a simpler bound-constrained problem:

1 1 "
min §a'(Q+ﬁ+ny)-a—;ai (2.15)
subject to  «; > 0.

By substituting w with >7 y;a;¢(x;), which is obtained at the optimal
solution, the optimization problem turns into [64]:

) 1 e
ranbng §(a-Qa—l—62)—|—C’;ff (2.16)

subject to Qo+ by > e —E€.

Though (2.16) is different from (2.15), the dual problem, we can show that
for any optimal « of (2.16), the corresponding w defined by ¥7, y;a;é(x;) is
also an optimal solution of (2.14), so we can solve (2.16) instead of (2.15). (See
details in [64].)

RSVM achieves reducing the number of support vectors by randomly select
a subset of n samples to construct w:

w = Z yicidp(x;), (2.17)

tER
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where R contains indices of the subset. Then the new problem is obtained by

substituting 2.17 in 2.16:

1 m
min - 5(a - Qrra + )+ C Y& (2.18)
b, i=1

subject to Q. ra+by > e —¢,
where the size of R is n, a is the collection of all o, 7 € R, and Q). g is the sub-

matrix of columns corresponding R [64]. At last, with the idea of generalized

SVM [65], Lee [60] simplified the term 1a - Qrra to 1o - & so RSVM solves
1 m
min §(a-a+b2)+0253 (2.19)
P i=1
subject to Q. ra+by > e —¢.

The main purpose of this thesis is to speed up the training part for SVM.
RSVM is one of the methods, which aim to achieve that target. It refines the
SVM algorithm from the inner structure, while in our work the emphasis is
on the preprocessing step of the dataset, in which the size of the data set is
reduced. The connection between our method and SVM will be shown in the

next chapter. Furthermore, comparisons between our method and RSVM will

be presented in Chapter 4.

2.6 Summary

In previous sections, we simply describe the basic ideas of the different classi-
fication methods. Table 2.2 shows the comparisons of the classifiers and gives
more explicit explanations of the uses of the various classifiers according to
the selection criteria which include speed, ability to deal with complex data
and implementation. Generally the neural network classifier would be used
only if the other classification methods failed. So we will only conduct the
experiments on the last three classifiers to show the further comparisons of
their performances, predictive accuracy, time to construct the model and time

to use the model. All the experimental results will be discussed in Chapter 4.
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Table 2.2: Comparisons of the Classifiers Referred to Above

24

| Classifiers

Advantages

Disadvantages

Fisher’s Linear
Discriminant

Fast training
Fast evaluation of the
decision function

Simple decision boundary

Only solve binary class problems

Neural Network

Learn complicated
class boundaries
Fast evaluation of the
learned decision function

Slow training time
Hard to interpret
Hard to implement: trials
of choosing number of nodes

Decision Tree

Reasonable training time
Fast evaluation of the
learned decision rules

Simple decision boundaries
Can not handle complicated
relationship between attributes

Fast training

Slow testing procedure

the decision function
Good generalization

k-Nearest Learn complex Notion to
Neighbor decision boundaries “close” vague
Learn complicated boundaries Hard to implement:
SVM Fast evaluation of trials of parameters

Slow training
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Figure 3.1: The Relationship among the Terms

SVM is a very powerful classification method. The intuition of finding the
maximal margin separating hyperplane, which is the basic idea of SVM, is
a geometric one. To solve it, Lagrangian multipliers are used to set up the
QP problem, and then the following steps to solve that QP problem are pure
mathematics. However, finding the optimal hyperplane can also be done in a

geometric setting, too.

25
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The solution to the Convex hull problem provides a way from a computa-
tional geometric viewpoint to locate support vectors, which are used to build
the separating hyperplane [6]. So far in Computational geometry, the most sig-
nificant building blocks that we have learned about are Convex hull, Voronoi
diagram, and Delaunay triangulation. Edelsbrunner et al. [29] disclosed the
relationships between of all of these concepts. There is an intimate connection
between Delaunay triangulations in R* and Convex hulls in R* + 1. Fur-
thermore, Delaunay triangulation (DT) contains, as subgraphs, various struc-
tures with diverse applications. These things inspire us to exploit a geometric

method to reduce the size of the training set for SVM (See Fig. 3.1).

3.1 Convex hull

When we construct the decision boundary with convex hull, the separating
plane is the hyperplane which is orthogonal to the line segment and bisects
the line segment which connects the nearest points of the two convex hulls of

the data sets.

3.1.1 Separable Case

In Fig. 3.2, the convex hull of class A(B) consists of all the points which could
be written as convex combination of the points in A(B). A convex combination
of points in A, u, is denoted by u=>";c 4 B;z;, where 3; > 0 and > ;.4 3;=1. The
convex combination of the points in B, v, is denoted by v=3}",.g §;z;, where
B; 2 0 and 3,5 3;=1. Assume U is the convex hull of A, V' is the convex
hull of B.

The problem of finding two nearest points in the convex hulls could be

written as follows:

min ||u — v| (3.1)
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Class A Class B

wx+b=0

Figure 3.2: Two Closest Points of the Two Convex Hulls Determine the Sep-
arating Plane

such that u e U, and veV.

If (w, b) is the optimal solution to Eq. (2.6), and (u,v) is the optimal solution
of Eq. (3.1), with the fact that the maximal margin of the two sets=2/||w|| =

||lu — v]|, and w has the same direction with (v — v), so

2
w = ——(u—v),
[w — vl
ol =
— 5
[u =]l

We could introduce a new variable, o, into Eq. (2.6) and then rewrite

Z ay; = 0,

€A

Z oYy, = 0.

t€B
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Now, we define 3; = 2, V1, so Eq. (2.6) could be rewritten as follows
o?
min 5 SN BBy - Tp — 20 (3.2)
t ok

such that 0 < g; < 1,252-: 1,2@ = 1.
€A jEB
2
Bt BrytyrTe-Tk

, 1t 1s equivalent to the following problem:

When ¢ = I
. 1
min 5 Z Z /Btﬁkytykxt Tk (33)
t k

suchthatOgﬁigl,Z@:l,Zﬁjzl.

€A JjEB
We now define the matrix P with yyz1, yoxa, - - -, ysxs as its columns. We

can obtain the following equation from Eq. (3.3) as

YD Bibryiyras - 2 = || P
m ok

If 3 satisfies the constraints, then P3 = u — v,where v € U and v € V. So
Eq. (2.6) is equivalent to Eq. (3.1).

The final separating plane is the plane halfway between the two parallel
planes: z-w+b= 0. Note that the maximum distance between the supporting
planes yields the distance between the two convex hulls. Then the two closest
points of each convex hull must lie on the supporting hyperplanes, otherwise a
contradiction exists. It means that either the two supporting planes are not as
far as possible, or the two points are not the closest points in the convex hulls.
Therefore, the solutions of those two methods are same. When we construct
the hyperplane within each space, if there is no degeneracy, we will always

obtain the same separating plane [56].

3.1.2 Inseparable Case

If the problems are inseparable, the two convex hulls of the two sets will

intersect (See Fig. 3.3). The difficulty in solving these problems is that some
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Figure 3.3: The Convex Hulls of Inseparable Case Intersect

points locate in both of the convex hulls, which makes it difficult to classify
those points. For the problems belonging to linear classification case, most
points of one class will not be in the convex hull of the other class. What we
need to do is to restrict the influence of the outlying points and transform the
problem into the regular convex hull formulation. It is unsatisfactory to let a
point, specially a difficult point, excessively affect the solution. We want to
make decision based on lot of points, not on few bad points. For example,
we want to solve the problem based on at least k£ points, then we reduce or
contract the convex hull by assigning an upper bound on the multiplier of
the combination for each point. The reduced convex hull can be defined as

following [6].
Definition 1 (Reduced Convex Hull)

min ||u — v| (3.4)
subject to

U = Z/Bixiv v = Z ﬁjxjv

€A JEB

252:17 Zﬁjzlv

€A jEB
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Figure 3.4: Reduced Convex Hulls with K'=2

where D is the upper bound of the multiplier, usually D = % and K > 1.
If K < m, where m is the number of points in set A, the reduced convex hull
will be nonempty.

We reduce the convex hull based on the choice of K, and avoid the in-
tersecting of the two convex hulls by reducing the feasible set away from the
boundaries of the convex hulls. In Fig. 3.4, we can find the reduced convex
hulls with K = 2 no longer intersect. More examples of the reduced convex
hull can be found in [56]. If the set has lots of points, reducing the convex hull
has little effect. But if the set has few points, the influence will be apparent.
When D is small enough, the reduced convex hulls no longer intersect. So
we need to choose K sufficiently large enough to make sure that the reduced
convex hulls do not intersect. Then we will minimize the distance between the
closest points of the reduced convex hulls so that no extreme point or noisy
point can excessively influence the solution.

When we choose D = %, each point can only contribute to the optimal

solution no more than It means that the optimal solution depends on at

1
e
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least 2k points. If K is too large, and correspondingly D is too small, the
solution will be infeasible. So K must be smaller than the number of points
in each set. If we have varying set size of the class, we can choose the different
values of D for each class. More properties about the reduced convex hull can
be found in [56].

The concept of reducing convex hulls to avoid error is the dual concept of
enlarging the margins by softening them to tolerate error. When we add a soft
margin term to the linear separable SVM problem Eq. (2.5), the formulation
turns into Eq. (2.7), which can solve the inseparable SVM problem. The
reduced convex hulls problem is the dual problem of the classic inseparable
SVM (See detailed proof in [6]).

So the simple geometric argument of finding the closest points in the con-
vex hulls or reduced convex hulls of the two classes can be used to derive
a geometric SVM formulation. But except as the geometric explanation for
SVM, basically the convex hull at some dimension d can be used to compute
the Delaunay triangulation in dimension d — 1 (See details in [4] [11]).

At the same time Convex hull can also be one shape descriptor, which
also makes a connection between Convex hull and Delaunay triangulation. In
many applications in image processing and pattern recognition, an object is
specified in terms of a set of points. The shape reconstruction and subsequent
identification of this object from the set of input points turns out to be one
of the main problems in these fields. Shape descriptors are divided into two
categories: those that capture the “external” shape of a set of points as opposed
to those that capture what is called the “internal” shape [57].

The external shape of a set of points is obtained by identifying the “es-
sential” extreme points of the set and, among these joining “essential” neigh-
bors [57]. One famous example of “external” shape is the convex hull. Con-
trarily, the internal shape of a set of points is the shape exhibited by identifying

the “essential” internal points of the set and, among these, joining “essential”
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neighbors [82]. Some well-known internal shape descriptors are the Delaunay
triangulation (DT), the Gabriel graph (GG), and the Relative neighborhood
graph (RNQG), all of which belong to proximity graph. We discuss these con-

cepts in the following sections.

3.2 Proximity Graph

Many problems in the fields of pattern classification and computational ge-
ometry make use of the underlying structure of a set of data points (See ex-
amples [37] [88] [68] [52]). The structure referred to is called the skeleton or
internal shape and revealed by means of a prorimity graph. A proximity
graph attempts to exhibit the relation between points in a point set. Two
points are joined by an edge if they are deemed close by some proximity mea-
sure. It is the measure that determines the type of graph that results. Many
different measures of proximity have been defined, giving rise to many different
types of proximity graphs [12]. One technique for defining a proximity graph
on a set of points is to select a geometric region defined by two points of point
set and such a region will be referred to as a region of influence of the two

points. Four such definitions follow.

3.2.1 Voronoi Diagram and Delaunay Triangulation

The Voronoi diagram for a set of points in Euclidean space is one of the
fundamental data structures of computational geometry and its properties have
been studied extensively [79] [72] [8] [11]. The Voronoi diagram [96] of a set
of points can be informally defined as a division of the space according to
the nearest-neighbor rule, where each point from the point set is associated
with a region of the Euclidean space closest to a given point from the point
set. For example, a set of points M := {M;, M;,...} such that for each cell

corresponding to point M;, the points ¢ in that cell are nearer to M; than to
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Figure 3.5: The Planar Voronoi Diagram

any other point in M (See Fig. 3.5). In other words, the points ¢ satisfies the

following inequality:
dist(q, M;) < dist(q, M;), M;,M; € M,j # 1.

Along with the investigation of Voronoi diagrams goes the investigation
of related constructs. Among them, the Delaunay triangulation [27] is most
prominent. It contains a (straight-line) edge connecting two sites if and only if
their Voronoi regions share a boundary. It is the dual of Voronoi diagram in a
graphtheoretical sense [2]. From Fig. 3.6, it can be seen that Delaunay edges
(solid) are orthogonal to their corresponding Voronoi edges (dashed), but do
not necessarily insect them.

The Voronoi editing algorithm, as described below, finds a reduced set by

using the Voronoi diagram of the training set.
1. Construct the Voronoi diagram for the training set.

2. Visit each node, marking it if all its Voronoi neighbors are of the same

class as the current node.
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Figure 3.6: Delaunay Triangulation and Voronoi Diagram

3. Delete all marked nodes, exiting with the remaining ones as the Voronoi

edited set.

There are many other methods for editing data set, which are based on the
well known graph structure computed on the training set. Those methods are
derived from Voronoi diagram and make use of the subgraphs of the Delaunay

triangulation (DT).

3.2.2 Gabriel Graph and Relative Neighborhood Graph

Gabriel graph of a set of points, V', has an edge between points p and ¢ in V/,
called Gabriel neighbors, if and only if the diametral sphere of p and ¢ does not
contain any other points. The resulting points from the above process make
up of the Gabriel edited set. We shall see that the decision boundary can be
constructed from those Gabriel neighbors (p and ¢) such that p and ¢ are of
different classes (See Fig 3.7).

The Gabriel edited set is always a subset of the Voronoi edited set because
of the fact that a Gabriel graph of a set of points is a subgraph of Delaunay
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Figure 3.7: Gabriel Neighbor Pairs

triangulation for that set, which only contains those edges in DT(V) that
do intersect their dual Voronoi edges. Thus, Gabriel editing, which is the
procedure for finding the Gabriel neighbors, reduces the size of the training
set more than Voronoi editing. Although the resulting Gabriel editing does
not preserve the original decision boundary, the changes occur mainly outside
of the zones of interest.

The Gabriel editing algorithm is the same with the Voronoi Editing algo-
rithm except using Gabriel neighbors instead of Voronoi neighbors. Clearly,
the Gabriel neighbors can be verified by brute force if for every potential pair
of neighbors A and B, we just verify if any other point X is contained in the
diametral sphere such that Ly(A, X) + La(B, X) < Ly(A, B) where Ly is the
square of the distance between the two points.

Relative neighbors in Relative Neighborhood Graph are defined similarly
compared to that of Gabriel graph except for the fact that Relative neigh-

bors use the different definition of “close”. Two points p; and p; are Relative
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neighbors if d(p;,p;) < max[d(p;,pr),d(p;,pr)], Yk = 1,..,n, k # i,5. The
procedure of searching for the Relative neighbor edited set is almost the same
with that of Gabriel neighbor edited set. So we do not present the details of

Relative editing algorithm here.

3.2.3 [3-skeleton

bet a=3

bet a=2

bet a=1

Pi Pr

Figure 3.8: The Lune-based (-neighbor for Various 3

Another family of graphs, defined by empty discs and thus consisting of
subgraphs of DT, is the family of (-skeleton [3]. (-skeletons were introduced
by Kirkpatrick and Radke [57] as a class of empty neighborhood graphs. In
fact, in [57] both a circle-based and a lune-based version of (-skeleton are
proposed. Here, we only consider the latter, as defined below.

Let V be a set of points in R?, each pair of points (p,q) € V x V with a
neighborhood U,, C R%. Let U = {U,,|(p,q) € V x V}, §(z,y) denotes the
distance between point = and y, and B(xz,r) denotes the circle centered at

with the radius r. That is to say B(z,r)={y|d(z,y) < r}. The neighborhood
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U, ,(3) is defined, for any fixed 8 (1 < 3 < o0) as the intersection of two

spheres:

Upa(B) = B((1 = 2)p+ 2¢,28(p,q)) N B((1 — £)g + £p, 28(p, q)).

A neighborhood graph consists of vertices V' and the set of edges F, which is
required to satisfy the condition that (p,q) € F if and only if U, , has the the
property in Eq. 3.5. So 3-skeleton of V', G3(V), is a neighborhood graph with
the set of edges:

(p,q) € E if and only if U, ,(B)NV = ¢. (3.5)

It is easy to see that the radii of the empty discs defining a -skeleton are
not fixed but depend on the inner-point distances in V. Note that 3(V) is a
subgraph of g'(V) if 8 > . Different values of the parameter 3 give rise to
different graphs. For 3 = 1, Gabriel graph of V' is obtained and when 3 = 2
it becomes with Relative Neighborhood Graph (See Fig. 3.8).

So the (-neighbor edited Algorithm 1 can be used as a generalized method
for constructing the Gabriel neighbor edited set and the Relative neighbor
edited set through the different 3 value’s setting.
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Algorithm 1: g-neighbor Edited Set Algorithm

Data IP:{Pl,PQ,...,Pn},
C'; presents the class of P;.
Result : £ = the edited set.

begin
Let £ be {}
for P, € P do
Potential B-neighbor set of P; is initialized to N; = {P,|P. € P,
and r # 1}
for VP, € N; do
1 for VP, € P, and k # 1,k # r do
if Pk 1S in J(PZ,PT) then
N; = N; — P.
end
else
select another P, from N;, do step 1
end
if P, € N; then
if PT 18 1N '](Pi7 Pk) then
N; =N, — P,
end
end
end
(-neighbor set of P;, NP, = N;;
end
if C; #VC,, P, € NP, then
E=FE+{P}
end

end




Chapter 4

Data Editing

The theoretical connections among those concepts in Chapter 3 inspire us to
choose the B-neighbor edited set as the training set for SVM training. While
along with going deep into the data editing, we find that F-neighbor edited
method is only one kind of method for reducing the size of the stored data for
the nearest neighbor decision rule. Many other methods can be used to reduce

the size of data, which will be briefly introduced in the following sections.

4.1 Hart’s Condensed Rule and Its Relatives

In 1968 Hart was the first to propose that kind of algorithm [45]. Hart defined a
consistent subset of the data as one that classified the remaining data correctly
with the nearest neighbor rule. Then he proposed an algorithm for selecting
a consistent subset by heuristically searching for data that were near the de-
cision boundary. We simply describe the algorithm as following. We scan the
training dataset iteratively and transfer the misclassified points to the resulted
dataset until using the 1-NN decision rule with the resulted dataset does not
misclassify any remaining data points in the training dataset. The goal of the
algorithm is to keep only a subset of data that are necessary to determine the
decision boundary of the training data. The motivation for this is the intuition

that the data points far from the decision boundary can be neglected and the

39
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misclassified points must lie close to the boundary [89]. By construction the
reduced set resulted classifies all the training data correctly and hence it is
referred to here as a training-set consistent subset. In the literature Hart’s
algorithm is called CNN.

CNN may keep points far from the decision boundary. To combat this,
Gates [38] proposed what he called the reduced nearest neighbor rule or RNN.
RNN consists of first performing CNN and then adding a post-processing step.
In this post-processing step the elements in the resulted dataset are visited and
deleted from the resulted dataset if their deletion does not result in misclassi-

fying any elements in the remaining training dataset.

4.2 Order-independent Subsets

CNN, RNN have the undesirable property that the resulting reduced consistent
subsets are a function of the order in which the data are processed. A suc-
cessful solution to obtaining order-independent training-set consistent subset
by generalizing Hart’s CNN procedure was proposed by Devi and Murty [28].
Recalling Hart’s procedure, the difference between CNN and the method of
Devi and Murty [28], which is called the modified condensed nearest neigh-
bor rule (MCNN), is that MCNN initializes the reduced set by transferring
one representative of each class from training set to the reduced set in batch

mode.

4.3 Minimal Size Training-set Consistent Sub-
sets

The first researchers to deal with computing a minimal-size training-set consis-
tent subset were Ritter et al. [83]. They proposed a procedure, called selective

nearest neighbor rule (SNN), to obtain a minimal-size training-set consistent
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subset, with one additional property that Hart’s CNN does not have. Any
training-set consistent subset C' obtained by CNN has the property that every
element of training set is nearer to an element in C' of the same class than to
any element in C' of a different class. While the training-set consistent subset
S of Ritter et al. has the additional property that any element of training
set is nearer to an element in S of the same class than to any element, in the
complete set of a different class. This property of SNN tends to keep the points
closer to the decision boundary than does CNN [28].

4.4 Proximity Graph Methods

In 1980 the relative neighborhood graph (RNG) was proposed as a tool for
extracting the shape of a planar [88]. There is a vast literature on proximity
graphs and part of them have been reviewed in previous sections. All those

can be nested together in the following relationship:
RNG C 3 — skeleton(1 < B <2) C GG C DT.

In 1979 Toussaint and Poulsen [91] were the first to use d-dimension Voronoi
diagrams to delete “redundant” members of training set {X,Y} in order to
obtain a subset of {X, Y} that implements exactly the same decision boundary
as would be obtained using all of {X,Y}. They call this method as Voronoi
condensing (In this thesis, it is called Voronoi editing). As seen from [90] the
nearest neighbor decision boundary with the reduced set is identical to that
obtained by using the entire set. So Voronoi edited subset is called “decision-
boundary consistent”. Clearly decision-boundary consistency implies training-
set consistency but the converse does not necessarily hold.

In 1985 Toussaint et al. [90] generalized Voronoi condensing so that it would
discard more points in a judicious and organized manner so as not to degrade

performance unnecessarily. The dual of the Voronoi diagram is the Delaunay
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triangulation. Then Voronoi editing can implemented through computing the
Delaunay triangulation. The methods proposed in [90] substitute the Delau-
nay triangulation by a subgraph of the triangulation. Since a subgraph has
fewer edges, its vertices have lower degree on the average. This means the
probability that all the graph neighbors of vertex belong to the same class as
that of the vertex is higher, which implies more elements of data set will be
discarded. By selecting an appropriate subgraph of the Delaunay triangulation
one can control the number of elements of {X,Y} that are discarded. Moreover,
by virtue of the fact that the graph is a subgraph of the Delaunay triangula-
tion and that the latter yields a decision-boundary consistent subset, we are
confident that the former will degrade the performance as little as possible.
So in this thesis, #-neighbor edited algorithm will be carried out to edit
the stored data and attain the Gabriel neighbor edited set, Relative neighbor

edited set as the trials of training datasets for SVM training.

4.5 Comparing Results of Different Classifiers
with Edited Dataset as the Training Set

In this chapter, we conduct the experiments with several databases, some of
which are from real world and others are synthetic. Those datasets cover wide
range: two/multi-class, large/common data size, real/synthetic, many /few at-
tribute. Real Data used in the experiments include Wine Cultivar discrimi-
nation, Glass identification data set, Shuttle, German, Segment and Satimage
database. Some of them are available via anonymous file transfer protocol(ftp)
from UCI Repository of machine learning databases. The others are from Stat-
log collection. Furthermore, in the Satimage database, there is one missing
class. That is, there are no examples with one class in this dataset. Table 4.1

gives out the number of classes, attributes, and size of each database. If the
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Table 4.1: Problem Description on Real Datasets

‘ Problem ‘ Class ‘ Attribute ‘ Training Set Size ‘ Testing Set Size

Shuttle 7 9 43500 14500
Satimage 7 36 4435 2000
Segment 7 19 2079 231
German 2 24 900 100
Glass 7 10 192 22
Wine 3 13 160 18

Table 4.2: Problem Description on Synthetic Datasets

‘ Problem ‘ Class ‘ Attribute ‘ Training Set Size ‘ Testing Set Size
f2 2 4 900 100
f6 2 6 900 100
uniform.100 2 4 90 10
uniform.1000 2 4 900 100
uniform.10000 2 4 9000 1000
10k.2¢c 2 15 9000 1000
10k.4c 4 15 9000 1000
10k.8¢ 8 15 9000 1000

dataset does not include the testing set, we use 90 percent of it as the training
set and the remaining as the testing set [22].

Synthetic Data used include three kinds of data. One is generated from
the classical classification functions (Function 2 and 6) in [1]. The second
one consists of 2 classes of data that are randomly generated in the range of
[0,1] in each dimension, there is an overlapping of data of the two classes in
each dimension. The third one is a number of circular clusters, each of which
represents a distinct class. Radius of the clusters is 0.2 units. Clusters may
overlap with each other. Table 4.2 shows the details of the synthetic datasets.
The number behind f represents function type. uniform series belong to the

second type. The remaining are in the third type.
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Table 4.3: Notation and Description
Gab-heurist Gabriel Neighbor Edited Heuristic algorithm
Rel-heurist Relative Neighbor Edited Heuristic algorithm
GG (or Gab-edited) Gabriel Neighbor Edited set
RNG (or Rel-edited) Relative Neighbor Edited set

srtree SR-tree indexing algorithm

ENN k Nearest Neighbor

svm SVM with radial basis function
rsvm Reduced SVM with RBF

C4.5 C4.5 decision tree classification from [80]

Table 4.4: Editing Result of the Original and Normalized Datasets

Problem

[ Training Set Size | GG Size | RNG Size | GG Size(norm) [ RNG Size(norm) |

900

704

446

500

274

900

816

653

830

525

9000

400

6

1818

16

9000

1299

36

2424

66

9000

3479

157

4228

200

uniform.100

90

71

32

64

30

uniform.1000

900

594

355

537

361

uniform.10000

9000

4898

3207

4479

3214

Segment

2079

1328

539

1447

402

German

900

883

588

900

620

Satimage

4435

3654

1191

3657

1200

Shuttle

43500

5094

1002

8908

487

Glass

192

19

13

137

68

Wine

160

87

67

134
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All the notations and their corresponding descriptions used in the exper-
iments are presented in Table 4.3. Moreover, all the experiments are done
on the regular training datasets and normalized version of the datasets whose
attributes values are normalized into the same region [0, 1].

First of all, we apply the proposed methods described in Chapter 5 to
find the Gabriel edited sets(denoted by “Gab-edited”) and the Relative edited
sets(denoted by “Rel-edited”) for all the training dataset. The sizes of different
edited set are recorded in Table 4.4 and Fig. 4.2, 4.4, 4.3, 4.5 show the propor-
tion of the set size reduced to the original size. Subsequently, four approaches,
ENN, C4.5, SVM, and RSV M to the classification problem will be chosen,
which are introduced in the following, to show and verify the advantage of the
edited set and exhibit the good performance of SV M method (See Fig. 4.1).

For EN N, we test k from 1 to 10, and the results of different selections of &
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are almost same, so the details will be ignored here. 5 is suitable as the value
of k. We also try 3 kinds of voting methods to do the prediction: (1) [Inverse
distance] Let d; be the distance between the query point and the ith nearest
neighbor (i € [1,...,k]). We record the score for each class ¢;, which is equal
to the sum of the inverse of d;, where the ith nearest neighbor belongs to class
¢j. Then we assign the query point to the class with the highest score; (2)
[Inverse Square distance] Similar to the method above, let d; be the distance
between the query point and the ith nearest neighbor (i € [1, ..., k]). The score
for each class ¢; is the sum of 1/d?. Finally, the predicted class of the query
point is also the class with the highest score; (3) [Majority Voting] According
to the result of the k nearest neighbor, the class including the largest number
of nearest neighbor is the predicted class. The accuracy of the 3 kinds of
methods with the different value of £ are similar, so generally the selection of
the voting method and the value of £ will not effect the experiments’ result so
much.

Subsequently, C4.5 is chosen as another classifier for testing, which is the
most recent version of the decision-tree algorithm that Quilan has been evolv-
ing and refining for many years. In the experiment using C4.5, the size of the
initial window is set as 5 and the maximum number of objects that can be
added to the initial window is 5.

Then, we use Libsvm [23], an integrated software for support vector clas-
sification, (C-SVC, nu-SVC), regression ((&-SVR, nu-SVR) and distribution
estimation (one-class SVM) to implement SVM method. Due to the wide ap-
plication of RBF in function approximation, we train all datasets only with
the RBF kernel function to reduce the search space of the parameter sets.
Better solutions may be obtained with different choice of v and C'. For each
problem, we estimate the accuracy using different parameters pairs of C' and

yioy =[242%...,271% and C = [2'%,2'",...,27?] [63]. Then we can use the
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Table 4.5: Training and Testing Time Complexity

Training Testing
Methods Best | Average | Worst Average
Case Case Case
SVM O(n) | Fiterations x O(nqd) O(c*m)
B-neighbor edited | O(dn?) | O(dn?) O(dn?) /
k-Nearest neighbor / / / O(mnlogn)

47

accuracy as criterion to choose the optimal parameters. At last the best pa-
rameter is selected from a five-fold cross validation on the training data. The
experiments for RSVM (the software is downloaded from [64]), are conducted
under the similar parameter settings. In RSVM, the methods to obtain the
optimal solution are various. Here, we choose Smooth SVM to conduct the
experiments with the help of ATLAS [98]. Since generally RSVM uses the
normalized datasets in its experiments, we do not record the results of RSVM
on the original datasets here.

All the program codes use language €' and the results are the average of
several runs. All the experiments are done under a SUN Ultra-Enterprise
machine running Sun0S5.7 with 8GB Main Memory. The four benchmarks,
Edited set sizes with different choice of proximity graph, Accuracy, Training
and Testing time are recorded. We compare the four benchmarks on four

classification techniques, give our observations, and analyze the observations

in the following sections.

4.5.1 Time Complexity

Table 4.5 summarizes the theoretical analysis from the research result of Joachims [53]
and Bhattacharya [9], where n is the size of training set, m is the size of testing
set, d is the dimension of samples, ¢ is the number of the classes.

Libsvm implements an SMO type algorithm where the size of the working
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Training Data Reduction Editing Data

Segment  German Sat Shuttle Glass Wine Segment German Sat Shuttle Glass Wine
Real Data Real Data(Normalized)

Figure 4.2: Size of Real Data vs Figure 4.3: Size of Real Data
Size of Different Beta-neighbor (normalized) vs Size of Different
(in percentage) Beta-neighbor (in percentage)

set is restricted to two. SMO [76] is the decomposition method to solve SVM,
which is an iterative process and in each iteration the index set of variables
is separated into working set and the fixed set. Then the sub-problem on
variables of the working set is minimized.

In the SMO algorithm g, the size of the working set, is equal to 2. In each
iteration, most time is spent on the kernel evaluations which can be used to

compute the g rows of the Hessian. Therefore, the total complexity is
#Hiterations x O(nqd)

where we assume each kernel evaluation costs O(n) [64].
With the exploiting of the 3-neighbor edited method and indexing struc-
ture, we can stabilize the performance of SVM in the average and worst case

by reducing the size of training set before SVM Training.

4.5.2 Editing Size of Training Data

Table 4.4 shows the Gab-edited size and the Rel-edited size of the original
training sets and their normalized version. From the values shown in Table 4.4

and Fig. 4.2, 4.4, 4.3, 4.5 we find :
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1. Up to 90% data points in the training set will be thrown away after

Gabriel editing. Especially, for the large dataset, the data editing be-

haves well.

. The size of Relative neighbor edited set is smaller than that of Gab-

edited, which means that searching Relative neighbors prunes more data

points.

. Comparing with the results of original datasets and normalized ones,

we find that the normalized synthetic datasets are pruned more using
Gabriel editing, while for the real datasets, they keep more data points
through editing if the datasets are normalized. The normalized german
dataset is even not discarded any data during the Gabriel editing. Real
datasets usually have different value scale for different attributes. When
they are normalized, the differences among the attributes and the points
are reduced, so the points are kept more after Gabriel editing. For
synthetic datasets, the differences among the scales of the features are
not very significant. Normalizing makes the synthetic data converge, so

Gabriel editing can prune more.
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4. Relative editing does not exhibit the same performance as that of Gabriel
editing. Except for f2 and f6 dataset, the normalized synthetic Rel-
edited sets retain more points than those of the corresponding original
data. Relative editing prunes too many points of the training data, which

makes the explanations for the size of Rel-edited set less meaningful.

4.5.3 Accuracy

Table 4.6: Accuracy Results of the Different Classification Methods

Problem svm-all | svm-gab | svm-rel | nn-all | nn-gab | nn-rel | c4.5-all | c4.5-gab | c4.5-rel
f2 85 84 83 81 80.2 68.4 100 98 99.6
f6 66 66 66 57 55.6 52.4 94 94 94.8
10k.2¢ 100 100 100 100 100 100 100 100 90.6
10k.4c 100 100 100 100 100 100 100 100 88.74
10k.8¢ 100 100 100 100 100 100 100 100 95
uniform.100 100 100 90 92 92 86 100 100 88
uniform.1000 91 91 86 85 85.2 80.6 86 83 85.2
uniform.10000 84 84 84.4 83 82.9 81.1 82.7 82.7 83.7
segment 95 85 72.7 93.9 93.3 79.7 97.4 97.8 92.4
german 81 81 75 70 69.8 68.8 66 69 68.8
sat 92 92 80.3 88.7 88.9 83.4 84.3 85.3 77.2
shuttle 99.8 99.8 99.4 99.8 99.3 90.1 100 100 99.9
glass 100 91 90.9 97.1 60.7 48.1 95.5 68.2 53.6
wine 88 61 61 72.2 63.3 55.4 88.9 83.3 94.4

The primary metric for evaluating classifier performance is classi fication
accuracy- the percentage of test samples that are correctly classified.

Table 4.6 and Fig. 4.6, 4.8, 4.10 show the accuracy of the different classi-
fication methods for the whole training dataset (denoted by “all”), the Gab-
edited set (denoted by “gab”) and the Rel-edited set (denoted by “rel”). From

the table and figures, we can get the following observations:

1. The performance of a classification method depends greatly on the char-

acteristics of a special dataset.

2. In general Gab-edited sets preserve the high accuracy, almost the same
as the original training dataset except for the datasets glass and wine,
whose size of the training dataset is so small that they are easily over-

pruned.
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Table 4.7: Accuracy Results of the Different Classification Methods(on nor-

malized sets)

Problem rsvm svm-all svm-gab svm-rel nn-all nn-gab nn-rel c4.5-all c4.5-gab c4.5-rel

f2 93 92 91 87 88 90 87 99 100 100
[{3 80 90 92 88 82 82 78 06 92 96
10k.15d.2¢ 100 100 100 100 100 100 100 100 100 93.7
10k.15d.4c 100 100 100 100 100 100 100 100 100 96.8
10k.15d.8¢c 100 100 100 100 100 100 100 100 100 100
uniform.100.4d 100 100 100 100 100 100 90 100 100 70
uniform.1000.4d 85 87 88 88 85 85 84 86 83 86
uniform.10000.4d 82.9 84.7 84.8 84.7 84.7 84.8 83.4 82.7 84.7 83.2
segment 95.6 96.9 95.2 91.7 93.5 94.3 90 97.8 08.2 87
german 80 80 80 79 72 72 70 67 67 69

sat 89.8 91.8 91.8 88.1 90.1 90.1 88.7 86 86.6 76.65
shuttle 99.8 99.92 99.5 99.84 99.8 96.3 76.5 99.9 99.97 99.8
glass 86.3 95.4 95.4 95.4 81.8 81.8 86.3 95.4 95.4 95.4
wine 94.4 100 94.4 83.3 94.44 94.4 88.9 88.9 88.9 94.4

3. For the satimage dataset, the Gab-edited set is more accurate than the

original training dataset, since there may exist some noise in the data

points of the original dataset.

With the SVM method, Rel-edited sets preserve the high accuracy on
most of the synthetic datasets compared to the Gab-edited and origi-
nal sets. Furthermore, they even provide better results on the datasets
unt form10,000. While for satimage, segment and wine datasets, they

perform worse.

With the kNN method, the performance of Gab-edited sets is better

than the Rel-edited and worse than the original ones.

With C'4.5 Rel-edited sets usually do not perform better than Gab-edited

sets and original ones except on f6, uniform10,000, and wine datasets.

Therefore, the selection of original dataset or edited set as training set

is varying with the real problem. Every problem has its suitable choice.

Taking into account that the ranges of attribute are different, we also carry

out the experiments on the normalized datasets, whose attributes variables are

scaled in [0,1]. From Table 4.7, Table 4.6 and Fig. 4.7, 4.9, 4.11, we can see

that
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1. The accuracy for datasets glass and wine increase since the edited sets

are larger than those obtained from the experiments with the original
datasets. There are only 19 points left in the Gabriel edited set of glass
and 13 in Relative edited set after editing the original dataset, while
137 Gab-edited points and 68 Rel-edited points for glass are obtained
when experiments are done on the the normalized version of the dataset.

Similar comparisons are made on the editing results of wine.

. In the C'4.5 method, for f6, uniform 1000, german, and wine datasets,

Rel-edited sets perform better than Gab-edited set and original dataset.

The performance of applying Rel-edited sets to kNN is not as good as
that of using the other two.

As shown in the tables above, the value in bold is the highest accuracy of
the different methods with different training set. It shows that in general
Standard SV M is better than other methods.

RSVM method preserves the performance on the prediction accuracy
compared to Standard SVM in most cases. For the artificial datasets its

performance is a little worse than Standard SVM with Gab-edited set.
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While for the real datasets, it usually performs better than SVM with
Gab-edited set.

4.5.4 Efficiency

Table 4.8: Time for Editing the Different Datasets

‘ dataset ‘ Gab — heurist ‘ Rel — heurist ‘
2 25 22.2
f6 40 43.2
10k.15d.2¢c 9137 3233
10k.15d.4c 857547 54341
10k.15d.8c 1250286 446719
uniform.100 0.2 0.13
uniform.1000 26 19.6
uniform.10000 3088 2464
segment 803 537
german 289 141.5
sat 40703 14240
shuttle - -
glass 0.73 0.71
wine 1.12 1.03

Table 4.8 shows the editing time obtained from the application of the
heuristic B-neighbor algorithm 1. The Gabriel editing time is always more
than the time to find the Relative neighbor edited set except for the dataset
f6. The observation verifies the fact that the Relative editing prunes more
points than the Gabriel time during the editing procedure, which reduces the
candidate points to test them more quickly. The heuristic algorithms fail to
deal with the shuttle dataset since when the programs create the matrices to
store the pair information of potential F-neighbors, the needed allocation of
memory exceeds the ability of the machine.

The training and testing time for different datasets are reported in Ta-
bles 4.9, 4.10, 4.11 and 4.12. We measure the training time (denoted by
“train”) and testing time (denoted by “test”) for the whole training dataset
(denoted by “all”), the Gab-edited set (denoted by “gab”) and the Rel-edited
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Table 4.9: Time for Training and Testing (in second) of KNN and C4.5

data c45-all c45-gab c45-rel 5NN-all | 5NN-gab | 5NN-rel
train+test | train+test | train-test test test test
2 0.87 0.86 0.84 0.3 0.17 0.09
6 5.92 5.61 3.5 0.47 0.42 0.28
10k.15d.2¢ 1.77 0.48 0.07 39.2 7.4 0.35
10k.15d.4c 11.46 2.9 0.17 25 6.3 0.66
10k.15d.8¢c 40 14.1 0.73 20.2 9.89 1.21

uniform.100.4d 0.1 0.06 0.02 0.03 0.01 0

uniform.1000.4d 1.96 1.84 1.84 0.32 0.2 0.14
uniform.10000.4d 43.9 35.4 31.7 8.78 5.13 3.98
segment 54.07 36.67 14 2.42 1.65 0.55
german 25.7H 25.6 18.7 1.3 1.3 0.89
sat 517.9 456 164.6 50.5 44 19.2
shuttle 127 12 1.55 238 167.6 25.7
glass 0.34 0.26 0.16 0.08 0.05 0.03
wine 0.63 0.6 0.12 0.08 0.06 0.02

set (denoted by “rel”). Since kNN does not need any training, we only measure
the testing time for it. Note that the total time for kNN classification should
be the time for finding the edited set in Table 4.8 and the testing time. The
following observations and discussion are based on the experimental results

shown in Fig. 4.12, 4.13, 4.14, 4.15, 4.16, 4.18, 4.17, and 4.19.

1. Even we use ATLAS to optimize the matrix computation, the training
time of RSVM with the large datasets is greater than those of Standard
SVM except for shuttle dataset.

2. The algorithm with edited set as training set reduces the training and
testing time for SVM, C4.5 and the testing time for kNN since editing

procedure pruned many data points.

3. Generally, the time taken by original datasets in the (4.5 or ENN
method and that by normalized datasets are almost the same. The slight
differences between them are caused by the difference between the edited

set sizes for original set and those for the normalized ones. So does for

the SVM method with most of the datasets.
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Table 4.10: Time for Training and Testing (in second) of SVM

data svm-all | svm-gab | svm-rel | svm-all | svm-edit | svm-rel
train train train test test test
2 3.25 3.37 1.3 0.05 0.09 0.02
6 1.7 1.53 0.42 0.17 0.15 0.09
10k.15d.2¢ 152 0.33 0.01 4.92 0.64 0.11
10k.15d.4¢ 114 1.92 0.01 7.1 0.88 0.14
10k.15d.8¢ 171 33 0.05 10.28 2.3 0.3
uniform.100 0.04 0.01 0 0.01 0.01 0.01
uniform.1000 3 2.57 0.25 0.04 0.04 0.03
uniform.10000 | 8213 3403 7.81 2.29 2.28 1.22
segment 19 10.9 1.12 0.54 0.56 0.28
german 5.29 5.18 0.75 0.19 0.17 0.16
sat 40.86 27.04 6.16 13.43 12.16 7.13
shuttle 287 19 2.5 13.2 9.2 7.47
glass 0.25 0.01 0.01 0.01 0.01 0.01
wine 0.27 0.12 0.1 0.02 0.01 0.01

4. For large datasets, 10k.15d.2¢, 10k.15d.4¢, 10k.15d.8¢, uni form.10k, the
reported training time of SVM with the normalized datasets is less than
that of the original dataset. In fact, the cross validation time for both
training are similar. But the pair of parameter for SVM training will af-
fect the training time hugely. With the edited set as the training set, the
training time of SVM on the dataset uniform.10k or shuttle is reduced

much compared to that with the original datasets.

5. During the procedure of SVM Training, the sum of cross validation time
to select parameter pair is larger than C4.5 training, even than the time
of finding the edited sets for the common-size datasets. While for large
datasets, result shows that the training time for SVM and C4.5 are faster
than that of finding the edited sets. So the heuristic editing algorithms

are not suitable enough to be applied here.
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Table 4.11: Time for Training and Testing (in second) of KNN and C4.5(on

normalized set)

data c45-all c45-gab c45-rel 5NN-all | 5NN-gab | 5NN-rel
train+test | train+test | train-test test test test
2 0.85 0.79 0.84 0.28 0.16 0.08
6 5.76 5.48 3.42 0.46 0.41 0.26
10k.15d.2¢ 1.73 0.46 0.09 37.08 7.17 0.32
10k.15d.4c 11.26 2.8 0.16 24.47 6.26 0.63
10k.15d.8¢c 38.8 13.94 0.75 20.52 10.08 1.14

uniform.100 0.1 0.06 0.03 0.02 0.01 0

uniform.1000 1.92 1.92 1.84 0.31 0.2 0.13
uniform.10000 42.7 36.77 31.08 8.48 4.97 3.83
segment 49.84 36.62 13.87 2.97 2.15 0.72
german 25.03 25.03 18.4 1.3 1.3 0.87
sat 504.56 449.2 162.36 49.02 43.34 18.89
shuttle 261.5 11.67 1.53 79.77 20.55 29.05
glass 0.34 0.28 0.13 0.08 0.06 0.02
wine 0.62 0.59 0.14 0.07 0.07 0.01

4.5.5 Summary

In this chapter, we have presented the experiments, which regard the edited

set obtained before as the training set for SVM, £-NN and C4.5 methods.

Then we compare the experimental results with that of the classifiers with the

original sets as training sets and RSVM with original sets. Compared to the

original methods, the classification methods with the edited set as the training

set can preserve the high predictive accuracy. However, from the viewpoint of

efficiency, they can not outperform the traditional methods. So we need to use

other techniques to speed up the editing procedure, which will be discussed in

next chapter.
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Table 4.12: Time for Training and Testing (in second) of SVM (on normalized

set)

data svim-all | svm-gab | svm-rel | svm-all | svm-edit | svm-rel | rsvm | rsvm
train train train test test test train test
f2 3.41 0.51 5.11 0.02 0.02 0.02 12.2 0.01
f6 22.17 35.1 9.88 0.05 0.05 0.04 10.7 0.03
10k.15d.2¢ 1.54 0.31 0.01 0.12 0.11 0.12 406 0.4
10k.15d.4¢c 2.13 0.56 0.01 0.16 0.17 0.15 3742 3.89
10k.15d.8¢c 3.34 1.56 0.08 0.45 0.46 0.31 519.9 8.23
uniform.100.4d 0.01 0.01 0.01 0 0 0 0.02 0
uniform.1000.4d 0.9 2.65 0.14 0.04 0.04 0.05 7.79 0.03
uniform.10000.4d 51.5 20.9 14.76 2.72 2.62 2.35 162 0.17
segment 2.84 1.61 0.65 0.31 0.21 0.16 51 0.61
german 1.24 1.56 0.89 0.13 0.17 0.16 6.3 0.03
sat 43.87 27.99 5.11 13.18 12.2 5.88 612 12.1
shuttle 312.9 48.06 1.38 5.74 4.82 3.74 10029 | 56.79
glass 0.06 0.05 0.01 0.01 0.01 0.01 0.19 0.01
wine 0.04 0.03 0.02 0.01 0.01 0.01 0.06 0.02
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Techniques Speeding Up Data
Editing

According to the experimental results, although the prediction accuracy is
preserved high, the efficiency of our methods is not satisfactory. So before we
preprocess the training dataset and take the different edited set as training set
for SVM [104], we propose to shorten the procedure of finding the edited set.

The most straightforward idea is to use parallel computing to speed up the
editing procedure. Our second approach to speed up the editing procedure
is using the indexing structure. Recall the procedure of editing the dataset.
Assuming one point in the dataset as a query point, finding the #-neighbors of

“ closest” points (may not exist), whose

the query point is equal to finding the
class attributes are different with that of the query point. Repeatedly applying
the searching step above for each point in the dataset, we can get the edited set
by summarizing the f-neighbors of every point. So we can apply the indexing
structures for multi-dimensional searching in our -neighbor edited algorithm
to improve its performance. Finally, we combine both of the techniques with
the [B-neighbor edited algorithm and record the corresponding experimental
results.

In this chapter, the basic idea of the two techniques will be introduced
firstly. Then the details of their implementations in our methods and the

60
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corresponding experimental results will be indicated later.

5.1 Parallel Computing

5.1.1 Basic Idea of Parallel

Algorithms for some problems can be executed quickly while those for others
take a very long time. It is intuitive for people to design better algorithms,
which can find the solutions for the problems faster. Since the execution
time also depends on the processing speed of the computer, efforts have been
made to increase the speed of computers. However, the current demands
for high-speed computing cannot be satisfied only by using faster hardware
components. It is necessary for us to look for a method to satisfy the demand
from the viewpoint of software. Parallel processing is one kind of the solution
and it performs independent operations simultaneously so that the overall
computation time is reduced.

Parallel computing is a central and important problem in many compu-
tationally intensive applications, such as image processing, robotics, and so
forth. Given a problem, the parallel computing is the process of splitting the
problem into several subproblems, solving the subproblems simultaneously,
and combining the solutions of subproblems to get the solution to the original
problem [100].

Parallelism can be achieved at different levels. For example, if ten jobs are
given, which are different in nature and pairwise independent, then these ten
jobs can be given to ten different machines. This is a high-level parallelism,
because the jobs are implemented in parallel. This is usually called job level
parallelism or program level parallelism. In order to increase the efficiency
of the program further, we can go in for the next level of parallelism—Each

job can be divided into smaller subtasks. These subtasks can be executed in
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parallel, and then results are consolidated to get the final result. For each sub-
task, there will be a subprogram, and these subprograms may be executed in
parallel. This is usually called subprogram level parallelism. In any program
(subprogram) there are several statements. These statements may be done in
parallel. This possibility is called statement level parallelism. In a statement,
several operations are carried out. We can think of parallelizing these opera-
tions, and this is called operation level parallelism. Usually, any operation
consists of several micro-operations. If micro-operations are done in parallel,

this will be called micro-operation level parallelism [100] (See Fig 5.1).

Sequential Processing

Program Level Parallelism

Sub- Progr am Level Paral | elism

Statement Level Parallelism

Operation Level Parallelism

Mcro Operation
Level Parallelism

Figure 5.1: Levels of Parallelism

Programming with threads instead of conventional processes is increasingly
popular because threads are less expensive than processes and because they
provide a trivial mechanism for sharing data. For example, a high-performance
Web server might assign a separate thread for each open connection to a Web
browser, with each thread sharing a single in-memory cache of frequently re-
quested Web pages. Another important factor in the popularity of threads is
the adoption of the standard Pthreads (Posix threads) [21] interface for ma-

nipulating threads from C' programs. The benefit of threads has been known
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for some time, but their use was hindered because each computer vendor de-
veloped its own incompatible threads package. As a result, threaded programs
written for one platform would not run on other platforms. The adoption of
Pthreads in 1995 has improved this situation immensely. Posix threads are

now available on most systems, including Linux.

5.1.2 Detalils of Parallel Technique

A thread is a unit of execution, associated with a process, with its own
thread ID, stack, stack pointer, program counter, condition codes, and general-
purpose registers. Multiple threads associated with a process run concurrently
in the context of that process, sharing its code, data, heap, shared libraries,
signal handlers, and open files.

Historically, hardware vendors have implemented their own proprietary ver-
sions of threads. These implementations differed substantially from each other
making it difficult for programmers to develop portable threaded applications.

In order to take full advantage of the capabilities provided by threads, a
standardized programming interface was required. For UNIX systems, this
interface has been specified by the IEEE POSIX 1003.1c standard (1995). Im-
plementations which adhere to this standard are referred to as POSIX threads,
or Pthreads.

Pthreads are defined as a set of (' language programming types and pro-
cedure calls, implemented with a pthread.h header/include file and a thread
library - though the this library may be part of another library, such as libc.

The primary motivation for using Pthreads is to realize potential program
performance gains. In order for a program to take advantage of Pthreads,
it must be able to be organized into discrete, independent tasks which can
execute concurrently [71].

In this thesis, finding the #-neighbor set for one point is not relevant with
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that for another point, so it can be looked as an independent task. Then we
can do parallel in the procedure of finding the distinct edited set with pthreads.

For the general 3-neighbor edited algorithm, according to the number of
threads assigned, we randomly divide the whole dataset into ¢ subsets, where ¢
is equal to the number of threads. For each data point in the subset, we find the
(-neighbors for it. We run the program in the multiple threads environment,
and summarize the results of all of the subsets. The experiments concerning
the effect of the various number of threads on the computation time will be

shown in the next subsection.

5.1.3 Comparing Effects of the Choice of Number of

Threads on Efficiency

For parallelism, we choose several trials of the number of threads to test the
effect of the number of the threads on the execution time. At the same time,
the number of processors will be allocated with the requirement of the threads.
As shown in the algorithms before, the step to find one data point’s 3 neighbor
is independent with that of any other point. When the program is run in the
multi-thread environment, the only common writing operation of the different
threads is to revise the status of each point in the dataset, from which we
can judge whether the point is in the resulting edited set. Then we use a flag
to record the status of each data point, and if it is in the resulting set, the
corresponding flag will be set to 1. Furthermore, setting the bit to 1 repeatedly
do not change the final result of the edited set. So it is not necessary for us
to think about the communication among the threads and then the number of
the threads will not affect the editing results.

According to the results of experiments, the conjecture above is approved
again that the edited sets obtained are the same, although the number of

threads are different. So we only record the running time of the algorithms.
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Table 5.1: Time for Finding Gabriel Edited Set for Different Degree of Paral-

lelization (in second)

Number of threads

Problem 1 | 3 | 6 | 8
2 25 30 31 30.9
6 40 46.2 48.3 | 48.13
10k.15d.2¢c 9137 | 9036 | 10343 | 11460

uniform.100.4d 0.2 0.3 0.28 0.26
uniform.1000.4d 26 32.4 33.1 33.48
uniform.10000.4d | 3088 | 3798 | 3907 | 3923

segment 803 863 861 867

german 289 312 312 | 313.7
sat 40703 | 42367 | 21916 | 17066
glass 0.73 | 0.58 0.57 | 0.57
wine 1.12 | 0.88 0.89 0.93

From Table 5.1 and Table 5.2, we can obtain the following observations.

1. From Table 5.1, we can see that generally the Gabriel edited algorithm
with parallelism do not get the time gain but increases the execution
time. Since the Gabriel editing time for the datasets 10k.15d.4¢ (857547)
and 10k.15d.8¢ (1250286) is huge, even if we make full use of the 8
threads, at least é of the costing time obtained from the heuristic Gabriel
algorithm is needed, which is still not demanding. Then for these two

datasets we do not do the parallelism in the Gabriel editing procedure.

2. When the number of the thread is set to 3, the Relative editing time is
reduced at most 20%, except for the larger datasets such as 10k.15d.2¢,
10k.15d.4¢, sat, uni form.1000.4d, uni form.10000.4d.

3. The parallel Relative neighbor edited algorithm behavior well on 10k.15d.4¢,
sat, when the number of thread increases. For the other datasets, the
increasing threads do not bring the performance gain. So Pthread is not

quite useful in the heuristic G-neighbor edited algorithm.
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Table 5.2: Time for Finding Relative Neighbor Edited Set for Different Degree

of Parallelization (in second)

Number of threads

Problem 1 | 3 | 6 | 8
2 22.24 | 18.7 18.8 19.1
6 43.18 | 33.8 33.9 34.4

10k.15d.2¢c 3233 | 2430 | 2348 | 2562

10k.15d.4c 54341 | 31642 | 16688 | 16404
uniform.100.4d 0.13 0.16 0.17 0.18
uniform.1000.4d | 19.59 | 16.57 | 16.29 | 16.57

uniform.10000.4d | 2464 | 1921 1933 | 1933

segment 537 476 477 475
german 141.5 | 112 110 112
sat 14240 | 11870 | 6212 | 5340
glass 0.71 0.73 0.7 0.72
wine 1.03 | 0.96 0.94 | 0.97

4. When the number of the threads increases, in theory the heuristic Rel-
ative editing time of 10k.15d.8¢c (446719) could be reduced to 1 of the
time, where k is the number of threads. Even though we can obtain that,
it is wide of the training time of standard SVM. So we do not use the
parallel Relative neighbor edited algorithm to deal with it.

To sum up, compared with the training of standard SVM, only with the

(&2

parallel technique the performance of the -neighbor edited algorithms

is still not acceptable.

With the analysis in the previous section, the heuristic f-neighbor edited
algorithms are not suitable for shuttle dataset, so we will not do parallelism on
it. This condition also makes us think of other techniques to reduce the demand
of the huge memory before parallelizing the searching procedure. Finding the
edited subset of the dataset in multi-dimensional spaces can be regarded as a
kind of searching, which targets to obtain the pairs of “close” points in the
dataset. So the indexing structure can be an effective method to improve the

performance of the #-neighbor edited algorithm further. Details will be shown
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in next section.

5.2 Tree Indexing Structure

R-Tree
(GuttIan 84)
R*-Tree
(Beckman et . al . 90)\
SR-Tree -— SS-Tree
(Norio et al 97) (David et al 96)

Figure 5.2: Tree Indexing Structure History

In this section, we will introduce and briefly discuss the important index
structures for high-dimensional data spaces and the history of tree-indexing
structure growing is showed in Fig 5.2. We first describe index structures using
minimum bounding rectangles as page regions (after partitioning hierarchically
the data space into a manageable number of smaller subspaces, the subspaces
are called page regions) such as the R-tree, the R*-tree. We continue with
the structures using bounding spheres such as the SS-tree and conclude with
structures using combined regions: the SR-tree. Then we will describe the
algorithms based on S R-tree structure in detail and improve the performance

of the algorithm with pruning search place, which will be discussed later.

5.2.1 R-tree and R*-tree

The R-tree [41] family of index structures uses solid minimum bounding rect-

angles (MBR) as page regions. An MBR is a multidimensional interval of the
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data space (i.e., axis-parallel minimal approximations of the enclosed point
set) There exists no smaller axis-parallel rectangle also enclosing the complete
point set. Therefore, every (d — 1) dimensional surface area must contain at
least one datapoint. Space partitioning is neither complete nor disjoint. Parts
of the data space may not be covered at all by data page regions. Overlapping
between regions in different branches is allowed, although overlaps deteriorate
the search performance especially for high-dimensional data spaces [7]. The
region description of an MBR comprises for each dimension a lower and an
upper bound. Thus, 2d floating point values are required.

The R* [5] is an extension of the R-tree based on a careful study of R-tree
algorithms under various data distributions. Beckmann et al. [5] identified
several weaknesses of the original algorithms. In particular, they confirmed
that the insertion phase is critical for good search performance. The design of
the R* therefore introduces a policy called forced reinsert: If a node overflows,
it is not split right away. Rather, p entries are removed from the node and
reinserted into the tree. The parameter p may vary; Beckmann et al. suggest
it should be about 30% of the maximal number of entries per page.

Another issue investigated by Beckmann et al. concerns the node-splitting
policy. Although Guttman’s R-tree algorithms tried only to minimize the area
covered by the bucket regions, the R*-tree algorithms also take the following

optimization objectives into account.
e minimize overlap between page regions,
e minimize the surface of page regions,
e minimize the volume covered by internal nodes, and
e maximize the storage utilization.

In summary, the R*-tree differs from the R-tree mainly in the insertion al-

gorithm; deletion and searching are essentially unchanged. Beckmann et al.
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report performance improvements up to 50% compared to the basic R-tree.
Their implementation also shows that reinsertion may improve storage utiliza-
tion. In broader comparisons, however, Hoel and Samet [47] and Giinther and
Gaede [40] found that the CPU time overhead of reinsertion can be substan-
tial, especially for large page sizes. The R*-tree and R-tree can ensure the

minimum storage utilization, because they require no forced split.

5.2.2 SS-tree

The SS-tree [99] is an index structure designed for similarity indexing of multi-
dimensional data point. It is an improvement of the R*-tree and enhances the
performance of nearest neighbor queries by modifying the following respects.

Firstly, it employs bounding spheres rather than bounding rectangles for
the region shape. The center of a sphere is the centroid of underlying points
and the SS-tree permits to divide points into isotropic neighborhoods by uti-
lizing centroids in the tree construction algorithms, i.e., the insertion algorithm
and the split algorithm. Another advantage of using bounding spheres for the
region shape is that it only requires nearly half storage compared to bound-
ing rectangles. Since a sphere is determined by the center and the radius, it
can be represented with as many parameters as the dimensionality plus one.
Moreover, spheres are theoretically superior to volume equivalent MBRs be-
cause the Minkowski sum is smaller. MBRs have in general a smaller volume,
whereas the advantage in the Minkowski sum is more than compensated. So
the SS-tree outperforms the R*-tree.

Secondly, the 5 5-tree modifies the forced reinsertion mechanism of the R*-
tree. When a node or a leaf is full, the R*-tree reinserts a portion of its entries
rather than splits it, unless reinsertion has been made on the same tree level.
However, the SS-tree reinserts entries unless reinsertion has been made at

the same node or leaf. This promotes the dynamic reorganization of the tree
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structure [54].

5.2.3 SR-tree

The S R-tree [54] can be regarded as the combination of the R*-tree and the SS-
tree. It uses the intersection solid between a rectangle and a sphere as the page
region. The rectangular part is, as in R-tree variants, the minimum bounding
rectangle of all points stored in the corresponding subtree. The spherical part
is, as in the SS-tree, the minimum sphere around the centroid point of the
stored objects. Regions of S R-trees have the most complex description among
all index structures presented in this section: they comprise 2d floating point
value for the MBR and d + 1 floating point values for the sphere.

The motivation for using a combination of sphere and rectangle, presented
by Katayama et al. [54] is that according to an analysis presented in White and
Jain [99], spheres are basically better suited for processing nearest-neighbor
and range queries using the L, metric. On the other hand, spheres are difficult
to maintain and tend to produce much overlap in splitting. Katayama et al.
believe therefore that a combination of R-tree and 5S-tree will overcome both
disadvantages.

The reported performance results, compared to the SS5-tree and the R*-
tree, suggest that the SR-tree outperforms both index structures [10].

In Summary, Table 5.3 shows the index structures described above and
their most important properties. The first column contains the name of the
index structure, the second shows which geometrical region is represented by
a page. The last columns describe the used algorithms: what strategy is used
to insert new data items (column 3), what criteria are used to determine the
division of objects into sub-partitions in case of an overflow (column 4), and if
the insert algorithm uses the concept of forced reinserts (column 5) [10].

Here, provide a comparison among the indexes listing only properties not
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Table 5.3: High-Dimensional Index Structures and Properties

| Name | Region | Criteria for Insert | Criteria for Split | Reinsert |
R-tree MBR Volume enlargement | (Various algorithm) No
volume
Overlap enlargement Surface area Yes
R*-tree MBR Volume enlargement Overlap
Volume Dead space coverage
SS-tree Sphere Proximity to centroid Variance Yes
Intersect.
S R-tree sphere Proximity Variance Yes
and MBR to centroid

71

Table 5.4: Qualitative Comparison High-Dimensional Index Structures
Name Problems Supported Locality Storage
in High-D Query Types of Node Splits | Utilization
Poor split algorithm NN,
R-tree | leads to deteriorated Region, Yes Poor
directories range
R*-tree Dto. NN, Region, range Yes Medium
High overlap
SS-tree in directory NN Yes Medium
Very large
S R-tree directory size NN Yes Medium

trying to say anything about the “overall” performance of a single index. In
fact, most probably, there is no overall performance; rather, one index will out-
perform other indexes in a special situation whereas this index is quite useless
for other configurations of the database. Table 5.4 shows such a comparison.
The first column lists the name of the index, the second column explains the
biggest problem of this index when the dimension increases. The third column
lists the supported types of queries. In the fourth column, we show if a split in
the directory causes “forced splits” on lower levels of the directory. The fifth
column shows the storage utilization of the index, which is only a statistical
value depending on the type of data and, sometimes, even on the order of

insertion [10].

5.2.4 [-neighbor Algorithm Based on SR-tree Structure

Table 5.5 gives out all of the necessary notations used in the algorithms.
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Table 5.5: Notations in the Algorithms

P Point Set (Dataset)
C; class of P,
E the edited set
N; Potential g-neighbor of Point ¢
NP, [B-neighbor of Point ¢
M vector to store the pairwise information
A% vector to record the visited /non-visited information
attribute flag to indicate non-leaf node/leaf-node
R dist(P;, P,)
dist(P;, Pr) the Euclidean distance between points P, and P,
the interior region of the
J(P;, Fy) two circles as described before
rangesearch nearest point returned by range search
(SR, @1, Q2, R) in tree SR with query (1, @2 and range R
vector to store the pre-pruned
H-prune; subtree/neighbor information

With the SR-tree for indexing, the (-neighbor edited algorithm can be
modified in the following fields. For each pair of points (P, P.), according to
the edited algorithm, two searching requests, Sy and S5, will be put forward. S,
is the range search with the query point ()4, which equals to (1— g) X Prl-g x P,.
The query point of Sy is Q2 and it equals to (1 — g) X P, + g x P;. The range
for both of the searches, Sy, Sy, is %dist(Pi, P.). Then we will traverse the
tree built before once for both range searches and obtain the nearest neighbor,
P, satisfying the conditions from the two range searches. If P; is not in the
joint section of the two range searches, (P;, P,) will be a pair in the result of -
neighbor edited set. The details of the algorithm can be found in Algorithm 2.

The time complexity is O(dn?logn).

5.2.5 Pruning Search Space for 3-neighbor Algorithm

Fist of all, we will introduce the basic concepts of the hyperplane and some
properties of the F-neighbor pairs. Let P; be the data point of the set whose

[B-neighbors’ set is our interesting in computing. Consider a Point, P. € P.
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Algorithm 2: g—neighbor Edited Algorithm Based on SR-tree
Data : P={P, P, ...,P.}.
Result : F = the edited set.
begin
Let £ be {}
Build a SR-tree SR, to store P
foreach P, do
Use a Vector M to store the pairwise information
end
for VP, € P do

traverse the tree from the left-most leaf node to the right-most

leaf node
1 foreach P. do
Initialize M|r]
if P, and P, are not in the same class, and P, is on the right
side of P; then
MIr] = CANDIDATE
else M[r] = NOT-CANDIDATE

end

2 Initialize V[T = NOT-VISITED, where T represents the subtree
of SR.

3 Traverse S R in post-order

for T being visited and V[T| = NOT-VISITED do
if T' is a leaf node then
for VP, in T and M[r] = CANDIDATE do

consider J(P;, P,)
Let R be Zdist(P;, P;)
Let Q1 and ), equal to (1—§)PZ'—I—§PT, (1—§)PT—I—§PZ'
respectively.
Let Py=rangesearch(SR, @1, @2, R)
if dist(Py, Q1)< R and dist(Py,Q2)< R then
M|r] = NOT-CANDIDATE.
else M[r] = SELECTED;
E=FE+{P,P}

end
end

if T is a internal node then
foreach subtree of T' from the left-most to the right-most

subtree do
Repeat step 3.
V[T]=VISITED.
end
end
end
end

end
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Draw out the intersection region of the two circles and the hyperplane ¢ and
hyperplane r which are perpendicular to the line segment (P, P.). From the

Fig. 5.3, we have the following definitions and lemmas.

Hyper pl ane Hi Hyper pl ane Hr
o
o @ r«
P [ I
i bet a=3
bet a=2
[
I
bet a=1
[ Pi Pr [
[ [
[ [
[

Figure 5.3: Testing S—neighbor Pairs and Plane Pruned

Definition 2 Pruned 3-neighbor
Points in the dataset behind the hyperplane P, are the pruned -neighbor

of point 1.
Hence the similar definition of #-neighbor is easily obtained as follows:

Definition 3 (3-neighbor
In the Euclidean space, point P; and P, are 3-neighbors if there is no point
P, € P\{F;, P, }, which makes /P; P, P, > 7.

Secondly, it is obvious that if by some means we can reduce the number of
pairs to be tested for F-neighbor, the algorithm will be more efficient. So we
define the pairs of points, which can be pruned in advance. Given two points

P; and P,, which are a distinct S-neighbor pair, we construct S(P;, P,). Then



Chapter 5 Techniques Speeding Up Data Editing 75

we construct a hyper-plane H; containing the tangent to the sphere touching
P;, and another one H, touching P,. Let point P be on the negative side
of H;, i.e. the side that is opposite to the normal of H;, as shown in Fig. 5.4.
From definition 3, we can infer that the angle £P, P; P, must be less than 90°.
Therefore, P, must not be a (distinct) 8- neighbor of P;. Similarly, P, is not a
(distinct) B-neighbor of P,. Using such property, we can prune the searching
space for each member in the distinct F-neighbor pair by half.

plane Hi

®-

normal vector for Hi

-veside

Figure 5.4: Negative and Positive Side of a Hyperplane

Thirdly, in the S R-tree indexing structure, the basic units are the bounding
sphere and bounding rectangle. As known before, spheres are basically better
suited for processing nearest-neighbor and range queries using the L, metric.
Moreover, from Table 5.3 the main criterion for node insertion and split is the
bounding sphere. Furthermore, from the viewpoint of calculation, the hyper-
sphere is the better choice, since the number of the parameters of hyper-sphere
is almost half of that of the hyper-rectangle, used to record the necessary
information. Then with S R-tree indexing structure, we can prune the search

space as the following description.

Lemma 4 Consider a hyper-sphere B, with radius R and center C', we can
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test if B, is completely on the negative side of hyper-plane H; by:
i-(pi—¢) < —R

where 77 is the normal vector of H;, p; is the spatial vector of P;, and ¢ is
the spatial vector of C'. If the above inequality holds, then B; is completely
on the negative side of H;. Using such property, any points inside B, can be
pruned when we search (distinct) -neighbors for P,. Similarly, we can do such

pruning for ;.

Definition 5 Hyper plane

Hyper-plane (P;, P,) : Hyper plane that contains the tangent touching
S(P;, P,) at P;, P, (See Fig. 5.3).

Lemma 6 Any point inside a hyper-sphere By with radius R and center C' is
not a (distinct) B-neighbor for point P, if Bs is on the negative side of hyper-
plane (P;, P,), and B, does not intersect hyper-plane (P;, P,), where P; and P,

are a (distinct) B-neighbor pair.

According to the definitions and lemmas above, we make use of S R-tree for
this pruning since for each node of a S R-tree, there is a bounding sphere. If the
bounding sphere of a subtree is completely on the negative side of a hyper-plane
during the searching of 3-neighbors for a point, then we can prune the whole
subtree. Note that it is faster to use hyper-sphere for the negative side testing
than using hyper-rectangle especially when the dimension is high because, for
the later, we need to test every vertex of the hyper-rectangle which results in
many distance computation.

The following paragraphs present our proposed algorithm in more details.

Algo. 3 shows the proposed algorithm using the S R-tree structure. First,
we build a SR-tree for the given dataset as shown in step (1). Second, we

traverse the tree to visit each point in post-order, i.e. from top to bottom
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Algorithm 3: f—neighbor Edited Algorithm Based on SR-tree with Plane
Pruning
Data : P={P, P, ..., P.}.
Result : F = the edited set.
begin
Let £ be {}
1 Build a SR-tree SR, to store P
foreach P, do
Use a Vector M to store the pairwise information
end
foreach P, do

Use a Vector H-prune; to store the pruned node information

end
for VP, € P do
traverse the tree from the left-most to the right-most leaf node
2 foreach P. do
Initialize M|r]
if P, and P, are not in the same class, and P, is on the right
side of P; then M[r] = CANDIDATE
else M[r] = NOT-CANDIDATE
end
3 Initialize V[T] = NOT-VISITED, where T represents the subtree
of S R-tree with root T
4 V[T] = PRUNED if T is completely on negative side of any
H € H — prune;.
5 Find-3-neighbor(SR, SR, M, V, E, P, H-prune;, ... H-
prune, )
end

end
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Function Find-f-neighbor(SR,T, M, V, E, P;, H-prune;, ..
prune,)
for T being visited and V[T = NOT-VISITED do
Traverse T in post-order
if T is a leaf node then
for VP, in T and M[r] = CANDIDATE do

consider J(P;, P,)
Let R be Zdist(P;, P,)
Let (1 and @3 equal to (1 — g)PZ + gPT, (1-— g)PT +8p
respectively.
Let Py=rangesearch(SR, @1, @2, R)
if dist(Py, Q1)< R and dist(Py,Q2)< R then
M][r] = NOT-CANDIDATE.
else M[r] = SELECTED;
E=FE+{P,P}
Let H, = hyper-plane(P,, F;)
Visit SR and prune subtree T" that is on the negative side
of H,
Set V[T'|= PRUNED,
Let H; = hyper-plane(P;, P,)
H-prune, = H-prune, + H;.

end
end

if T is an internal node then
foreach subtree of T' from the left-most to the right-most subtree
do
Find-3-neighbor(SR, T', M, V, E, P;, H-prune, ..
prune, ).

end
end

V[T]=VISITED.

end

H-

°

H-

)
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and from left to right. For each point P; in the leaf node N, we consider any
other point P; that is on the right hand side of P; as shown in step (2). (P, is
either in N or a leaf node on the right hand side of N.) Based on symmetry,
we do not need to visit point P! that is on the left hand side of P;. This is

because the pair (P!, P;) has already been tested (3-neighbor pair testing)

o
during the searching of F-neighbors for P/, and the effect of testing (P!, P;) is
the same as that of testing (P;, P/). Note that this left-to-right searching order
is based on the fact that points in the same node are usually closer to each other
than points in different nodes, and therefore points in the same node are more
likely #-neighbors of each other. With this ordering, we can construct hyper-
planes and perform pruning earlier. Another advantage of this ordering is the
reduction of memory swapping because points in the same node are usually
inclined to be loaded to the same memory page simultaneously. Experiments
in [22] show that using such ordering can reduce 10% in searching time when
compared to random ordering.

If P, and P, are of different classes, we test whether there is any other point
inside J(P;, P.) by performing the nearest neighbor search, which refers to step
(5) of the find-B-neighbor() function in Algo. 3. If no such point exists, then
P; and P, are a distinct F-neighbor pair. We add them to the resulting edited
set.

Once we find out such neighbor for P;, we construct pruning planes H; for
P; and H, for P.. Then we visit the tree for P;, and prune all the subtrees with
bounding spheres completely on the negative side of H,. For the remaining
unpruned subtrees, we test for the “not yet visited” points under these subtrees
in the left-to-right order again. Once we find out another neighbor for F;, we
repeat the plane construction and pruning step. For P., we add H; to the
hyper-plane list for pre-pruning, H-prune,, so that we can use planes in H-

prune, for pruning when finding the G-neighbors of P, as shown in step (4).
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Table 5.6: Notation and Description Used in this Section
the Gabriel editing algorithm

Gab-srtree based on the S R-tree
the Relative editing algorithm
Rel-srtree based on the S R-tree

the Gabriel editing algorithm
Gab-sr-prune | based on the S R-tree with pruning
the Relative editing algorithm
Rel-sr-prune | based on the S R-tree with pruning

5.2.6 Comparing Results of Non-index Methods with
Those of Methods with Indexing

In this section, we describe the application of our proposed algorithms 2 and
Algo. 3 to the synthetic and real datasets. These two algorithms are coded by
Ling [22] and me. First, we extract the edited set with heuristic algorithm 1
described in Chapter 3. Then another algorithm, the F-neighbor edited al-
gorithm based on the S R-tree, is also used to obtain the edited set. Finally,
after pruning the searchings space, the edited algorithm with S R-tree index-
ing structure is applied to extract the points from the training dataset to the
resulting edited set. The edited sets obtained in the three methods are the
same, so we only consider the performance of the methods from the view-
point of efficiency. Table 5.6 shows the notations and descriptions used in the
experiments.

From table 5.7 5.8 it is easy to see that:

1. Our SR-tree methods are much faster than the regular editing algorithm

in general, especially for the Gabriel editing procedure.

2. Furthermore, with the aid of pruning, we can further speed up the whole
procedure of finding Gabriel edited set. When we regard the time cost by
Heuristic Gabriel editing method as the standard value, the time taken

by the other two methods are normalized based on the standard value.
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Table 5.7: Time to Find Distinct Gabriel Edited Sets (in second)

‘ data ‘ Gab-heurist ‘ Gab-srtree ‘ Gab-sr-prune ‘
2 25 17 6.19
{6 40 19 9.17
10k.15d.2¢ 9137 6712 6776
10k.15d.4c 857547 10914 10894
10k.15d.8¢ 1250286 24205 23888
uniform.100 0.2 0.09 0.06
uniform.1000 26 16 7.12
uniform.10000 3088 3264 2647
segment 803 547 480
german 289 49 41
sat 40703 4158 3374
shuttle - 104062 100592
glass 0.73 0.99 1.8
wine 1.12 0.51 0.68

From Fig. 5.5 we can find S R-tree method can save the execution time at
least 30%. For the Relative editing procedure, the pruning step does not
reduce the execution time too much, since the relative editing reduces

the candidate points quickly enough.

3. For dataset 10k.15d.4¢, 10k.15d.8¢, german, and satimage applying SR-
tree indexing to the -neighbor edited algorithm can even save the editing
time more than 60%. Especially for the shuttle dataset, the heuristic 3-
neighbor edited algorithm is inefficient to handle the large dataset and

using S R-tree indexing, we obtain the satisfiable result.

4. Nevertheless, S R-tree indexing structure does not perform well for data
set glass and wuniform.10000 where the cost time to find F-neighbor
edited set based on SR-tree is more than that of the heuristic algorithm.

5. For the dataset 10k.15d.2¢, we can find that the cost time with the
heuristic algorithm is the least, since comparing with the original size

of dataset, the size of Relative edited set is so small that during the
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Reduction of Editing Time with Indexing Tree and Its Improv ement
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Figure 5.5: Reduction of Editing Time with Indexing Tree and Its Improve-
ment

searching procedure, the speed of discarding the candidate points is quick
enough. Building the SR-tree and doing the pruning operation can not

reduce the execution time but expend more time.

6. Moreover, the experimental results show that pruning steps may effect
on most of the datasets but not all of them. The exceptions are its use
on the glass in B-editing procedures and wine datasets in the Gabriel
editing procedure. The values in Table 5.7 and Table 5.7 present that
using S R-tree indexing structure and pruning step degenerates much the

performance of the algorithm on glass dataset.

7. In general cases, the method based on SR-tree and using plane-pruning
can reduce the running time up to 60% compared to that of using SR-tree

indexing only.
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Table 5.8: Time to Find Distinct Relative Neighbor Edited Sets (in second)

‘ dataset ‘ Rel-heurist ‘ Rel-srtree ‘ Rel-sr-prune ‘

2 22.24 19.38 17.9

{6 43.18 26.4 23.3
10k.15d.2¢ 3233 6159 6142
10k.15d.4c 54341 9144 9160
10k.15d.8¢ 446719 11438 11397
uniform.100.4d 0.13 0.11 0.08
uniform.1000.4d 19.59 19.08 18.77
uniform.10000.4d 2464 4280 3998
segment 537 565 548

german 141.5 56.5 33

sat 14240 4793 4731
shuttle - 254243 252968
glass 0.71 1.33 1.36

wine 1.03 0.61 0.62

8. If the dataset is large such as uniform.10000, SVM (8213 seconds) is
much slower than the Gabriel editing (2647 seconds) and the Relative
editing (2464 seconds). The training and testing time for edited sets are
much less than the time for the corresponding whole datasets. This time

reduction is significant for real time processing.

9. Note that for shuttle, although the training time of SVM with the origi-
nal set is fast, we need to have a gopod SVM parameter setting, otherwise

there are some cases where the training time exceeds 100,000 seconds.

5.3 Combination of Parallelism and SR-tree
Indexing Structure

Based on the SR-tree structure, suppose P = {P;, Py, P53, P,}, and the left-
to-right order for the points stored in the SR-tree is Po,— > Pi— > Pj— >
Ps;— > Ps. In our algorithm, the visiting order is (a)Ps, verifying Py, Py, Ps,
Ps; (b) Pr, verifying Py, Ps, Ps; (c) Py, verifying Ps, Ps; (d) Ps,verifying Ps. This
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visiting sequence can be executed simultaneously by using the multi-thread
processing [22].

We can see that the nodes on the left will test more potential neighbors
than the nodes on the right, so instead of randomly allotting the points to the
processor, we adopt the left-to-right order to visit the points. Furthermore,
if a processor is idle, we will assign the most left and unvisited point to the
processor, which can keep that every processor has the similarly equal loading.
For example, if we have only two processors, points 2, 1 will be visited first. If

Processor 2 is idle, point 4, not point 3, will be visited.
5.3.1 Comparing Results of Both Techniques Applied

Table 5.9: Time for Finding Gabriel Edited Set Using SR-tree (with pruning)

for Different Degree of Parallelization (in second)
Number of threads

Problem 1 | 3 | 6 | 8
2 6.19 8.48 8.1 10.69
6 9.17 11.7 8.5 11.88

10k.15d.2¢c 6776 2882 | 1983 | 2310
10k.15d.4c 10894 | 9374 | 3967 | 3649
10k.15d.8¢c 23888 | 19343 | 19071 | 19515
uniform.100 0.06 0.08 0.07 0.08
uniform.1000 7.12 15.61 | 8.33 10.4
uniform.10000 | 2647 2047 | 1421 | 1321

segment 480 363 173 290

german 41 87.33 | 14.48 | 24.85
sat 3374 3425 | 1305 | 2079

shuttle 100592 | 58649 | 39095 | 29320
glass 1.8 1.22 0.5 0.76
wine 0.68 0.35 0.25 0.33

In the experiments, 1,3,6,8 are chosen as the several trials of the number
of threads to watch the effect of the amount of threads on the performance.
We scale the editing time in Table 5.9 into a suitable interval and according

to the values’ interval, illustrate them into two figures and present the scaling
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Table 5.10: Time for Finding Relative Neighbor Edited Set Using SR-tree
(with pruning) for Different Degree of Parallelization (in second)
Number of threads

Problem 1 | 3 | 6 | 8
2 17.9 11.89 9.92 10.7

6 23.3 16.54 | 11.92 12
10k.15d.2c 6142 2833 1887 | 1635
10k.15d.4c 9160 4055 2740 | 2455
10k.15d.8¢c 11397 5350 3392 | 3052

uniform.100.4d 0.08 0.09 0.14 0.12
uniform.1000.4d 18.77 11.9 11 12.1
uniform.10000.4d | 3998 2591 1946 1882

segment 548 249 140.9 | 123.7

german 53 30.5 18.65 | 16.2
sat 4731 1991 1050 856

shuttle 252968 | 131298 | 84234 | 78007
glass 1.36 0.66 0.48 0.43
wine 0.62 0.35 0.3 0.26

coefficient in the Fig. 5.6 and Fig. 5.7.

1. When the number of threads increases to 3, the running time of the
Gabriel editing is not reduced; on the contrary, the execution time in-
creases for most of the datasets except segment and wine data and the

large datasets with the size larger than 10,000.

2. For most datasets, using 6 threads achieves the quickest Gabriel editing
time of all the trials. Along with the amount of threads allocated in-
creasing to 8, the running time of 10k.15d.4¢, uni form1000, and shuttle

datasets continues decreasing (See Fig. 5.6).

3. In the Relative editing procedure, the execution time of the datasets is
reduced along with the increasing threads, except for the datasets, f2,

f6, uni form1000 and uni form100. Nearly all of these datasets gain the

least editing time when the number of the thread is equal to 6.

4. Comparing with the training time of SVM (See Table 4.10), even with
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parallel technique used to find G-neighbor edited set, the costing time

can not be reduced too much in common cases.

5. Nevertheless for large datasets, such as uni form10000, shuttle, the -
neighbor edited algorithm with parallelism outperform the performance

of the standard SVM on efficiency.

So before we assign the threads to the program, we need consider the scale of
the problem, watch the load of CPU and choose a suitable number of threads
so as to avoid overloading of the system. In sum, for the large datasets our
F-neighbor edited algorithm with parallelism can preserve the high accuracy

and reduce the training time of SVM.

5.4 Summary

Along with the techniques used, the heuristic G-neighbor edited algorithm, the
parallel heuristic G-neighbor edited algorithm, the f-neighbor edited algorithm
based on SR-tree index structure, and the parallel 3-neighbor edited algorithm
based on SR-tree index structure are proposed to edit the original dataset (See
Table 1.1). After that, we use do SVM training on the edited set, compare
the sum of the editing time and the training time with the original SVM
training time and then have some observations as follows from the experiments
conducted before.

First, the heuristic method is not suitable to deal with the huge datasets,
since the matrix is used to store the [-neighbor pair information and the
necessarily allocated space for the matrix may overflow. For the common-size
datasets, the heuristic method can not outperform SVM training on efficiency.

Secondly, we apply parallel technique in the program to speed up the edit-
ing procedure, which can separate the whole editing procedure into several

independent parts. However, the results show that the parallelism used in the
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heuristic algorithm does not improve much.

Thirdly, the result in the second trial makes us think about other ways to
improve the performance of the editing algorithm. The spatial indexing struc-
ture is chosen as our testing technique employed in the editing algorithm. The
experimental result verify our expectation. Fven though the SR-tree indexing
reduces the editing time much, compared to the SVM training, the editing
algorithm based on SR-tree indexing structure does not behave better on the
common-size dataset. Only when applied to the large dataset, the editing
algorithm does well.

Finally, we combine the SR-tree indexing structure and parallel computing
technique together. The performance of the editing algorithm on large datasets
is improved much and the editing time becomes more comparable to the SVM
training time. So we can edit the huge dataset with the parallel 3-neighbor
edited algorithm, which is also based on the SR-tree indexing structure, before
we do SVM training. Then this editing step can speed up the original training
procedure of SVM.



Chapter 6

Conclusion

Support Vector Machine is a new and promising approach to pattern classifi-
cation. It promises to give good generalization and has been applied to various
tasks.

The formulation of SVM is elegant in that it is simplified to a convex
quadratic programming (QP) problem. But the number of iterations required
to solve a QP problem is not in control. Along with the size of dataset in-
creasing, the difficulty of the convergence of SVM increases. Hence, when the
number of training data points exceeds a few hundred, the computation cost
for the SVM training will be not satisfiable. There are two kinds of methods
to clear the obstacle. One is to improve the algorithm from the interior, such
as RSVM. The other is to preprocess the dataset and discard the unimportant
points, which is the goal of our proposed method. The relationship among
SVM, Convex hull, and Voronoi diagram inspires us to employ computational
geometric algorithms to locate plausible support vectors and reduce the size of
the training data. In particular, we present the B-neighbor edited algorithm.

With the obtained #-neighbor edited set as the training set, we can speed
up the convergence of SVM, while preserves the high performance. When we
compare the training time of SVM to the combination of the editing time
and the training time of SVM with the edited set as input data, we find

that the latter is not less than the former one. So we use some other effective
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technologies, such as parallel and SR-tree indexing, to improve the efficiency of
the edited algorithm. Experiments indicate that when the size of the training
data is large enough, such as larger than 10,000, the performance of the editing
algorithm and the training of SVM using the edited set as input is acceptable.

We also test the performances of the other two different classifiers from
SV M, which are kNN and C'4.5. Generally with the edited set (no matter
Gab-edited set or Rel-edited set) as the training set, the classifiers can preserve
high accuracy with edited set. Furthermore, compared to the performance of
RSVM, we find that the accuracy results from SVM with edited set are similar
to those of RSVM.
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