Machine Learning: Kernel, Sparsity, Online, and Future Perspectives

Haiqin Yang, Irwin King, and Michael R. Lyu

Department of Computer Science & Engineering The Chinese University of Hong Kong

June 10, 2012

A Motivated Example

Haiqin Yang (CUHK)

June 10, 2012

How to Find?

Season	Age	Team	Lg	G	Min	Pts	FG%	3P%	FT%	
2006-07	18	HARVARD	College	28	506	133	.415	.281	.818	
2007-08	19	HARVARD	College	30	940	377	.448	.279	.621	
2008-09	20	HARVARD	College	28	975	497	.502	.400	.744	
2009-10	21	HARVARD	College	29	933	476	.519	.341	.755	
2010-11	22	GSW	NBA	29	284	76	.389	.200	.760	
2011-12	23	NYK	NBA	35	940	512	.437	.311	.793	

Welp. Looks like I may have been wrong about Lin ascending to Teflon Don ranks

Floyd Mayweather I Hope You Watched Jeremy Hit The Gamewinning 3 Pointer With .005 Seconds Left.Our Guy Can BALL PLAIN AND SIMPLE.RECOGNIZE.

> Follow

Jose Calderon's having his way with Lin. Like I said, don't forget about him. #RTZ

¹Data from http://www.basketball-reference.com

Haigin Yang (CUHK)

Machine Learning

What if machine learning/data mining techniques are applied?

Possible Results

Season	Age	Team	Lg	G	Min	Pts	FG%	3P%	FT%		
2006-07	18	HARVARD	College	28	506	133	.415	.281	.818	•••	
2007-08	19	HARVARD	College	30	940	377	.448	.279	.621		
2008-09	20	HARVARD	College	28	975	497	.502	.400	.744		
2009-10	21	HARVARD	College	29	933	476	.519	.341	.755		
2010-11	22	GSW	NBA	29	284	76	.389	.200	.760		
2011-12	23	NYK	NBA	35	940	512	.437	.311	.793		
Welp. Lo		stbrook I may have been on Don ranks	OK, I CIVE INIU								
Spike Lee Following					Mat MacDonald Fellowing 1.						
Floyd Mayweather I Hope You Watched Jeremy Hit The Gamewinning 3 Dointer With .005 Seconds Left Our Guy Can BALL PLAIN AND SIMPLERECOGNIZE				Jose Calderon's having his way with Lin. Like I said don't forget about him. #RTZ							
				Word-of-Mouth Effect!							

Haiqin Yang (CUHK)

Outline

- Introduction
 - Learning Paradigms
 - Regularization Framework
 - Overview
 - Main Techniques
 - Online Learning for Group Lasso
 - Online Learning for Multi-Task Feature Selection
 - Kernel Introduction
 - Sparse Generalized Multiple Kernel Learning
 - Tri-Class Support Vector Machines
- Perspectives
 - History
 - Perspectives

Pre-requisites Knowledge

- Calculus
- Linear algebra
- Probability theory
- Optimization
- Geometry

Outline

- Introduction
 - Learning Paradigms
 - Regularization Framework
 - Overview
 - Main Techniques
 - Online Learning for Group Lasso
 - Online Learning for Multi-Task Feature Selection
 - Kernel Introduction
 - Sparse Generalized Multiple Kernel Learning
 - Tri-Class Support Vector Machines
- B) Perspectives
 - History
 - Perspectives
- 4 Conclusions

June 10, 2012

Outline

Introduction

Learning Paradigms

- Regularization Framework
- Overview
- Main Techniques
 - Online Learning for Group Lasso
 - Online Learning for Multi-Task Feature Selection
 - Kernel Introduction
 - Sparse Generalized Multiple Kernel Learning
 - Tri-Class Support Vector Machines
- B Perspectives
 - History
 - Perspectives
- 4 Conclusions

"I applied my heart to what I observed and learned a lesson from what I saw." – Proverbs 24:32 (NIV)

"A few observations and much reasoning lead to error; many observations and a little reasoning lead to truth."

- Alexis Carrel

Supervised Learning

Learning from labeled observations

Donkey

- Given labeled data: $\mathcal{L} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N, \ \mathbf{x}_i \in \mathbb{R}^d, \ y_i \in \{\pm 1\}/\mathbb{R}$
- Classification: $f(\mathbf{x}) \rightarrow \{-1, +1\}$
- Regression: $f(\mathbf{x}) \to \mathbb{R}$

Semi-supervised/Transductive Learning

Learning from labeled and unlabeled observations Horse Donkey

Unlabeled data

- Given data: \mathcal{L} , and $\mathcal{U}_{\mathcal{L}} = \{(\mathbf{x}_j)\}_{j=1}^U, \ \mathbf{x}_j \in \mathbb{R}^d$
- Learn $f(\mathbf{x}) \rightarrow \{-1, +1\}$
- Semi-supervised learning: In-class exam
- Transductive learning: Take-home exam

Haiqin Yang (CUHK)

Unsupervised Learning

Learning patterns from unlabeled observations.

Learning Paradigms

Learning from Universum

Learning from labeled and universum observations Horse Donkey

Universum (Mule)

Illustration

- Given data: \mathcal{L} , and $\mathcal{U}_0 = \{(\mathbf{x}_k)\}_{k=1}^U$, $\mathbf{x}_k \in \mathbb{R}^d$
- Learn $f(\mathbf{x}) \rightarrow \{-1, +1\}$
- Criterion: Maximizing contraction on Universum

Transfer Learning

Transfer knowledge across domains, tasks, and distributions that are similar but not identical

Task 1: Learn to distinguish horse and donkey

Transfer knowledge learned from Task 1 to distinguish sheep and goat

- Supervised learning Support vector machines (SVM), Lasso, etc.
- Semi-supervised/Transductive learning S³VM, TSVM
- Learning from universum *U*-SVM
- Transfer learning Multi-task learning

- Supervised learning Support vector machines (SVM), Lasso, etc.
- Semi-supervised/Transductive learning S³VM, TSVM
- Learning from universum *U*-SVM
- Transfer learning Multi-task learning

- Supervised learning Support vector machines (SVM), Lasso, etc.
- Semi-supervised/Transductive learning $S^{3}VM$, TSVM
- Learning from universum *U*-SVM
- Transfer learning Multi-task learning

- Supervised learning Support vector machines (SVM), Lasso, etc.
- Semi-supervised/Transductive learning $S^{3}VM$, TSVM
- Learning from universum *U*-SVM
- Transfer learning Multi-task learning

- Supervised learning Support vector machines (SVM), Lasso, etc.
- Semi-supervised/Transductive learning $S^{3}VM$, TSVM
- Learning from universum *U*-SVM
- Transfer learning Multi-task learning

Applications

- Pattern recognition
- Computer vision
- Natural language processing
- Information retrieval
- Medical diagnosis
- Market decisions
- Bioinformatics

• . . .

Haiqin Yang (CUHK)

Machine Learning

June 10, 2012

Outline

Introduction

• Learning Paradigms

• Regularization Framework

- Overview
- 2 Main Techniques
 - Online Learning for Group Lasso
 - Online Learning for Multi-Task Feature Selection
 - Kernel Introduction
 - Sparse Generalized Multiple Kernel Learning
 - Tri-Class Support Vector Machines
- B) Perspectives
 - History
 - Perspectives
- 4 Conclusions

Supervised Learning Procedure

Data: *N* i.i.d. paired data sampled from \mathcal{P} over $\mathcal{X} \times \mathcal{Y}$ as

$$\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N, \;\; \mathbf{x}_i \in \mathcal{X} \subseteq \mathbb{R}^d, \;\; y_i \in \mathcal{Y} \subseteq \mathbb{R}$$

Procedure:

Machine Learning

Regression

Regularization

Formulation

$$f^* = \operatorname{arg\,min}_{f \in \mathcal{H}} \left(R[f] + C \mathcal{R}^{\ell}_{\mathcal{D}}[f] \right)$$

R[f]: Regularization, complexity of f

- $\mathcal{R}_{\mathcal{D}}^{\ell}[f]$: Empirical risk, measured by square, hinge, etc.
- $C \ge 0$: Trade-off parameter

Advantages

- Controlling the functional complexity to avoid overfitting
- Providing an intuitive and principled tool for learning from high-dimensional data
 - Lasso: Perform regression while selecting features
 - SVM: Regularization corresponds to maximum margin

Typical Regularizers

Typical Loss Functions

Outline

Introduction

- Learning Paradigms
- Regularization Framework
- Overview

Main Techniques

- Online Learning for Group Lasso
- Online Learning for Multi-Task Feature Selection
- Kernel Introduction
- Sparse Generalized Multiple Kernel Learning
- Tri-Class Support Vector Machines
- B Perspectives
 - History
 - Perspectives
- 4 Conclusions

Overview

• Sparse learning models under regularization

- Sparse in feature level
- Sparse in sample level
- Online learning
- Semi-supervised learning
- Multiple kernel learning (MKL)

Overview

Sparse in Feature Level

Haiqin Yang (CUHK)

Machine Learning

Overview

Sparse in Sample Level

22 / 134

Outline

- Introduction
 - Learning Paradigms
 - Regularization Framework
 - Overview
 - Main Techniques
 - Online Learning for Group Lasso
 - Online Learning for Multi-Task Feature Selection
 - Kernel Introduction
 - Sparse Generalized Multiple Kernel Learning
 - Tri-Class Support Vector Machines

Perspectives

- History
- Perspectives

4 Conclusions

June 10, 2012

Outline

- Introduction
 - Learning Paradigms
 - Regularization Framework
 - Overview

Main Techniques

- Online Learning for Group Lasso
- Online Learning for Multi-Task Feature Selection
- Kernel Introduction
- Sparse Generalized Multiple Kernel Learning
- Tri-Class Support Vector Machines
- Perspectives
 - History
 - Perspectives
- 4 Conclusions

Online Learning for Group Lasso

- H. Yang, Z. Xu, I. King, and M. R. Lyu. Online learning for group lasso. In *ICML*, pages 1191–1198, 2010.
- Toolbox: http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=OLGL

June 10, 2012

A Motivated Example

Data with group structure appear sequentially

How to update the decision function adaptively?

Motivations

• Applications with group structure

Meier et al., 2008

Harchaoui & Bach, 2007

• Group features

- Continuous features represented by k-th order expansions $x_1 \Rightarrow \mathbf{x}_1 = [x_1, x_1^2, \dots, x_1^k]$
- Categorical features represented a group of dummy variables $x_2 \Rightarrow \mathbf{x}_2 = [x_{21}, x_{22}, \dots, x_{2m}]$

Online Learning for Group Lasso

- Problems
 - Some features are redundant or irrelevant
 - Data come in sequence
 - Massive data
- Related work
 - Group lasso and its extensions (Yuan & Lin, 2006; Meier et al., 2008; Roth & Fischer, 2008; Jacob et al., 2009; etc.)
 - Online learning algorithms (Shalev-Shwartz & Singer, 2006; Zinkevich, 2003; Bottou & LeCun, 2003; Langford et al., 2009; Duchi & Singer, 2009; Xiao, 2009)

Batch learned algorithms cannot solve the above problems!

- Our contributions
 - A novel online learning framework for the group lasso
 - Easy implementation: three lines of main codes
 - Efficient in both time complexity and memory cost, $\mathcal{O}(d)$
 - Sparsity in both the group level and the individual feature level
 - Easy extension to group lasso with overlap and graphical lasso

Models

Lasso: A shrinkage and selection method for linear regression

$$\min_{\mathbf{w}} \|\mathbf{X}\mathbf{w} - \mathbf{Y}\|^2 + \lambda \|\mathbf{w}\|_1$$

Group Lasso: Find important explanatory factors in a grouped manner

$$\min_{\mathbf{w}} \|\mathbf{X}\mathbf{w} - \mathbf{Y}\|^2 + \lambda \sum_{g=1}^{G} \sqrt{d_g} \|\mathbf{w}^g\|_2$$

Sparse Group Lasso: Yield sparse solutions in the selected group

$$\min_{\mathbf{w}} \|\mathbf{X}\mathbf{w} - \mathbf{Y}\|^2 + \lambda \sum_{g=1}^{G} \left(\sqrt{d_g} \|\mathbf{w}^g\|_2 + r_g \|\mathbf{w}^g\|_1 \right)$$

$$\prod_{\mathbf{w}} \|\mathbf{x}^{\mathrm{T}} - \mathbf{y}^{\mathrm{T}}\|_{W^{2}}$$

$$\prod_{g=1}^{m_g L(w) + \lambda ((w, w_g))_2 + \|w_g\|_2}$$

Formulation Summary

Model framework

$$\min_{\mathbf{w}} \quad \sum_{i=1}^{N} \ell(\mathbf{w}, \ \mathbf{z}_i) + \Omega_{\lambda}(\mathbf{w})$$

 $\ell(\cdot, \cdot)$: Loss function, e.g., square loss, logit loss, etc. $\Omega_{\lambda}(\cdot)$: Regularization

• Favorable properties

- Obtain sparse solution
- Perform feature selection and classification/regression simultaneously
- Attain good classification/regression performance

Online Learning Algorithm Framework for Group Lasso

Remarks

- Motivated by the dual averaging method for Lasso (Xiao, 2009)
- $h(\mathbf{w})$: Make the new search point in the vincinity
- FOBOS (Duchi & Singer, 2009): $\mathbf{w}_{t+1} = \arg \min_{\mathbf{w}} \left\{ \frac{1}{2} \| \mathbf{w} (\mathbf{w}_t \eta_t \mathbf{u}_t) \|^2 + \eta_t \Omega(\mathbf{w}) \right\}$
- Overlapped groups or graphical lasso

Updating Rules for Online Group Lasso

• Group Lasso: $\Omega_{\lambda}(\mathbf{w}) = \lambda \sum_{g=1}^{G} \sqrt{d_g} \|\mathbf{w}^g\|_2, \ h(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2$ $\mathbf{w}_{t+1}^g = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda \sqrt{d_g}}{\|\mathbf{\bar{u}}_t^g\|_2} \right]_+ \cdot \bar{\mathbf{u}}_t^g$

• Sparse Group Lasso: $\Omega_{\lambda,\mathbf{r}}(\mathbf{w}) = \lambda \sum_{g=1}^{G} \left(\sqrt{d_g} \| \mathbf{w}^g \|_2 + r_g \| \mathbf{w}^g \|_1 \right)$, $h(\mathbf{w}) = \frac{1}{2} \| \mathbf{w} \|^2$

$$\left(\mathbf{w}_{t+1}^{g} = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda\sqrt{d_g}}{\|\mathbf{c}_t^g\|_2}\right]_+ \cdot \mathbf{c}_t^g\right), \ \mathbf{c}_t^{g,j} = \left[|\bar{u}_t^{g,j}| - \lambda r_g\right]_+ \cdot \operatorname{sign}\left(\bar{u}_t^{g,j}\right)$$

• Enhanced Sparse Group Lasso:

 $\Omega_{\lambda,\mathbf{r}}(\mathbf{w}) = \lambda \sum_{g=1}^{G} \left(\sqrt{d_g} \| \mathbf{w}^g \|_2 + r_g \| \mathbf{w}^g \|_1 \right), \ h(\mathbf{w}) = \frac{1}{2} \| \mathbf{w} \|^2 + \rho \| \mathbf{w} \|_1$

$$\mathbf{w}_{t+1}^{g} = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda \sqrt{d_g}}{\|\mathbf{\tilde{c}}_t^g\|_2} \right]_+ \cdot \tilde{\mathbf{c}}_t^g, \quad \tilde{c}_t^{g,j} = \left[|\bar{u}_t^{g,j}| - \lambda r_g - \frac{\gamma \rho}{\sqrt{t}} \right]_+ \cdot \operatorname{sign}\left(\bar{u}_t^{g,j} \right)$$

Efficiency: $\mathcal{O}(d)$ in memory cost and time complexity

June 10, 2012

Haiqin Yang (CUHK)

Updating Rules for Online Group Lasso

• Group Lasso:
$$\Omega_{\lambda}(\mathbf{w}) = \lambda \sum_{g=1}^{G} \sqrt{d_g} \|\mathbf{w}^g\|_2, \ h(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2$$

$$\mathbf{w}_{t+1}^g = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda \sqrt{d_g}}{\|\mathbf{\bar{u}}_t^g\|_2} \right]_+ \cdot \bar{\mathbf{u}}_t^g$$

• Sparse Group Lasso: $\Omega_{\lambda,\mathbf{r}}(\mathbf{w}) = \lambda \sum_{g=1}^{G} \left(\sqrt{d_g} \| \mathbf{w}^g \|_2 + r_g \| \mathbf{w}^g \|_1 \right),$ $h(\mathbf{w}) = \frac{1}{2} \| \mathbf{w} \|^2$ $\left(\mathbf{w}_{t+1}^g = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda \sqrt{d_g}}{\| \mathbf{c}_t^g \|_2} \right]_+ \cdot \mathbf{c}_t^g \right), \ c_t^{g,j} = \left[| \bar{u}_t^{g,j} | - \lambda r_g \right]_+ \cdot \operatorname{sign} \left(\bar{u}_t^{g,j} \right)$ • Enhanced Sparse Group Lasso:

 $\Omega_{\lambda,\mathbf{r}}(\mathbf{w}) = \lambda \sum_{g=1}^{G} \left(\sqrt{d_g} \| \mathbf{w}^g \|_2 + r_g \| \mathbf{w}^g \|_1 \right), \ h(\mathbf{w}) = \frac{1}{2} \| \mathbf{w} \|^2 + \rho \| \mathbf{w} \|_1$

$$\mathbf{w}_{t+1}^{g} = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda \sqrt{d_g}}{\|\mathbf{\bar{c}}_t^g\|_2} \right]_+ \cdot \tilde{\mathbf{c}}_t^g, \quad \tilde{c}_t^{g,j} = \left[|\bar{u}_t^{g,j}| - \lambda r_g - \frac{\gamma \rho}{\sqrt{t}} \right]_+ \cdot \operatorname{sign}\left(\bar{u}_t^{g,j} \right)$$

Efficiency: $\mathcal{O}(d)$ in memory cost and time complexity

Haiqin Yang (CUHK)

Machine Learning

June 10, 2012 30 / 134

Updating Rules for Online Group Lasso

• Group Lasso:
$$\Omega_{\lambda}(\mathbf{w}) = \lambda \sum_{g=1}^{G} \sqrt{d_g} \|\mathbf{w}^g\|_2, \ h(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2$$

$$\left(\mathbf{w}_{t+1}^g = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda \sqrt{d_g}}{\|\mathbf{\bar{u}}_t^g\|_2}\right]_+ \cdot \bar{\mathbf{u}}_t^g\right)$$

• Sparse Group Lasso: $\Omega_{\lambda,\mathbf{r}}(\mathbf{w}) = \lambda \sum_{g=1}^{G} \left(\sqrt{d_g} \| \mathbf{w}^g \|_2 + r_g \| \mathbf{w}^g \|_1 \right),$ $h(\mathbf{w}) = \frac{1}{2} \| \mathbf{w} \|^2$ $\left(\mathbf{w}_{t+1}^g = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda \sqrt{d_g}}{\| \mathbf{c}_t^g \|_2} \right]_+ \cdot \mathbf{c}_t^g \right), \ c_t^{g,j} = \left[| \bar{u}_t^{g,j} | - \lambda r_g \right]_+ \cdot \operatorname{sign} \left(\bar{u}_t^{g,j} \right)$

• Enhanced Sparse Group Lasso: $\Omega_{\lambda,\mathbf{r}}(\mathbf{w}) = \lambda \sum_{g=1}^{G} \left(\sqrt{d_g} \| \mathbf{w}^g \|_2 + r_g \| \mathbf{w}^g \|_1 \right), \ h(\mathbf{w}) = \frac{1}{2} \| \mathbf{w} \|^2 + \rho \| \mathbf{w} \|_1$

$$\mathbf{w}_{t+1}^{g} = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda \sqrt{d_g}}{\|\mathbf{\bar{c}}_t^g\|_2} \right]_+ \cdot \mathbf{\tilde{c}}_t^g, \quad \tilde{c}_t^{g,j} = \left[|\bar{u}_t^{g,j}| - \lambda r_g - \frac{\gamma \rho}{\sqrt{t}} \right]_+ \cdot \operatorname{sign} \left(\bar{u}_t^{g,j} \right)$$

Efficiency: $\mathcal{O}(d)$ in memory cost and time complexity

Average Regret for Group Lasso

• Definition

$$\begin{split} \bar{R}_T(\mathbf{w}) &:= \quad \frac{1}{T} \sum_{t=1}^T \left(\Omega_\lambda(\mathbf{w}_t) + l_t(\mathbf{w}_t) \right) - S_T(\mathbf{w}) \\ S_T(\mathbf{w}) &:= \quad \min_{\mathbf{w}} \frac{1}{T} \sum_{t=1}^T \left(\Omega_\lambda(\mathbf{w}) + l_t(\mathbf{w}) \right) \end{split}$$

• Theoretical bounds

$$ar{R}_{\mathcal{T}} \sim \mathcal{O}(1/\sqrt{\mathcal{T}}) \ ar{R}_{\mathcal{T}} \sim \mathcal{O}(\log(\mathcal{T})/\mathcal{T}) \quad ext{if } h(\cdot) ext{ is strongly convex}$$

Average Regret for Group Lasso

Definition

$$\begin{split} \bar{R}_{\mathcal{T}}(\mathbf{w}) &:= \quad \frac{1}{T} \sum_{t=1}^{T} \left(\Omega_{\lambda}(\mathbf{w}_{t}) + l_{t}(\mathbf{w}_{t}) \right) - S_{\mathcal{T}}(\mathbf{w}) \\ S_{\mathcal{T}}(\mathbf{w}) &:= \quad \min_{\mathbf{w}} \frac{1}{T} \sum_{t=1}^{T} \left(\Omega_{\lambda}(\mathbf{w}) + l_{t}(\mathbf{w}) \right) \end{split}$$

• Theoretical bounds

$$\begin{split} \bar{R}_{\mathcal{T}} &\sim \mathcal{O}(1/\sqrt{\mathcal{T}}) \\ \bar{R}_{\mathcal{T}} &\sim \mathcal{O}(\log(\mathcal{T})/\mathcal{T}) \quad \text{if } h(\cdot) \text{ is strongly convex} \end{split}$$

Summary

Summary

- A novel online learning algorithm framework for group lasso
- Apply this framework for variant group lasso models
- Provide closed-form solutions to update the models
- Provide the convergence rate of the average regret

Future work

- Evaluate on more datasets and compare with more other online frameworks
- Study lazy update schemes to handle high-dimensional data
- Derive a faster convergence rate for the online learning algorithm

Outline

- Introduction
 - Learning Paradigms
 - Regularization Framework
 - Overview

Main Techniques

- Online Learning for Group Lasso
- Online Learning for Multi-Task Feature Selection
- Kernel Introduction
- Sparse Generalized Multiple Kernel Learning
- Tri-Class Support Vector Machines
- 3 Perspectives
 - History
 - Perspectives
- 4 Conclusions

June 10, 2012

Online Learning for Multi-Task Feature Selection

- H. Yang, I. King, and M. R. Lyu. Online learning for multi-task feature selection. In CIKM2010, pages 1693–1696, 2010.
- Toolbox: http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=OLMTFS

An Example of Multi-Task Learning

Given several similar, but not identical tasks

Task 1: Learn to recognize real horses

Task 2: Learn to recognize real donkeys

Task 3: Learn to recognize real mules

How to learn these tasks simultaneously to achieve better performance?

• Observation I: Training data are limited for each task

- **Observation II**: Related tasks contain helpful information
 - Gene selection from microarray data in related diseases
 - 4. A set of gradient of the set of the se
 - ♦ Tasks: Distinguish healthy from unhealthy for different diseases
 - ♦ Problems: few samples (< 100's), large variables (>1000's)
 - Features: A vector of vocabulary on word frequency counts
 - Vocabulary: > 10000's words
- Observation III: Redundant/irrelevant features existing

Learning multiple tasks simultaneously CAN improve the model performance

Haiqin Yang (CUHK)

Machine Learning

June 10, 2012 35 / 134

- Observation I: Training data are limited for each task
- Observation II: Related tasks contain helpful information
 - Gene selection from microarray data in related diseases
 - Variables: Gene expression coefficients corresponding to the amount of mRNA in a patient's sample (e.g., tissue biopsy)
 - Tasks: Distinguish healthy from unhealthy for different diseases
 - Problems: few samples (< 100's), large variables (>1000's)
 - Features: A vector of vocabulary on word frequency counts
 - Vocabulary: > 10000's words
 - Tasks: 1) Detecting spam-emails from persons with same interests;
 2) Automatic classifying related web page categories

- Observation I: Training data are limited for each task
- Observation II: Related tasks contain helpful information
 - Gene selection from microarray data in related diseases
 - Variables: Gene expression coefficients corresponding to the amount of mRNA in a patient's sample (e.g., tissue biopsy)
 - Tasks: Distinguish healthy from unhealthy for different diseases
 - Problems: few samples (< 100's), large variables (>1000's)
 - Text: categorization from documents in multiple related categories
 - Features: A vector of vocabulary on word frequency counts
 - ♦ Vocabulary: > 10000's words
 - Tasks: 1) Detecting spam-emails from persons with same interests;
 - 2) Automatic classifying related web page categories

- Observation I: Training data are limited for each task
- Observation II: Related tasks contain helpful information
 - Gene selection from microarray data in related diseases
 - Variables: Gene expression coefficients corresponding to the amount of mRNA in a patient's sample (e.g., tissue biopsy)
 - Tasks: Distinguish healthy from unhealthy for different diseases
 - Problems: few samples (< 100's), large variables (>1000's)
 - Text categorization from documents in multiple related categories
 - Features: A vector of vocabulary on word frequency counts
 - ♦ Vocabulary: > 10000's words
 - Tasks: 1) Detecting spam-emails from persons with same interests;
 - 2) Automatic classifying related web page categories

- Observation I: Training data are limited for each task
- Observation II: Related tasks contain helpful information
 - Gene selection from microarray data in related diseases
 - Variables: Gene expression coefficients corresponding to the amount of mRNA in a patient's sample (e.g., tissue biopsy)
 - Tasks: Distinguish healthy from unhealthy for different diseases
 - ◆ Problems: few samples (< 100's), large variables (>1000's)
 - Text categorization from documents in multiple related categories
 - Features: A vector of vocabulary on word frequency counts
 - ♦ Vocabulary: > 10000's words
 - Tasks: 1) Detecting spam-emails from persons with same interests;
 - 2) Automatic classifying related web page categories

Observation III: Redundant/irrelevant features exist

- Observation I: Training data are limited for each task
- Observation II: Related tasks contain helpful information
 - Gene selection from microarray data in related diseases
 - Variables: Gene expression coefficients corresponding to the amount of mRNA in a patient's sample (e.g., tissue biopsy)
 - Tasks: Distinguish healthy from unhealthy for different diseases
 - ◆ Problems: few samples (< 100's), large variables (>1000's)

• Text categorization from documents in multiple related categories

- Features: A vector of vocabulary on word frequency counts
- ♦ Vocabulary: > 10000's words
- Tasks: 1) Detecting spam-emails from persons with same interests;
 - 2) Automatic classifying related web page categories

Observation III: Redundant/irrelevant features exist

- Observation I: Training data are limited for each task
- Observation II: Related tasks contain helpful information
 - Gene selection from microarray data in related diseases
 - Variables: Gene expression coefficients corresponding to the amount of mRNA in a patient's sample (e.g., tissue biopsy)
 - ♦ Tasks: Distinguish healthy from unhealthy for different diseases
 - ♦ Problems: few samples (< 100's), large variables (>1000's)

• Text categorization from documents in multiple related categories

- Features: A vector of vocabulary on word frequency counts
- Vocabulary: > 10000's words
- Tasks: 1) Detecting spam-emails from persons with same interests;
 - 2) Automatic classifying related web page categories

• Observation III: Redundant/irrelevant features exist

- Observation I: Training data are limited for each task
- Observation II: Related tasks contain helpful information
 - Gene selection from microarray data in related diseases
 - Variables: Gene expression coefficients corresponding to the amount of mRNA in a patient's sample (e.g., tissue biopsy)
 - ♦ Tasks: Distinguish healthy from unhealthy for different diseases
 - ◆ Problems: few samples (< 100's), large variables (>1000's)

• Text categorization from documents in multiple related categories

- Features: A vector of vocabulary on word frequency counts
- ♦ Vocabulary: > 10000's words
- Tasks: 1) Detecting spam-emails from persons with same interests;
 - 2) Automatic classifying related web page categories

• Observation III: Redundant/irrelevant features exist

- Observation I: Training data are limited for each task
- Observation II: Related tasks contain helpful information
 - Gene selection from microarray data in related diseases
 - Variables: Gene expression coefficients corresponding to the amount of mRNA in a patient's sample (e.g., tissue biopsy)
 - ♦ Tasks: Distinguish healthy from unhealthy for different diseases
 - ◆ Problems: few samples (< 100's), large variables (>1000's)

• Text categorization from documents in multiple related categories

- ♦ Features: A vector of vocabulary on word frequency counts
- ♦ Vocabulary: > 10000's words
- Tasks: 1) Detecting spam-emails from persons with same interests;
 - 2) Automatic classifying related web page categories

• Observation III: Redundant/irrelevant features exist

- Observation I: Training data are limited for each task
- Observation II: Related tasks contain helpful information
 - Gene selection from microarray data in related diseases
 - Variables: Gene expression coefficients corresponding to the amount of mRNA in a patient's sample (e.g., tissue biopsy)
 - ♦ Tasks: Distinguish healthy from unhealthy for different diseases
 - ◆ Problems: few samples (< 100's), large variables (>1000's)

• Text categorization from documents in multiple related categories

- ♦ Features: A vector of vocabulary on word frequency counts
- ♦ Vocabulary: > 10000's words
- Tasks: 1) Detecting spam-emails from persons with same interests;
 - 2) Automatic classifying related web page categories
- Observation III: Redundant/irrelevant features exist

• Problems

- Features among tasks are redundant or irrelevant
- Data come in sequence
- Massive data

Related work

Problems

- Features among tasks are redundant or irrelevant
- Data come in sequence
- Massive data

Related work

- ♦ A generalized L₁-norm single-task regularization (Argyriou et al. 2008)
- Φ Mixed norms of L_1 , L_2 , and L_∞ norms (Obozinski et al. 2009).
- Nesterov's method on MTES (Liu et al. 2009).
- ♦ L_{0.0}-regularization based on MIC (Dhillon et al. 2009).

Batch trained algorithms CANNOT solve the above problems! Our contributions

- ♦: A novel online learning framework for multi-task feature selection.
- Easy implementation: three lines of main codes
- ϕ . Efficient in both time complexity and memory cost, $\mathcal{O}(d imes Q)$

- Problems
 - Features among tasks are redundant or irrelevant
 - Data come in sequence
 - Massive data
- Related work
 - A generalized L₁-norm single-task regularization (Argyriou et al. 2008)
 Mixed porces of L₁ (a grad (a grad (Objainski et al. 2009))
 - Wilked norms of L_1 , L_2 , and L_∞ horms (UB62) high let al. 2009 solution of L_1 and L_∞ horms (UB62) high let al. 2009 solution of L_1 and L_2 and $L_$
 - Nesterov's method on MTES (Liu et al. 2009)
 - L_{0,0}-regularization based on MIC (Dhillon et al. 2009)
 - Batch trained algorithms CANNOT solve the above problems Our contributions
 - Φ . A novel online learning framework for multi-task feature selection
 - Easy implementation: three lines of main codes.
 - Φ . Efficient in both time complexity and memory cost, O(d imes Q)

- Problems
 - Features among tasks are redundant or irrelevant
 - Data come in sequence
 - Massive data
- Related work
 - A generalized L_1 -norm single-task regularization (Argyriou et al. 2008)
 - Mixed norms of L_1 , L_2 , and L_∞ norms (Obozinski et al. 2009)
 - Nesterov's method on MTFS (Liu et al. 2009)
 - L_{0,0}-regularization based on MIC (Dhillon et al. 2009)

Batch trained algorithms CANNOT solve the above problems!

- Problems
 - Features among tasks are redundant or irrelevant
 - Data come in sequence
 - Massive data

Related work

- A generalized L₁-norm single-task regularization (Argyriou et al. 2008)
- Mixed norms of L_1 , L_2 , and L_∞ norms (Obozinski et al. 2009)
- Nesterov's method on MTFS (Liu et al. 2009)
- L_{0,0}-regularization based on MIC (Dhillon et al. 2009)

Batch trained algorithms **CANNOT** solve the above problems!

- Problems
 - Features among tasks are redundant or irrelevant
 - Data come in sequence
 - Massive data
- Related work
 - A generalized L_1 -norm single-task regularization (Argyriou et al. 2008)
 - Mixed norms of L_1 , L_2 , and L_∞ norms (Obozinski et al. 2009)
 - Nesterov's method on MTFS (Liu et al. 2009)
 - $L_{0,0}$ -regularization based on MIC (Dhillon et al. 2009)

Batch trained algorithms **CANNOT** solve the above problems! Our contributions

- A novel online learning framework for multi-task feature selection.
- Easy implementation: three lines of main codes
- Φ . Efficient in both time complexity and memory cost, $\mathcal{O}(d imes Q)$

- Problems
 - Features among tasks are redundant or irrelevant
 - Data come in sequence
 - Massive data
- Related work
 - A generalized L_1 -norm single-task regularization (Argyriou et al. 2008)
 - Mixed norms of L_1 , L_2 , and L_∞ norms (Obozinski et al. 2009)
 - Nesterov's method on MTFS (Liu et al. 2009)
 - $L_{0,0}$ -regularization based on MIC (Dhillon et al. 2009)

Batch trained algorithms **CANNOT** solve the above problems!

• Our contributions

- A novel online learning framework for multi-task feature selection
- Easy implementation: three lines of main codes
- Efficient in both time complexity and memory cost, $\mathcal{O}(d imes \mathcal{Q})$

- Problems
 - Features among tasks are redundant or irrelevant
 - Data come in sequence
 - Massive data
- Related work
 - A generalized L_1 -norm single-task regularization (Argyriou et al. 2008)
 - Mixed norms of L_1 , L_2 , and L_∞ norms (Obozinski et al. 2009)
 - Nesterov's method on MTFS (Liu et al. 2009)
 - $L_{0,0}$ -regularization based on MIC (Dhillon et al. 2009)

Batch trained algorithms CANNOT solve the above problems!

• Our contributions

- A novel online learning framework for multi-task feature selection
- Easy implementation: three lines of main codes
- Efficient in both time complexity and memory cost, $\mathcal{O}(d imes Q)$
- Find important features and important tasks that dominate the features
- Easily extend to nonlinear models

- Problems
 - Features among tasks are redundant or irrelevant
 - Data come in sequence
 - Massive data
- Related work
 - A generalized L_1 -norm single-task regularization (Argyriou et al. 2008)
 - Mixed norms of L_1 , L_2 , and L_∞ norms (Obozinski et al. 2009)
 - Nesterov's method on MTFS (Liu et al. 2009)
 - $L_{0,0}$ -regularization based on MIC (Dhillon et al. 2009)

Batch trained algorithms CANNOT solve the above problems!

Our contributions

- A novel online learning framework for multi-task feature selection
- Easy implementation: three lines of main codes
- Efficient in both time complexity and memory cost, $\mathcal{O}(d \times Q)$
- Find important features and important tasks that dominate the features
- Easily extend to nonlinear models

- Problems
 - Features among tasks are redundant or irrelevant
 - Data come in sequence
 - Massive data
- Related work
 - A generalized L_1 -norm single-task regularization (Argyriou et al. 2008)
 - Mixed norms of L_1 , L_2 , and L_∞ norms (Obozinski et al. 2009)
 - Nesterov's method on MTFS (Liu et al. 2009)
 - $L_{0,0}$ -regularization based on MIC (Dhillon et al. 2009)

Batch trained algorithms **CANNOT** solve the above problems!

Our contributions

- A novel online learning framework for multi-task feature selection
- Easy implementation: three lines of main codes
- Efficient in both time complexity and memory cost, $\mathcal{O}(d \times Q)$
- Find important features and important tasks that dominate the features
- Easily extend to nonlinear models

Multi-task data appear sequentially

How to update the decision functions adaptively?

Haiqin Yang (CUHK)

Multi-task data appear sequentially

How to update the decision functions adaptively?

Haiqin Yang (CUHK)

Multi-task data appear sequentially

How to update the decision functions adaptively?

Haiqin Yang (CUHK)

Data $\left(\begin{array}{l} \text{i.i.d. observations of } \mathcal{D} = \bigcup_{q=1}^{Q} \mathcal{D}_{q} \\ \mathcal{D}_{q} = \{ \mathbf{z}_{i}^{q} = (\mathbf{x}_{i}^{q}, y_{i}^{q}) \}_{i=1}^{N_{q}} \text{ sampled from } \mathcal{P}_{q}, \ q = 1, \dots, Q \\ \mathbf{x} \in \mathbb{R}^{d} \text{-input variable, } y \in \mathbb{R} \text{-response} \end{array} \right)$ $\left| \begin{array}{c} f_q(\mathbf{x}) = \mathbf{w}^{q \top} \mathbf{x}, \quad q = 1, \dots, Q \end{array} \right|$

Data

i.i.d. observations of
$$\mathcal{D} = \bigcup_{q=1}^{Q} \mathcal{D}_q$$

 $\mathcal{D}_q = \{\mathbf{z}_i^q = (\mathbf{x}_i^q, y_i^q)\}_{i=1}^{N_q}$ sampled from \mathcal{P}_q , $q = 1, \dots, Q$
 $\mathbf{x} \in \mathbb{R}^d$ -input variable, $y \in \mathbb{R}$ -response

Model

$$f_q(\mathbf{x}) = \mathbf{w}^{q^{\top}}\mathbf{x}, \quad q = 1, \dots, Q$$

Objective

$$\left(\begin{array}{cc} \min & \sum\limits_{q=1}^{Q} \frac{1}{N_{q}} \sum\limits_{i=1}^{N_{q}} \ell^{q}(\mathbf{W}_{\bullet q}, \mathbf{z}_{i}^{q}) + \Omega_{\lambda}(\mathbf{W}) \end{array} \right)$$

$$\mathbf{W} = \left(\mathbf{w}^{1}, \mathbf{w}^{2}, \dots, \mathbf{w}^{Q}\right) = \left(\mathbf{W}_{\bullet 1}, \dots, \mathbf{W}_{\bullet Q}\right) = \left(\mathbf{W}_{1 \bullet}^{\top}, \dots, \mathbf{W}_{d \bullet}^{\top}\right)^{\top}$$

Data

i.i.d. observations of
$$\mathcal{D} = \bigcup_{q=1}^{Q} \mathcal{D}_{q}$$

 $\mathcal{D}_{q} = \{\mathbf{z}_{i}^{q} = (\mathbf{x}_{i}^{q}, y_{i}^{q})\}_{i=1}^{N_{q}}$ sampled from $\mathcal{P}_{q}, q = 1, \dots, Q$
 $\mathbf{x} \in \mathbb{R}^{d}$ -input variable, $y \in \mathbb{R}$ -response

Model

$$f_q(\mathbf{x}) = \mathbf{w}^{q \top} \mathbf{x}, \quad q = 1, \dots, Q$$

• Objective

$$\begin{split} & \underbrace{\min_{\mathbf{W}} \quad \sum_{q=1}^{Q} \frac{1}{N_{q}} \sum_{i=1}^{N_{q}} \ell^{q}(\mathbf{W}_{\bullet q}, \mathbf{z}_{i}^{q}) + \Omega_{\lambda}(\mathbf{W})}_{\mathbf{W}} \\ \mathbf{W} = \left(\mathbf{w}^{1}, \mathbf{w}^{2}, \dots, \mathbf{w}^{Q}\right) = \left(\mathbf{W}_{\bullet 1}, \dots, \mathbf{W}_{\bullet Q}\right) = \left(\mathbf{W}_{1\bullet}^{\top}, \dots, \mathbf{W}_{d\bullet}^{\top}\right)^{\top} \end{split}$$

- Different regularization achieves different properties
- Regularization

$$\mathbf{MTFS:} \ \Omega_{\lambda}(\mathbf{W}) = \lambda \sum_{q=1}^{Q} \|\mathbf{W}_{\bullet q}\|_{1} = \lambda \sum_{j=1}^{d} \|\mathbf{W}_{j\bullet}^{\top}\|_{1}$$
$$\mathbf{MTFS:} \ \Omega_{\lambda}(\mathbf{W}) = \lambda \sum_{j=1}^{d} \|\mathbf{W}_{j\bullet}^{\top}\|_{2}$$
$$\mathbf{MTFTS:} \ \Omega_{\lambda,\mathbf{r}} = \lambda \sum_{j=1}^{d} \left(r_{j} \|\mathbf{W}_{j\bullet}^{\top}\|_{1} + \|\mathbf{W}_{j\bullet}^{\top}\|_{2} \right)$$

		il	MTF	-S				а	MT	FS				٢S				
1	x	0	0	x	X	\	(x	x	x	x	x	`	1	х	0	x	x	0 \
1	0	x	x	x	0		0	0	0	0	0			0	0	0	0	0
						,	.					,						
	:	:	:	:	:		1 :	:	:	:	:			:				:
(x	0	x	x	x,	/	(x	x	x	x	x)	/	l	0	x	0	x	x /

- Different regularization achieves different properties
- Regularization

$$\mathbf{iMTFS:} \ \Omega_{\lambda}(\mathbf{W}) = \lambda \sum_{q=1}^{Q} \|\mathbf{W}_{\bullet q}\|_{1} = \lambda \sum_{j=1}^{d} \|\mathbf{W}_{j\bullet}^{\top}\|_{1}$$
$$\mathbf{aMTFS:} \ \Omega_{\lambda}(\mathbf{W}) = \lambda \sum_{j=1}^{d} \|\mathbf{W}_{j\bullet}^{\top}\|_{2}$$
$$\mathbf{MTFTS:} \ \Omega_{\lambda,\mathbf{r}} = \lambda \sum_{j=1}^{d} \left(r_{j} \|\mathbf{W}_{j\bullet}^{\top}\|_{1} + \|\mathbf{W}_{j\bullet}^{\top}\|_{2} \right)$$

		il	MTF	-S				а	MT	FS				٢S				
1	x	0	0	x	X	\	(x	x	x	x	x	`	1	х	0	x	x	0 \
1	0	x	x	x	0		0	0	0	0	0			0	0	0	0	0
						,	.					,						
	:	:	:	:	:		1 :	:	:	:	:			:				:
(x	0	x	x	x,	/	(x	x	x	x	x)	/	l	0	x	0	x	x /

- Different regularization achieves different properties
- Regularization

$$\mathbf{MTFS:} \ \Omega_{\lambda}(\mathbf{W}) = \lambda \sum_{q=1}^{Q} \|\mathbf{W}_{\bullet q}\|_{1} = \lambda \sum_{j=1}^{d} \|\mathbf{W}_{j\bullet}^{\top}\|_{1}$$
$$\mathbf{MTFS:} \ \Omega_{\lambda}(\mathbf{W}) = \lambda \sum_{j=1}^{d} \|\mathbf{W}_{j\bullet}^{\top}\|_{2}$$
$$\mathbf{MTFTS:} \ \Omega_{\lambda,\mathbf{r}} = \lambda \sum_{j=1}^{d} \left(r_{j} \|\mathbf{W}_{j\bullet}^{\top}\|_{1} + \|\mathbf{W}_{j\bullet}^{\top}\|_{2} \right)$$

		il	МТР	s				а	мτι	FS					Μ	TF1	٢S	
1	x	0	0	x	x	۱	(x	x	x	x	x)		1	х	0	x	x	0 \
1	0	x	x	x	0		0	0	0	0	0			0	0	0	0	0
						,						,						
	:						1 :	:	:	:	:		1					: 1
(x	0	x	x	x,)	(x	x	x	x	x /	/	ĺ	0	x	0	x	x /

40 / 134

Online Learning Algorithm Framework for MTFS

Initialization:
$$\mathbf{W}_{1} = \mathbf{W}_{0}, \ \mathbf{\bar{G}}_{0} = \mathbf{0}$$

for
 $t = 1, 2, 3, ...$
1. Compute the subgradient on $\mathbf{W}_{t}, \ \mathbf{G}_{t} \in \partial I_{t}$
2. Calculate the service subgradient $\mathbf{\bar{G}}_{t}$:
 $\mathbf{\bar{G}}_{t} = \frac{t-1}{t} \mathbf{\bar{G}}_{t-1} + \frac{1}{t} \mathbf{G}_{t}$
3. Update the next iteration \mathbf{W}_{t+1} :
 $\mathbf{W}_{t+1} = \arg\min\Upsilon(\mathbf{W}) \triangleq \left\{ \mathbf{\bar{G}}_{t}^{\top} \mathbf{W} + \Omega(\mathbf{W}) + \frac{\gamma}{\sqrt{t}} h(\mathbf{W}) \right\}$

end for

Remarks

- W: a matrix, not a vector
- Easily extend to non-linear case
- Motivated by the success of dual averaging method (Xiao, 2009; Yang et al. 2010)

Updating Rules for Online MTFS

Define: $h(\mathbf{W}) = \frac{1}{2} \|\mathbf{W}\|_F^2$ • **iMTFS**: For i = 1, ..., d and q = 1, ..., Q,

$$\left((W_{i,q})_{t+1} = -\frac{\sqrt{t}}{\gamma} \left[|(\bar{G}_{i,q})_t| - \lambda \right]_+ \cdot \operatorname{sign} \left((\bar{G}_{i,q})_t \right) \right]$$

$$\left[(\mathbf{W}_{j\bullet})_{t+1} = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda}{\|(\bar{\mathbf{G}}_{j\bullet})_t\|_2} \right]_+ \cdot (\bar{\mathbf{G}}_{j\bullet})_t \right]$$

• **MTFTS**: For j = 1, ..., d,

$$\left[(\mathsf{W}_{j\bullet})_{t+1} = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda}{\|(\bar{\mathsf{U}}_{j\bullet})_t\|_2} \right]_+ \cdot (\bar{\mathsf{U}}_{j\bullet})_t \right]$$

where the q-th element of $(\bar{\mathbf{U}}_{j\bullet})_t$ is calculated by

 $(\overline{U}_{j,q})_t = \left[|(\overline{G}_{j,q})_t| - \lambda r_j \right]_+ \cdot \operatorname{sign} \left((\overline{G}_{j,q})_t \right), \ q = 1, \dots, Q.$

Efficiency: $\mathcal{O}(d \times Q)$ in memory cost and time complexity

Haiqin Yang (CUHK)

Machine Learning

June 10, 2012

Updating Rules for Online MTFS

Define: $h(\mathbf{W}) = \frac{1}{2} \|\mathbf{W}\|_{F}^{2}$ • **iMTFS**: For i = 1, ..., d and q = 1, ..., Q,

$$\left((W_{i,q})_{t+1} = -\frac{\sqrt{t}}{\gamma} \left[\left| (\bar{G}_{i,q})_t \right| - \lambda \right]_+ \cdot \operatorname{sign} \left((\bar{G}_{i,q})_t \right) \right)$$

• **aMTFS**: For $j = 1, \ldots, d$,

$$\left((\mathsf{W}_{j\bullet})_{t+1} = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda}{\|(\bar{\mathsf{G}}_{j\bullet})_t\|_2} \right]_+ \cdot (\bar{\mathsf{G}}_{j\bullet})_t \right)$$

• **MTFTS**: For *j* = 1, ..., *d*,

$$\left[(\mathsf{W}_{j\bullet})_{t+1} = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda}{\|(\bar{\mathsf{U}}_{j\bullet})_t\|_2} \right]_+ \cdot (\bar{\mathsf{U}}_{j\bullet})_t \right]$$

where the q-th element of $(\bar{\mathbf{U}}_{j\bullet})_t$ is calculated by

 $(\overline{U}_{j,q})_t = \left[|(\overline{G}_{j,q})_t| - \lambda r_j \right]_+ \cdot \operatorname{sign} \left((\overline{G}_{j,q})_t \right), \ q = 1, \dots, Q_t$

Efficiency: $\mathcal{O}(d \times Q)$ in memory cost and time complexity

Haiqin Yang (CUHK)

Machine Learning

June 10, 2012

Updating Rules for Online MTFS

Define: $h(\mathbf{W}) = \frac{1}{2} ||\mathbf{W}||_{F}^{2}$ • **iMTFS**: For i = 1, ..., d and q = 1, ..., Q,

$$\left((W_{i,q})_{t+1} = -\frac{\sqrt{t}}{\gamma} \left[|(\bar{G}_{i,q})_t| - \lambda \right]_+ \cdot \operatorname{sign} \left((\bar{G}_{i,q})_t \right) \right)$$

$$\left((\mathbf{W}_{j\bullet})_{t+1} = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda}{\|(\bar{\mathbf{G}}_{j\bullet})_t\|_2} \right]_+ \cdot (\bar{\mathbf{G}}_{j\bullet})_t \right)$$

• **MTFTS**: For *j* = 1, . . . , *d*,

$$\left((\mathbf{W}_{j\bullet})_{t+1} = -\frac{\sqrt{t}}{\gamma} \left[1 - \frac{\lambda}{\|(\bar{\mathbf{U}}_{j\bullet})_t\|_2} \right]_+ \cdot (\bar{\mathbf{U}}_{j\bullet})_t \right)$$

where the q-th element of $(\bar{\mathbf{U}}_{j\bullet})_t$ is calculated by

$$(\overline{U}_{j,q})_t = \left[\left| (\overline{G}_{j,q})_t \right| - \lambda r_j \right]_+ \cdot \operatorname{sign} \left((\overline{G}_{j,q})_t \right), \ q = 1, \dots, Q_t$$

Efficiency: $\mathcal{O}(d \times Q)$ in memory cost and time complexity

Average Regret for MTFS

• Definition

$$\begin{array}{lll} \bar{R}_{T}(\mathbf{W}) & := & \frac{1}{Q} \sum_{q=1}^{Q} \frac{1}{T} \sum_{t=1}^{T} \left(\Omega_{\lambda}(\mathbf{W}_{t}) + l_{t}(\mathbf{W}_{t}) \right) - S_{T}(\mathbf{W}) \\ S_{T}(\mathbf{W}) & := & \min_{\mathbf{W}} \frac{1}{Q} \sum_{q=1}^{Q} \frac{1}{T} \sum_{t=1}^{T} \left(\Omega_{\lambda}(\mathbf{W}) + l_{t}(\mathbf{W}) \right) \end{array}$$

• Theoretical bounds

 $ar{R}_{\mathcal{T}} \sim \mathcal{O}(1/\sqrt{\mathcal{T}}) \ ar{R}_{\mathcal{T}} \sim \mathcal{O}(\log(\mathcal{T})/\mathcal{T}) \quad ext{if } h(\cdot) ext{ is strongly convex}$

Average Regret for MTFS

Definition

$$\begin{array}{lll} \bar{R}_{T}(\mathbf{W}) & := & \frac{1}{Q} \sum_{q=1}^{Q} \frac{1}{T} \sum_{t=1}^{T} \left(\Omega_{\lambda}(\mathbf{W}_{t}) + I_{t}(\mathbf{W}_{t}) \right) - S_{T}(\mathbf{W}) \\ S_{T}(\mathbf{W}) & := & \min_{\mathbf{W}} \frac{1}{Q} \sum_{q=1}^{Q} \frac{1}{T} \sum_{t=1}^{T} \left(\Omega_{\lambda}(\mathbf{W}) + I_{t}(\mathbf{W}) \right) \end{array}$$

• Theoretical bounds

$$ar{R}_{T} \sim \mathcal{O}(1/\sqrt{T}) \ ar{R}_{T} \sim \mathcal{O}(\log(T)/T) \quad ext{if } h(\cdot) ext{ is strongly convex}$$

Experimental Setup for Online MTFS

Data

★ Computer survey data

• Comparison algorithms

- ★ iMTFS
- ★ aMTFS
- ★ DA-iMTFS
- ★ DA-aMTFS
- ★ DA-MTFTS

Platform

- ★ PC with 2.13 GHz dual-core CPU
- ★ Batch-mode algorithms: Matlab
- \bigstar Online-mode algorithms: Matlab

Conjoint Analysis

Description

- **Objective:** Predict rating by estimating respondents' partworths vectors
- **Data:** Ratings on personal computers of 180 students for 20 different PC, Q = 180
- Features: Telephone hot line (TE), amount of memory (RAM), screen size (SC), CPU speed (CPU), hard disk (HD), CDROM/multimedia (CD), cache (CA), color (CO), availability (AV), warranty (WA), software (SW), guarantee (GU) and price (PR); *d* = 14

Setup

- Evaluation: Root mean square errors (RMSEs)
- Loss: Square loss
- Parameters setting: Cross validation (hierarchical and grid search)

Conjoint Analysis Results

Accuracy

- Learning partworths vectors across respondents can help to improve the performance
- Online learning algorithms attain nearly the same accuracies as batch-trained algorithms

Method	RMSEs	NNZs	Parameters
aMTFS	1.82	2148	$\lambda =$ 44.5
iMTFS	1.91	789	$\lambda = 3$
DA-aMTFS	2.04	540	$\lambda=20.0, \gamma=0.9$, ep=1
DA-aMTFS	1.83	1800	$\lambda=5, \gamma=0.9$, ep=20
DA-iMTFS	2.43	199	$\lambda=$ 2.0, $\gamma=$ 2.0, ep=1
DA-iMTFS	1.92	662	$\lambda=$ 0.5, $\gamma=$ 1.0, ep=20

Effect of λ and γ

Results

NNZs decreases as λ increases
 NNZs increases as γ increases

Haiqin Yang (CUHK)

Learned Features

Results

- Features learned from the online algorithms are consistent to those learned from the batch-trained algorithm
- Ratings are strongly negative to the price and positive to the RAM, the CPU speed, CDROM, etc.

Summary

Summary

- A novel online learning algorithm framework for multi-task feature selection
- Apply this framework for variant multi-task feature selection models
- Provide closed-form solutions to update the models
- Provide the convergence rate of the average regret
- Experimental results demonstrate the proposed algorithms in both efficiency and effectiveness

Outline

- Introduction
 - Learning Paradigms
 - Regularization Framework
 - Overview

Main Techniques

- Online Learning for Group Lasso
- Online Learning for Multi-Task Feature Selection

• Kernel Introduction

- Sparse Generalized Multiple Kernel Learning
- Tri-Class Support Vector Machines

B Perspectives

- History
- Perspectives

4 Conclusions

June 10, 2012

Kernel Introduction

How to Define Data Similarity?

Horse

What are Kernels?

- Similarity defined in original space: $\mathbf{x}_i^T \mathbf{x}_j$
- Similarity defined in kernel space: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

Haiqin Yang (CUHK)

What are Kernels?

- Similarity defined in original space: $\mathbf{x}_i^T \mathbf{x}_j$
- Similarity defined in kernel space: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

Haiqin Yang (CUHK)

Machine Learning

June 10, 2012 51 / 134

- Suppose the vectors $\mathbf{x} = [x_1; x_2] \in \mathbb{R}^2$
- Let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$
- Question: Show $\phi(\mathbf{x})$, such that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

 $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$

- $= 1 + x_{i1}^2 x_{j1}^2 + 2x_{i1} x_{j1} x_{j2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2x_{i1} x_{j1} + 2x_{i2} x_{j2}$
- $= [1; x_{i1}^2; \sqrt{2}x_{i1}x_{i2}; x_{i2}^2; \sqrt{2}x_{i1}; \sqrt{2}x_{i2}]^T \\ \times [1; x_{j1}^2; \sqrt{2}x_{j1}x_{j2}; x_{j2}^2; \sqrt{2}x_{j1}; \sqrt{2}x_{j2}]$
- $= -\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

- Suppose the vectors $\mathbf{x} = [x_1; x_2] \in \mathbb{R}^2$
- Let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$
- Question: Show $\phi(\mathbf{x})$, such that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

 $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$

- $= 1 + x_{i1}^2 x_{j1}^2 + 2x_{i1} x_{j1} x_{j2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2x_{i1} x_{j1} + 2x_{i2} x_{j2}$
- $= [1; x_{i1}^2; \sqrt{2}x_{i1}x_{i2}; x_{i2}^2; \sqrt{2}x_{i1}; \sqrt{2}x_{i2}]^T \\ \times [1; x_{j1}^2; \sqrt{2}x_{j1}x_{j2}; x_{j2}^2; \sqrt{2}x_{j1}; \sqrt{2}x_{j2}]$
- $= -\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

- Suppose the vectors $\mathbf{x} = [x_1; x_2] \in \mathbb{R}^2$
- Let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$
- Question: Show $\phi(\mathbf{x})$, such that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

 $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$

- $= 1 + x_{i1}^2 x_{j1}^2 + 2x_{i1} x_{j1} x_{j2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2x_{i1} x_{j1} + 2x_{i2} x_{j2}$
- $= [1; x_{i1}^2; \sqrt{2}x_{i1}x_{i2}; x_{i2}^2; \sqrt{2}x_{i1}; \sqrt{2}x_{i2}]^T \\ \times [1; x_{j1}^2; \sqrt{2}x_{j1}x_{j2}; x_{j2}^2; \sqrt{2}x_{j1}; \sqrt{2}x_{j2}]$
- $= \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

• Suppose the vectors $\mathbf{x} = [x_1; x_2] \in \mathbb{R}^2$

• Let
$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$$

• Question: Show $\phi(\mathbf{x})$, such that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$$

$$= 1 + x_{i1}^2 x_{j1}^2 + 2x_{i1} x_{j1} x_{j2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2x_{i1} x_{j1} + 2x_{i2} x_{j2}$$

$$= [1; x_{i1}^2; \sqrt{2}x_{i1}x_{i2}; x_{i2}^2; \sqrt{2}x_{i1}; \sqrt{2}x_{i2}]^T \times [1; x_{j1}^2; \sqrt{2}x_{j1}x_{j2}; x_{j2}^2; \sqrt{2}x_{j1}; \sqrt{2}x_{j2}]$$

$$= \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

• Suppose the vectors $\mathbf{x} = [x_1; x_2] \in \mathbb{R}^2$

• Let
$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$$

• Question: Show $\phi(\mathbf{x})$, such that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$$

$$= 1 + x_{i1}^2 x_{j1}^2 + 2x_{i1} x_{j1} x_{j2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2x_{i1} x_{j1} + 2x_{i2} x_{j2}$$

$$= \begin{bmatrix} 1; \ x_{i1}^2; \ \sqrt{2}x_{i1}x_{i2}; \ x_{i2}^2; \ \sqrt{2}x_{i1}; \ \sqrt{2}x_{i2} \end{bmatrix}^T \\ \times \begin{bmatrix} 1; \ x_{j1}^2; \ \sqrt{2}x_{j1}x_{j2}; \ x_{j2}^2; \ \sqrt{2}x_{j1}; \ \sqrt{2}x_{j2} \end{bmatrix}$$

$$= \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

• Suppose the vectors $\mathbf{x} = [x_1; x_2] \in \mathbb{R}^2$

• Let
$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$$

• Question: Show $\phi(\mathbf{x})$, such that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$$

$$= 1 + x_{i1}^2 x_{j1}^2 + 2x_{i1} x_{j1} x_{j2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2x_{i1} x_{j1} + 2x_{i2} x_{j2}$$

$$= \begin{bmatrix} 1; \ x_{i1}^2; \ \sqrt{2}x_{i1}x_{i2}; \ x_{i2}^2; \ \sqrt{2}x_{i1}; \ \sqrt{2}x_{i2} \end{bmatrix}^T \\ \times \begin{bmatrix} 1; \ x_{j1}^2; \ \sqrt{2}x_{j1}x_{j2}; \ x_{j2}^2; \ \sqrt{2}x_{j1}; \ \sqrt{2}x_{j2} \end{bmatrix}$$

$$= \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

• Suppose the vectors $\mathbf{x} = [x_1; x_2] \in \mathbb{R}^2$

• Let
$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$$

• Question: Show $\phi(\mathbf{x})$, such that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$$

$$= 1 + x_{i1}^2 x_{j1}^2 + 2x_{i1} x_{j1} x_{j2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2x_{i1} x_{j1} + 2x_{i2} x_{j2}$$

$$= \begin{bmatrix} 1; \ x_{i1}^2; \ \sqrt{2}x_{i1}x_{i2}; \ x_{i2}^2; \ \sqrt{2}x_{i1}; \ \sqrt{2}x_{i2} \end{bmatrix}^T \\ \times \begin{bmatrix} 1; \ x_{j1}^2; \ \sqrt{2}x_{j1}x_{j2}; \ x_{j2}^2; \ \sqrt{2}x_{j1}; \ \sqrt{2}x_{j2} \end{bmatrix}$$

$$= \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

What Functions are Kernels?

• Functions that satisfy *Mercer's condition* can be kernel functions. That is

 \forall square integrable functions $g(x), \int \int K(x,y)g(x)g(y)dxdy \ge 0$

- Examples of typical kernel functions:
 - Linear kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
 - Polynomial kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$
 - Gaussian/Radial-Basis Function (RBF) kernel:

$$\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2)$$

• Hyperbolic tangent:

$$\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = anh(\kappa \mathbf{x}_i^T \mathbf{x}_j + c), \text{ for some } \kappa > 0, \text{ and } c < 0$$

What is the relation between Kernel and SVM?

SVM-Maximum Margin Linear Classifier

- A linear classifier with the maximum margin
- Margin is defined as the width that the boundary could be increased by before hitting a data point
- Why it is the best?
 - Robust to outliers
 - Strong generalization ability

SVM–Maximum Margin Linear Classifier

- Given data, $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, where $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$ For $y_i = +1$, $\mathbf{w}^T \mathbf{x}_i + b > 0$
 - For $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i + b < 0$

• Scaling on both **w** and *b* yields

For $y_i = +1$, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$ For $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

SVM–Maximum Margin Linear Classifier

- Support vectors: Data points closest to the hyperplane
- Support vectors satisfy

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}^{+} + b = 1$$
$$\mathbf{w}^{\mathsf{T}}\mathbf{x}^{-} + b = -1$$

The margin width is

$$M = (\mathbf{x}^{+} - \mathbf{x}^{-})^{T} \mathbf{n}$$
$$= (\mathbf{x}^{+} - \mathbf{x}^{-})^{T} \frac{\mathbf{w}}{\|\mathbf{w}\|}$$
$$= \frac{2}{\|\mathbf{w}\|}$$

SVM-Maximum Margin Linear Classifier

SVM-Maximum Margin Linear Classifier

• Quadratic programming with linear constraints

$$\begin{array}{ll} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{s.t.} & y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1, \quad i = 1, \dots, N \end{array}$$

• Lagrangian multipliers

min
$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i \left(y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t. $\alpha \ge \mathbf{0}$

• Optimal condition

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial \mathcal{L}}{\partial b} = 0 \implies \sum_{i=1}^{N} \alpha_i y_i = 0$$

Machine Learning

• Quadratic programming with linear constraints

$$\begin{array}{ll} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{s.t.} & y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1, \quad i = 1, \dots, N \end{array}$$

• Lagrangian multipliers

min
$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i \left(y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t. $\alpha \ge \mathbf{0}$

• Optimal condition

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial \mathcal{L}}{\partial b} = 0 \implies \sum_{i=1}^{N} \alpha_i y_i = 0$$

• Quadratic programming with linear constraints

$$\begin{array}{ll} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{s.t.} & y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1, \quad i = 1, \dots, N \end{array}$$

• Lagrangian multipliers

min
$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i \left(y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t. $\alpha \ge \mathbf{0}$

• Optimal condition

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial \mathcal{L}}{\partial b} = 0 \implies \sum_{i=1}^{N} \alpha_i y_i = 0$$

Haiqin Yang (CUHK)

June 10, 2012

60 / 134

• Lagrangian multipliers

min
$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i \left(y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t. $\alpha \ge \mathbf{0}$

• Dual problem

$$\begin{array}{ll} \max_{\boldsymbol{\alpha}} & \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\ \text{s.t.} & \boldsymbol{\alpha} \geq \mathbf{0}, \text{ and } \sum_{i=1}^{N} \alpha_{i} y_{i} = \mathbf{0} \end{array}$$

• Lagrangian multipliers

min
$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i \left(y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t. $\alpha \ge \mathbf{0}$

• Dual problem

$$\begin{array}{ll} \max_{\boldsymbol{\alpha}} & \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\ \text{s.t.} & \boldsymbol{\alpha} \geq \mathbf{0}, \text{ and } \sum_{i=1}^{N} \alpha_{i} y_{i} = \mathbf{0} \end{array}$$

SVM Solution

- KKT conditions are $\alpha_i (y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1) = 0, \quad i = 1, ..., N$
- Support vectors: $\alpha_i \neq 0$
- The solution is

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i = \sum_{k \in SV} \alpha_k y_k \mathbf{x}_k$$

Extract b from $\alpha_k (y_k(\mathbf{w}^T \mathbf{x}_k + b) - 1) = 0$, where $k \in SV$

SVM Solution

• The linear classifier is

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{i \in SV} \alpha_i \mathbf{x}_i^T \mathbf{x} + b$$

- The score is decided by the *dot product* between the test point **x** and the support vectors **x**_i
- It is noticed that solving the optimization problem also involved computing the *dot products* x_i^Tx_j between all pairs of training data points

SVM-Non-separable Case

- What if data is not linear separable? (noisy data, outlier, etc.)
- Slack variables ξ_i are introduced to allow misclassification on difficult or noisy data points

SVM–Non-separable Case

Formulation

$$\begin{array}{ll} \min_{\mathbf{w}} & \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i \\ \text{s.t.} & y_i (\mathbf{w}^T \mathbf{x}_i + b) \geq 1 - \xi_i \\ & \xi_i \geq 0, i = 1, \dots, N \end{array}$$

• Parameter *C* is to balance the margin and the errors, which can be also viewed as a way to control over-fitting.

SVM–Non-separable Case

• Formulation-Lagrangian dual problem

$$\begin{split} \max_{\boldsymbol{\alpha}} & \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \\ \text{s.t.} & \mathbf{0} \leq \boldsymbol{\alpha} \leq C \mathbf{1}_N, \\ & \sum_{i=1}^{N} \alpha_i y_i = \mathbf{0} \end{split}$$

- How to seek the optimal lpha ?
 - Convexity: The optimization is convex; every local optimal is the global optimal!
 - Optimization techniques: Sequential minimal optimization (SMO), etc.

Non-linear SVMs

• Datasets that are linearly separable with noise work out great:

- But what are we going to do if the dataset is just too hard?
- How about mapping data to a higher-dimensional space:

Non-linear SVMs: Feature Space

• Idea: Make the data separable by mapping it to a (higher-dimensional) feature space

Non-linear SVMs: The Kernel Trick

• With the mapping, the discriminant function becomes

$$g(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}) + b = \sum_{i \in SV} \alpha_i \overline{\phi(\mathbf{x}_i)^{\mathsf{T}} \phi(\mathbf{x})} + b$$

- Only the *dot product* of feature vectors are needed. No need to know the mapping explicitly.
- A *kernel function* is defined as a function that corresponds to a dot product of two feature vectors in some expanded feature space:

$$K(\mathbf{x}_i,\mathbf{x}_j) \equiv \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

Non-linear SVMs: Optimization

• Formulation-Lagrangian Dual problem

$$\begin{array}{ll} \max_{\boldsymbol{\alpha}} & \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathcal{K}(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ \text{s.t.} & \mathbf{0} \leq \boldsymbol{\alpha} \leq C \mathbf{1}_{N}, \\ & \sum_{i=1}^{N} \alpha_{i} y_{i} = \mathbf{0} \end{array}$$

• The solution of the discriminant function is

$$g(\mathbf{x}) = \sum_{i \in SV} \alpha_i K(\mathbf{x}_i, \mathbf{x}) + b$$

• The optimization technique is the same as the linear SVM

Non-linear SVMs-Overview

- SVM seeks a separating hyperplane in the feature space and classify points in that space
- It does not need to represent the space explicitly, simply by defining a kernel function
- The kernel function plays the role of the dot product (similarity measurement) in the feature space

Properties of SVM

- Flexibility in choosing a similarity function
- Sparseness of solution
 - Only support vectors are used to specify the separating hyperplane
- Ability to handle large feature spaces
 - Complexity does not depend on the dimensionality of the feature space
- Overfitting can be controlled by soft margin approach
- Nice math property: a simple convex optimization problem which is guaranteed to converge to a single global solution

Packages

LibSVM: A Library for Support Vector Machines

- $\bullet\,$ An integrated software for SVM; core codes are written in C++
- Implementation includes: C-SVC, ν -SVC, ϵ -SVR, ν -SVR, one-class SVM, multi-class classification
- Link: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- R package:

http://cran.r-project.org/web/packages/e1071/index.html

- SVMlight
 - An SVM package in C
 - Link: http://svmlight.joachims.org/

R Packages for SVM

• Link http://cran.r-project.org/web/packages/e1071/index.html

An Example

> # load library, class, a dependence for the SVM library
> library(class)

```
> # load library, SVM
> library(e1071)
```

> # load library, mlbench, a collection of some datasets from the UCI repository
> library(mlbench)

```
> # load data
> data(Glass, package = "mlbench")
> # get the index of all data
> index <- 1:nrow(Glass)</pre>
> # generate test index
> testindex <- sample(index, trunc(length(index)/3))</pre>
> # generate test set
> testset <- Glass[testindex. ]</pre>
> # generate trainin set
> trainset <- Glass[-testindex, ]</pre>
     Haigin Yang (CUHK)
                                       Machine Learning
```


An Example (2)

```
> # train svm on the training set
> # cost=100: the penalizing parameter for C-classication
> # gamma=1: the radial basis function-specific kernel parameter
> # Output values include SV, index, coefs, rho, sigma, probA, probB
> svm.model <- svm(Type~ ., data = trainset, cost = 100, gamma = 1)
> # show output coefficients
> svm.model$coefs
 > # generate a scatter plot of the data
 > # of a sym fit for classification model
 > # in two dimensions: RI and Na
                                                            true
 > plot(svm.model, trainset, RI~Na)
                                                               1
                                                                  23567
                                                      pred
                                                                  3 1 0 1 0
                                                         1
                                                              16
 > # a vector of predicted values,
                                                         2
                                                               7
                                                                 23 3 3 2 1
                                                         3
 > # for classification: a vector of labels
                                                                 1 1 0 0 0
                                                               0
                                                         5
 > svm.pred <- predict(svm.model, testset[, -10])</pre>
                                                               0
                                                                  0 0 2 0 0
                                                         6
                                                               0
                                                                  0 0 0 1 0
 > # a cross-tabulation of the true
                                                         7
                                                               Ω
                                                                  0
                                                                    0 0 0 6
 > # versus the predicted values
 > table(pred = svm.pred, true = testset[, 10])
```


Kernel Introduction

SVM Plot Figure

SVM classification plot

Outline

- Introduction
 - Learning Paradigms
 - Regularization Framework
 - Overview

Main Techniques

- Online Learning for Group Lasso
- Online Learning for Multi-Task Feature Selection
- Kernel Introduction
- Sparse Generalized Multiple Kernel Learning
- Tri-Class Support Vector Machines
- 3 Perspectives
 - History
 - Perspectives
- 4 Conclusions

Sparse Generalized Multiple Kernel Learning

- H. Yang, Z. Xu, J. Ye, I. King, and M. R. Lyu. Efficient sparse generalized multiple kernel learning. *IEEE Transactions on Neural Networks*, 22(3):433–446, March 2011.
- Toolbox: http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=GMKL

June 10, 2012

How to Measure Data Similarity More Accurately?

Labeled: Horse

Labeled: Donkey

Data characteristics

- Multi-source
- Heterogeneous

Haiqin Yang (CUHK)

Zien & Ong, 2007

- Applications: Multi-source data fusion (web classification, genome fusion); Image annotation; Text mining; etc.
- Characteristics: Complex tasks; Heterogenous-various medias (text, images, etc.); Huge data
- Solution: Kernel methods⇒Multiple kernels learning
 - Learning combinations of kernels: $\mathcal{K} = \sum_{q=1}^{q} \theta_q K_q, \theta_q \ge 0$

Zien & Ong, 2007

- Applications: Multi-source data fusion (web classification, genome fusion); Image annotation; Text mining; etc.
- Characteristics: Complex tasks; Heterogenous-various medias (text, images, etc.); Huge data
- Solution: Kernel methods⇒Multiple kernels learning
 - Learning combinations of kernels: $\mathcal{K} = \sum_{q=1}^{Q} \theta_q \mathbf{K}_q, \ \theta_q \ge 0$

Zien & Ong, 2007

- Applications: Multi-source data fusion (web classification, genome fusion); Image annotation; Text mining; etc.
- Characteristics: Complex tasks; Heterogenous-various medias (text, images, etc.); Huge data
- Solution: Kernel methods⇒Multiple kernels learning
 - Learning combinations of kernels: $\mathcal{K} = \sum_{q=1}^{Q} \theta_q \mathbf{K}_q, \ \theta_q \ge 0$
 - Summing kernels corresponds to concatenating feature spaces
 E.g., k₁(x₁, x₂) = (φ₁(x₁), φ₁(x₂)), k₂(x₁, x₂) = (φ₁(x₁), φ₂(x₂))

Zien & Ong, 2007

- Applications: Multi-source data fusion (web classification, genome fusion); Image annotation; Text mining; etc.
- Characteristics: Complex tasks; Heterogenous-various medias (text, images, etc.); Huge data
- Solution: Kernel methods⇒Multiple kernels learning
 - Learning combinations of kernels: $\mathcal{K} = \sum_{q=1}^{Q} \theta_q \mathbf{K}_q, \ \theta_q \ge 0$
 - Summing kernels corresponds to concatenating feature spaces
 E.g., k₁(z₁, z₂) = (φ₁(z₁), φ₁(z₂)), k₂(z₁, z₂) = (φ₂(z₁), φ₂(z₂))

Zien & Ong, 2007

- Applications: Multi-source data fusion (web classification, genome fusion); Image annotation; Text mining; etc.
- Characteristics: Complex tasks; Heterogenous-various medias (text, images, etc.); Huge data
- Solution: Kernel methods⇒Multiple kernels learning
 - Learning combinations of kernels: $\mathcal{K} = \sum_{q=1}^{Q} \theta_q \mathbf{K}_q, \ \theta_q \ge 0$
 - Summing kernels corresponds to concatenating feature spaces
 E.g., k₁(z₁, z₂) = (φ₁(z₁), φ₁(z₂)), k₂(z₁, z₂) = (φ₂(z₁), φ₂(z₂))

Harchaoui & Bach, 2007

Zien & Ong, 2007

- Applications: Multi-source data fusion (web classification, genome fusion); Image annotation; Text mining; etc.
- Characteristics: Complex tasks; Heterogenous-various medias (text, images, etc.); Huge data
- Solution: Kernel methods⇒Multiple kernels learning
 - Learning combinations of kernels: $\mathcal{K} = \sum_{q=1}^{Q} \theta_q \mathbf{K}_q$, $\theta_q \ge 0$
 - Summing kernels corresponds to concatenating feature spaces
 - E.g., $k_1(\mathbf{z}_1, \mathbf{z}_2) = \langle \phi_1(\mathbf{z}_1), \phi_1(\mathbf{z}_2) \rangle$, $k_2(\mathbf{z}_1, \mathbf{z}_2) = \langle \phi_2(\mathbf{z}_1), \phi_2(\mathbf{z}_2) \rangle$

 $(\mathbf{z}_1,\mathbf{z}_2)+k_2(\mathbf{z}_1,\mathbf{z}_2)=\langle \ |$

Zien & Ong, 2007

- Applications: Multi-source data fusion (web classification, genome fusion); Image annotation; Text mining; etc.
- Characteristics: Complex tasks; Heterogenous-various medias (text, images, etc.); Huge data
- Solution: Kernel methods⇒Multiple kernels learning
 - Learning combinations of kernels: $\mathcal{K} = \sum_{q=1}^{Q} \theta_q \mathbf{K}_q$, $\theta_q \ge 0$
 - Summing kernels corresponds to concatenating feature spaces
 - E.g., $k_1(\mathbf{z}_1, \mathbf{z}_2) = \langle \phi_1(\mathbf{z}_1), \phi_1(\mathbf{z}_2) \rangle$, $k_2(\mathbf{z}_1, \mathbf{z}_2) = \langle \phi_2(\mathbf{z}_1), \phi_2(\mathbf{z}_2) \rangle$

Zien & Ong, 2007

- Applications: Multi-source data fusion (web classification, genome fusion); Image annotation; Text mining; etc.
- Characteristics: Complex tasks; Heterogenous-various medias (text, images, etc.); Huge data
- Solution: Kernel methods⇒Multiple kernels learning
 - Learning combinations of kernels: $\mathcal{K} = \sum_{q=1}^{Q} \theta_q \mathbf{K}_q$, $\theta_q \ge 0$
 - Summing kernels corresponds to concatenating feature spaces

MKL–Related Work

• Formulation: Learning combinations of kernels

$$\mathcal{K} = \sum_{q=1}^{Q} heta_q \mathbf{K}_q, \quad heta_q \geq 0$$

- L_1 -MKL (Bach et al. 2004; Lanckriet et al. 2004, etc.): $(\|\boldsymbol{\theta}\|_1 \leq 1)$
- L_2 -MKL, L_p -MKL (Cortes et al. 2009; Kloft et al. 2010; Xu et al. 2010; etc.): $(\|\theta\|_p \le 1, p \ne 1)$

Speedup methods

- Semi-Definite Programming (SDP) (Lanckriet et al. 2004)
- Second-Order Cone Programming (SOCP) (Bach et al. 2004)
- Semi-Infinite Linear Program (SILP) (Sonnenburg et al. 2006)
- Subgradient method (Rakotomamonjy et al. 2008)
- Level method (Xu et al. 2009; Liu et al. 2009)

Problems and Our Contributions

- Properties and problems
 - L1-MKL yields sparse solutions, but discard some useful information
 - L_{p} -MKL (p > 1) yields non-sparse solutions, but prone to noise
- Contributions
 - Generalize L1-MKL and Lp-MKL
 - Theoretical analysis on the properties of grouping effect and sparsity
 - Solved by the level method

Our Generalized MKL

• Formulation

$$\begin{split} & \min_{\boldsymbol{\theta} \in \Theta} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \quad \mathcal{D}(\boldsymbol{\theta}, \boldsymbol{\alpha}) = \mathbf{1}_{N}^{\top} \boldsymbol{\alpha} - \frac{1}{2} (\boldsymbol{\alpha} \circ \mathbf{y})^{\top} \left(\sum_{q=1}^{Q} \theta_{q} \mathbf{K}_{q} \right) (\boldsymbol{\alpha} \circ \mathbf{y}) \\ & \Theta = \{ \boldsymbol{\theta} \in \mathbb{R}_{+}^{Q} : \boldsymbol{v} \| \boldsymbol{\theta} \|_{1} + (1 - \boldsymbol{v}) \| \boldsymbol{\theta} \|_{p}^{p} \leq 1 \}, \, (p = 2) \\ & \mathcal{A} = \{ \boldsymbol{\alpha} \in \mathbb{R}_{+}^{N}, \, \boldsymbol{\alpha}^{\top} \mathbf{y} = 0, \, \boldsymbol{\alpha} \leq C \mathbf{1}_{N} \} \end{split}$$

Properties

$$\begin{array}{l} \min_{\boldsymbol{\theta} \geq \mathbf{0}} & \mathcal{D}(\boldsymbol{\theta}, \boldsymbol{\alpha}^{\star}) + \lambda \left(\boldsymbol{v} \| \boldsymbol{\theta} \|_{1} + (1 - \boldsymbol{v}) \| \boldsymbol{\theta} \|_{2}^{2} \right) \\ \text{where} & \mathcal{D}(\boldsymbol{\theta}, \boldsymbol{\alpha}) = \mathbf{1}_{N}^{\top} \boldsymbol{\alpha} - \frac{1}{2} (\boldsymbol{\alpha} \circ \mathbf{y})^{\top} \left(\sum_{q=1}^{Q} \theta_{q} \mathbf{K}_{q} \right) (\boldsymbol{\alpha} \circ \mathbf{y}) \end{array}$$

•
$$v \| \boldsymbol{\theta}^{\star} \|_1 + (1 - v) \| \boldsymbol{\theta}^{\star} \|_2^2 \Leftrightarrow 1$$

• For
$$\mathbf{K}_i = \mathbf{K}_j$$
,
 $v \neq 1$ $\theta_q^{\star} = \max\left\{0, \frac{1}{2(1-v)} \left(\frac{1}{2\lambda}(\boldsymbol{\alpha} \circ \mathbf{y})^{\top} \mathbf{K}_q(\boldsymbol{\alpha} \circ \mathbf{y}) - v\right)\right\}$ Sparsity
 $v = 1$ θ_i and θ_j are not unique
• $\frac{(\boldsymbol{\alpha}^{\star} \circ \mathbf{y})^{\top} \mathbf{K}_i(\boldsymbol{\alpha}^{\star} \circ \mathbf{y})}{(\boldsymbol{\alpha}^{\star} \circ \mathbf{y})^{\top} \mathbf{K}_j(\boldsymbol{\alpha}^{\star} \circ \mathbf{y})} \approx 1 \Rightarrow \theta_i^{\star} \approx \theta_j^{\star}$ Grouping effect

	L_1 -MKL	L ₂ -MKL	GMKL	Lasso	Elastic net	Group Lasso
Sparsity	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
Non-linearity	\checkmark	\checkmark	\checkmark	X	×	×
Grouping	×	\checkmark	\checkmark	×	\checkmark	×

Algorithm-Level Method

Given: predefined tolerant error $\delta > 0$ Initialization: Let t = 0 and $\theta^0 = c\mathbf{1}_q$; Repeat

- 1. Solve the dual problem of an SVM with $\sum_{q=1}^{Q} \theta_q^t \mathbf{K}_q$ to get α ;
- 2. Construct the cutting plane model, $h^{t}(\boldsymbol{\theta}) = \max_{1 \leq i \leq t} \mathcal{D}(\boldsymbol{\theta}, \boldsymbol{\alpha}^{i});$
- 3. Calculate the lower bound and the upper bound of the cutting plane $\underline{\mathcal{D}}^t = \min_{\theta \in \Theta} h^t(\theta), \ \overline{\mathcal{D}}^t = \min_{1 \le i \le t} \mathcal{D}(\theta^i, \alpha^i)$ and the gap, $\Delta^t = \overline{\mathcal{D}}^t \underline{\mathcal{D}}^t$; 4. Project θ^t onto the level set by solving $\min_{\theta \in \Theta} \|\theta - \theta^t\|_2^2$ s.t. $\mathcal{D}(\theta, \alpha^i) \le \underline{\mathcal{D}}^t + \tau \Delta^t, i \le t$. 5. Update t = t + 1; until $\Delta^t < \delta$.

• Formulation:

 $\begin{array}{l} \min_{\boldsymbol{\theta} \in \Theta} \max_{\boldsymbol{\alpha} \in \mathcal{A}} \quad \mathcal{D}(\boldsymbol{\theta}, \boldsymbol{\alpha}) \\ \Theta = \{ \boldsymbol{\theta} \in \mathbb{R}^{Q}_{+} : \boldsymbol{\nu} \| \boldsymbol{\theta} \|_{1} + (1 - \boldsymbol{\nu}) \| \boldsymbol{\theta} \|_{p} \leq 1 \} \\ \mathcal{A} = \{ \boldsymbol{\alpha} \in \mathbb{R}^{N}_{+}, \ \boldsymbol{\alpha}^{\top} \mathbf{y} = 0, \ \boldsymbol{\alpha} \leq C \mathbf{1}_{N} \} \end{array}$

Convergence rate

$$\mathcal{O}(\delta^{-2})$$

Demo

- Download codes from http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=gmkl
- Note: Required toolbox, Mosek from http://www.mosek.com
- In Matlab, type "demo_MKL_L12"
- See "Readme.txt" if needed

Experiments

Datasets

- Two toy datasets
- Eight UCI datasets
- Three protein subcellular localization data
- Algorithms
 - GMKL
 - L₁-norm MKL (SimpleMKL)
 - L2-norm MKL
 - Uniformly Weighted MKL (UW-MKL)
- Platform
 - Mosek to solve the QCQP
 - Matlab
 - PC with Intel Core 2 Duo 2.13GHz CPU and 3GB memory.
- Objectives
 - Select important features in a group manner: two toy examples
 - Test efficiency: eight UCI datasets
 - Solve the proteins subcellular localization problem: three datasets

Machine Learning

Datasets

Dataset	# Classes	<pre># Training (N)</pre>	# Test	# Dim	# Kernel (Q)
Toy1	2	150	150	20	273
Toy2	2	150	150	20	273
Breast	2	341	342	10	143
Heart	2	135	135	13	182
Ionosphere	2	175	176	33	442
Liver	2	172	173	6	91
Pima	2	384	384	8	117
Sonar	2	104	104	60	793
Wdbc	2	284	285	30	403
Wpbc	2	99	99	33	442
Plant	4	470	470		69
Psort+	4	270	271		69
Psort-	5	722	722		69

Experimental Setup

- Preprocessing
 - Construct base kernels
 - Normalize base kernels
- Stopping criteria
 - # iterations \leq 500, max $|m{ heta}_t m{ heta}_{t-1}| \leq$ 0.001
 - L_1 -MKL: duality gap ≤ 0.01
 - GMKL, L2-MKL: au = 0.90 to 0.99 when $\Delta^t/\mathcal{V}^t \leq$ 0.01

Toy Data Description

Generation scheme

♦ Toy 1

$$Y_i = \operatorname{sign}\left(\sum_{j=1}^{3} f_1(x_{ij}) + \epsilon_i\right)$$

 $Y_i = \operatorname{sign}\left(\sum_{j=1}^{3} f_1(x_{ij}) + \sum_{j=4}^{6} f_2(x_{ij}) + \sum_{j=7}^{9} f_3(x_{ij}) + \sum_{j=10}^{12} f_4(x_{ij}) + \epsilon_i\right)$

 $f_1(a) = -2 \sin(2a) + 1 - \cos(2), \ f_2(a) = a^2 - \frac{1}{3}, \ f_3(a) = a - \frac{1}{2}, \ f_4(a) = e^{-a} + e^{-1} - 1$

Remarks

- The outputs (labels) are dominated by only some features
- Each mapping acts on three features equally, implicitly incorporating grouping effect
- Each mapping is with zero mean on the corresponding feature, which yields zero mean on the output

Toy Data Results

Dataset	Method	Accuracy	# Kernel	Time (s)
	GMKL	70.4±3.3	36.8±5.0	2.9±0.2
Toy 1	L ₁ -MKL	69.2±4.5	22.1±5.2	4.4±1.2
TOY I	L ₂ -MKL	68.2±3.0	273	2.9±0.4
	UW-MKL	66.3±5.3	273	-
	GMKL	72.9±3.2	43.4±7.1	2.8±0.1
Toy 2	L ₁ -MKL	72.3±3.1	30.2±8.1	4.9±1.3
TOy 2	L ₂ -MKL	71.9±3.6	273	$2.9{\pm}0.1$
	UW-MKL	71.6±4.0	273	-

Remarks

- GMKL obtains significant improvement on the accuracy
- The non-sparse MKL models are prone to the noise
- GMKL selects more kernels, about 1.5 times of that selected by the L_1 -MKL; while the L_2 -MKL selects all kernels
- GMKL and L₂-MKL cost similar same, and cost less time than L₁-MKL

Selected Kernels on Toy Data

Effect of v on Toy Data

Remarks

- The best accuracy is achieved when v is about 0.5
- The number of selected kernels decreases as v increases

Haiqin Yang (CUHK)

Machine Learning

Results on UCI datasets

Dataset	Method	Accuracy	# Kernel	Time (s)	Dataset	Method	Accuracy	# Kernel	Time (s)
Breast	GMKL	97.2±0.5	61.1 ± 6.5	2.8±0.5	Pima	GMKL	† 76.9 ±1.6	27.1±2.4	3.8±0.2
	L ₁ -MKL	97.0±0.7	18.6 ± 3.8	23.0±3.9		L ₁ -MKL	76.5±1.9	18.7 ± 2.7	24.8±3.4
Dreast	L ₂ -MKL	96.9±0.4	143	5.1±0.3		L ₂ -MKL	76.0±1.8	117	6.2±1.0
	UW-MKL	97.2±0.5	143	-		UW-MKL	76.2±1.7	117	-
	GMKL	83.9±1.9	38.5 ± 5.4	1.4 ± 0.1		GMKL	80.4±4.1	81.1 ± 6.5	12.4 ± 0.6
Heart	L_1 -MKL	83.4±2.6	29.7±4.6	3.5±0.7	Sonar	L ₁ -MKL	80.4±4.2	60.3±7.4	16.7 ± 2.0
ricare	L ₂ -MKL	82.8±2.5	182	1.7 ± 0.1		L ₂ -MKL	† 83.8 ±3.7	793	3.9±0.3
	UW-MKL	83.9±1.9	182	-	1	UW-MKL	81.5±4.3	793	-
	GMKL	91.8±1.7	66.5±7.2	5.1±0.3	Wdbc	GMKL	[†] 96.0±1.1	79.7±7.6	6.6±0.8
Ionosphere	L_1 -MKL	91.5±2.1	38.4 ± 5.0	19.2±3.3		L ₁ -MKL	95.3±1.4	34.9±8.9	37.8±5.8
lonosphere	L ₂ -MKL	92.0±1.8	442	4.0±0.4		L ₂ -MKL	95.9±0.7	403	7.8±1.6
	UW-MKL	89.9±1.8	442	-	1	UW-MKL	93.9±1.0	403	-
	GMKL	67.6±1.8	19.5 ± 1.7	1.0±0.0	Wpbc	GMKL	76.7±3.3	275.4 ± 96.9	1.3 ± 1.0
Liver	L ₁ -MKL	64.3±2.8	9.2±3.0	1.7±0.4		L ₁ -MKL	76.6±2.8	40.4±10.2	4.8±1.0
	L ₂ -MKL	† 69.7 ±2.2	91	1.4 ± 0.0		L ₂ -MKL	76.3±3.7	442	1.6±0.2
	UW-MKL	67.2±4.6	91	-	1	UW-MKL	76.6±2.9	442	-

Remarks

- GMKL achieves highest accuracy on five datasets, while L₂-MKL obtains the highest accuracy for the rest three datasets
- GMKL selects more kernels, but achieves better results than L1-MKL
- GMKL and L₂-MKL cost less time than L₁-MKL

Results on Protein Subcellular Localization Data

kernels for protein datasets

No. of selected kernels

Significant test:

Dataset	GMKL vs. L ₁ -MKL	GMKL vs. L ₂ -MKL	GMKL vs. UW-MKL
Plant	0.109	0.109	0.002
Psort+	0.754	0.022	0.002
Psort-	0.022	0.002	0.002

Sparse Generalized Multiple Kernel Learning

Kernel Weights on Protein Data

Summary

- A generalized multiple kernel learning (GMKL) model by imposing L_1 -norm and L_2 -norm regularization on the kernel weights
- Properties of sparsity and grouping effect are analyzed theoretically
- The model is solved by the level method and the convergence rate is provided
- Experiments on both synthetic and real-world datasets are conducted to demonstrate the effectiveness and efficiency of the model

Future work

- Apply GMKL in other applications, e.g., regression, multiclass classifications
- Apply techniques, e.g., warm start, to speed up GMKL
- Extend GMKL to include the uniformly-weighted MKL as a special case

Outline

- Introductior
 - Learning Paradigms
 - Regularization Framework
 - Overview

Main Techniques

- Online Learning for Group Lasso
- Online Learning for Multi-Task Feature Selection
- Kernel Introduction
- Sparse Generalized Multiple Kernel Learning

• Tri-Class Support Vector Machines

B) Perspectives

- History
- Perspectives

4 Conclusions

June 10, 2012

Tri-Class Support Vector Machine

- H. Yang, S. Zhu, I. King, and M. R. Lyu. Can irrelevant data help semi-supervised learning, why and how? In *CIKM*, pages 937–946, 2011.
- Toolbox: http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=3CSVM

A Motivated Example–Classifying Horse and Donkey

Donkey

Relevant unlabeled

Relevant unlabeled

Irrelevant unlabeled

How to learn the decision function utilizing the labeled and (mixed) unlabeled data

Haiqin Yang (CUHK)

Machine Learning

A Motivated Example–Classifying Horse and Donkey

Donkey

Relevant unlabeled

Relevant unlabeled

Irrelevant unlabeled

How to learn the decision function utilizing the labeled and (mixed) unlabeled data

Why Semi-Supervised/Transductive Learning?

Labeled: Horse

Unlabeled: Horse

Labeled: Donkey

Unlabeled: Donkey

- Labeling data are precious, costly and time consuming to obtain
- Many unlabeled data are easy to collect and may provide useful information
- Close to natural human learning
 - Children master the acoustic-to-phonetic mapping of a language with few feedback
 - People recognize objects by small samples

100 / 134

Machine Learning

Assumptions on Semi-Supervised/Transductive Learning

Case II: On a Riemannian manifold

Haiqin Yang (CUHK)

Problem–Learning from Labeled and Mixed Unlabeled Data

How to utilize all labeled, relevant unlabeled, and irrelevant unlabeled data to improve performance in SSL?

Haiqin Yang (CUHK)

Machine Learning

Problem–Learning from Labeled and Mixed Unlabeled Data

How to utilize all labeled, relevant unlabeled, and irrelevant unlabeled data to improve performance in SSL?

Haiqin Yang (CUHK)

Machine Learning

102 / 134

Setup of Tri-Class SVM (3C-SVM)

$$\begin{split} \mathcal{L} &= \{(\mathbf{x}_i, \, y_i)\}_{i=1}^L \\ \mathbf{x}_i \in \mathcal{X} \subseteq \mathbb{R}^d, \, y_i \in \{-1, \, 0, \, 1\} \\ \mathcal{U} &= \mathcal{U}_\mathcal{L} \cup \mathcal{U}_0 = \{\mathbf{x}_i\}_{i=1}^U \end{split}$$

Objective: Seek

$$f_{\boldsymbol{\vartheta}}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}) + b, \ \boldsymbol{\vartheta} = (\mathbf{w}, \ b)$$

to separate the binary class data correctly with the help of (mixed) unlabeled data

Model

Objective function:

• Principle: rely more on labeled data and relevant data ignore irrelevant data

Haiqin Yang (CUHK)

Model

• Objective function:

$$\begin{split} \min_{\boldsymbol{\vartheta}} \quad & \frac{\lambda}{2} \|\mathbf{w}\|^2 + \underbrace{\sum_{\mathbf{x}_i \in \mathcal{L}_{\pm 1}} r_i H_1(y_i f_{\boldsymbol{\vartheta}}(\mathbf{x}_i)) + \sum_{\mathbf{x}_i \in \mathcal{L}_0} r_i I_{\varepsilon}(f_{\boldsymbol{\vartheta}}(\mathbf{x}_i))}_{\text{Loss on unlabeled data}} \\ & + \underbrace{\sum_{\mathbf{x}_i \in \mathcal{U}} r_i \min\{H_1(|f_{\boldsymbol{\vartheta}}(\mathbf{x}_i)|), I_{\varepsilon}(|f_{\boldsymbol{\vartheta}}(\mathbf{x}_i)|)\}}_{H_1(\boldsymbol{u}) = \max\{0, 1-u\}, \quad I_{\varepsilon}(\boldsymbol{u}) = \max\{0, |\boldsymbol{u}| - \varepsilon\} \end{split}$$

• Illustration:

ander

Model Generalization

• Illustration: $L_{\min}(u) = \min \{ \max\{0, 1 - |u|\}, \max\{0, |u| - \varepsilon \} \}$

 $\varepsilon = 0$

• Model relationship:

Machine Learning

Theorem: How unlabeled irrelevant data help?

Objective function:

$$\min_{\vartheta} \qquad \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{\mathbf{x}_i \in \mathcal{L}_{\pm 1}} r_i H_1(y_i f_{\vartheta}(\mathbf{x}_i)) + \sum_{\mathbf{x}_i \in \mathcal{L}_0} r_i I_{\varepsilon}(f_{\vartheta}(\mathbf{x}_i)) \\ + \sum_{\mathbf{x}_i \in \mathcal{U}} r_i \min\{H_1(|f_{\vartheta}(\mathbf{x}_i)|), I_{\varepsilon}(|f_{\vartheta}(\mathbf{x}_i)|)\}.$$

3C-SVM with $r_i = \infty$ for unlabeled data and $\varepsilon = 0$

Unlabeled data \mathbf{x}_j satisfies (a) $|\mathbf{w}^T \phi(\mathbf{x}_j) + b| \ge 1 \Rightarrow$ data lie on or out of the margin gap, or (b) $\mathbf{w}^T \phi(\mathbf{x}_j) + b = 0 \Rightarrow \mathbf{w}^T (\phi(\mathbf{x}_i) - \phi(\mathbf{x}_0)) = 0, \mathbf{x}_j, \mathbf{x}_0 \in \mathcal{U}_0$

Removing Min-Terms and Absolute Values

$$\min_{\vartheta} \frac{\lambda}{2} \|\mathbf{w}\|^{2} + \sum_{\mathbf{x}_{i} \in \mathcal{L}_{\pm 1}} r_{i} H_{1}(y_{i} f_{\vartheta}(\mathbf{x}_{i})) + \sum_{\mathbf{x}_{i} \in \mathcal{L}_{0}} r_{i} I_{\varepsilon}(f_{\vartheta}(\mathbf{x}_{i}))$$

$$+ \sum_{\mathbf{x}_{k+L} \in \mathcal{U}} r_{k+L} \underbrace{\left(\underbrace{H_{1}(|f_{\vartheta}(\mathbf{x}_{i})| + D(1 - d_{k}))}_{Q_{1}} + \underbrace{I_{\varepsilon}(|f_{\vartheta}(\mathbf{x}_{i})| - Dd_{k})}_{Q_{2}}\right)}_{Q_{2}}$$

- Integer programming: $\left\{ \begin{array}{l} d_k = 0 \Rightarrow Q_1 = 0 \\ d_k = 1 \Rightarrow Q_2 = 0 \end{array} \right.$
- $H_1(|u|+a)$: Introducing non-convexity, solved by ramploss $H_{1-a}(u) - H_{\kappa}(u) + H_{1-a}(-u) - H_{\kappa}(-u)$
- $I_{\varepsilon}(|u|-a) = H_{-\varepsilon-a}(-u) + H_{-\varepsilon-a}(u)$
- Absolute terms are removed by introducing auxiliary labels

r

Concave-Convex Procedure

- Objective function: $Q^{\kappa}(\vartheta, \mathbf{d}) = Q^{\kappa}_{vex}(\vartheta, \mathbf{d}) + Q^{\kappa}_{cav}(\vartheta)$
- Each step

$$\begin{split} \boldsymbol{\vartheta}^{t+1} &= \arg\min_{\boldsymbol{\vartheta}} \biggl(\mathcal{Q}_{\text{vex}}^{\kappa}(\boldsymbol{\vartheta}, \mathbf{d}^{t}) + \frac{\partial \mathcal{Q}_{cav}^{\kappa}(\boldsymbol{\vartheta}^{t})}{\partial \boldsymbol{\vartheta}} \cdot \boldsymbol{\vartheta} \biggr), \\ & \underset{\boldsymbol{\alpha}, \boldsymbol{\alpha}^{*}}{\overset{\boldsymbol{\alpha}, \boldsymbol{\alpha}^{*}}{\underset{\boldsymbol{\alpha}, \boldsymbol{\alpha}^{*}}{\overset{\boldsymbol{\alpha}, \boldsymbol{\alpha}^{*}}{\underset{\boldsymbol{\alpha}, \boldsymbol{\alpha}^{*}}{\overset{\boldsymbol{\alpha}, \boldsymbol{\alpha}^{*}}{\underset{\boldsymbol{\alpha}, \boldsymbol{\alpha}^{*}}{\overset{\boldsymbol{\alpha}, \boldsymbol{\alpha}, \boldsymbol{\alpha}^{*}}}{\overset{\boldsymbol{\alpha}, \boldsymbol{\alpha}, \boldsymbol{\alpha}^{*}}{\overset{\boldsymbol{\alpha}, \boldsymbol{\alpha}, \boldsymbol{\alpha}^{*}}{\overset{\boldsymbol{\alpha}, \boldsymbol{\alpha}, \boldsymbol{\alpha}}}{\overset{\boldsymbol{\alpha}, \boldsymbol{\alpha}, \boldsymbol{\alpha}^{*}}{\overset{\boldsymbol{\alpha}, \boldsymbol{\alpha}, \boldsymbol{\alpha}, \boldsymbol{\alpha}^{*}}{\overset{\boldsymbol{\alpha}, \boldsymbol{\alpha}, \boldsymbol{\alpha},$$

• Solution: w is linear combined by α and α^* b is attained by KKT condition

3CSVM Demo

- Download codes from http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=3csvm
- Note: Required toolbox, Mosek from http://www.mosek.com
- In Matlab, type "demo_3CSVM"
- See "readme.txt" if needed

Edit Debug Barallel Desktop	
	Current Directory: D. Dropbox/IMF0290 Data Mining/Machine Learning IXON2012
ortouts 2 How to Add 2 What Current Directory Works	
	New to MATLAB? Watch this Video, see Demos, or read Getting Started.
Name - Value	f ₄ ≫ dem ₂ .3000

Video

Halain Vana 1	(CILILIZ)
Haiqin Yang	CURK

3CSVM Result

Haiqin Yang (CUHK)

ander

111 / 134

Experimental Setup

Datasets

- Two toy datasets
- Two real-world digit recognition datasets

• Comparing algorithms

- SVMs
- S³VMs
- U-SVMs
- 3C-SVMs

Platform

- Matlab 7.3
- MOSEK 5.0

Data Generation

- Following scheme from Sinz et al., 2008
- ± 1 -class: $c_i^{\pm} = \pm 0.3$, $i = 1, \dots, 50$, $\sigma_{1,2}^2 = 0.08$, $\sigma_{3,\dots,50}^2 = 10$
- Two Gaussians with the Bayes risk being approximately 5%
- First \mathcal{U}_0 : zero mean, $\sigma^2_{1,2}=$ 0.1, $\sigma^2_{3,...,50}=$ 10
- Second \mathcal{U}_0 : variance values are the same as ± 1 -class data, mean is $t\cdot \mathbf{c}^+,\;t=0.5$

Test Procedure

- *L* = 20, 50, 200, 500
- $U = 500 = (\tau U, (1 \tau)U), \ \tau = 0.1, 0.5, 0.9$
- Labeled + Unlabeled/500 Test, ten-run average
- Hyperparameters
 - Linear kernel
 - Regularized parameters, forward tuning

	$C_{\mathcal{L}}$	$C_{\mathcal{U}}$	ε	κ
SVM	\checkmark	Х	Х	×
$\mathcal{U} ext{-}SVM$	_	\checkmark	\checkmark	\times
S ³ VM	—	—	×	\checkmark

Accuracy

Haiqin Yang (CUHK)

Machine Learning

Objective Function Values and Test Errors

Real-world Datasets

Datasets:

- Small size: USPS
- Large size: MNIST

Setup

- $\bullet~\pm 1\text{-class:}$ Digits "5" and "8"
- \mathcal{U}_0 : Other digits
- *L* = 20
- $U = 500 = (\tau U, (1 \tau)U), \tau = 0.1, 0.5, 0.9$
- RBF kernel: $K(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \|\mathbf{x} \mathbf{y}\|^2)$, $\gamma = \frac{1}{0.3d}$
- Other hyperparameters are set similar to those in the synthetic datasets

Accuracy Results

Dataset	Algorithm	au= 0.1	au= 0.5	au= 0.9
USPS	SVM	72.4± 15.9 (0.7)	72.4± 15.9 (9.5)	72.4± 15.9 (53.1)
	S ³ VM	56.6 ± 5.9 (0.0)	54.5 ± 3.0 (0.0)	52.8 ± 6.9 (0.0)
	\mathcal{U} -SVM	83.1 ± 2.5 (0.0)	73.4 ± 4.4 (0.0)	64.2 ± 3.6 (0.0)
	3C-SVM	87.2±2.3	80.6 ±4.8	75.4 ±7.3
MNIST	SVM	70.9± 11.4 (0.3)	70.9± 11.4 (0.8)	70.9± 11.4 (13.6)
	S ³ VM	58.9 ± 8.7 (0.0)	55.3 ± 8.1 (0.0)	53.2 ± 6.3 (0.0)
	\mathcal{U} -SVM	84.2 ± 2.2 (0.2)	80.0 ± 4.6 (0.9)	75.0 ± 3.9 (1.0)
	3C-SVM	85.3±1.6	82.8±2.9	77.6±3.9

Balance Constraint

• Ideally,
$$\frac{1}{U} \sum_{t=L+1}^{L+U} f_{\vartheta}(\mathbf{x}_t) = \frac{1}{L} \sum_{i=1}^{L} y_i$$
, but no improvement from experimental results

- A possible better on, $\frac{1}{U}\sum_{t=L+1}^{L+U} f_{\vartheta}(\mathbf{x}_t) = c$
 - c: a user-specified constant, but need tuning

Summary

Summary

- A novel maxi-margin classifier, 3C-SVM, can distinguish data into -1, +1, and 0, three categories
- $\bullet\,$ The model incorporates standard SVMs, S^3VMs, and $\mathcal{U}\text{-}\mathsf{SVMs}$ as specific cases
- It is solved by the CCCP, very efficient
- Effectiveness and efficiency are demonstrated

Future work

- Algorithm speedup
- Multi-class extension
- Theoretical analysis, generalization bound

Perspectives

Outline

- Introduction
 - Learning Paradigms
 - Regularization Framework
 - Overview
- Main Techniques
 - Online Learning for Group Lasso
 - Online Learning for Multi-Task Feature Selection
 - Kernel Introduction
 - Sparse Generalized Multiple Kernel Learning
 - Tri-Class Support Vector Machines
- Perspectives
 - History
 - Perspectives

Conclusions

Outline

- Introduction
 - Learning Paradigms
 - Regularization Framework
 - Overview
- Main Techniques
 - Online Learning for Group Lasso
 - Online Learning for Multi-Task Feature Selection
 - Kernel Introduction
 - Sparse Generalized Multiple Kernel Learning
 - Tri-Class Support Vector Machines
- 3 Perspectives
 - History
 - Perspectives

SVM and its Variants

SVM

- In COLT'92 from VC theory
- Many variants include SVR, ν-SVM, one-class SVM, etc.

- Kernel methods/learning
 - Kernel PCA, Kernel ICA, etc.
 - Multiple kernel learning: L₁-MKL, L₂-MKL, L_p-MKL

Sparse in Feature Level

Lasso

- Introduce in the mid of 90's
- Many variants include Group Lasso, Elastic Net, etc.
- Sparse learning
 - Sparse coding, dictionary learning, compressive sensing, etc.

Other Paradigms

SSL

- Co-training, Co-EM, tri-training, etc.
- TSVM, S³VM, etc.
- Graph laplacian, harmonic function, manifold regularization, etc.

- Transfer learning
 - Multi-task learning, multi-task feature learning, mixed norm feature selection, etc.
 - Sample selection bias, domain adaptation, etc.

Perspectives

Outline

- - Learning Paradigms
 - Regularization Framework
 - Overview
- - Online Learning for Group Lasso
 - Online Learning for Multi-Task Feature Selection
 - Kernel Introduction
 - Sparse Generalized Multiple Kernel Learning
 - Tri-Class Support Vector Machines
- - Perspectives
 - History
 - Perspectives

Perspectives

• Theory

- Knowledge transfer
- Concept drift
- Sparse
- ...
- Application-driven
 - Model interpretation
 - Scalability
 - Efficiency
 - ...

Conclusions

Outline

- Introduction
 - Learning Paradigms
 - Regularization Framework
 - Overview
- 2 Main Techniques
 - Online Learning for Group Lasso
 - Online Learning for Multi-Task Feature Selection
 - Kernel Introduction
 - Sparse Generalized Multiple Kernel Learning
 - Tri-Class Support Vector Machines
- Perspectives
 - History
 - Perspectives

Conclusions

Conclusions

- Conclusions
 - Explore two families of sparse models
 - Provide promising solutions for large-scale applications in three main learning areas
 - Online learning framework for group lasso and multi-task feature selection
 - Multiple kernel learning model with sparsity and grouping effect to provide more accurate data similarity representation
 - Semi-supervised learning model to learn from mixture of relevant and irrelevant data
- Perpectives
 - Developing parsimonious learning models and efficient algorithms
 - Real-world applications with the following characteristics
 - Heterogeneous
 - Dynamic
 - Social relation or social information
 - ...

Questions?

https://www.cse.cuhk.edu.hk/irwin.king/confs/ wcci2012-tutorial-machinelearning

Nidan Van Middwell R. Lyu Sparse Learning Under Regularization Framework Theory and Applections

LAMBERT

$\{king, lyu, hqyang\}@cse.cuhk.edu.hk$

Haiqin Yang (CUHK)

Machine Learning

June 10, 2012

126 / 134

References-Our Work

- K. Huang, H. Yang, I. King, and M. R. Lyu. Machine Learning: Modeling Data Locally and Globally. Advanced Topics in Science and Tecnology in China: Machine Learning. Zhejiang University Press with Springer Verlag, first edition, 2008.
- Z. Xu, R. Jin, H. Yang, I. King, and M. R. Lyu. Simple and efficient multiple kernel learning by group lasso. In ICML, pages 1175–1182, 2010.
- Z. Xu, R. Jin, I. King, and M. R. Lyu. An extended level method for efficient multiple kernel learning. In NIPS, pages 1825–1832, 2009.
- H. Yang, I. King, and M. R. Lyu. Sparse Learning under Regularization Framework: Theory and Applications. LAP Lambert Academic Publishing, first edition, 2011. In processing.
- H. Yang, Z. Xu, I. King, and M. R. Lyu. Online learning for group lasso. In ICML, pages 1191–1198, 2010.
- H. Yang, K. Huang, I. King, and M. R. Lyu. Efficient minimax clustering probability machine by generalized probability product kernel. In WCCI2008, 2008
- H. Yang, K. Huang, I. King, and M. R. Lyu. Localized support vector regression for time series prediction. Neurocomputing, 72(10-12):2659–2669, 2009.
- H. Yang, I. King, and M. R. Lyu. Multi-task learning for one-class classification. In IJCNN, Barcelona, Spain, 2010.
- H. Yang, I. King, and M. R. Lyu. Online learning for multi-task feature selection. In CIKM, pages 1693–1696, 2010.
- H. Yang, S. Zhu, I. King, and M. R. Lyu. Can irrelevant data help semi-supervised learning, why and how? In CIKM, pages 937–946, 2011.

References-Others' Work I

- A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In NIPS, pages 41–48, 2006.
- F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In ICML, pages 41–48, New York, NY, USA, 2004. ACM.
- K. Bennett and A. Demiriz. Semi-supervised support vector machines. In NIPS, 11:368C374, 1999.
- A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, 1998.
- B. E. Boser, I. M. Guyon, and V. Vapnik. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 144-152, 1992.
- L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In NIPS, pages 161–168, 2007.
- L. Bottou and Y. LeCun. Large scale online learning. In NIPS, 2003.
- E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? CoRR, abs/0912.3599, 2009.
- R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.
- R. Collobert, F. H. Sinz, J. Weston, and L. Bottou. Large scale transductive svms. Journal of Machine Learning Research, 7:1687–1712, 2006.
- R. Collobert, F. H. Sinz, J. Weston, and L. Bottou. Trading convexity for scalability. In ICML, pages 201–208, 2006.
- C. Cortes, M. Mohri, and A. Rostamizadeh. I2 regularization for learning kernels. In UAI, 2009.
- K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive algorithms. Journal of Machine Learning Research, 7:551–585, 2006.
- P. S. Dhillon, B. Tomasik, D. P. Foster, and L. H. Ungar. Multi-task feature selection using the multiple inclusion criterion (MIC). In ECML/PKDD, pages 276–289, 2009.
- D. L., Donoho, Compressed Sensing, IEEE Transactions on Information Theory, V. 52(4), 1289C1306, 2006
- J. Duchi and Y. Singer. Efficient learning using forward-backward splitting. Journal of Machine Learning Research, 10:2873–2898, 2009.
- B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32(2):407-499, 2004

References-Others' Work II

- J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso and a sparse group lasso, 2010.
- J. Friedman, T. Hastie, and R. Tibshirani. Regularized paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 2010.
- L. Jacob, G. Obozinski, and J.-P. Vert. Group lasso with overlap and graph lasso. In ICML, page 55, 2009.
- T. Joachims. Transductive inference for text classification using support vector machines. In ICML, pages 200C209. 1999.
- G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. *Journal of Machine Learning Research*, 5:27–72, 2004.
- Z. Harchaoui and F. Bach. Image classification with segmentation graph kernels. In CVPR, 2007.
- M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. Müller, and A. Zien. Efficient and accurate lp-norm multiple kernel learning. In NIPS, pages 997–1005, 2010.
- K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T. Lee, and T. J. Sejnowski. Dictionary learning algorithms for sparse representation. Neural Computation. 15(2): 349-396, 2003.
- J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. Journal of Machine Learning Research, 10:777–801, 2009.
- J. Liu, J. Chen, S. Chen, and J. Ye. Learning the optimal neighborhood kernel for classification. In IJCAI, pages 1144–1149, 2009.
- J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient I2.1 norm minimization. In UAI, 2009.
- McAuley, J., Ming, J., Stewart, D., and Hanna, P. Subband correlation and robust speech recognition. IEEE Transactions on Speech and Audio Processing, 13(5-2):956–964, 2005.
- L. Meier, S. van de Geer, and P. Bühlmann. The group lasso for logistic regression. Journal of the Royal Statistical Society, Series B, 70(1):53–71, 2008.
- G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems. *Statistics and Computing*, 2009.

Machine Learning

References-Others' Work III

- J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf and C. J. C. Burges and A. J. Smola, editors, Advances in Kernel Methods-Support Vector Learning. MIT Press, 1999.
- A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal of Machine Learning Research, 9:1179–1225, 2008.
- V. Roth and B. Fischer. The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In ICML, pages 848–855, 2008.
- Shalev-Shwartz, S. and Singer, Y. Online learning meets optimization in the dual. In COLT, pp. 423-437, 2006.
- F. H. Sinz, O. Chapelle, A. Agarwal, and B. Schölkopf. An analysis of inference with the universum. In NIPS, pages 1369–1376, 2008.
- S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning. Journal of Machine Learning Research, 7:1531–1565, 2006.
- R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B, 58(1):267–288, 1996.
- J. Weston, R. Collobert, F. H. Sinz, L. Bottou, and V. Vapnik. Inference with the universum. In ICML, pages 1009–1016, 2006.
- L. Xiao. Dual averaging method for regularized stochastic learning and online optimization. Journal of Machine Learning Research, 11:2543–2596, October 2010.
- V. Vapnik. The Nature of Statistical Learning Theory. 2nd edition, Springer, 1999.
- M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 68(1):49–67, 2006.
- B. Zadrozny. Learning and evaluating classifiers under sample selection bias. In ICML, 2004.
- A. Zien and C. S. Ong. Multiclass multiple kernel learning. In ICML, pages 1191-1198, 2007.
- Zinkevich, M. Online convex programming and generalized infinitesimal gradient ascent. In ICML, pp. 928–936, 2003.
- H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical, Society B, 67:301–320, 2005.

Interpretation of Dual Average for Group Lasso

Objective:
$$\Upsilon(\mathbf{w}) = \min_{\mathbf{w}} \sum_{i=1}^{N} \ell(\mathbf{w}) + \Omega(\mathbf{w})$$

Since $\ell(\cdot)$ is convex, at *T*-step, we have

$$\Upsilon(\mathbf{w}) = \frac{1}{T} \sum_{k=1}^{T} [\ell(\mathbf{w}_{k}) + \mathbf{u}_{k}^{\top}(\mathbf{w} - \mathbf{w}_{k}) + \underbrace{R_{2}(\mathbf{w})}_{\text{Second order}}] + \Omega(\mathbf{w})$$

$$= \frac{1}{T} \sum_{k=1}^{\prime} \ell(\mathbf{w}_{k}) + \bar{\mathbf{u}}_{k}^{\top}(\mathbf{w} - \mathbf{w}_{k}) + \underbrace{R_{2}(\mathbf{w})}_{\frac{\gamma}{\sqrt{t}}h(\mathbf{w})} + \Omega(\mathbf{w})$$

Interpretation of Dual Average for MTFS

Objective:
$$\Upsilon(\mathbf{W}) = \min_{\mathbf{W}} \sum_{i=1}^{N} \ell(\mathbf{W}) + \Omega(\mathbf{W})$$

Since $\ell(\cdot)$ is convex, at *T*-step, we have

$$\Upsilon(\mathbf{W}) = \frac{1}{T} \sum_{k=1}^{T} [\ell(\mathbf{W}_{k}) + \mathbf{G}_{k}^{\top}(\mathbf{W} - \mathbf{W}_{k}) + \underbrace{R_{2}(\mathbf{W})}_{\text{Second order}}] + \Omega(\mathbf{W})$$
$$= \frac{1}{T} \sum_{k=1}^{T} \ell(\mathbf{W}_{k}) + \overline{\mathbf{G}}_{k}^{\top}(\mathbf{W} - \mathbf{W}_{k}) + \underbrace{R_{2}(\mathbf{W})}_{\frac{\gamma}{\sqrt{t}}h(\mathbf{W})} + \Omega(\mathbf{W})$$

$$\min_{x} \{f(x) = -\cos(x) : x \in \mathcal{R}, \mathcal{R} = [-1.2, 1.2]\}$$

• Initialization:
$$x_0 = -1, \tau = 0.9$$

Construct a cutting plane
 \$\mathcal{D}_1(x) = h^1(x)\$

• Construct a level set level set \mathcal{L}_1 $L_1 = \tau \times f(x_0) + (1 - \tau) \times (-2.39)$ $\mathcal{L}_1 = \{x \in \mathcal{R} : \mathcal{D}_1(x) \le L_1\}$

• Project x_0 to \mathcal{L}_1 $x_1 = \underset{x}{\operatorname{arg\,min}} \{ \|x - x_0\|_2^2 : x \in \mathcal{L}_1 \}$

$$\min_{x} \{f(x) = -\cos(x) : x \in \mathcal{R}, \mathcal{R} = [-1.2, 1.2]\}$$

• Initialization:
$$x_0 = -1, \tau = 0.9$$

- Construct a cutting plane
 \$\mathcal{D}_1(x) = h^1(x)\$
- Construct a level set level set \mathcal{L}_1 $L_1 = \tau \times f(x_0) + (1 - \tau) \times (-2.39)$ $\mathcal{L}_1 = \{x \in \mathcal{R} : \mathcal{D}_1(x) \le L_1\}$
- Project x_0 to \mathcal{L}_1 $x_1 = \underset{x}{\arg\min} \{ \|x - x_0\|_2^2 : x \in \mathcal{L}_1 \}$

$$\min_{x} \{f(x) = -\cos(x) : x \in \mathcal{R}, \mathcal{R} = [-1.2, 1.2]\}$$

• Initialization:
$$x_0 = -1, \tau = 0.9$$

- Construct a cutting plane
 \$\mathcal{D}_1(x) = h^1(x)\$
- Construct a level set level set \mathcal{L}_1 $L_1 = \tau \times f(x_0) + (1 - \tau) \times (-2.39)$ $\mathcal{L}_1 = \{x \in \mathcal{R} : \mathcal{D}_1(x) \le L_1\}$
- Project x_0 to \mathcal{L}_1 $x_1 = \underset{x}{\arg\min} \{ \|x - x_0\|_2^2 : x \in \mathcal{L}_1 \}$

$$\min_{x} \{f(x) = -\cos(x) : x \in \mathcal{R}, \mathcal{R} = [-1.2, 1.2]\}$$

• Initialization:
$$x_0 = -1, \tau = 0.9$$

- Construct a cutting plane
 D₁(x) = h¹(x)
- Construct a level set level set \mathcal{L}_1 $L_1 = \tau \times f(x_0) + (1 - \tau) \times (-2.39)$ $\mathcal{L}_1 = \{x \in \mathcal{R} : \mathcal{D}_1(x) \le L_1\}$
- Project x_0 to \mathcal{L}_1 $x_1 = \underset{x}{\operatorname{arg\,min}} \{ \|x - x_0\|_2^2 : x \in \mathcal{L}_1 \}$

$$\min_{x} \{f(x) = -\cos(x) : x \in \mathcal{R}, \mathcal{R} = [-1.2, 1.2]\}$$

$$\min_{x} \{f(x) = -\cos(x) : x \in \mathcal{R}, \mathcal{R} = [-1.2, 1.2]\}$$

$$\min_{x} \{f(x) = -\cos(x) : x \in \mathcal{R}, \mathcal{R} = [-1.2, 1.2]\}$$

