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A Motivated Example
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How to Find?

1

1Data from http://www.basketball-reference.com
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What if machine learning/data mining techniques are applied?
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Possible Results
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Introduction Learning Paradigms

“I applied my heart to what I observed
and learned a lesson from what I saw.”

– Proverbs 24:32 (NIV)

“A few observations and much reason-
ing lead to error; many observations and
a little reasoning lead to truth.”

– Alexis Carrel

Haiqin Yang (CUHK) Machine Learning June 10, 2012 8 / 134



Introduction Learning Paradigms

Supervised Learning

Learning from labeled observations

Horse Donkey

♦ Given labeled data: L = {(xi , yi )}Ni=1, xi ∈ Rd , yi ∈ {±1}/R
♦ Classification: f (x)→ {−1,+1}
♦ Regression: f (x)→ R
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Introduction Learning Paradigms

Semi-supervised/Transductive Learning

Learning from labeled and unlabeled observations
Horse Donkey

Unlabeled data

♦ Given data: L, and UL = {(xj)}Uj=1, xj ∈ Rd

♦ Learn f (x)→ {−1,+1}
♦ Semi-supervised learning: In-class exam
♦ Transductive learning: Take-home exam
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Introduction Learning Paradigms

Unsupervised Learning

Learning patterns from unlabeled observations.
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Introduction Learning Paradigms

Learning from Universum

Learning from labeled and universum observations
Horse Donkey

Universum (Mule) Illustration
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♦ Given data: L, and U0 = {(xk)}Uk=1, xk ∈ Rd

♦ Learn f (x)→ {−1,+1}
♦ Criterion: Maximizing contraction on Universum
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Introduction Learning Paradigms

Transfer Learning

Transfer knowledge across domains, tasks, and distributions
that are similar but not identical

Task 1: Learn to distinguish horse and donkey

Transfer knowledge learned from Task 1 to distinguish sheep and goat
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Introduction Learning Paradigms

Summary of Learning Paradigms
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Introduction Learning Paradigms

Applications

Pattern recognition

Computer vision

Natural language
processing

Information retrieval

Medical diagnosis

Market decisions

Bioinformatics

. . .
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Introduction Regularization Framework

Supervised Learning Procedure

Data: N i.i.d. paired data sampled from P over X × Y as

D = {(xi , yi )}Ni=1, xi ∈ X ⊆ Rd , yi ∈ Y ⊆ R

Procedure:

               

                              

               
            
                

Hypotheses 

Training Dataset 

Learning  Prediction  

Tasks:
Classification Regression

 

 

d=1
d=2
d=7
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Introduction Regularization Framework

Regularization

Formulation

f ∗ = arg minf ∈H
(
R[f ] + CR`D[f ]

)
R[f ]: Regularization, complexity of f
R`D[f ]: Empirical risk, measured by square, hinge, etc.
C ≥ 0: Trade-off parameter

Advantages

Controlling the functional complexity to avoid overfitting
Providing an intuitive and principled tool for learning from
high-dimensional data

Lasso: Perform regression while selecting features
SVM: Regularization corresponds to maximum margin
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Introduction Regularization Framework

Typical Regularizers

L1 L2 Lp (p < 1)

ŵ ŵ ŵ
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Introduction Regularization Framework

Typical Loss Functions

0/1-loss Logit loss Hinge loss
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Introduction Overview

Overview

Sparse in sample
Sparse in feature

MCPM

Regularization

MTOC

MPM

LSVR

Lasso

Group
Lasso

...

OLGL

SVMs

SVC SVR ...

GMKL
OLMTFS

3C-SVM

Sparse learning models under regularization
Sparse in feature level
Sparse in sample level

Online learning

Semi-supervised learning

Multiple kernel learning (MKL)
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Introduction Overview

Sparse in Feature Level

Sparse in sample

MCPM

Regularization

MTOC

MPM

LSVR
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Group
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...
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SVC SVR ...
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Sparse in feature
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Models

Lasso Group Lasso

ŵ

f (x) = w?Tx + b?, most elements of w? vanish!
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Introduction Overview

Sparse in Sample Level

Sparse in sample
Sparse in feature

MCPM

Regularization

MTOC

MPM

LSVR

Lasso

Group
Lasso

...

OLGL

SVMs

SVC SVR ...

GMKL
OLMTFS

3C-SVM

Models
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f (x) =
N∑
i=1

α?i K (xi , x) + b?, most elements of α? vanish!
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Main Techniques Online Learning for Group Lasso
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Main Techniques Online Learning for Group Lasso

Online Learning for Group Lasso

Sparse in sample

MCPM

Regularization

MTOC

MPM

LSVR

Lasso

Group
Lasso

...

OLGL

SVMs

SVC SVR ...

GMKL

Sparse in feature

OLMTFS
3C-SVM

H. Yang, Z. Xu, I. King, and M. R. Lyu. Online learning for group lasso. In ICML, pages
1191–1198, 2010.

Toolbox: http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=OLGL
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Main Techniques Online Learning for Group Lasso

A Motivated Example

Data with group structure appear sequentially

=⇒ =⇒

How to update the decision function adaptively?

=⇒ =⇒
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Main Techniques Online Learning for Group Lasso

Motivations

Applications with group structure

McAuley et al., 2005 Meier et al., 2008 Harchaoui & Bach, 2007

Group features

Continuous features represented by k-th order expansions
x1 ⇒ x1 = [x1, x

2
1 , . . . , x

k
1 ]

Categorical features represented a group of dummy variables
x2 ⇒ x2 = [x21, x22, . . . , x2m]
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Main Techniques Online Learning for Group Lasso

Online Learning for Group Lasso

Problems

Some features are redundant or irrelevant
Data come in sequence
Massive data

Related work

Group lasso and its extensions (Yuan & Lin, 2006; Meier et al., 2008;
Roth & Fischer, 2008; Jacob et al., 2009; etc.)
Online learning algorithms (Shalev-Shwartz & Singer, 2006; Zinkevich,
2003; Bottou & LeCun, 2003; Langford et al., 2009; Duchi & Singer,
2009; Xiao, 2009)
Batch learned algorithms cannot solve the above problems!

Our contributions

A novel online learning framework for the group lasso
Easy implementation: three lines of main codes
Efficient in both time complexity and memory cost, O(d)
Sparsity in both the group level and the individual feature level
Easy extension to group lasso with overlap and graphical lasso
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Main Techniques Online Learning for Group Lasso

Models

Lasso: A shrinkage and selection method for linear regression

min
w
‖Xw − Y‖2 + λ‖w‖1

Group Lasso: Find important explanatory factors in a grouped manner

min
w
‖Xw − Y‖2 + λ

G∑
g=1

√
dg‖wg‖2

Sparse Group Lasso: Yield sparse solutions in the selected group

min
w
‖Xw − Y‖2 + λ

G∑
g=1

(
√

dg‖wg‖2 + rg‖wg‖1)

ŵ
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Main Techniques Online Learning for Group Lasso

Formulation Summary

Model framework

min
w

N∑
i=1

`(w, zi ) + Ωλ(w)

`(·, ·): Loss function, e.g., square loss, logit loss, etc.
Ωλ(·): Regularization

Favorable properties
Obtain sparse solution
Perform feature selection and classification/regression simultaneously
Attain good classification/regression performance
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Main Techniques Online Learning for Group Lasso

Online Learning Algorithm Framework for Group Lasso

Initialization: w1 = w0, ū0 = 0

for
t = 1, 2, 3, . . .

1. Compute the
subgradient

on wt , ut ∈ ∂ lt

2. Calculate the
average subgradient

ūt :

ūt = t−1
t

ūt−1 + 1
t

ut

3.
Update

the next iteration wt+1:

wt+1 = arg min
w

Υ(w) ,
{̄

u>t w+Ωλ(w)+ γ√
t
h(w)

}
end for

Remarks

Motivated by the dual averaging method for Lasso (Xiao, 2009)

h(w): Make the new search point in the vincinity

FOBOS (Duchi & Singer, 2009): wt+1 =arg minw

{
1
2
‖w−(wt−ηtut)‖2 +ηtΩ(w)

}
Overlapped groups or graphical lasso
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Main Techniques Online Learning for Group Lasso

Updating Rules for Online Group Lasso

Group Lasso: Ωλ(w) = λ
∑G

g=1

√
dg‖wg‖2, h(w) = 1

2‖w‖
2�

�
�
wg

t+1 = −
√
t
γ

[
1− λ

√
dg

‖ūg
t ‖2

]
+

· ūg
t

Sparse Group Lasso: Ωλ,r(w) = λ
∑G

g=1

(√
dg‖wg‖2 + rg‖wg‖1

)
,

h(w) = 1
2‖w‖

2�
�

�
wg

t+1 = −
√
t
γ

[
1− λ

√
dg

‖cgt ‖2

]
+

· cgt , cg ,jt =
[
|ūg ,jt | − λrg

]
+
· sign (ūg ,jt )

Enhanced Sparse Group Lasso:

Ωλ,r(w) = λ
∑G

g=1

(√
dg‖wg‖2 + rg‖wg‖1

)
, h(w) = 1

2‖w‖
2 + ρ‖w‖1�

�
�
wg

t+1 = −
√
t
γ

[
1− λ

√
dg

‖c̃gt ‖2

]
+

· c̃gt , , c̃g ,jt =
[
|ūg ,jt | − λrg − γρ√

t

]
+
· sign (ūg ,jt )

Efficiency: O(d) in memory cost and time complexity
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Main Techniques Online Learning for Group Lasso
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Main Techniques Online Learning for Group Lasso

Average Regret for Group Lasso

Definition

R̄T (w) := 1
T

T∑
t=1

(Ωλ(wt) + lt(wt))− ST (w)

ST (w) := min
w

1
T

T∑
t=1

(Ωλ(w) + lt(w))

Theoretical bounds

R̄T ∼ O(1/
√
T )

R̄T ∼ O(log(T )/T ) if h(·) is strongly convex
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Main Techniques Online Learning for Group Lasso

Summary

Summary

A novel online learning algorithm framework for group lasso

Apply this framework for variant group lasso models

Provide closed-form solutions to update the models

Provide the convergence rate of the average regret

Future work

Evaluate on more datasets and compare with more other online
frameworks

Study lazy update schemes to handle high-dimensional data

Derive a faster convergence rate for the online learning algorithm
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Main Techniques Online Learning for Multi-Task Feature Selection

Online Learning for Multi-Task Feature Selection

Sparse in sample

MCPM

Regularization

MTOC

MPM

LSVR

Lasso

Group
Lasso

...

OLGL

SVMs

SVC SVR ...

GMKL

Sparse in feature

OLMTFS
3C-SVM

H. Yang, I. King, and M. R. Lyu. Online learning for multi-task feature selection. In
CIKM2010, pages 1693–1696, 2010.

Toolbox: http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=OLMTFS
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Main Techniques Online Learning for Multi-Task Feature Selection

An Example of Multi-Task Learning

Given several similar, but not identical tasks

Task 1: Learn to recognize real horses

Task 2: Learn to recognize real donkeys

Task 3: Learn to recognize real mules

How to learn these tasks simultaneously to achieve better performance?
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Main Techniques Online Learning for Multi-Task Feature Selection

Why Multi-Task Feature Selection?

Observation I: Training data are limited for each task

Observation II: Related tasks contain helpful information

Gene selection from microarray data in related diseases

♦ Variables: Gene expression coefficients corresponding to the amount
of mRNA in a patient’s sample (e.g., tissue biopsy)

♦ Tasks: Distinguish healthy from unhealthy for different diseases
♦ Problems: few samples (< 100’s), large variables (>1000’s)

Text categorization from documents in multiple related categories

♦ Features: A vector of vocabulary on word frequency counts
♦ Vocabulary: > 10000’s words
♦ Tasks: 1) Detecting spam-emails from persons with same interests;

2) Automatic classifying related web page categories

Observation III: Redundant/irrelevant features exist

Learning multiple tasks simultaneously CAN improve the model performance!
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Main Techniques Online Learning for Multi-Task Feature Selection

Problems and Contributions

Problems

♦ Features among tasks are redundant or irrelevant
♦ Data come in sequence
♦ Massive data

Related work

♦ A generalized L1-norm single-task regularization (Argyriou et al. 2008)
♦ Mixed norms of L1, L2, and L∞ norms (Obozinski et al. 2009)
♦ Nesterov’s method on MTFS (Liu et al. 2009)
♦ L0,0-regularization based on MIC (Dhillon et al. 2009)

Batch trained algorithms CANNOT solve the above problems!

Our contributions

♦ A novel online learning framework for multi-task feature selection
♦ Easy implementation: three lines of main codes
♦ Efficient in both time complexity and memory cost, O(d × Q)
♦ Find important features and important tasks that dominate the features
♦ Easily extend to nonlinear models
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Idea Illustration

Multi-task data appear sequentially

How to update the decision functions adaptively?
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Main Techniques Online Learning for Multi-Task Feature Selection

Multi-Task Feature Selection

Data �
�

�
�

i.i.d. observations of D =
⋃Q

q=1Dq

Dq = {zqi = (xqi , y
q
i )}Nq

i=1 sampled from Pq, q = 1, . . . ,Q
x ∈ Rd–input variable, y ∈ R–response

Model �� ��fq(x) = wq>x, q = 1, . . . ,Q

Objective �
�

�
min

W

Q∑
q=1

1
Nq

Nq∑
i=1

`q(W•q, z
q
i ) + Ωλ(W)

W =
(

w1,w2, . . . ,wQ
)

= (W•1, . . . ,W•Q) =
(

W>
1•, . . . ,W

>
d•

)>
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Main Techniques Online Learning for Multi-Task Feature Selection

Multi-Task Feature Selection

Different regularization achieves different properties

Regularization

iMTFS: Ωλ(W) = λ
∑Q

q=1 ‖W•q‖1 = λ
∑d

j=1

∥∥W>j•
∥∥

1

aMTFS: Ωλ(W) = λ
∑d

j=1

∥∥W>j•
∥∥

2

MTFTS: Ωλ,r = λ
∑d

j=1

(
rj
∥∥W>j•

∥∥
1

+
∥∥W>j•

∥∥
2

)

iMTFS aMTFS MTFTS
x 0 0 x x
0 x x x 0
...

...
...

...
...

x 0 x x x

,


x x x x x
0 0 0 0 0
...

...
...

...
...

x x x x x

,


x 0 x x 0
0 0 0 0 0
...

...
...

...
...

0 x 0 x x
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Main Techniques Online Learning for Multi-Task Feature Selection

Online Learning Algorithm Framework for MTFS

Initialization: W1 = W0, Ḡ0 = 0

for
t = 1, 2, 3, . . .

1. Compute the
subgradient

on Wt , Gt ∈ ∂ lt

2. Calculate the
average subgradient

Ḡt :

Ḡt = t−1
t

Ḡt−1 + 1
t

Gt

3.
Update

the next iteration Wt+1:

Wt+1 = arg min
W

Υ(W) ,
{

Ḡ>t W+Ω(W)+ γ√
t
h(W)

}
end for

Remarks

W: a matrix, not a vector

Easily extend to non-linear case

Motivated by the success of dual averaging method (Xiao, 2009; Yang et al. 2010)

Haiqin Yang (CUHK) Machine Learning June 10, 2012 41 / 134



Main Techniques Online Learning for Multi-Task Feature Selection

Updating Rules for Online MTFS

Define: h(W) = 1
2‖W‖

2
F

iMTFS: For i = 1, . . . , d and q = 1, . . . ,Q,�



�
	(Wi,q)t+1 = −

√
t
γ

[
|(Ḡi,q)t | − λ

]
+
· sign ((Ḡi,q)t)

aMTFS: For j = 1, . . . , d ,�



�
	(Wj•)t+1 = −

√
t
γ

[
1− λ

‖(Ḡj•)t‖2

]
+
· (Ḡj•)t

MTFTS: For j = 1, . . . , d ,�



�
	(Wj•)t+1 = −

√
t
γ

[
1− λ

‖(Ūj•)t‖2

]
+
· (Ūj•)t

where the q-th element of (Ūj•)t is calculated by

(Ūj,q)t =
[
|(Ḡj,q)t | − λrj

]
+
· sign ((Ḡj,q)t), q = 1, . . . ,Q.

Efficiency: O(d × Q) in memory cost and time complexity
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· (Ūj•)t

where the q-th element of (Ūj•)t is calculated by

(Ūj,q)t =
[
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· (Ḡj•)t

MTFTS: For j = 1, . . . , d ,�



�
	(Wj•)t+1 = −

√
t
γ

[
1− λ

‖(Ūj•)t‖2

]
+
· (Ūj•)t
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Efficiency: O(d × Q) in memory cost and time complexity
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Average Regret for MTFS

Definition

R̄T (W) := 1
Q

∑Q
q=1

1
T

∑T
t=1 (Ωλ(Wt) + lt(Wt))− ST (W)

ST (W) := min
W

1
Q

∑Q
q=1

1
T

∑T
t=1 (Ωλ(W) + lt(W))

Theoretical bounds

R̄T ∼ O(1/
√
T )

R̄T ∼ O(log(T )/T ) if h(·) is strongly convex
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Experimental Setup for Online MTFS

Data

F Computer survey data

Comparison algorithms

F iMTFS
F aMTFS
F DA-iMTFS
F DA-aMTFS
F DA-MTFTS

Platform
F PC with 2.13 GHz dual-core CPU
F Batch-mode algorithms: Matlab
F Online-mode algorithms: Matlab
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Conjoint Analysis

Description

Objective: Predict rating by estimating respondents’ partworths
vectors
Data: Ratings on personal computers of 180 students for 20 different
PC, Q = 180
Features: Telephone hot line (TE), amount of memory (RAM), screen
size (SC), CPU speed (CPU), hard disk (HD), CDROM/multimedia
(CD), cache (CA), color (CO), availability (AV), warranty (WA),
software (SW), guarantee (GU) and price (PR); d = 14

Setup

Evaluation: Root mean square errors (RMSEs)
Loss: Square loss
Parameters setting: Cross validation (hierarchical and grid search)
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Conjoint Analysis Results

Accuracy

Learning partworths vectors across respondents can help to improve
the performance

Online learning algorithms attain nearly the same accuracies as
batch-trained algorithms

Method RMSEs NNZs Parameters
aMTFS 1.82 2148 λ = 44.5
iMTFS 1.91 789 λ = 3
DA-aMTFS 2.04 540 λ = 20.0, γ = 0.9, ep=1
DA-aMTFS 1.83 1800 λ = 5, γ = 0.9, ep=20
DA-iMTFS 2.43 199 λ = 2.0, γ = 2.0, ep=1
DA-iMTFS 1.92 662 λ = 0.5, γ = 1.0, ep=20
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Effect of λ and γ

Results

♦ NNZs decreases as λ increases
♦ NNZs increases as γ increases
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Learned Features

Results

♦ Features learned from the online algorithms are consistent to
those learned from the batch-trained algorithm

♦ Ratings are strongly negative to the price and positive to the RAM,
the CPU speed, CDROM, etc.
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Summary

Summary

A novel online learning algorithm framework for multi-task feature
selection

Apply this framework for variant multi-task feature selection models

Provide closed-form solutions to update the models

Provide the convergence rate of the average regret

Experimental results demonstrate the proposed algorithms in both
efficiency and effectiveness
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Outline

1 Introduction
Learning Paradigms
Regularization Framework
Overview

2 Main Techniques
Online Learning for Group Lasso
Online Learning for Multi-Task Feature Selection
Kernel Introduction
Sparse Generalized Multiple Kernel Learning
Tri-Class Support Vector Machines

3 Perspectives
History
Perspectives

4 Conclusions
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How to Define Data Similarity?

Horse Donkey
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What are Kernels?

Similarity defined in original space: xTi xj

Similarity defined in kernel space: K (xi , xj) = φ(xi )Tφ(xj)

Original space Mapping 2D space

=⇒

From linear kernel From RBF kernel
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The Kernel Trick: An Example

Suppose the vectors x = [x1; x2] ∈ R2

Let K (xi , xj) = (1 + xTi xj)
2

Question: Show φ(x), such that K (xi , xj) = φ(xi )
Tφ(xj)

K (xi , xj) = (1 + xTi xj)2

= 1 + x2
i1x

2
j1 + 2xi1xj1xj2xj2 + x2

i2x
2
j2 + 2xi1xj1 + 2xi2xj2

= [1; x2
i1;
√

2xi1xi2; x2
i2;
√

2xi1;
√

2xi2]T

×[1; x2
j1;
√

2xj1xj2; x2
j2;
√

2xj1;
√

2xj2]

= φ(xi )Tφ(xj)

where φ(x) = [1; x2
1 ;
√

2x1x2; x2
2 ;
√

2x1;
√

2x2] ∈ R6
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What Functions are Kernels?

Functions that satisfy Mercer’s condition can be kernel functions.
That is

∀ square integrable functions g(x),

∫ ∫
K (x , y)g(x)g(y)dxdy ≥ 0

Examples of typical kernel functions:

Linear kernel: K (xi , xj) = xTi xj
Polynomial kernel: K (xi , xj) = (1 + xTi xj)p

Gaussian/Radial-Basis Function (RBF) kernel:

K (xi , xj) = exp(−γ‖xi − xj‖2)

Hyperbolic tangent:

K (xi , xj) = tanh(κxTi xj + c), for some κ > 0, and c < 0
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What is the relation between Kernel and SVM?
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SVM–Maximum Margin Linear Classifier

A linear classifier with the
maximum margin

Margin is defined as the width
that the boundary could be
increased by before hitting a
data point

Why it is the best?

Robust to outliers
Strong generalization ability
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SVM–Maximum Margin Linear Classifier

Given data, D = {xi , yi}Ni=1,
where xi ∈ Rd , yi ∈ {−1,+1}

For yi = +1, wTxi + b > 0

For yi = −1, wTxi + b < 0

Scaling on both w and b yields

For yi = +1, wTxi + b ≥ 1

For yi = −1, wTxi + b ≤ −1
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SVM–Maximum Margin Linear Classifier

Support vectors: Data points
closest to the hyperplane

Support vectors satisfy

wTx+ + b = 1

wTx− + b = −1

The margin width is

M = (x+ − x−)Tn

= (x+ − x−)T
w

‖w‖

=
2

‖w‖
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SVM–Maximum Margin Linear Classifier

Formulation

max
w

2

‖w‖

such that
For yi = +1, wTxi + b ≥ 1
For yi = −1, wTxi + b ≤ −1
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SVM–Maximum Margin Linear Classifier

Formulation

min
w

1

2
‖w‖2

s.t. yi (wTxi + b) ≥ 1

i = 1, . . . ,N
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How to Solve the Optimization Problem?

Quadratic programming with linear constraints

min
w

1
2‖w‖

2

s.t. yi (wTxi + b) ≥ 1, i = 1, . . . ,N

Lagrangian multipliers

min L(w, b,α) = 1
2‖w‖

2 −
N∑
i=1

αi

(
yi (wTxi + b)− 1

)
s.t. α ≥ 0

Optimal condition

∂L
∂w = 0 =⇒ w =

∑N
i=1 αiyixi

∂L
∂b = 0 =⇒

∑N
i=1 αiyi = 0
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How to Solve the Optimization Problem?

Lagrangian multipliers

min L(w, b,α) = 1
2‖w‖

2 −
N∑
i=1

αi

(
yi (wTxi + b)− 1

)
s.t. α ≥ 0

Dual problem

max
α

N∑
i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj

s.t. α ≥ 0, and
N∑
i=1

αiyi = 0
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SVM Solution

KKT conditions are
αi

(
yi (wTxi + b)− 1

)
= 0, i = 1, . . . ,N

Support vectors: αi 6= 0

The solution is

w =
N∑
i=1

αiyixi =
∑

k∈SV
αkykxk

Extract b from
αk

(
yk(wTxk + b)− 1

)
= 0,

where k ∈ SV
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SVM Solution

The linear classifier is

f (x) = wTx + b =
∑
i∈SV

αix
T
i x + b

The score is decided by the dot product between the test point x and
the support vectors xi

It is noticed that solving the optimization problem also involved
computing the dot products xTi xj between all pairs of training data
points
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SVM–Non-separable Case

What if data is not linear
separable? (noisy data, outlier,
etc.)

Slack variables ξi are introduced
to allow misclassification on
difficult or noisy data points
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SVM–Non-separable Case

Formulation

min
w

1
2‖w‖

2 + C
N∑
i=1

ξi

s.t. yi (wTxi + b) ≥ 1− ξi
ξi ≥ 0, i = 1, . . . ,N

Parameter C is to balance the margin and the errors, which can be
also viewed as a way to control over-fitting.

Haiqin Yang (CUHK) Machine Learning June 10, 2012 65 / 134



Main Techniques Kernel Introduction

SVM–Non-separable Case

Formulation–Lagrangian dual problem

max
α

N∑
i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαjyiyjxTi xj

s.t. 0 ≤ α ≤ C1N ,
N∑
i=1

αiyi = 0

How to seek the optimal α ?

Convexity: The optimization is convex; every local optimal is the global
optimal!
Optimization techniques: Sequential minimal optimization (SMO), etc.
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Non-linear SVMs

Datasets that are linearly separable with noise work out great:

But what are we going to do if the dataset is just too hard?

How about mapping data to a higher-dimensional space:
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Non-linear SVMs: Feature Space

Idea: Make the data separable by mapping it to a
(higher-dimensional) feature space
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Non-linear SVMs: The Kernel Trick

With the mapping, the discriminant function becomes

g(x) = wTφ(x) + b =
∑
i∈SV

αi φ(xi )
Tφ(x) + b

Only the dot product of feature vectors are needed. No need to know
the mapping explicitly.

A kernel function is defined as a function that corresponds to a dot
product of two feature vectors in some expanded feature space:

K (xi , xj) ≡ φ(xi )
Tφ(xj)
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Non-linear SVMs: Optimization

Formulation-Lagrangian Dual problem

max
α

N∑
i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαjyiyjK (xi , xj)

s.t. 0 ≤ α ≤ C1N ,
N∑
i=1

αiyi = 0

The solution of the discriminant function is

g(x) =
∑
i∈SV

αiK (xi , x) + b

The optimization technique is the same as the linear SVM
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Non-linear SVMs–Overview

SVM seeks a separating hyperplane in the feature space and classify
points in that space

It does not need to represent the space explicitly, simply by defining a
kernel function

The kernel function plays the role of the dot product (similarity
measurement) in the feature space
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Properties of SVM

Flexibility in choosing a similarity function

Sparseness of solution

Only support vectors are used to specify the separating hyperplane

Ability to handle large feature spaces

Complexity does not depend on the dimensionality of the feature space

Overfitting can be controlled by soft margin approach

Nice math property: a simple convex optimization problem which is
guaranteed to converge to a single global solution
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Packages

LibSVM: A Library for Support Vector Machines

An integrated software for SVM; core codes are written in C++
Implementation includes: C-SVC, ν-SVC, ε-SVR, ν-SVR, one-class
SVM, multi-class classification
Link: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

R package:
http://cran.r-project.org/web/packages/e1071/index.html

SVMlight

An SVM package in C
Link: http://svmlight.joachims.org/
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R Packages for SVM

Link http://cran.r-project.org/web/packages/e1071/index.html
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An Example

> # load library, class, a dependence for the SVM library

> library(class)

> # load library, SVM

> library(e1071)

> # load library, mlbench, a collection of some datasets from the UCI repository

> library(mlbench)

> # load data

> data(Glass, package = "mlbench")

> # get the index of all data

> index <- 1:nrow(Glass)

> # generate test index

> testindex <- sample(index, trunc(length(index)/3))

> # generate test set

> testset <- Glass[testindex, ]

> # generate trainin set

> trainset <- Glass[-testindex, ]
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An Example (2)

> # train svm on the training set

> # cost=100: the penalizing parameter for C-classication

> # gamma=1: the radial basis function-specific kernel parameter

> # Output values include SV, index, coefs, rho, sigma, probA, probB

> svm.model <- svm(Type~ ., data = trainset, cost = 100, gamma = 1)

> # show output coefficients

> svm.model$coefs

> # generate a scatter plot of the data

> # of a svm fit for classification model

> # in two dimensions: RI and Na

> plot(svm.model, trainset, RI~Na)

> # a vector of predicted values,

> # for classification: a vector of labels

> svm.pred <- predict(svm.model, testset[, -10])

> # a cross-tabulation of the true

> # versus the predicted values

> table(pred = svm.pred, true = testset[, 10])

true
pred 1 2 3 5 6 7

1 16 3 1 0 1 0
2 7 23 3 3 2 1
3 0 1 1 0 0 0
5 0 0 0 2 0 0
6 0 0 0 0 1 0
7 0 0 0 0 0 6
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SVM Plot Figure
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Outline

1 Introduction
Learning Paradigms
Regularization Framework
Overview

2 Main Techniques
Online Learning for Group Lasso
Online Learning for Multi-Task Feature Selection
Kernel Introduction
Sparse Generalized Multiple Kernel Learning
Tri-Class Support Vector Machines

3 Perspectives
History
Perspectives

4 Conclusions
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Sparse Generalized Multiple Kernel Learning

Sparse in sample
Sparse in feature

MCPM

Regularization

MTOC

MPM

LSVR

Lasso

Group
Lasso

...

OLGL

SVMs

SVC SVR ...

GMKL
OLMTFS

3C-SVM

H. Yang, Z. Xu, J. Ye, I. King, and M. R. Lyu. Efficient sparse generalized multiple kernel
learning. IEEE Transactions on Neural Networks, 22(3):433–446, March 2011.

Toolbox: http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=GMKL
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How to Measure Data Similarity More Accurately?

Labeled: Horse Labeled: Donkey

Data characteristics
Multi-source
Heterogeneous
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Why Multiple Kernel Learning?

Harchaoui & Bach, 2007 Zien & Ong, 2007

Applications: Multi-source data fusion (web classification, genome
fusion); Image annotation; Text mining; etc.

Characteristics: Complex tasks; Heterogenous–various medias (text,
images, etc.); Huge data

Solution: Kernel methods⇒Multiple kernels learning

Learning combinations of kernels: K =
∑Q

q=1 θqKq, θq ≥ 0

Summing kernels corresponds to concatenating feature spaces
E.g., k1(z1, z2) = 〈φ1(z1), φ1(z2)〉, k2(z1, z2) = 〈φ2(z1), φ2(z2)〉

k1(z1, z2) + k2(z1, z2) =

〈(
φ1(z1)
φ2(z1)

)
,

(
φ1(z2)
φ2(z2)

)〉
Haiqin Yang (CUHK) Machine Learning June 10, 2012 80 / 134
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MKL–Related Work

Formulation: Learning combinations of kernels

K =
Q∑

q=1
θqKq, θq ≥ 0

L1-MKL (Bach et al. 2004; Lanckriet et al. 2004, etc.):
�� ��‖θ‖1 ≤ 1

L2-MKL, Lp-MKL (Cortes et al. 2009; Kloft et al. 2010; Xu et al.

2010; etc.):
�� ��‖θ‖p ≤ 1, p 6= 1

Speedup methods

Semi-Definite Programming (SDP) (Lanckriet et al. 2004)
Second-Order Cone Programming (SOCP) (Bach et al. 2004)
Semi-Infinite Linear Program (SILP) (Sonnenburg et al. 2006)
Subgradient method (Rakotomamonjy et al. 2008)
Level method (Xu et al. 2009; Liu et al. 2009)
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Problems and Our Contributions

Properties and problems

L1-MKL yields sparse solutions, but discard some useful information
Lp-MKL (p > 1) yields non-sparse solutions, but prone to noise

Contributions

Generalize L1-MKL and Lp-MKL
Theoretical analysis on the properties of grouping effect and sparsity
Solved by the level method
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Our Generalized MKL

Formulation

min
θ∈Θ

max
α∈A

D(θ,α) = 1>Nα−
1
2 (α ◦ y)>

(
Q∑

q=1
θqKq

)
(α ◦ y)

Θ = {θ ∈ RQ
+ : v‖θ‖1 + (1− v)‖θ‖pp ≤ 1}, (p = 2)

A = {α ∈ RN
+, α

>y = 0, α ≤ C1N}

 

 

θ
1

θ
2

0 1

1

 L
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 L
2
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Properties

min
θ≥0

D(θ,α?) + λ
(
v‖θ‖1 + (1− v)‖θ‖2

2

)
where D(θ,α) = 1>Nα−

1
2 (α ◦ y)>

(∑Q
q=1 θqKq

)
(α ◦ y)

v‖θ?‖1 + (1− v)‖θ?‖2
2 ⇔ 1

For Ki = Kj ,

v 6= 1 θ?q = max
{

0, 1
2(1−v)

(
1

2λ(α ◦ y)>Kq(α ◦ y)− v
)}

Sparsity

v = 1 θi and θj are not unique
(α?◦y)>Ki (α

?◦y)
(α?◦y)>Kj (α?◦y)

≈ 1⇒ θ?i ≈ θ?j Grouping effect

L1-MKL L2-MKL GMKL Lasso Elastic net Group Lasso
Sparsity X × X X X X

Non-linearity X X X × × ×
Grouping × X X × X ×
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Algorithm–Level Method

Given: predefined tolerant error δ > 0
Initialization: Let t = 0 and θ0 = c1q ;
Repeat

1. Solve the
�� ��dual problem of an SVM

with
∑Q

q=1 θ
t
qKq to get α;

2. Construct the
�� ��cutting plane model,

ht(θ) = max
1≤i≤t

D(θ,αi );

3. Calculate the
�� ��lower bound and the�� ��upper bound of the cutting plane

Dt = min
θ∈Θ

ht(θ), Dt
= min

1≤i≤t
D(θi ,αi )

and the gap, ∆t = Dt −Dt ;

4.
�� ��Project θt onto the level set by solving

min
θ∈Θ

‖θ − θt‖2
2

s.t. D(θ,αi ) ≤ Dt + τ∆t , i ≤ t.
5. Update t = t + 1;

until ∆t ≤ δ.

Formulation:

min
θ∈Θ

max
α∈A

D(θ,α)

Θ={θ∈RQ
+:v‖θ‖1+(1−v)‖θ‖p≤1}

A={α∈RN
+, α

>y=0, α≤C1N}

Convergence rate

O(δ−2)
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Demo

Download codes from
http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=gmkl

Note: Required toolbox, Mosek from http://www.mosek.com

In Matlab, type “demo MKL L12”

See “Readme.txt” if needed
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Experiments

Datasets

Two toy datasets
Eight UCI datasets

Three protein subcellular localization data

Algorithms

GMKL
L1-norm MKL (SimpleMKL)
L2-norm MKL

Uniformly Weighted MKL (UW-MKL)

Platform

Mosek to solve the QCQP
Matlab

PC with Intel Core 2 Duo 2.13GHz CPU and 3GB memory.

Objectives

Select important features in a group manner: two toy examples
Test efficiency: eight UCI datasets

Solve the proteins subcellular localization problem: three datasets
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Datasets

Dataset # Classes # Training (N) # Test # Dim # Kernel (Q)

Toy1 2 150 150 20 273
Toy2 2 150 150 20 273
Breast 2 341 342 10 143
Heart 2 135 135 13 182
Ionosphere 2 175 176 33 442
Liver 2 172 173 6 91
Pima 2 384 384 8 117
Sonar 2 104 104 60 793
Wdbc 2 284 285 30 403
Wpbc 2 99 99 33 442
Plant 4 470 470 69
Psort+ 4 270 271 69
Psort- 5 722 722 69
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Experimental Setup

Preprocessing

Construct base kernels
Normalize base kernels

Stopping criteria

# iterations ≤ 500, max |θt − θt−1| ≤ 0.001
L1-MKL: duality gap ≤ 0.01
GMKL, L2-MKL: τ = 0.90 to 0.99 when ∆t/V t ≤ 0.01
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Toy Data Description

Generation scheme
� Toy 1 � Toy 2

Yi=sign
(

3∑
j=1

f1(xij )+εi

)
Yi=sign

(
3∑

j=1

f1(xij )+
6∑

j=4

f2(xij )+
9∑

j=7

f3(xij )+
12∑

j=10

f4(xij )+εi

)

f1(a)=−2 sin(2a)+1−cos(2), f2(a)=a2− 1
3 ,

f3(a)=a− 1
2 , f4(a)=e−a+e−1−1

Remarks
The outputs (labels) are dominated by only some features
Each mapping acts on three features equally, implicitly incorporating
grouping effect
Each mapping is with zero mean on the corresponding feature, which
yields zero mean on the output
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Toy Data Results

Dataset Method Accuracy # Kernel Time (s)

Toy 1

GMKL 70.4±3.3 36.8±5.0 2.9±0.2
L1-MKL 69.2±4.5 22.1±5.2 4.4±1.2
L2-MKL 68.2±3.0 273 2.9±0.4

UW-MKL 66.3±5.3 273 –

Toy 2

GMKL 72.9±3.2 43.4±7.1 2.8±0.1
L1-MKL 72.3±3.1 30.2±8.1 4.9±1.3
L2-MKL 71.9±3.6 273 2.9±0.1

UW-MKL 71.6±4.0 273 –

Remarks

GMKL obtains significant improvement on the accuracy

The non-sparse MKL models are prone to the noise

GMKL selects more kernels, about 1.5 times of that selected by the
L1-MKL; while the L2-MKL selects all kernels

GMKL and L2-MKL cost similar same, and cost less time than L1-MKL
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Selected Kernels on Toy Data
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Effect of v on Toy Data
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Remarks

v = 0: L2-MKL

v = 1: L1-MKL

The best accuracy is achieved when v is about 0.5

The number of selected kernels decreases as v increases
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Results on UCI datasets
Dataset Method Accuracy # Kernel Time (s) Dataset Method Accuracy # Kernel Time (s)

Breast

GMKL 97.2±0.5 61.1±6.5 2.8±0.5

Pima

GMKL †76.9±1.6 27.1±2.4 3.8±0.2
L1-MKL 97.0±0.7 18.6±3.8 23.0±3.9 L1-MKL 76.5±1.9 18.7±2.7 24.8±3.4
L2-MKL 96.9±0.4 143 5.1±0.3 L2-MKL 76.0±1.8 117 6.2±1.0

UW-MKL 97.2±0.5 143 – UW-MKL 76.2±1.7 117 –

Heart

GMKL 83.9±1.9 38.5±5.4 1.4±0.1

Sonar

GMKL 80.4±4.1 81.1±6.5 12.4±0.6
L1-MKL 83.4±2.6 29.7±4.6 3.5±0.7 L1-MKL 80.4±4.2 60.3±7.4 16.7±2.0

L2-MKL 82.8±2.5 182 1.7±0.1 L2-MKL †83.8±3.7 793 3.9±0.3
UW-MKL 83.9±1.9 182 – UW-MKL 81.5±4.3 793 –

Ionosphere

GMKL 91.8±1.7 66.5±7.2 5.1±0.3

Wdbc

GMKL †96.0±1.1 79.7±7.6 6.6±0.8
L1-MKL 91.5±2.1 38.4±5.0 19.2±3.3 L1-MKL 95.3±1.4 34.9±8.9 37.8±5.8
L2-MKL 92.0±1.8 442 4.0±0.4 L2-MKL 95.9±0.7 403 7.8±1.6

UW-MKL 89.9±1.8 442 – UW-MKL 93.9±1.0 403 –

Liver

GMKL 67.6±1.8 19.5±1.7 1.0±0.0

Wpbc

GMKL 76.7±3.3 275.4±96.9 1.3±1.0
L1-MKL 64.3±2.8 9.2±3.0 1.7±0.4 L1-MKL 76.6±2.8 40.4±10.2 4.8±1.0

L2-MKL †69.7±2.2 91 1.4±0.0 L2-MKL 76.3±3.7 442 1.6±0.2
UW-MKL 67.2±4.6 91 – UW-MKL 76.6±2.9 442 –

Remarks

GMKL achieves highest accuracy on five datasets, while L2-MKL obtains the
highest accuracy for the rest three datasets

GMKL selects more kernels, but achieves better results than L1-MKL

GMKL and L2-MKL cost less time than L1-MKL
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Results on Protein Subcellular Localization Data
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Significant test:

Dataset GMKL vs. L1-MKL GMKL vs. L2-MKL GMKL vs. UW-MKL
Plant 0.109 0.109 0.002
Psort+ 0.754 0.022 0.002
Psort- 0.022 0.002 0.002
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Kernel Weights on Protein Data

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

L1-MKL on Plant GMKL on Plant L2-MKL on Plant

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

L1-MKL on Psort+ GMKL on Psort+ L2-MKL on Psort+

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

L1-MKL on Psort- GMKL on Psort- L2-MKL on Psort-

Haiqin Yang (CUHK) Machine Learning June 10, 2012 96 / 134



Main Techniques Sparse Generalized Multiple Kernel Learning

Summary

A generalized multiple kernel learning (GMKL) model by imposing
L1-norm and L2-norm regularization on the kernel weights

Properties of sparsity and grouping effect are analyzed theoretically

The model is solved by the level method and the convergence rate is
provided

Experiments on both synthetic and real-world datasets are conducted
to demonstrate the effectiveness and efficiency of the model

Future work

Apply GMKL in other applications, e.g., regression, multiclass
classifications

Apply techniques, e.g., warm start, to speed up GMKL

Extend GMKL to include the uniformly-weighted MKL as a special
case
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Outline

1 Introduction
Learning Paradigms
Regularization Framework
Overview

2 Main Techniques
Online Learning for Group Lasso
Online Learning for Multi-Task Feature Selection
Kernel Introduction
Sparse Generalized Multiple Kernel Learning
Tri-Class Support Vector Machines

3 Perspectives
History
Perspectives

4 Conclusions
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Tri-Class Support Vector Machine

Sparse in sample
Sparse in feature

MCPM

Regularization

MTOC

MPM

LSVR

Lasso

Group
Lasso

...

OLGL

SVMs

SVC SVR ...

GMKL
OLMTFS

3C-SVM

H. Yang, S. Zhu, I. King, and M. R. Lyu. Can irrelevant data help semi-supervised
learning, why and how? In CIKM, pages 937–946, 2011.

Toolbox: http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=3CSVM
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A Motivated Example–Classifying Horse and Donkey

Horse Donkey

Relevant unlabeled Relevant unlabeled Irrelevant unlabeled

How to learn the decision function utilizing the labeled
and (mixed) unlabeled data
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Why Semi-Supervised/Transductive Learning?

Labeled: Horse Labeled: Donkey

Unlabeled: Horse Unlabeled: Donkey

Labeling data are precious, costly and time consuming to obtain

Many unlabeled data are easy to collect and may provide useful information

Close to natural human learning

Children master the acoustic-to-phonetic mapping of a language with
few feedback
People recognize objects by small samples

How to learn from both labeled and unlabeled data
simultaneously!
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Assumptions on Semi-Supervised/Transductive Learning

Case I: Following the same distribution
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Case II: On a Riemannian manifold
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Problem–Learning from Labeled and Mixed Unlabeled Data

Labeled: Horse Labeled: Donkey

Relevant unlabeled Relevant unlabeled

Irrelevant unlabeled
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How to utilize all labeled, relevant unlabeled, and irrelevant unlabeled data
to improve performance in SSL?
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Setup of Tri-Class SVM (3C-SVM)
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L = {(xi , yi )}Li=1

xi ∈ X ⊆ Rd , yi ∈ {−1, 0, 1}
U = UL ∪ U0 = {xi}Ui=1

Objective: Seek

fϑ(x) = wTφ(x) + b, ϑ = (w, b)

to separate the binary class
data correctly with the help
of (mixed) unlabeled data
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Model

Objective function:

min
ϑ

λ
2‖w‖

2+
∑

xi∈L
ri`L(fϑ(xi ), yi )+

∑
xi∈U

ri`U(fϑ(xi ))

Margin
Empirical Risk Empirical Risk
Labeled Data Unlabeled Data

Facts: if fϑ(xi )� 0, more confident on +1-class
if fϑ(xi )� 0, more confident on −1-class

Principle: rely more on labeled data and relevant data
ignore irrelevant data

ξ

ξ*

x

y

3C−SVM Illustration
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Model

Objective function:

min
ϑ

λ

2
‖w‖2 +

Loss on labeled data︷ ︸︸ ︷∑
xi∈L±1

riH1(yi fϑ(xi )) +
∑

xi∈L0

ri Iε(fϑ(xi ))

+

Loss on unlabeled data︷ ︸︸ ︷∑
xi∈U

ri min{H1(|fϑ(xi )|), Iε(|fϑ(xi )|)} .

H1(u) = max{0, 1− u}, Iε(u) = max{0, |u| − ε}
Illustration:
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Hinge loss
Symmetrical hinge loss
ε−insensitive loss (ε=0.1)
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Model Generalization

Illustration: Lmin(u) = min {max{0, 1− |u|},max{0, |u| − ε}}
ε = 0 ε = 0.1 ε = 0.9
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Model relationship:
3C-SVM SVM

L −1 0 1 L −1 1
U −1 0 1 U

S3VM U-SVM
L −1 1 L −1 0 1
U −1 0 1 U
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Theorem: How unlabeled irrelevant data help?

Objective function:

min
ϑ

λ

2
‖w‖2 +

∑
xi∈L±1

riH1(yi fϑ(xi )) +
∑

xi∈L0

ri Iε(fϑ(xi ))

+
∑
xi∈U

ri min{H1(|fϑ(xi )|), Iε(|fϑ(xi )|)} .

3C-SVM with ri =∞ for unlabeled data and ε = 0

Unlabeled data xj satisfies
(a) |wTφ(xj) + b| ≥ 1⇒ data lie on or out of the margin gap,
or
(b) wTφ(xj) + b = 0⇒wT (φ(xj)− φ(x0)) = 0, xj , x0 ∈ U0
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Removing Min-Terms and Absolute Values

min
ϑ

λ

2
‖w‖2 +

∑
xi∈L±1

riH1(yi fϑ(xi )) +
∑

xi∈L0

ri Iε(fϑ(xi ))

+
∑

xk+L∈U
rk+L

min{H1(|fϑ(xi )|),Iε(|fϑ(xi )|)}︷ ︸︸ ︷H1(|fϑ(xi )|+ D(1− dk))︸ ︷︷ ︸
Q1

+ Iε(|fϑ(xi )| − Ddk)︸ ︷︷ ︸
Q2


Integer programming:

{
dk = 0⇒ Q1 = 0
dk = 1⇒ Q2 = 0

H1(|u|+ a): Introducing non-convexity, solved by ramploss
H1−a(u)− Hκ(u) + H1−a(−u)− Hκ(−u)

Iε(|u| − a) = H−ε−a(−u) + H−ε−a(u)

Absolute terms are removed by introducing auxiliary labels
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Concave-Convex Procedure

Objective function: Qκ(ϑ, d)=Qκvex (ϑ, d)+Qκcav (ϑ)

Each step

ϑt+1 = arg min
ϑ

(
Qκvex (ϑ,dt)+

∂Qκcav (ϑt )

∂ϑ
·ϑ
)
,

Dual⇐⇒
QP



max
α,α∗

−λ
2
‖w(α,α∗)‖2+%(α,α∗)

s.t. Ae [α;α∗]=µT Y•U ,

A[α;α∗]≤0 ,

0≤α,α∗≤r .

dk =

 1 if ξk≤ξ∗k
0 otherwise

,
ξk=H1(|fϑ(xk+L)|),
ξ∗k =Iε(|fϑ(xk+L)|), k=1,...,U.

Solution: w is linear combined by α and α∗

b is attained by KKT condition
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3CSVM Demo
Download codes from
http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=3csvm

Note: Required toolbox, Mosek from http://www.mosek.com

In Matlab, type “demo 3CSVM”

See “readme.txt” if needed
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3CSVM Result
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Experimental Setup

Datasets
Two toy datasets
Two real-world digit recognition datasets

Comparing algorithms

SVMs
S3VMs
U-SVMs
3C-SVMs

Platform
Matlab 7.3
MOSEK 5.0
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Data Generation

Following scheme from Sinz et al., 2008

±1-class: c±i = ±0.3, i = 1, . . . , 50, σ2
1,2 = 0.08, σ2

3,...,50 = 10

Two Gaussians with the Bayes risk being approximately 5%

First U0: zero mean, σ2
1,2 = 0.1, σ2

3,...,50 = 10

Second U0: variance values are the same as ±1-class data, mean is
t · c+, t = 0.5

Haiqin Yang (CUHK) Machine Learning June 10, 2012 113 / 134



Main Techniques Tri-Class Support Vector Machines

Test Procedure

L = 20, 50, 200, 500

U = 500 = (τU, (1− τ)U), τ = 0.1, 0.5, 0.9

Labeled + Unlabeled/500 Test, ten-run average

Hyperparameters

Linear kernel
Regularized parameters, forward tuning

CL CU ε κ
SVM X × × ×

U-SVM − X X ×
S3VM − − × X
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Accuracy
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Objective Function Values and Test Errors
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Real-world Datasets

Datasets:

Small size: USPS
Large size: MNIST

Setup

±1-class: Digits “5” and “8”
U0: Other digits
L = 20
U = 500 = (τU, (1− τ)U), τ = 0.1, 0.5, 0.9
RBF kernel: K (x, y) = exp(−γ‖x− y‖2), γ = 1

0.3d
Other hyperparameters are set similar to those in the synthetic datasets
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Accuracy Results

Dataset Algorithm τ = 0.1 τ = 0.5 τ = 0.9

USPS

SVM 72.4± 15.9 (0.7) 72.4± 15.9 (9.5) 72.4± 15.9 (53.1)
S3VM 56.6± 5.9 (0.0) 54.5± 3.0 (0.0) 52.8± 6.9 (0.0)
U-SVM 83.1± 2.5 (0.0) 73.4± 4.4 (0.0) 64.2± 3.6 (0.0)
3C-SVM 87.2±2.3 80.6±4.8 75.4±7.3

MNIST

SVM 70.9± 11.4 (0.3) 70.9± 11.4 (0.8) 70.9± 11.4 (13.6)
S3VM 58.9± 8.7 (0.0) 55.3± 8.1 (0.0) 53.2± 6.3 (0.0)
U-SVM 84.2± 2.2 (0.2) 80.0± 4.6 (0.9) 75.0± 3.9 (1.0)
3C-SVM 85.3±1.6 82.8±2.9 77.6±3.9
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Balance Constraint

Ideally, 1
U

L+U∑
t=L+1

fϑ(xt) = 1
L

L∑
i=1

yi , but no improvement from

experimental results

A possible better on, 1
U

L+U∑
t=L+1

fϑ(xt) = c

c : a user-specified constant, but need tuning
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Summary

Summary

A novel maxi-margin classifier, 3C-SVM, can distinguish data into
−1, +1, and 0, three categories

The model incorporates standard SVMs, S3VMs, and U-SVMs as
specific cases

It is solved by the CCCP, very efficient

Effectiveness and efficiency are demonstrated

Future work

Algorithm speedup

Multi-class extension

Theoretical analysis, generalization bound
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SVM and its Variants

SVM

In COLT’92 from VC theory
Many variants include SVR,
ν-SVM, one-class SVM, etc.

Kernel methods/learning

Kernel PCA, Kernel ICA, etc.
Multiple kernel learning:
L1-MKL, L2-MKL, Lp-MKL
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Perspectives History

Sparse in Feature Level

Lasso

Introduce in the mid of 90’s
Many variants include Group
Lasso, Elastic Net, etc.

Sparse learning

Sparse coding, dictionary
learning, compressive sensing,
etc.
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Other Paradigms

SSL

Co-training, Co-EM,
tri-training, etc.
TSVM, S3VM, etc.
Graph laplacian, harmonic
function, manifold
regularization, etc.

Transfer learning

Multi-task learning, multi-task
feature learning, mixed norm
feature selection, etc.
Sample selection bias, domain
adaptation, etc.
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Perspectives Perspectives

Perspectives

Theory

Knowledge transfer
Concept drift
Sparse
...

Application-driven

Model interpretation
Scalability
Efficiency
...
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Conclusions

Conclusions

Conclusions

Explore two families of sparse models
Provide promising solutions for large-scale applications in three main
learning areas

Online learning framework for group lasso and multi-task feature
selection
Multiple kernel learning model with sparsity and grouping effect to
provide more accurate data similarity representation
Semi-supervised learning model to learn from mixture of relevant and
irrelevant data

Perpectives

Developing parsimonious learning models and efficient algorithms
Real-world applications with the following characteristics

Heterogeneous
Dynamic
Social relation or social information
...
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Questions?

https://www.cse.cuhk.edu.hk/irwin.king/confs/

wcci2012-tutorial-machinelearning

{king,lyu,hqyang}@cse.cuhk.edu.hk
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Interpretation of Dual Average for Group Lasso

Objective: Υ(w) = min
w

N∑
i=1

`(w) + Ω(w)

Since `(·) is convex, at T -step, we have

Υ(w) =
1

T

T∑
k=1

[`(wk) + u>k (w −wk) + R2(w)︸ ︷︷ ︸
Second order

] + Ω(w)

=
1

T

T∑
k=1

`(wk) + ū>k (w −wk) + R2(w)︸ ︷︷ ︸
γ√
t
h(w)

+Ω(w)
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Conclusions

Interpretation of Dual Average for MTFS

Objective: Υ(W) = min
W

N∑
i=1

`(W) + Ω(W)

Since `(·) is convex, at T -step, we have

Υ(W) =
1

T

T∑
k=1

[`(Wk) + G>k (W −Wk) + R2(W)︸ ︷︷ ︸
Second order

] + Ω(W)

=
1

T

T∑
k=1

`(Wk) + Ḡ>k (W −Wk) + R2(W)︸ ︷︷ ︸
γ√
t
h(W)

+Ω(W)
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Conclusions

Level Method Illustration

min
x
{f (x) = − cos(x) : x ∈ R,R = [−1.2, 1.2]}

Initialization: x0 = −1, τ = 0.9

Construct a cutting plane

D1(x) = h1(x)

Construct a level set level set L1

L1 = τ × f (x0) + (1− τ)× (−2.39)

L1 = {x ∈ R : D1(x) ≤ L1}

Project x0 to L1

x1 = arg min
x
{‖x − x0‖2

2 : x ∈ L1}
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