

Information Retrieval and Query Routing

in Peer-to-Peer Networks

WONG Wan Yeung

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Philosophy
in

Computer Science and Engineering

© The Chinese University of Hong Kong
June 2005

The Chinese University of Hong Kong holds the copyright of this thesis.
Any person(s) intending to use a part or whole of the materials in the thesis
in a proposed publication must seek copyright release from the Dean of the
Graduate School.

 i

Abstract

Recently, information retrieval based on Peer-to-Peer (P2P) networks is

becoming a popular and dynamic research topic. In this work, we study two

scenarios with their own problems and we solve them by our proposed

Site-to-Site (S2S) Searching in a pure P2P network and GAroute in a hybrid

P2P network respectively.

The first scenario is that Web information retrieval by Centralized

Search Engines (CSEs) like Google have three shortcomings. First, CSEs

are centralized so that they require expensive resources to handle search

requests. Second, the search results are not always up-to-date. Third,

website owners have no control over their shared contents such as

preventing published contents from being searched. To circumvent the

aforementioned shortcomings, we refer to Gnutella to distribute search

engines called S2S search engines over websites (peers) in a pure P2P

network, which maintain their updated local contents with full control by

their owners. Hence, each website becomes an autonomous search engine

and they join together to form a S2S Searching network. In this thesis, we

show the system architecture, indexing and matching algorithms of S2S

search engines. In addition, we explain our query routing algorithm based

on distributed registrars which prevents the query flooding problem existing

in Gnutella. Furthermore, we describe our S2S communication protocol

 ii

which is based on Common Gateway Interface (CGI). Finally, we present

our experimental results which show that S2S Searching is scalable

(approximate linear) in some large S2S networks.

The second scenario is that content-based information retrieval in

hybrid P2P networks like YouSearch using the Direct Connection Model

(DCM) has two shortcomings. First, the query initiating peer consumes high

bandwidth for its own network transmission. Second, we have poor

semi-parallel search if there are too many relevant peers. To circumvent the

aforementioned shortcomings, we introduce the Query Propagation Model

(QPM) into YouSearch and form a new hybrid P2P network. In order to

obtain optimal query routing paths in our network, we model our problem as

the Longest Path Problem which is NP-complete and we propose a Genetic

Algorithm (GA) called GAroute to obtain high quality approximate

solutions in polynomial time. In this thesis, we describe our network and

GAroute algorithm. In addition, we introduce two novel GA operators called

fission and creation, and also an optimization technique called two-phase

tail pruning to improve the quality of solutions. Finally, we present our

experimental results which show that GAroute achieves both good

scalability (approximate linear) and quality (0.95 in 100 peers) in some large

scaled P2P network topologies. Moreover, the query initiating peer network

traffic reduces more than 90 percents for 1,000 peers and the semi-parallel

search problem is greatly improved.

 iii

論文摘要

近來，以點對點網路進行資訊檢索正成為一個普遍和有活力的研究

題目。在是次研究當中，我們研究兩個不同的個案，它們各有不同的問

題，但我們分別用我們所建議的「站對站搜尋」(Site-to-Site Searching)

用於純粹點對點網路上，和「嘉禾」(GAroute)用於混合點對點網路上來

解決這兩個個案的問題。

第一個個案是：以集中式搜尋器如 Google 進行資訊檢索會有三個

缺點。首先，集中式搜尋器需要昂貴的資源來處理所有搜尋要求。其次，

搜尋的結果總不是最更新的。最後，站長沒有他們分享內容的控制權，

例如防止已發表的內容被他人搜尋。為了改善以上的缺點，我們參考過

Gnutella 的做法來分佈一些名為站對站的搜尋器到不同的網站上，以成

為一個純粹點對點的網路，那些搜尋器會保持最更新的搜尋索引，並給

予站長完全的控制權。因此，每一個網站會成為一個自主的搜尋器，而

它們可以連結在一起，以成為一個站對站的搜尋網。在這份論文中，我

們會展示站對站搜尋器的系統構造，索引和配對的演算法。另外，我們

會解釋以分佈式登錄器為基礎的詢問路線安排演算法，這演算法可有效

地防止 Gnutella 的詢問氾濫問題。再者，我們會描述以通用閘道界面為

基礎的站對站通訊協議。最後，我們會展示實驗結果來證明站對站搜尋

是可以大規模化(約線性增長)的。

第二個個案是：在混合點對點網路如 YouSearch 使用直接聯絡模型

進行內容基礎的資訊檢索會有兩個缺點。首先，詢問者會消費較多的網

 iv

路傳輸頻寬。其次，如果有太多相關的搜尋點，詢問者會有較差的搜尋

表現。為了改善以上的缺點，我們把詢問傳播模型注入 YouSearch 內，

從而產生一種新的混合點對點網路。為了要在新的網路中獲得一些優質

的詢問路線，我們把這個難題模仿成最長路徑問題，因為最長路徑問題

是完整非決定多項式的，所以我們建議一種名為嘉禾的遺傳基因演算

法，用多項式時間來獲得優質的答案。在這份論文中，我們會描述所建

議的網路和嘉禾演算法。另外，我們會介紹兩個新穎的遺傳基因運算

子，名為分裂和創造，還有一種最佳化的技術，名為二期尾部剪除法，

以改善答案的質素。最後，我們會展示實驗結果來證明嘉禾是可以大規

模化(約線性增長)的，並能提供高質素的答案(在 1000 搜尋點中有 0.95

質素)。此外，詢問者搜尋 1000 搜尋點能減少 90%的交通量，並大大地

改善了搜尋表現。

 v

To my dearest family

 vi

Acknowledgment

First, I would like to thank my Lord, Jesus Christ, for loving me,

helping me, and leading me. I would like to give the glory to Him who

bestows the wisdom upon me. Amen!

Second, I would also like to thank my supervisor, Prof. Irwin King, for

helping me on my research and teaching me on writing papers. When I was

an undergraduate, he was also my Final Year Project supervisor. He

encouraged me to continue on studying. He taught me a lot of things, not

only the academic, but also the life philosophy. I saw Jesus Christ from his

love and behavior. The Bible (New International Version) says, “For I was

hungry and you gave me something to eat, I was thirsty and you gave me

something to drink, I was a stranger and you invited me in, I needed clothes

and you clothed me, I was sick and you looked after me, I was in prison and

you came to visit me.” [Matthew 25:35–36] These are what he did to me.

Third, I would like to thank Prof. Michael Lyu, Prof. Kwong Sak

Leung, and Prof. Jiangchuan Liu for giving me suggestions on my proposed

Site-to-Site Searching and GAroute.

Finally, I would like to thank my dearest family for giving me support

and care from time to time.

 vii

Table of Contents

1. Introduction..1
1.1 Problem Definition... 1
1.2 Major Contributions ...5

1.2.1 S2S Searching .. 6
1.2.2 GAroute.. 8

1.3 Thesis Chapter Organization.. 10
2. Related Work.. 11

2.1 P2P Networks... 11
2.2 Query Routing Strategies ... 20
2.3 P2P Network Security ..22

3. S2S Searching .. 24
3.1 System Architecture ... 24

3.1.1 Administration Module .. 24
3.1.2 Search Module ...27

3.2 Indexing and Matching .. 32
3.2.1 Background of Indexing and Matching32
3.2.2 Indexing Algorithm .. 33
3.2.3 Matching Algorithm...34

3.3 Query Routing.. 36
3.3.1 Background of Query Routing..................................... 36
3.3.2 Distributed Registrars and Content Summary 38
3.3.3 Query Routing Algorithm .. 41
3.3.4 Registrar Maintenance ...44

3.4 Communication Protocol ... 45
3.4.1 Starting CGI ... 46
3.4.2 Searching CGI.. 47
3.4.3 Pinging CGI ... 48
3.4.4 Joining CGI .. 48
3.4.5 Leaving CGI... 48
3.4.6 Updating CGI... 49

 viii

3.5 Experiments and Discussions... 49
3.5.1 Performance of Indexing..50
3.5.2 Performance of Matching... 52
3.5.3 Performance of S2S Searching..................................... 54
3.5.4 Quality of Content Summary57

4. GAroute.. 59
4.1 Proposed Hybrid P2P Network Model..................................... 59

4.1.1 Background of Hybrid P2P Networks.......................... 60
4.1.2 Roles of Zone Managers .. 62

4.2 Proposed GAroute.. 65
4.2.1 Genetic Representation .. 69
4.2.2 Population Initialization... 70
4.2.3 Mutation ... 72
4.2.4 Crossover ... 74
4.2.5 Fission ..77
4.2.6 Creation.. 80
4.2.7 Selection... 81
4.2.8 Stopping Criteria .. 83
4.2.9 Optimization...86

4.3 Experiments and Discussions... 89
4.3.1 Property of Different Topologies 91
4.3.2 Scalability and Quality in Different Topologies92
4.3.3 Scalability and Quality in Different Quantities............96
4.3.4 Verification of Lower Bandwidth Consumption 101
4.3.5 Verification of Better Parallel Search.........................105

5. Discussion .. 110
6. Conclusion ... 114
7. Bibliography... 118
8. Appendix .. 123

8.1 S2S Search Engine ... 123
8.1.1 Site Owner Perspective .. 123
8.1.2 Search Engine User Perspective................................. 128

8.2 GAroute Library... 129

 ix

List of Tables

Table 1. Comparison of Pure P2P Networks..19
Table 2. Comparison of Hybrid P2P Networks..19
Table 3. Comparison of Query Routing Algorithms 43
Table 4. Summary of Six CGIs ..46
Table 5. Computer Configuration of S2S Searching Experiments 50
Table 6. Difference between Ahn’s GA and GAroute..................................88
Table 7. Time Complexities of GAroute .. 89
Table 8. Computer Configuration of GAroute Experiments 90
Table 9. GAroute Parameters ...90
Table 10. Class Summary of AdjacencyMatrix..130
Table 11. Class Summary of Chromosome.. 131
Table 12. Class Summary of IdIndex... 131
Table 13. Class Summary of Router ..132
Table 14. Class Summary of ScoreVector..133
Table 15. Class Summary of Score ..134

 x

List of Figures

Figure 1. Simple Four-nary Tree Topology with Depth Two......................... 4
Figure 2. Query and Result Propagation in S2S Searching7
Figure 3. Comparison between DCM and QPM.. 9
Figure 4. Firework Query Model ...21
Figure 5. Administration Module and Its Components................................25
Figure 6. Search Module and Its Components ...28
Figure 7. A S2S Network Topology ...38
Figure 8. Indexing Size of S2S Search Engine .. 51
Figure 9. Indexing Time of S2S Search Engine...52
Figure 10. Matching Time of S2S Search Engine.. 53
Figure 11. S2S Searching Time..54
Figure 12. Linear Structure of 10 Sites .. 55
Figure 13. S2S Searching Time Dependence...56
Figure 14. Quality of Content Summary Hash Table...................................58
Figure 15. Structured P2P Network with Three Zones 61
Figure 16. Problem of Peers Disjointing Due to a Leaving Peer 63
Figure 17. Structured P2P Network in a Zone with Scores..........................65
Figure 18. GA Flow Chart.. 69
Figure 19. Genetic Representation of Two Paths...70
Figure 20. Creation of a Chromosome... 72
Figure 21. Mutation of a Chromosome..74
Figure 22. Crossover of Two Chromosomes..77
Figure 23. Fission of a Chromosome ...80
Figure 24. Selection of Four Chromosomes .. 84
Figure 25. Two-phase Tail Pruning of Four Paths..87
Figure 26. Property of Different Network Topologies91
Figure 27. Scalability in Different Network Topologies.............................. 94
Figure 28. Quality in Different Network Topologies95
Figure 29. Scalability in 100 Peers .. 97
Figure 30. Scalability in 1,000 Peers ... 97

 xi

Figure 31. Generation Requirement of GA in 1,000 Peers 98
Figure 32. Actual Quality in 100 Peers ..99
Figure 33. Relative Quality in 1,000 Peers ..100
Figure 34. Convergence of GA in 100 Peers.. 101
Figure 35. Query Initiating Peer Network Traffic of DCM and QPM.......102
Figure 36. Network Traffic Reduction of Query Initiating Peer by QPM .103
Figure 37. Whole Network Traffic of DCM and QPM.............................. 105
Figure 38. Network Traffic Overhead of Whole Network by QPM 105
Figure 39. Query Time of Network Topologies for DCM and QPM.........107
Figure 40. Query Time Improvement of Network Topologies by QPM.... 108
Figure 41. Screenshot of S2S Index Management 124
Figure 42. Screenshot of S2S Parameter Management..............................125
Figure 43. Screenshot of S2S Network Management126
Figure 44. Screenshot of S2S Black List Management.............................. 126
Figure 45. Screenshot of S2S Search Form ... 127
Figure 46. Screenshot of S2S Search Results .. 128

 xii

List of Algorithms

Algorithm 1. Chromosome Creation..71
Algorithm 2. Chromosome Mutation... 73
Algorithm 3. Crossing Points Finding ... 76
Algorithm 4. Chromosomes Crossover.. 76
Algorithm 5. Fission Point Finding..79
Algorithm 6. Chromosome Fission..79
Algorithm 7. Chromosome Selection... 83
Algorithm 8. Two-phase Tail Pruning..85

 xiii

List of Symbols in S2S Searching

Symbol Meaning
A 1. The set of first alphabets in keywords matching

2. The adjacency matrix
a The first alphabet
CL The confidence level of a hash table block
C The number of collisions
c The ASCII code of a character
d 1. The depth of a tree

2. The document in VSM
f The traffic reduction factor
fij The raw frequency of the term (word) wi in the document dj
f(w) The frequency of the word w in a document or a site
HS The hash set of all words which have the same hash code
H(w) The hash function of content summary with a given word w
I The index table which contains file offsets and lengths of each

first alphabet group
I(w) The word importance of the word w in a document or a site
idf The inverse document frequency
K The set of keywords
k The keyword
L The word occurrence locations of the inverted index
l The length of a word
m 1. The number of different first alphabets of keywords

2. The number of blocks in a content summary hash table
N The number of different words in a document or a site
Na The number of adjacent sites
Na' The number of adjacent sites that the query is routed
Nd The total number of documents
Nt The total number of index terms
n 1. The number of different keywords

 xiv

2. The degree of an n-nary tree
n The expected fan-out degree of a site
ni The number of documents in which the term (word) wi

appears
p 1. The weight of the priority in the ranking parameters

2. The probability of infrequent query flooding
priority The priority value of a document
q The query
rank The ranking value of a document
S The content summary of a site
s 1. The weight of the similarity in the ranking parameters

2. The similarity value between a document and a keyword in
the matching algorithm

si The ith element of a content summary hash table
score The score (relevance level) of a site
sim The similarity value between keywords and a document
Tflood The total traffic cost of query flooding
Troute The total traffic cost of query routing
tij The term weighting of the term (word) wi in the document dj
tiq The query term weighting of the term (word) wi in the query q
tf The term frequency
W The set of words in a document or a site
w The word in a document or a site

 xv

List of Symbols in GAroute

Symbol Meaning
A The adjacency matrix
b The number of batches
C The chromosome representing a path
d(i, j) The shortest path distance between the nodes i and j
E 1. The set of edges in a graph representing the connectivity

between peers
2. The expected number of existing peers to be linked by a
new peer used in the graph generation algorithm

f The fitness of a chromosome
G The directed graph
Gmax The maximum number of generations
Gmin The minimum number of generations
H The information gain of a path
L 1. The available peer list used in creation and mutation

2. The list of potential crossing points used in crossover
l The length of a chromosome
λc The crossover proportion
λm The mutation proportion
λn The creation rate
m The mutation point
N The population size
Nc The number of crossovers in a generation
Nf The number of fissions in a generation
Ng The number of good chromosomes for selection
Nm The number of mutations in a generation
Nn The number of creations in a generation
Npath The number of different paths in a graph
n The maximum number of paths to be returned
P The list of query routing paths

 xvi

Pn The new population after selection
Po The original population before selection
p The query routing path
ρ The penalty of a peer
Q The quality of query routing paths relative to BS
Q' The quality of query routing paths relative to GA
(r, s) The crossing point
S The score vector
T The network traffic
TO The network traffic overhead
TR The network traffic reduction
t The query time
(u, v) The fission point
V The set of vertices in a graph representing peers
V' The set of current visited peers
x The peer or the corresponding gene
x1 The query initiating peer
xlast The last peer or gene in a path or chromosome
y The peer or the corresponding gene

 xvii

List of Abbreviations

Abbreviation Meaning
AS Autonomous System
BS Brute-force Search
CGI Common Gateway Interface
CPU Central Processing Unit
CSE Centralized Search Engine
DCM Direct Connection Model
DDR Double Data Rate
DHT Distributed Hash Table
FTP File Transfer Protocol
GA Genetic Algorithm
GS Greedy Search
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
IP Internet Protocol
ISP Internet Service Provider
I/O Input/Output
NFS Network File System
NP Nondeterministic Polynomial
OS Operating System
P2P Peer-to-Peer
QPM Query Propagation Model
RAM Random Access Memory
S2S Site-to-Site
TTL Time-to-Live
URL Uniform Resource Locator
VM Virtual Machine
XML Extensible Markup Language
XSLT Extensible Stylesheet Language Transformations

Chapter 1. Introduction 1

1. Introduction
Recently, information retrieval based on Peer-to-Peer (P2P) networks is

becoming a popular and dynamic research topic. In this work, we research

on both pure P2P networks and hybrid P2P networks. Pure P2P networks

refer to those P2P networks without any centralized component, whereas

hybrid P2P networks depend on centralized components for storing indices

or content summaries of each peer. We are interested in how information can

be efficiently retrieved in these networks and hence we analyze the existing

solutions. However, the existing solutions have some problems in some

specific cases. Therefore, we refer to the existing solutions and propose two

different P2P network models with their effective query routing strategies,

namely Site-to-Site (S2S) Searching [49], [50] and GAroute [51], to improve

the information retrieval in the specific cases. S2S Searching is for the Web

information retrieval in our proposed pure P2P network model, while

GAroute is for the content-based information retrieval in our proposed

hybrid P2P network model. In this chapter, we give the problem definition

of the existing solutions (see Section 1.1) and the major contributions of

both S2S Searching and GAroute (see Section 1.2). We also show the thesis

chapter organization (see Section 1.3).

1.1 Problem Definition

Nowadays, information retrieval on the Web is popular and significant.

Chapter 1. Introduction 2

Web search engines become essential applications. However, Centralized

Search Engines (CSEs) like Google [21], AltaVista [4], and Yahoo [55] have

three shortcomings which are (1) centralization of resources used, (2)

outdated search results, and (3) no control over information shared by

content owners.

1) Centralization of Resources Used: CSEs are centralized which

require powerful servers to handle search requests. They also need a large

storage space to store crawled contents and indices. Hardware cost is

expensive for achieving high performance. Take Google as an example,

their centralized server contains hundreds of computers inter-connecting

together. And they need many hard-disks for storing crawled contents and

indices. Moreover, CSEs have single point of failure. If their servers are

down, we cannot perform any search.

2) Outdated Search Results: CSEs preprocess the search by crawling

Web contents and building the corresponding indices. Usually, the crawled

contents and indices are outdated as Web pages are being updated from time

to time [13]. The freshness of indices depends on the crawling strategy. Take

Google as an example, there are often some dead and outdated links in

search results.

3) No Control over Information Shared: CSEs crawl published contents

on the Web and make them become searchable without their owners’

permissions. The owners may only want their contents like private

information to be accessed by their authorized people by giving them secret

Chapter 1. Introduction 3

Uniform Resource Locators (URLs). Although they can make their contents

escape from crawlers by setting passwords or removing links in their Web

pages, it is inflexible and requires technical knowledge. In addition, the

owners cannot alter their ranking strategy for their prioritized contents.

Although they can use meta-tags and different headings in their contents, it

is inflexible and does not guarantee how their contents are ranked.

The aforementioned shortcomings can be circumvented by distributing

search engines over peers which maintain their updated local contents with

full control by their owners. Gnutella [20] is a typical protocol designed for

sharing and searching files in personal computers in a pure P2P network.

However, Gnutella does not have an effective query routing strategy so that

queries are flooded to all peers including irrelevant peers in the network

which generates a lot of network traffic and wastes resources of all

irrelevant peers. This is known as the query flooding problem [26]. To

analyze the traffic cost of such network, let us consider a simple n-nary tree

topology (see Figure 1). The root of the tree is the query initiating peer. The

depth d of the tree is the TTL value of the query in the query initiating peer.

Let the traffic cost for sending a query between two peers be one unit. The

total traffic cost Tflood for searching in the whole network is obviously the

sum of the geometric progression such that

1
)1(

1 −
−

== ∑
= n

nnnT
dd

i

i
flood units. (1)

Chapter 1. Introduction 4

In order to reduce the exponential traffic cost, routing query to relevant

peers only is necessary. The query flooding problem in pure P2P networks is

not only solved by some existing query routing algorithms like CAN [46]

and Chord [28], but also some hybrid P2P networks like Kazaa [31] and

YouSearch [36]. Pure P2P networks refer to those P2P networks without any

centralized component, whereas hybrid P2P networks depend on centralized

components (like super-nodes in Kazaa and the registrar in YouSearch) for

storing indices or content summaries of each peer. By querying centralized

components in hybrid P2P networks, each peer obtains a list of relevant

peers so that it directly connects to all relevant peers to obtain document

lists. Thus, the query flooding problem does not exist due to the Direct

Connection Model (DCM). However, such model has two shortcomings

which can further be improved. They are (1) high bandwidth consumption

t=2 t=1t=1

t=1

t=1

t=0

t=0

t=0

t=0

t=0

t=0

t=0

t=0 …

…

…

…

t=0 t=0
t=0 t=0

t=0 t=0
t=0 t=0

…

……

…

…

……

…

…

…

…

…

Figure 1. Simple Four-nary Tree Topology with Depth Two

Chapter 1. Introduction 5

and (2) poor semi-parallel search.

1) High Bandwidth Consumption: The query initiating peer directly

connects to all relevant peers and then sends a query packet to each peer

individually. If the number of relevant peers is large, then the query

initiating peer consumes high bandwidth for its own network transmission

especially the case of content-based multimedia retrieval [26], [12].

2) Poor Semi-parallel Search: The query initiating peer spawns a

thread to concurrently handle each direct connection to a relevant peer.

However, a computer has a limited thread resource, which makes parallel

connections to all relevant peers impossible if there are many [3]. Although

we can still semi-concurrently connect to them by spawning a few threads in

each batch, it is slow as we need to wait for a batch to finish before

spawning another batch. This results in poor semi-parallel search. We may

circumvent this by setting the maximum number of relevant peers to be

searched or reduce the number of relevant peers by increasing the relevance

threshold. However, we retrieve less information by using this solution.

1.2 Major Contributions

The major contributions of our work are S2S Searching [49], [50] and

GAroute [51] which circumvent the aforementioned shortcomings of CSEs

and DCM.

Chapter 1. Introduction 6

1.2.1 S2S Searching

To circumvent the three aforementioned shortcomings of CSEs

(centralization of resources used, outdated search results, and no control

over information shared by content owners), we refer to Gnutella and

propose a pure P2P network model for the Web information retrieval based

on Common Gateway Interface (CGI). In our proposed pure P2P network

model, each website is a peer and we call it a site. Moreover, we solve the

query flooding problem of Gnutella by our proposed S2S Searching which

routes queries based on distributed registrars for storing content summaries

of adjacent sites. We also develop the S2S search engine which is an

application of S2S Searching written in Java Servlet [30]. It helps site

owners, whose websites are hosted by Internet Service Providers (ISPs), to

turn their websites into autonomous search engines without extra hardware

and software cost. Finally, S2S Searching provides (1) decentralized

searching, (2) updated search results, and (3) full control over information

shared by content owners.

1) Decentralized Searching: S2S Searching is decentralized so each

site needs less powerful machines to handle search requests and less storage

space to store the local index. A normal Web server is sufficient for a high

performance searching of a site. We can use a search form in any site which

joins the S2S network to start searching Web contents. The query initiating

site propagates the query request to its adjacent sites. Each site propagates

the request, searches its own Web contents, and gathers search results.

Chapter 1. Introduction 7

Finally, all search results are propagated back to the query initiating site

which are ranked and displayed to users (see Figure 2). Since S2S Searching

uses CGI as the communication protocol which involves the

request-response mechanism, we model the query as the request and the

results as the response. In addition, there is no single point of failure. If

some sites are down, we can still use other search forms in other sites.

Moreover, S2S Searching skips those sites which are currently down and

continues to search. Therefore, we can still obtain results from other live

sites.

2) Updated Search Results: S2S Searching always provides most

updated search results because each site maintains its own local index which

is always up-to-date. When a local content in a site is updated, the

corresponding index is recalculated. Therefore, we do not have any dead

and outdated link in search results.

Start at
this site

A

B

C

D

E

1

2

3

45

6

7

8

1. A queries B
2. A queries E
3. B queries C
4. B queries D
5. Results of D
6. Results of C
7. Results of E
8. Results of B, C, D

Request

Response

Figure 2. Query and Result Propagation in S2S Searching

Chapter 1. Introduction 8

3) Full Control over Information Shared: S2S Searching allows site

owners to fully control their information shared as they become

administrators of their own search engines. They can selectively disable

their published contents to be searchable so as to increase the privacy. They

can also prioritize their contents and ranking strategy in order to advertise

and rank results in a more customized way.

1.2.2 GAroute

The two aforementioned shortcomings of DCM (high bandwidth

consumption and poor semi-parallel search) can be circumvented by the

Query Propagation Model (QPM) which is commonly applied in pure P2P

networks. By referring to Kazaa and YouSearch networks, we propose our

hybrid P2P network model which is based on QPM. Instead of directly

connecting to all relevant peers, the query initiating peer queries the zone

manager (like the super-node in Kazaa and registrar in YouSearch) for some

optimal query routing paths searched by our proposed Genetic Algorithm

(GA), and then propagates the query to all relevant peers through these

paths. Therefore, we achieve two improvements which are (1) lower

bandwidth consumption and (2) better parallel search. We verify them by

our experimental results (see Section 4.3).

1) Lower Bandwidth Consumption: The query initiating peer only

sends query packets to the next peers in the query routing paths instead of

all relevant peers. Hence, the query initiating peer consumes lower

Chapter 1. Introduction 9

bandwidth for its own network transmission.

2) Better Parallel Search: The query initiating peer only directly

connects to the next peers in the query routing paths. Hence, the maximum

number of threads to be spawned by the query initiating peer, which equals

to the number of its logically linked peers, is greatly reduced due to the

small degree property of our proposed P2P network. Hence, the query

initiating peer may be able to spawn all threads at one time which results in

better parallel search.

Figure 3 shows the comparison between DCM and QPM. If there are r

relevant peers, the query initiating peer needs to consume r units of its own

bandwidth in DCM, whereas it only needs to consume two units of its own

bandwidth in QPM. If there are only two threads available, the query

initiating peer needs to spawn b batches of threads for DCM, whereas it

only needs to spawn one batch of threads for QPM.

Besides our proposed hybrid P2P network model and zone managers,

we propose a novel GA called GAroute used by zone managers as a function

Q
R

R

Q

R

R

R

R

R

Direct connection model

…

Query
initiating

peer

Relevant peer

Query
initiating

peer

…

…

…

Relevant peer

Query propagation model

Batch 1

Batch b

Figure 3. Comparison between DCM and QPM

Chapter 1. Introduction 10

to search for some optimal query routing paths. By giving the current P2P

network topology and relevance level of each peer, GAroute returns a list of

query routing paths that cover as many relevant peers as possible. We model

this as a Longest Path Problem in a directed cyclic graph which is

NP-complete [37]. Nonetheless, we obtain high quality approximate

solutions in polynomial time by using GA.

1.3 Thesis Chapter Organization

The rest of this thesis is organized as follows. Chapter 2 introduces the

related work including different P2P networks, query routing strategies, and

P2P network security. Our proposed S2S Searching and GAroute are

described in Chapter 3 and Chapter 4 respectively. For S2S Searching, we

describe the system architecture, algorithms for indexing, matching, and

query routing, communication protocol, and experiments. For GAroute, we

describe our proposed hybrid P2P network model, genetic algorithm for

finding optimal query routing paths, and experiments. Moreover, Chapter 5

contains the discussion for both S2S Searching and GAroute. Finally, we

give the conclusion in Chapter 6, bibliography in Chapter 7, and appendix

including S2S search engine and GAroute library in Chapter 8.

Chapter 2. Related Work 11

2. Related Work
Since P2P applications are widely used nowadays, there are some

related research on P2P technologies. In this chapter, we give a literature

review on different P2P networks (see Section 2.1) and query routing

strategies (see Section 2.2). We also compare them with our proposed S2S

Searching and GAroute. Finally, we briefly introduce the research that is

related to P2P network security (see Section 2.3).

2.1 P2P Networks

Mostly, P2P networks are used for sharing contents like audio, video,

software, and other data files. P2P networks are logical networks that rely

on computing power at the ends of a connection rather than in the networks

themselves [41]. In Chapter 1, we mention that P2P networks can be divided

into two types which are pure and hybrid P2P networks. Pure P2P networks

do not have the concept of clients and servers. Instead, they have the

concept of equal nodes which act like both “clients” and “servers”

simultaneously to other nodes in the network. We call those nodes peers.

The main difference between the client-server network model and P2P

network model is that the data is sent between a client and a centralized

server for the client-server network model, whereas the data is sent between

peers for the P2P network model. Hybrid P2P networks use the client-server

network model for some functions such as searching file indices, and use the

Chapter 2. Related Work 12

P2P network model for other functions such as downloading files. They are

called “hybrid” because they combine the client-server and P2P network

models. Hybrid P2P networks may have the scalability problem due to the

use of centralized servers. However, there are three advantages of P2P

network model over client-server network model which are distributed

resource, increased reliability, and comprehensiveness of information [26].

In this section, we introduce eight different P2P networks from generation to

generation. They are (1) Napster [40], (2) Gnutella [20], (3) Kazaa [32], (4)

BitTorrent [8], (5) Gnutella2 [21], (6) YouSearch [36], (7) Discovir [26], and

(8) Freenet [17].

Before the start of P2P, information sharing is usually through websites.

When we search for some files, we go to some search engine websites [21],

[4], [55] and search which return several lists of relevant websites. Then we

go through some of these relevant websites to download the files that we

want. This is the client-server network model where the search engines and

relevant websites act as the servers. Obviously, this scenario has a major

shortcoming that both search engines and relevant websites are centralized

and suffer from high load.

1) Napster: In order to decentralize servers, P2P networks are

researched and developed. The first generation P2P networks still have a

centralized file list like Napster which is a hybrid P2P network for music file

sharing applications before its shutdown due to the piracy problem. It has a

centralized server which requires the entire song lists of peers (personal

Chapter 2. Related Work 13

computers) to be uploaded for the indexing purpose. When we search for a

song in a peer, it queries the central index server to find out all peers which

have the song. Then we download the song from those relevant peers.

However, this solution is too similar to the client-server network model. The

main difference is that the files are no longer hosted in some Web servers.

They are distributed over peers, but the searching process is still done in the

central index server which is un-scalable because when the number of peers

grows, then it requires more centralized resource to handle search requests.

On the other hand, our proposed hybrid P2P network model is scalable due

to the use of distributed index servers.

2) Gnutella: In order to fully decentralize servers for the load balancing,

the second generation P2P networks are developed which emphasize on

pure P2P networks. Gnutella is a pure P2P network for file sharing

applications. It does not have any centralized server. When we search for

files by a peer, it broadcasts the query to all its connecting peers. Then the

peers propagate the query to their adjacent peers and this process continues

until exceeding the Time-to-Live (TTL) value. Each peer looks up its locally

shared collection and responds to its requester. This model is very similar to

S2S Searching but Gnutella is designed for searching files in personal

computers instead of websites. We extend this model for Web information

retrieval. Gnutella supports those peers which frequently join and leave the

network. S2S Searching also supports this although peers do not frequently

join or leave because websites are usually persistence. Although Gnutella

Chapter 2. Related Work 14

solves the scalability problem of Napster, it has the query flooding problem

which generates a lot of network traffic and wastes resources of all

irrelevant peers [26]. On the other hand, S2S Searching solves this problem

by applying the proposed query routing algorithm using distributed

registrars.

3) Kazaa: In order to solve the query flooding problem of Gnutella,

most P2P networks adopt a hybrid scheme like Kazaa. Kazaa is a file

sharing application for a hybrid P2P network which uses FastTrack [17] as

the P2P protocol. Although it does not have a centralized server, it is

classified into hybrid P2P network because of the use of super-nodes. A

super-node is a temporary index server for other peers. Any peer with a high

computation power and fast network speed automatically becomes a

super-node. When a peer joins the network, it finds an active super-node

from its list of initial super-nodes. It also queries the active super-node for a

list of other active super-nodes. Then it chooses a super-node as its index

server and uploads a list of shared files. When it searches for a file, it

directly queries the super-node, which also communicates with other

super-nodes, for a list of relevant files with peer addresses. Then it directly

downloads the files from those peers. This is very similar to our proposed

hybrid P2P network model. The main difference is that the content summary

instead of file index of the peer is uploaded to the zone manager (similar to

the super-node) in our proposed hybrid P2P network model for

content-based information retrieval.

Chapter 2. Related Work 15

4) BitTorrent: Besides searching the location of the target file,

downloading the target file is also an important issue because it takes most

time to do if the file is large. If the target file is only stored in a peer and we

always download it, the peer becomes centralized server which is easy to be

overload. Therefore, Kazaa may have this problem. BitTorrent is a P2P file

distribution tool where files are broken into smaller fragments and

distributed to peers in a pure P2P network. The fragments can be

reassembled on a requesting machine in a random order. Thus, the parallel

connections to all peers speed up the download process. To share a file, we

create the corresponding torrent file which contains the file and tracker

information. However, BitTorrent does not support indexing of torrent files.

Thus, the torrent file is usually distributed to other users through websites.

To download a file, we first open the torrent file and obtain the peers where

its fragments reside through the tracker. Then we download the fragments in

the available peers. When we finish downloading the entire file, our peer

becomes an additional source for the file. BitTorrent uses the P2P concept

for downloading files, whereas S2S Searching uses the P2P concept for

searching Web documents.

5) Gnutella2: By combining Kazaa and BitTorrent, Gnutella2 is a

reworking of Gnutella which gives up its pure P2P structure and uses a new

hybrid P2P structure in order to solve the query flooding problem and speed

up the download process. The old Gnutella protocol is discarded except for

the connection handshake. Similar to Kazaa, Gnutella2 divides peers into

Chapter 2. Related Work 16

two types which are leaves and hubs (super-nodes). Leaves have one or two

connections to hubs, while hubs have hundreds connections to leaves and

other hubs. The searching mechanism is very similar to Kazaa so that we do

not describe again. Besides the improvement of the query flooding,

Gnutella2 allows the file to be downloaded from multiple sources which is

like BitTorrent. In addition, Gnutella2 improves Gnutella by the extensible

binary XML-like packet format so that the future network improvements

and individual vendor features can be added easily. Other features include

network data compression and advanced metadata system. The switching of

Napster to Gnutella and Gnutella to Gnutella2 shows that there is no

absolute advantage of pure P2P networks over hybrid P2P networks.

6) YouSearch: So far, the P2P networks that we introduce are not for

the content-based information retrieval. YouSearch is a Web search engine

for content-based full text search which is designed for searching contents in

a hybrid P2P network of personal Web servers [41]. YouSearch adopts the

method in Napster with a few improvements on the load of the index server.

Similar to Napster, YouSearch depends on a centralized registrar which is a

light-weight index server. However, the registrar stores only the content

summary instead of the full index of each peer because storing the full index

is impractical as the size may be very large. Each peer creates its own

content summary by using Bloom filter [5] and pushes the summary to the

registrar. When we search for contents by a peer, it queries the registrar to

obtain a list of relevant peers with some false positives as the content

Chapter 2. Related Work 17

summary is only a hash table contained the index terms. Then it directly

queries the relevant peers to remove those false positives. Although this

direct connection model solves the query flooding problem, such model has

two shortcomings which are high bandwidth consumption and poor

semi-parallel search (see Section 1.1). On the other hand, our proposed

hybrid P2P network model circumvents these shortcomings by introducing

the query propagation model in hybrid P2P networks.

7) Discovir: Besides YouSearch, Discovir is a content-based image

retrieval application for a pure P2P network. It is built on top of LimeWire

[35] which uses the Gnutella protocol. Each peer is responsible for

performing the feature extraction on those shared image files. These features

include the color, texture, and shape. When we search for similar images by

a peer, we can select a sample image and specify a feature extraction

method. Then the peer transforms the image content to a feature vector

based on what extraction method we choose. The feature vector and

extraction method are propagated from peer to peer. Each peer tries to match

the sample image with their local images by the feature vector. Moreover,

Discovir solves the query flooding problem by using the firework query

model which is based on the document clustering (see Section 2.2).

Content-based image retrieval can also be plugged into S2S Searching. In

that case, the query is the feature vector.

8) Freenet: The third generation peer-to-peer networks are those which

have anonymity features built in. Freenet is a censorship-resistant data store

Chapter 2. Related Work 18

for a pure P2P network. Since it emphasizes on the censorship and

anonymity, there is a tradeoff that it is slower and does not have integrated

search functionality. All stored documents are segmented, encrypted, and

distributed over anonymous peers so that it is difficult for a person to trace

which peers are hosting a particular file. Freenet does not have the query

flooding problem because it adopts a key-based routing. To publish a

document, it is routed from peer to peer and stored in the anonymous

destination peer. Those intermediate peers do not know which the initiating

peer is. Since the same routing algorithm is used for all published

documents, they form a cluster of similar documents which is similar to

Discovir. To search a document with a given key, the peer uses the same

key-based routing to locate the destination peers that may contain the target.

Since the routing algorithm is heuristic in nature, we cannot guarantee that it

always find the target. The main difference between Freenet and S2S

searching is that peers of the former one stores other peers’ contents,

whereas peers of the later one stores local contents. Third generation

networks, however, have not reached mass usage for file sharing because of

the extreme overhead which anonymity features introduce, multiplying the

bandwidth required to send a file with each intermediary used [41].

Table 1 and Table 2 show the comparison of the aforementioned pure

and hybrid P2P networks respectively.

Chapter 2. Related Work 19

Table 1. Comparison of Pure P2P Networks

 Sharing Peer Query routing
Gnutella Any file Store local files No

BitTorrent Mainly video
files

Store file
fragments

Tracker

Discovir Image files Store local files Firework query
model

Freenet Documents Store documents
published from
other peers

Key-based

S2S Searching HTML
documents

Store a website Distributed
registrars

Table 2. Comparison of Hybrid P2P Networks

 Sharing Peer Hybrid model
Napster Audio files Store local files Index server

Kazaa Any file Store local files
and other peers’
indices

Super-nodes

Gnutella2 Any file Store local and
other peers’
indices and files

Leaves and hubs

YouSearch HTML
documents

Store local files Registrar

GAroute Any file Store local files Zone managers

Chapter 2. Related Work 20

2.2 Query Routing Strategies

In a P2P file sharing system, files are always indexed in order to

improve the performance of searching. When we search for a file, we search

in the file index instead of the files themselves. File indices can be stored by

using the centralized approach, localized approach, or distributed approach.

For the centralized approach, a centralized server stores the index of all

peers. Examples are Napster and YouSearch. For the localized approach,

each peer stores the index of its locally shared files. Examples are Gnutella

and Discovir. For the distributed approach, the index of locally shared files

is distributed to other peers. Freenet is an example. In this section, we

introduce two different query routing strategies which are (1) document

clustering and (2) Distributed Hash Table (DHT) for the localized approach

and distributed approach respectively. Moreover, query routing is not

necessary for the centralized approach because all indices are stored in the

centralized server.

1) Document Clustering: One of the query routing strategies for the

localized approach is the firework query model [36] in Discovir which is

based on the document clustering. There are two types of links which are

random links and attractive links. Random links are connections of peers

which peers randomly make to other peers in the network. Attractive links

are connections of peers which peers explicitly make to other peers when

two peers share the similar data. The attractive links self-organize or cluster

Chapter 2. Related Work 21

a group of peers with similar contents. In this model, a query first walks

around the network from peer to peer by random links. Once it reaches the

target cluster, it is broadcasted by peers using attractive links inside the

cluster (see Figure 4). The TTL value of the query message does not

decrease in attractive links. Unfortunately, this query routing strategy

depends on a random walk which fails if it does not walk to the target

cluster. In addition, Discovir uses the firework query model to route queries

based on summarized indices which is like S2S Searching. In that case, the

summarized index is the feature vector.

2) DHT: The distributed approach requires some query routing

strategies so that we are able to look up the index location by given a key.

DHT is one of the most popular techniques to distribute document keys or

indices over peers [22]. CAN [45] models the key as the point on a

Figure 4. Firework Query Model

Chapter 2. Related Work 22

d-dimension Cartesian coordinate space, while each peer is responsible for

the key-value pairs inside its specific region. pSearch [10] is a modification

of CAN for content-based full text search applications which models the key

as a latent semantic index [43]. Chord [28] models the key as an m-bit

identifier and arranges the peers into a logical ring topology to determine

which peer is responsible for storing which key-value pair. Pastry [2] and

Tapestry [7] are similar which are based on the Plaxton mesh. Identifiers are

assigned based on a hash on the IP address of each peer [15]. Pastry differs

from Tapestry in the method by which it handles network locality and

replication.

2.3 P2P Network Security

Besides the aforementioned query routing strategies, there is also some

research about the security of P2P networks. Here, we briefly introduce two

of them.

Cornelli proposes an approach [16] to P2P security where servents can

keep track and share the information about the reputation of their peers with

each other. The reputation sharing depends on a distributed polling

algorithm such that resource requestors can assess the reliability of

perspective providers before initiating the download. As the result, it

complements the existing P2P protocols and keeps the current level of

anonymity of requestors and providers.

Chapter 2. Related Work 23

Kamvar proposes the EigenTrust algorithm [43] for the reputation

management in P2P networks which decreases the number of downloads of

inauthentic files. The algorithm assigns each peer a unique global trust value

which is based on the peer upload history. The peers use these global trust

values to choose the peers from whom they download. As the result, the

network effectively identifies malicious peers and isolates them from the

network after.

Chapter 3. S2S Searching 24

3. S2S Searching
In the previous chapters, we introduce the related work of different P2P

networks. In this chapter, we describe our proposed pure P2P network

model and S2S Searching for the Web information retrieval. The chapter is

organized as follows. In Section 3.1, we describe the system architecture of

S2S search engines. The indexing and matching algorithms used in S2S

search engines are shown in Section 3.2. We also describe the query routing

algorithms and communication protocol in Section 3.3 and Section 3.4

respectively. Finally, we show the experimental results with some

discussions in Section 3.5. For the perspectives of site owners and search

engine users, please refer to Section 8.1 in the appendix.

3.1 System Architecture

There are two modules with several components in a S2S search engine.

They are the administration module and search module. In this section, we

describe their components and functions.

3.1.1 Administration Module

The administration module is accessed by site owners to administrate

their S2S search engines. As shown in Figure 5, it has four components.

They are the (1) administrator, (2) local index manager, (3) ranking

manager, and (4) network manager.

Chapter 3. S2S Searching 25

1) Administrator: The administrator provides Web interfaces for site

owners to manage their sites. Before managing their sites, they are required

to login. After successful login, they can manage the local index, ranking

parameters, and S2S network in the administration pages.

2) Local Index Manager: The local index manager is responsible for

managing the local index. It is invoked by the indexing CGI when site

owners want to refresh the local index and content summary after updating

their Web contents. S2S search engines have no background job running

because all programs are invoked by CGI as a request. Therefore, it is

necessary to invoke the indexing CGI manually. However, it is still possible

to do this automatically by using Hyper Text Markup Language (HTML) tag.

For example, the tag

<meta http-equiv = "refresh" content = "60; url=indexing">

tells the browser to refresh CGI URL “indexing” every sixty seconds. Hence,

site owners can keep their browsers open to ensure that the local index is

Administrator
(web interfaces)

Local Index
Manager

Network
Manager

Ranking
Manager

invisible
list

local
index

peers
info

rank
info

black
list

Figure 5. Administration Module and Its Components

Chapter 3. S2S Searching 26

updating from time to time. For the indexing algorithm, we modify the

existing Vector Space Model (VSM) [38] to be adaptive (see Section 3.2).

Its performance is analyzed in Section 3.5. When the indexing CGI is called,

it first traverses document directories and obtains all filenames. But it skips

those CGI programs directories and other files which are listed in the

invisible list. The invisible list determines whether a file is searchable. For

each file, it compares the last indexing date with the last modification date.

If the last modification date is more recent, then it recalculates the index.

Finally, both index summary and content summary are built. For the index

summary, it stores the meta-data of all documents such as filename, size,

and indexing date. For the content summary, it is a fixed size hash table

which stores the importance and confidence of the words. The updated

content summary is then compared with the old content summary. If they

are not the same, then the updated content summary is broadcasted to all

adjacent sites for registrar maintenance (see Section 3.3).

3) Ranking Manager: The ranking manager is responsible for

managing the priority value of each local document and the ranking

parameters p and s (refer to (2)). The priority value is used to determine the

importance of the corresponding document for advertising purpose. It is a

real number which is normalized between zero and one. The higher priority

value the document has, the higher position it is ranked. In addition, the

priority value of other sites’ documents are unchangeable and always set to

0.5. This is to prevent other site owners from always setting the priority

Chapter 3. S2S Searching 27

values of their documents to have maximum value. Only site owners can

alter the ranking strategy in their own sites because the search engines

belong to them.

4) Network Manager: The network manager is responsible for

managing the S2S network. Site owners can add or remove some sites

through this manager. To locate a site, we need to know the corresponding

starting URL which is the root URL of CGI programs. This is similar to

Gnutella that we need to know the Internet Protocol (IP) address of a peer in

order to locate it. Before adding a site, site owners can ping it in the

administration pages to obtain its information such as its response time and

current state. When they try to add a site by giving the starting URL, the

network manager also pings it by calling its pinging CGI (see Section 3.4).

If the given URL is reachable, the network manager adds a record in the

peers information file. The network manager also calls the joining CGI (see

Section 3.4) of that site because joining is two-way. In addition, site owners

can manage the black list which stores a list of banned IP addresses of other

sites and the masks. It acts like a firewall. When some sites are in the black

list, the current site does not accept any request from them. Using black list

mechanism prevents those malicious sites to attack a site.

3.1.2 Search Module

The search module is the core of S2S Searching. It is accessed by

search engine users to search the target information in both local site and

Chapter 3. S2S Searching 28

other sites which are in the same S2S network. As shown in Figure 6, it has

five components. They are the (1) query starter, (2) searcher, (3) peer

threads producer, (4) keywords matcher, and (5) ranker.

1) Query Starter: The query starter provides Web interfaces for search

engine users to search the target information. When it receives a query

request from the search form, it first generates a unique request ID. The ID

is composed of the current time and a random number to ensure the

uniqueness. Then it is passed to the local searching CGI (see Section 3.4)

together with keywords and other parameters in the search form. The local

searching CGI program searches the target information in the local site and

also forwards the query request to adjacent sites. Two sites are adjacent if

they know the starting URLs of each other. The local searching CGI

program returns a list of results to the query starter together with the starting

Query Starter
(web interfaces)

Searcher
(CGI program)

request
ID

peers
info

local
index

rank
info

Peer Threads
Producer

Ranker

Keywords
Matcher

peers’ searching CGI

local searching CGI

black
list

peers’
joining CGI

Figure 6. Search Module and Its Components

Chapter 3. S2S Searching 29

URLs of the sites that contain any document which similarity is greater than

the configurable quality threshold. The query starter joins those high quality

sites by calling their joining CGIs. The more frequent we search in a site,

the larger number of qualified sites we join. Finally, it forwards the results

to the ranker and gets back ranked results. Then it outputs the ranked results

in the HTML or Extensible Markup Language (XML) format which is

specified in CGI parameters.

2) Searcher: The searcher is the entry point of the local searching CGI.

When it receives a query request from the local query starter or other sites’

searching CGIs, it first checks whether the requester is in the black list. If it

is, then the query request is dropped. After passing the black list test, the

searcher checks if the request ID exists in the file. If it exists, the current

request is a repetitive request due to some loops in the S2S network.

Therefore, the query request is dropped. If it does not exist, it passes the

request ID test and the searcher adds the current request ID to the file.

Request ID records are cleaned from time to time in order to save the

storage space. The maximum number of request ID stored is configurable.

Similar to Gnutella, the search scope of S2S Searching is controlled by

using the Time-to-Live (TTL) mechanism. Therefore, the next step is to

check whether the TTL value from CGI parameters is greater than zero. If it

is, then the searcher asks the peer threads producer to route the query

request to adjacent sites (see Section 3.3). At the same time, it asks the

keywords matcher to search local contents by giving keywords. The peer

Chapter 3. S2S Searching 30

threads producer and keywords matcher work in parallel. After some time,

both of them return results which include documents’ information and

starting URLs of the sites. The searcher then gathers these results and

returns to the requester.

3) Peer Threads Producer: The peer threads producer is responsible for

spawning threads to route a query request to adjacent sites. When it is called

by the searcher, it spawns a requested number of threads. Each thread calls a

unique site’s searching CGI and waits for its return. The starting URLs of

the sites are stored in the peers information file. A timeout mechanism is

used to prevent some threads from waiting for too long time. The timeout

time is configurable. Since the waiting time for other sites to return their

results is dominant, the peer threads producer is always idle after sending

the query request to all adjacent sites. Therefore, the keywords matcher gets

full CPU resource to search local contents at that time. Other sites’ searchers

also work in parallel. Hence, the searching process is highly distributed and

efficient. Finally, the peer threads producer finishes waiting all threads to

join and returns gathered results to the searcher. The reason for waiting is

that we need to gather all results for ranking so that they are synchronized.

4) Keywords Matcher: The keywords matcher is responsible for

searching local contents by giving keywords. When it is called by the

searcher, it first extracts the keywords and gets the index summary in the

local index file. It tries to match the keywords with the index by using our

matching algorithm based on the modified VSM. Once it matches, the

Chapter 3. S2S Searching 31

similarity is calculated. Usually, the keywords matcher utilizes the full CPU

resource as the peer threads producer is idle for waiting other sites’

searching CGIs to return. This makes the searching process very efficient.

Finally, the keywords matcher returns the results to the searcher.

5) Ranker: The ranker is responsible for ranking search results based

on priorities and similarities of documents which are real numbers between

zero and one. Priorities are stored locally. Therefore, only local documents

take effect of their priority values because site owners should have rights to

advertise their documents in their own search engines. Other site owners are

not allowed to rank their documents higher in other sites by setting higher

priorities. This avoids cheating. If a document does not belong to a site, it is

always set to the normal priority 0.5. The final ranking value rank is

calculated by

simspriorityprank ×+×= where 1=+ sp . (2)

The ranking parameters p and s are real numbers between zero and one

which are configurable by site owners according to their preferences. The

range of the ranking value is also between zero and one. Different sites have

their own ranking parameters which result in different ranking for the same

document. In addition, it is possible that the ranking partially depends on the

importance of the Web pages such as PageRank [34], HITS [29], and

Affinity Rank [53]. Finally, the ranker sorts search results in the descending

order by the ranking value. The ranked results are returned to the query

starter.

Chapter 3. S2S Searching 32

3.2 Indexing and Matching

In this section, we introduce the background of indexing and matching.

We also describe our indexing and matching algorithms based on the

modified VSM.

3.2.1 Background of Indexing and Matching

In order to improve the matching speed, indexing documents is

necessary. VSM is one of the popular indexing algorithms. It represents

documents and queries by term vectors. The term weighting tij of the term

(word) wi in the document dj is calculated by

iijij idftft ⋅= where
ljl

ij
ij f

f
tf

max
= and

i

d
i n

N
idf log= , (3)

tf is known as the term frequency, idf is known as the inverse document

frequency, fij is the raw frequency of wi in dj, Nd is the total number of

documents, and ni is the number of documents in which wi appears.

Similarly, the query term weighting tiq is calculated by the above equations.

The similarity sim between the document dj and query q is calculated by

cosine the angle between the document and query such that

∑∑

∑

==

=

⋅

⋅
=

⋅

⋅
==

tt

t

N

i
iq

N

i
ij

N

i
iqij

j

j
j

tt

tt

qd

qd
qdsim

1

2

1

2

1),cos(, (4)

where Nt is the total number of index terms. However, when there are some

documents added, deleted, or updated, the new idf values are completely

Chapter 3. S2S Searching 33

different. Therefore, the whole term weighting matrix needs to be

recalculated and the whole index file needs to be overwritten. Since the

Nt-by-Nd term weighting matrix is very large, writing the index file is very

time-consuming which results in slow indexing time.

3.2.2 Indexing Algorithm

Due to the aforementioned shortcoming, we give up the idf value of

each term. We only store the tf value of each term which results in faster

indexing time. Therefore, our indexing algorithm treats every document

independently. The index of each document is stored in an independent

index file. When there is a document added, we calculate its index

independently and store it in an independent index file. A new record is

added to the index summary which contains the path and filename of the

document, indexing date, and the corresponding index file ID. When there is

a document deleted, we delete its index file as well and then delete the

corresponding record in the index summary. When there is a document

updated, we recalculate its index independently and update its

corresponding index file. We also update its indexing date in the index

summary. Other index files of other documents remain unchanged. Hence,

we achieve a fast and adaptive update.

For the index calculation, we extract alpha-numerical words in a text

document and filter out stop words like “a”, “an”, “the”, etc. Numbers are

also filtered away. Then we convert all meaningful words to lower-cased

Chapter 3. S2S Searching 34

words. Let N be the number of different words in a particular document. We

define the word set W as

{ }NiwW i ≤≤= 1| . (5)

For each word wi in W, its corresponding frequency f(wi) is calculated. We

define the word importance I(wi) of the ith word relative to the whole

document as

)(max
)(

)(
1 k

N
k

i
i wf

wf
wI

=

= . (6)

Actually, the word importance is the same as the term frequency of VSM.

Then we group the words by their first alphabets. There are at most 26

groups. N grouped vectors which are in the form of (wi, I(wi)) are stored in a

local index file of a particular document. The word occurrence locations L

of the inverted index can also be stored. However, it consumes much space

and its overhead is shown in Section 3.5. In addition, we build an index

table I which contains file offsets and lengths of each group. The index table

is also stored in the same index file.

3.2.3 Matching Algorithm

After indexing each document, we can quickly match the keywords

with each document by looking at the corresponding index file. Therefore,

to obtain updated results, recalculate the index is necessary if some

documents are updated.

For the keywords matching, by given the keywords, we extract

Chapter 3. S2S Searching 35

alpha-numerical keywords and filter out stop words like “a”, “an”, “the”, etc.

Numbers are also filtered away. Then we convert all meaningful keywords

to lower-cased keywords. Let n be the number of different keywords. We

define the keyword set K as

{ }nikK i ≤≤= 1| . (7)

To perform keywords matching in a document, we may sequentially scan

the corresponding index file and quit the scanning procedure at once if they

are matched. The file scanning takes O(N) time. However, it can be

improved by the following method. Let m be the number of different first

alphabets in K. We define the first alphabet set A as

{ }nmmiaA i ≤∧≤≤≤= 261| . (8)

To perform keywords matching in a document, for each alphabet ai in A, we

look up the index table I for the file offset and length. Then we jump to the

corresponding position and perform the sequential scanning within the

length. When we compare with the former keywords matching, the file

scanning time is greatly reduced to a fraction of m / 26 approximately,

assuming those 26 alphabets are evenly distributed. Hence, The file

scanning takes O(N · m / 26) time. The improvement is shown in Section 3.5.

We define the similarity value si of ki as

⎪⎩

⎪
⎨
⎧ =∃

= ∈

otherwise 0

 if)(ijWwj
i

kwwI
s j . (9)

There are two types of keywords matching which are (1) OR and (2) AND.

1) OR Matching: For each local index file of a particular document, the

Chapter 3. S2S Searching 36

similarity value sim is calculated by

∑
=

=
n

i
is

n
sim

1

1 . (10)

2) AND Matching: For each local index file of a particular document,

the similarity value sim is calculated by

⎪⎩

⎪
⎨

⎧
>∀

= ≤≤
=
∑

otherwise 0

0 if1
1

1
ini

n

i
i ss

nsim . (11)

3.3 Query Routing

In this section, we introduce the background of query routing. We

describe our proposed query routing algorithm based on distributed

registrars. The content summary generation and registrar maintenance are

also presented.

3.3.1 Background of Query Routing

P2P networks like Gnutella have the query flooding property. All peers

broadcast query requests to all their connecting peers. This model has two

advantages. (1) The search is complete because all peers in the same P2P

network within a specific TTL receive the query request. Therefore, all

peers can search their local contents and return results to the query initiating

peer. (2) The results obtained are global optimal because all peers return

their optimal results to the query initiating peer. Therefore, the query

initiating peer can select the most relevant results. However, this model

Chapter 3. S2S Searching 37

introduces the query flooding problem which is mentioned in Section 1.1.

This problem arises from all peers flooding the query to their connecting

peers as well as those irrelevant peers. Consequently, this problem generates

a lot of network traffic and wastes resources of all irrelevant peers. The

network traffic of a simple n-nary tree topology (see Figure 1) is analyzed in

Section 1.1.

In order to reduce the exponential traffic cost (refer to (1)), routing

query to relevant peers only is necessary. The query flooding problem can

be solved by some existing query routing algorithms like CAN [45] and

Chord [28] in pure P2P networks. They use Distributed Hash Table (DHT)

to distribute indices to other peers. Since S2S Searching targets on those

websites hosted by ISP Web servers which space is very limited and a site

may need to store many indices of other sites if we apply the DHT model,

this makes S2S Searching to be impractical. Content-based full text search

applications like YouSearch [36] depends on a centralized registrar for

storing content summaries of each peer. By querying the registrar, each peer

obtains a list of relevant peers so that it directly connects to all relevant

peers to obtain document lists. Thus, the query flooding problem does not

exist. However, this model has two shortcomings. (1) It depends on a

centralized registrar which is un-scalable. The centralized registrar also

needs to store many data of all peers. (2) It has the registrar flooding

problem because all peers query the centralized registrar from time to time.

Moreover, when peers update their local contents, they also push their

Chapter 3. S2S Searching 38

content summaries to the centralized registrar.

3.3.2 Distributed Registrars and Content Summary

In order to solve the query flooding problem in S2S Searching, we

improve the method of YouSearch and propose our own query routing

algorithm based on distributed registrars which is fast and scalable. The idea

is to distribute registrars over sites. Each site manages its own registrar

which contains content summaries of all adjacent sites. This model solves

the scalability problem of YouSearch. Figure 7 shows an example. The

registrar of site B stores the content summaries of sites A, C, and E. When

we use site B to search with some keywords, site B first looks up its own

registrar. If site E has the highest chance to match the keywords (higher

relevance level). Then site B routes the query to site E. Site E receives this

request and also follows the same strategy to route the query.

The registrar is a file which contains starting URLs as IDs of adjacent

sites and their corresponding content summaries. YouSearch uses Bloom

filter [5] to generate content summaries. However, we can only know

E HB

GD

IC

A

F

Figure 7. A S2S Network Topology

Chapter 3. S2S Searching 39

whether a site contains the given keywords instead of knowing its relevance

level. Therefore, Bloom filter cannot meet our requirement. In S2S

Searching, the content summary of a site is a fixed size hash table which

stores the scores of different words of all documents in a site. We define the

content summary S as

{ }missS ii ≤≤∧≤≤= 110| , (12)

where m is the number of blocks in the hash table. In order to obtain an even

distribution, m should be a prime number. A better choice for m is that

12 −= pm , (13)

where p is a prime number. In S2S search engines, p is 11. Hence, S contains

2,047 blocks which take 8,188 bytes, assuming a floating point number

takes four bytes. If the maximum number of adjacent sites is 100, then the

registrar takes less than 800KB to store content summaries. Given a

lower-cased alpha-numerical word w, the hash function H(w) of S is defined

as

)(mod 96)-(27)(
1

1 mcwH
l

i
i

i
⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

− , (14)

where l is the length of w. In S2S search engines, the maximum value of l is

fixed to 13 to prevent the integer overflow. If the ith character is a number,

then ci is fixed to 96. Otherwise, ci is the ASCII code of the alphabet. The

quality of H is analyzed in Section 3.5. We use Horner Scheme [25] for a

faster calculation and the hash function becomes

Chapter 3. S2S Searching 40

)(mod)(mhwH l= where
⎩
⎨
⎧ >−+

= −

otherwise 0
0 if)96(27 1 ich

h ii
i . (15)

To build a content summary, we traverse index files and get the

information about the words and frequencies. Let N be the total number of

different words in a site. We define the word set W as

{ }NiwW i ≤≤= 1| . (16)

For each word wi in W, its total frequency f(wi) of all documents is

calculated. We define the word importance I(wi) of the ith word relative to

the whole site as

)(max
)(

)(
1 k

N
k

i
i wf

wf
wI

=

= . (17)

We also define the hash set HSi of all words which have the same hash code

i as

{ }iwHWwwHS jjji =∧∈=)(| . (18)

Then the ith element si of the content summary is calculated by

⎪
⎩

⎪
⎨

⎧ >
=

∑
∈

otherwise 0

0 if)(i
HSw

j
i

i

i

HSwI
HS
CL

s ij where 1−= ii HSCL . (19)

Actually, si not only stores the average word importance for all wj in HSi, but

also stores the confidence level CLi which is inversely proportional to the

number of collisions in si. When we compare si in different sites, the larger

value of si has, the more important and confident the word wj appears in that

site. Finally, S contains the generated content summary of the adjacent site

Chapter 3. S2S Searching 41

and the registrar stores a list of adjacent sites and their corresponding S.

3.3.3 Query Routing Algorithm

When a site needs to route a query, it first looks up its own registrar.

For each content summary S in the registrar, it calculates the score

(relevance level) of an adjacent site with the given lower-cased

alpha-numerical keywords. Let n be the number of different keywords. We

define the keyword set K as

{ }nikK i ≤≤= 1| . (20)

There are two types of keywords matching which are (1) OR and (2) AND.

1) OR Matching: The score of a site, which is normalized between zero

and one, is defined as

∑
=

=
n

i
kH i

s
n

score
1

)(
1 . (21)

2) AND Matching: The score of a site, which is normalized between

zero and one, is defined as

⎪⎩

⎪
⎨

⎧
≠∀

= ≤≤
=
∑

otherwise 0

0 if1
)(1

1
)(ii kHni

n

i
kH ss

nscore . (22)

After calculating scores of Na adjacent sites, a list of relevant sites with

some false positives is obtained. It routes the query to Na' sites, which have

the highest scores, such that

⎡ ⎤aa NfN ⋅=' , (23)

where the traffic reduction factor f is a real number between zero and one

Chapter 3. S2S Searching 42

for reducing the network traffic. For example, if f is 0.2 and the current site

has 10 adjacent sites, then the query is routed to the two sites which have

the highest scores. If there are some sites which have the same highest

scores, then we randomly pick them.

Our proposed query routing algorithm greatly solves the query flooding

problem. However, it has two shortcomings. (1) The search is incomplete

because not all sites in the same S2S network within a specific TTL receive

the query request. Therefore, not all sites search their local contents and

return their results to the query initiating site. (2) The results obtained are

local optimal because our proposed algorithm performs a greedy search. Not

all relevant sites search their local contents and return their results to the

query initiating site. Therefore, the query initiating site cannot obtain global

optimal results. Since this is a tradeoff, we make a balance between the

query routing and query flooding. We enable infrequent query flooding in a

site with a small probability p. When it receives a query request, it has the

probabilities p and 1-p to use the infrequent query flooding and query

routing algorithm respectively. With infrequent query flooding, our

proposed algorithm improves the search to be semi-complete and

semi-global optimal. We analyze the previous simple n-nary tree topology

(see Figure 1) for the new query routing model. The depth d of the tree is

the TTL value of the query in the query initiating peer. Assume the

infrequent query flooding probability is p and traffic reduction factor is f.

The expected fan-out degree n of each site is calculated by

Chapter 3. S2S Searching 43

])1([fppnn −+= . (24)

Let the traffic cost for sending a query between two peers be one unit. The

total traffic cost Troute for searching in the whole network is

1
)1(

1 −
−

== ∑
= n

nnnT
dd

i

i
route units. (25)

Now, we compare it with the query flooding model. If every node has 10

degrees of fan-out (n = 10) and the TTL value is also 10 (d = 10), then the

total traffic cost for the query flooding model Tflood (refer to (1)) is

11,111,111,110 units. On the other hand, if every node has a query flooding

probability 0.1 (p = 0.1) and traffic reduction factor 0.2 (f = 0.2), then the

expected fan-out degree n (refer to (24)) is 2.8 and the total traffic cost for

the query routing model Troute (refer to (25)) is only 46,073 units. When the

TTL value increases, the total traffic cost significantly decreases comparing

with the query flooding model. Hence, our proposed algorithm solves the

query flooding problem well. Table 3 shows the comparison of different

query routing algorithms.

Table 3. Comparison of Query Routing Algorithms

 Query flooding Query routing Infrequent flooding
Search Complete Incomplete Semi-complete
Results Global optimal Local optimal Semi-global optimal
Traffic Expensive:

∑
=

d

i

in
1

Very cheap:

∑
=

⋅
d

i

inf
1

)(

Cheap:

∑
=

−+
d

i

ifppn
1

]})1([{

Chapter 3. S2S Searching 44

3.3.4 Registrar Maintenance

In order to maintain the most updated content summaries, the

maintenance of registrars is necessary. Recall that every site stores its

adjacent sites’ content summaries in its own registrar. It is necessary for

adjacent sites to send their updated content summaries if their contents are

updated. Therefore, when a site updates its local contents, it recalculates its

local index and also content summary. If the updated content summary is

different from the old one, then it broadcasts its updated content summary to

all adjacent sites by calling their updating CGIs (see Section 3.4). This

model does not introduce the registrar flooding problem of YouSearch

because update is usually infrequent and it only disturbs adjacent sites in

one level. Figure 7 shows an example. When site B is updated, it broadcasts

its content summary to sites A, C, and E. Other non-adjacent sites are

unaffected as their registrars do not store the content summary of site B. In

addition, broadcasting content summary in one level is rather cheap.

Assume it takes four bytes to store a floating point number. Then it takes 4 ·

m · Na bytes to broadcast, where m is the number of blocks in a content

summary and Na is the number of adjacent sites. In S2S search engines, m is

2,047. If the maximum number of adjacent sites is 100, then it takes less

than 800KB to broadcast and each site receives 8KB data.

Chapter 3. S2S Searching 45

3.4 Communication Protocol

S2S Searching targets on those websites which is hosted by ISP Web

servers. Therefore, we assume that site owners have very limited privilege

to administrate their sites. For example, they are only allowed to transfer

their files between their local computers and Web servers through File

Transfer Protocol (FTP). It is a challenge to make S2S search engines plug

into most sites easily and do not require any system administrator to install

some special software. Taking these into consideration, CGI seems to be the

best choice for the communication protocol which has four advantages. (1)

Most Web servers support CGI programming languages such as Java Servlet.

(2) Site owners can install CGI programs by themselves. The usual step is to

copy CGI programs to the CGI directory. Thus, they do not need to ask any

system administrator to install. (3) CGI is on top of Hyper Text Transfer

Protocol (HTTP) where firewalls usually allow these packets to pass

through. Thus, they do not need to ask any system administrator to open

other ports in firewalls. (4) CGI programs are located by URLs which are

location transparent [19]. This is very important because if the IP address of

the Web server is changed due to a server migration, then the CGI URLs are

still unchanged. There are six CGIs for the communication protocol. They

are the starting CGI, searching CGI, pinging CGI, joining CGI, leaving CGI,

and updating CGI which are described in this section. Table 4 shows their

summary.

Chapter 3. S2S Searching 46

3.4.1 Starting CGI

The starting CGI is called by search forms for starting search requests.

After it is called, it calls the local searching CGI for obtaining search results.

The CGI name is start. There are five parameters. (1) The parameter key

(string type) specifies the keywords to be searched. (2) The parameter type

Table 4. Summary of Six CGIs

 Name Parameter and Type Return
Starting
CGI

start key (string),
type (“or” / “and”),
scope (“global” / “local”),
ttl (integer),
style (“html” / “xml”)

HTML / XML
code

Searching
CGI

search id (string),
key (string),
type (“or” / “and”),
ttl (integer),
threshold (float)

Documents’ info,
starting URL

Pinging
CGI

ping option (“status” / “peers”
/ “echo”),
value (string)

Depend on option

Joining
CGI

join url (string) Successfulness

Leaving
CGI

leave url (string) Successfulness

Updating
CGI

update url (string),
summary (binary)

Successfulness

Chapter 3. S2S Searching 47

(string type, either “or” or “and”) specifies the keywords matching type. (3)

The parameter scope (string type, either “global” or “local”) specifies the

searching scope of the S2S network. (4) The parameter ttl (integer type)

specifies the maximum level of sites (excluding the local site) that the query

request passes through. (5) The parameter style (string type, either “html” or

“xml”) specifies whether the style of the search results is either in the

HTML or XML format. It returns the HTML or XML code which contains

ranked results.

3.4.2 Searching CGI

The searching CGI is called by the starting CGI or other sites for

searching the target information. After it is called, it also calls other

searching CGIs of adjacent sites to route the query request. The CGI name is

search. There are five parameters. (1) The parameter id (string type)

specifies the unique ID of the query request. (2) The parameter key (string

type) specifies the keywords to be searched. (3) The parameter type (string

type, either “or” or “and”) specifies the keywords matching type. (4) The

parameter ttl (integer type) specifies the current TTL value of the query

request. (5) The parameter threshold (float type) specifies the quality

threshold for site joining. It returns a list of results which includes

documents’ filenames, URLs, dates, sizes, and similarities. If there is any

document which similarity is greater than the quality threshold, then the

starting URL of the current site is also returned.

Chapter 3. S2S Searching 48

3.4.3 Pinging CGI

The pinging CGI is called by the joining CGI or other sites for

querying the information about the current site such as the response time

and number of sites joined. The CGI name is ping. There is a parameter

option (string type) which specifies the query option. It returns the

information which depends on the query option. There are three options

which are “status”, “peers”, and “echo”. (1) The option “status” is to check

if the current site is alive which returns the string “ok”. (2) The option

“peers” is to query the number of sites joined. (3) The option “echo” takes

one parameter value (string type) and then echoes the input string. It is used

to calculate the response time of the current site.

3.4.4 Joining CGI

The joining CGI is called by other sites for requesting the current site

to join another site which starting URL is specified in the parameter. After it

is called, it calls the pinging CGI of the target site to check whether it is

valid. The CGI name is join. There is a parameter url (string type) which

specifies the target site’s starting URL. It returns the successfulness of

joining.

3.4.5 Leaving CGI

The leaving CGI is called by other sites for requesting the current site

Chapter 3. S2S Searching 49

to leave another site which starting URL is specified in the parameter. The

CGI name is leave. There is a parameter url (string type) which specifies the

target site’s starting URL. It returns the successfulness of leaving.

3.4.6 Updating CGI

The updating CGI is called by other sites for updating another site’s

content summary in the current site’s registrar which starting URL is

specified in the parameter. The CGI name is update. There are two

parameters. (1) The parameter url (string type) specifies the target site’s

starting URL. (2) The parameter summary (binary data in string type)

specifies the content summary of the target site. It returns successfulness of

updating.

3.5 Experiments and Discussions

In this section, we summarize the experimental results with some

discussions. We measure the (1) performance of indexing, (2) performance

of matching, (3) performance of S2S Searching, and (4) quality of the

content summary. All experiments are performed with the same computer

configuration (see Table 5). The computer has enough physical memory so

that it does not require any memory swapping. It also has a fast network

speed to simulate those Web servers which are placed in data centers.

However, it has a slow file Input/Output (I/O) speed as they only use

Chapter 3. S2S Searching 50

Network File System (NFS) instead of local raid-disks. Its overall

performance is less than a recent dedicated Web server.

3.5.1 Performance of Indexing

This experiment is to measure the performance of indexing in both size

and time. In Section 3.2, we mention that the word occurrence locations L of

the inverted index can also be stored in index files. To measure the size and

time differences between the presence and absence of L, we randomly select

31 HTML posters in the Twelfth International World Wide Web Conference

[47]. The total document size of the text data to be indexed is 441KB. We

incrementally add the document size from 11KB (first poster) to 441KB

(last poster) and measure the corresponding (1) indexing size and (2)

indexing time.

1) Indexing Size: Figure 8 shows the relationship between the original

document size and indexing size with and without L. The average

Table 5. Computer Configuration of S2S Searching Experiments

Item Setting
CPU Sun Blade 1000 at 900MHz
Memory 2GB RAM
Network 100Mbps
Disk NFS
OS Sun Solaris 8
Java VM Java 2 Standard Edition 1.4.2_05
Web server Jakarta Tomcat 3.3.2

Chapter 3. S2S Searching 51

index-to-document ratio (slope of the line) with and without L are about

0.74 and 0.45 respectively. Both presence and absence of L take linear size.

However, storing L in index files consumes much space as the overhead.

Without L, the size is reduced by about 40 percent. The usage of L is that

when we display the search result of a document, we may also display its

part of text that contains the given keywords. Using L reduces the time for

locating the target text but increases the space consumption. Due to the

space limitation of websites hosted by ISP Web servers, we simply discard L

which is like YouSearch (see Figure 2 of [36]).

2) Indexing Time: Figure 9 shows the relationship between the original

document size and indexing time with and without L. Recall that our

indexing algorithm is adaptive so that when there is a document added or

updated, we only recalculate the index of the corresponding document.

Other index files are unaffected. However, the time measured in this

0

50

100

150

200

250

300

350

0 100 200 300 400 500
Document Size (KB)

In
de

xi
ng

 S
iz

e
(K

B)

With L Without L

Figure 8. Indexing Size of S2S Search Engine

Chapter 3. S2S Searching 52

experiment is the worst case that all documents are updated so that they

need to be re-indexed. Both presence and absence of L take linear time.

Actually, the bottleneck is in the file I/O as we store the document and index

files in NFS which is much slower than local raid-disks. Therefore, it

requires some time to read the document file and write the index files.

Without L, the time is reduced by about 20 percent because we do not need

to write L to the disk.

3.5.2 Performance of Matching

This experiment is to measure the performance of matching in time. In

Section 3.2, we mention that we build an index table I which contains file

offsets and lengths of each first alphabet group for a faster matching. To

measure the time differences between the presence and absence of I, we

randomly select 31 HTML posters in the Twelfth International World Wide

0

1

2

3

4

5

6

0 100 200 300 400 500
Document Sise (KB)

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

With L Without L

Figure 9. Indexing Time of S2S Search Engine

Chapter 3. S2S Searching 53

Web Conference. The total document size of the text data to be matched is

441KB. We incrementally add the document size from 11KB (first poster) to

441KB (last poster) and measure the corresponding matching time with

some random keywords.

Figure 10 shows the relationship between the original document size

and matching time with and without I. Both presence and absence of I take

linear time. Actually, the bottleneck is in the file I/O as we store index files

in NFS which is much slower than local raid-disks. Therefore, it requires

some time to read the index files. With I, the time is reduced by about 84

percent which is very significant. The reason of the great improvement is

that without I, we sequentially scan the index files which take a lot of time.

However, with I, we look up I for the file offset and length of the first

alphabet of keywords. Then we jump to the corresponding position and

perform the sequential scanning within the length. Theoretically, the file

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 100 200 300 400 500
Document Size (KB)

M
at

ch
in

g
Ti

m
e

(s
ec

on
ds

)

With I Without I

Figure 10. Matching Time of S2S Search Engine

Chapter 3. S2S Searching 54

scanning time is greatly reduced to a fraction of m / 26 approximately where

m is the total number of different first alphabets of the keywords, assuming

those 26 alphabets are evenly distributed.

3.5.3 Performance of S2S Searching

This experiment is to measure the performance of S2S Searching in

both (1) searching time and (2) searching time dependency by simulation.

1) Searching Time: We measure the performance of S2S Searching in

searching time by simulation. The total number of virtual sites to be

searched is 10,000 which are randomly connected and evenly distributed in

two computers. Each virtual site contains 400KB documents and the

matching time is about 0.1 second according to Figure 10. We search in

these 10,000 virtual sites and measure the searching time with different TTL

values. During searching, query packets are propagated between two

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

0 200 400 600 800 1000
TTL

Ti
m

e
(s

ec
on

ds
)

Figure 11. S2S Searching Time

Chapter 3. S2S Searching 55

computers through the network to simulate the real query propagation

scenario. Figure 11 shows the relationship between the TTL value and

searching time. The time measured includes the matching time and query

propagation time of all virtual sites. However, the result propagation time,

which is proportional to the amount of search results, is not included. From

the experimental results, we demonstrate that S2S Searching is efficient in

some large scaled S2S networks. The efficiency is due to the fact that the

searching process is highly distributed and is done in parallel. When a site

receives a query, it first concurrently forwards the query to its adjacent sites

and then performs the matching during the wait of returned results.

Therefore, the query can reach all sites quickly. On the other hand, if the site

first performs the matching and then concurrently forwards the query to its

adjacent sites, the searching time increases a lot as the query reaches all

sites slowly.

2) Searching Time Dependence: We measure the performance of S2S

Searching in searching time dependence by simulation. There are 10 sites

which are connected by a linear structure (see Figure 12) which adjacency

matrix A is

1 2 3 10…

Figure 12. Linear Structure of 10 Sites

Chapter 3. S2S Searching 56

⎩
⎨
⎧ =−

=
otherwise0

1 if 1 ji
Aij . (26)

Figure 13 shows the searching time in 10 trials with different matching time.

The results are obtained by the following procedure. First, we set the

matching time of the 10 sites to one second and measure the searching time

which is indicated by the curve labeled “normal”. Second, we change the

matching time of nine sites to half second and measure the searching time

which is indicated by the curve labeled “fast”. However, the searching time

does not improve. Then we change the matching time of the nine sites back

to one second. Finally, we change the matching time of one site to two

seconds and measure the searching time which is indicated by the curve

labeled “slow”. The searching time increases to about two seconds. From

the experimental results, we demonstrate that the searching time depends on

the slowest site which involves in searching. The reason is that the query is

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7 8 9 10
Trial

Ti
m

e
(s

ec
on

ds
)

Normal Fast Slow

Figure 13. S2S Searching Time Dependence

Chapter 3. S2S Searching 57

first propagated to adjacent sites. Then each site performs the matching.

Those fast sites which finish their matching always wait for those slow sites

to return their results. If there is any slow site that joins the S2S network, the

searching time may be bad. Therefore, S2S Searching solves this problem

by applying the timeout mechanism. During searching, slow sites that are

timeout are skipped.

3.5.4 Quality of Content Summary

This experiment is to measure the quality of the content summary in

our proposed query routing algorithm. In Section 3.3, we mention that the

content summary is a fixed size (2,047 blocks) hash table which stores the

scores of different words of all documents in a site. Therefore, the quality of

the content summary can be measured in terms of the number of collisions.

We randomly select some HTML posters in the Twelfth International World

Wide Web Conference as the documents in a site. Then we build the

corresponding content summary and measure the number of collisions in

each block of the hash table. We only present one of our most representative

results.

Figure 14 shows the pie chart of the usage and the number of collisions

C of the content summary hash table. The content summary contains 31

documents. After removing the stop words, the total number of different

words to be hashed is 5,423. There are 2,047 blocks in the hash table. For an

even distribution, each block should ideally have about 1.65 collisions. First,

Chapter 3. S2S Searching 58

we calculate the usage of the hash table which is about 93%. This result

shows that the hash table is quite efficient. Second, we calculate the average

number of collisions of the hash table which is about 1.85 (near to the ideal

case 1.65) with less standard deviation 1.53. This result shows that the hash

table is quite evenly distributed and confident. Therefore, the content

summary is quite high in the quality. Actually, the quality depends on l and

m in the hash function (refer to (14) and (15)). If they are larger, then the

quality is higher. The larger value of l has, the more characters are involved

in the calculation, but a bigger integer type is needed. The larger value of m

has, the more blocks are available in the hash table, but a bigger memory

size is needed.

7%

19%

26%21%

15%

12%

Unused
C=0
C=1
C=2
C=3
C=4+

Figure 14. Quality of Content Summary Hash Table

Chapter 4. GAroute 59

4. GAroute
GA is a general search algorithm that imitates the evolution process in

the nature [31]. Recently, GAs have been widely used to solve different

network and graph problems. Koo [45] proposes a GA to solve the

neighbor-selection problem in the BitTorrent network which enhances the

decision process performed at the tracker for transfer coordination. Ahn [11]

proposes a GA to solve the shortest path routing problem in a physical

network. One of the popular network and graph problems, which can be

efficiently solved by GA, is the query routing problem in P2P networks.

In the previous chapter, we describe our proposed pure P2P network

model and S2S Searching for the Web information retrieval. In this chapter,

we describe our proposed hybrid P2P network model and GAroute for the

content-based information retrieval based on GA to solve the query routing

problem. The chapter is organized as follows. In Section 4.1, we introduce

the background of our proposed hybrid P2P network model. In Section 4.2,

we describe our proposed GAroute with problem modeling and detail

explanation of the GA operators. Finally, we show the experimental results

with some discussions in Section 4.3. For the GAroute library, please refer

to Section 8.2 in the appendix.

4.1 Proposed Hybrid P2P Network Model

In this section, we introduce the background of hybrid P2P networks.

Chapter 4. GAroute 60

We also briefly describe our proposed hybrid P2P network model based on

zones and zone managers.

4.1.1 Background of Hybrid P2P Networks

YouSearch is a content-based full text search application which uses

the registrar as the centralized server to store content summaries of each

peer. By querying the registrar, we obtain a list of relevant peers so that we

query the relevant peers to obtain document lists. We cannot obtain the

document lists by only querying the registrar because it only stores the

content summaries rather than the indices of each text document of each

peer. Otherwise, it is too space consuming and impractical. The use of the

registrar and DCM makes the application un-scalable when the network

scale increases.

Kazaa is a file sharing application which improves the scalability by

using super-nodes. If a peer is fast in both computation and network speed,

it becomes a super-node. Each super-node is like a small registrar which

stores indices of each file of a few peers, and there are some

communications between super-nodes. Therefore, by querying a super-node,

we obtain relevant file lists in the whole network. However, Kazaa is not

designed for content-based information retrieval. It is also space consuming

if we store indices of multimedia objects in a super-node.

In order to solve the scalability problem of content-based information

retrieval and improve the overhead of the DCM, we refer to Kazaa and

Chapter 4. GAroute 61

YouSearch, and propose a hybrid P2P network model based on QPM. The

whole network is divided by several zones. A zone is a set of peers logically

linking together by a structure which is based on their inter-connection

speed. Hence, it prevents the topology mismatching problem [54]. Each

zone is managed by a zone manager which is a dedicated server like a big

super-node in Kazaa and distributed registrar in YouSearch (see Figure 15).

The size (number of peers) of a zone depends on the computation power of

its corresponding zone manager. We may interpret a zone as an Internet

Service Provider (ISP). The peers that belong to the same ISP have fast

inter-connection speed so that they join the same zone. We describe the roles

of zone manages in the next subsection.

Zone
manager

Zone 1

Zone
managerZone

manager

Zone 2

Zone 3

Figure 15. Structured P2P Network with Three Zones

Chapter 4. GAroute 62

4.1.2 Roles of Zone Managers

Similar to the registrar, the zone manager stores content summaries of

each peer within its zone. When a peer updates its local content, it

recalculates its content summary and pushes its summary to its zone

managers. YouSearch and our proposed S2S Searching generate content

summaries for content-based full text search applications by using Bloom

filter [5] and simple hash function (see Section 3.3) respectively. We use the

method in our proposed S2S Searching to generate content summaries

because it efficiently calculates the relevance level of each peer by given a

query. In addition to managing the content summaries, the zone manager

manages the current P2P network topology within its zone. We outline the

three actions of each peer that involve zone managers.

1) Joining Network: We assume that each peer knows some initial zone

managers before it joins the network and there are some communications

between zone managers. When a new peer joins the network, it queries an

arbitrary initial zone manager to obtain other zone managers in different

zones. Then it chooses a zone with the fastest zone manager and smallest

zone size to join. When it joins the zone, it queries the zone managers to

obtain a set of peers within the zone. Then it chooses one or two peers with

the fastest inter-connection speed to link. The link between two peers is

logical so that logically linking two peers means physically updating the

current P2P network topology stored in the zone manager. It also pushes its

content summary to the zone manager. In addition, when a peer detects that

Chapter 4. GAroute 63

its zone manager is down, it joins another zone by the same joining

procedure.

2) Leaving Network: When an existing peer leaves the network, it

informs its zone manager to remove its content summary and update the

current P2P network topology within its zone. If other existing peers are

disjointed due to the leaving peer, then the zone manager adds random links

to link the neighbors of the leaving peer together. We assume that if two

peers are close (fast inter-connection speed) to each other and linked

together, then their neighbors are also close. Therefore, randomly linking the

neighbors of the leaving peer retains the structure of the zone as close peers

are still linked together. Figure 16 shows an example of the leaving scenario.

When L left, we check whether there exists any path between AB, BC, and

AC. If not, then A, B, and C are disjointed. We add random links AB and BC

to link them together. Since LA, LB, and LC are close, AB and BC are also

close according to our assumption. In addition, when a zone manager

detects that a peer is down, it treats that peer as a leaving peer and uses the

same leaving procedure.

3) Querying: When a query initiating peer initiates a query, it queries

LB

A

C B

A

C B

A

C

L is leaving Peers are disjoined Add random links
Figure 16. Problem of Peers Disjointing Due to a Leaving Peer

Chapter 4. GAroute 64

its zone manager to obtain query routing paths in its zone. The zone

manager also queries other zone managers (similar to Kazaa) to obtain

query routing paths in other zones. In this case, another zone manager

becomes the query initiating peer which links all peers in its zone like a hub

and finds query routing paths in its zone. Finally, all query routing paths

from different zones are returned to the query initiating peer. Then it

propagates the query to all relevant peers through these paths to obtain

document lists. There are two ways that the results (document lists) can be

sent. For the first way, the results are propagated from peer to peer back to

the query initiating peer through the inverted query routing path which is

like QPM. However, this increases the whole network traffic as each peer

receives, adds and forwards the results to the next peer in the inverted query

routing path. For the second way, the results are directly sent to the query

initiating peers which is like DCM. This reduces the whole network traffic

and does not lead to the two aforementioned shortcomings of DCM. Since

the same results are received at the query initiating peers by both ways, the

query initiating peer does not have lower bandwidth consumption by the

first way. Since the results usually do not arrive at the query initiating peer

at the same time by both ways, the query initiating peer does not have better

parallel search by the first way. In addition, the query initiating peer can

obtain partial results by the second way which has a faster response,

whereas the query initiating peer needs to wait for the whole results by the

first way which has a slower response. Therefore, the second way is better

Chapter 4. GAroute 65

than the first way and we adopt the second way in our proposed hybrid P2P

network model.

To find optimal query routing paths within a zone, we propose a novel

GA called GAroute. We focus on our proposed GAroute in the next section.

4.2 Proposed GAroute

By giving the current P2P network topology and relevance level of

each peer (see Figure 17), GAroute returns a list of query routing paths that

cover as many relevant peers as possible. We model the query routing

problem as a directed graph problem G such that

),(EVG = , (27)

where V is a set of vertices representing peers and E is a set of edges

representing the connectivity between peers. We use an adjacency matrix A

to represent the current P2P network topology which is stored in the zone

manager. Two peers are adjacent if they are linked together. A non-zero

value in Aij represents that there is a link from peer i to peer j. For the

relevance level of a peer, different applications may have different

E

H

B G

D

I

C

A

F

3 4 3 1

1 2 0 5

Score

Query
initiating peer

Zone
manager

Figure 17. Structured P2P Network in a Zone with Scores

Chapter 4. GAroute 66

definitions. For example, file sharing applications may define the relevance

level of a peer as the number of files that the query matches in that peer.

Content-based information retrieval applications may treat the relevance

level of a peer as the average similarity between the query and all contents

in that peer. In our application, we use the latter definition. We model the

relevance level as a score and we use a score vector S to store the scores of

all peers. We denote Si as the score of peer i which is query-sensitive and is

calculated by the zone manager. We also denote the query initiating peer as

x1 and the maximum number of paths to be returned as n. Then we pass A, S,

x1, and n to GAroute as parameters which returns a list of query routing

paths P such that

()nipP i ≤≤= 1| . (28)

where a query routing path p is

)()0(
1, jixxjii xxjiAxp

ii
≠⇔≠∧≠∀=

+
. (29)

The if-and-only-if statement in the above equation constrains the path to be

simple (loop-free). Loops in a path are meaningless for query routing

because some peers receive duplicated queries and return duplicated results.

Given a list of query routing paths P, we define the information gain

Hp of a path p in P as the sum of the scores of those unvisited peers such

that

∑
=

−=
||

2
)(

p

i
xxp ii

SH ρ where
⎩
⎨
⎧ ∈

=
otherwise 0

' if VxSx
xρ , (30)

Chapter 4. GAroute 67

ρx is known as the penalty of the peer x and V' is a set of the current visited

peers. Different applications may have different penalty equations. We

define the penalty of a peer to be the same as its score because those visited

peers give us duplicated results for a duplicated query so their scores are

zero. For example, we have to route two paths p1 = <A, C, E, F, G> and p2 =

<A, C, E, F, H, I> where A is the query initiating peer (see Figure 17). After

routing a query by p1, the information gain is eight units. However, after

routing a query by p2, the information gain is six units instead of 14 units

because the peers C, E, and F are visited by the first path. Therefore, their

scores are zero in the second path.

Our problem is to find at most n query routing paths P from a query

initiating peer to any destination peer which maximize the total information

gain where

∑
=≤≤

==
n

i
p

nip
i

i

HnxSAGArouteP
1)1|(

1 maxarg),,,(. (31)

We model this as a Longest Path Problem which is NP-complete. Although

O(|V|2) time Dijkstra’s algorithm can be modified to find the longest path, it

only works for directed acyclic graphs [37].

Since it is unlikely to have a polynomial time algorithm for finding the

longest path in cyclic graphs, related approximation algorithms are proposed

to solve this problem in polynomial time with a path length bound [48].

Both Monien’s algorithm [6] and Bodlaender’s algorithm [23] find a long

path with a length bound Ω(log L / log log L) where L is the length of the

Chapter 4. GAroute 68

optimal solution. Alon’s Color-coding algorithm [39] finds a better long

path with a length bound Ω(log L). Bjorklund’s algorithm [1] improves the

length bound by dividing a graph into connected components such that the

length bound is Ω((log L / log log L)2). For bounded degree graphs, it

further improves the length bound to Ω(log2 L / log log L). Moreover,

Karger’s algorithm [14] finds a long path with a length bound Ω(L½ / log L)

in sparse Hamiltonian graphs.

However, all aforementioned algorithms cannot be easily modified for

our specific longest path query routing problem because some of them only

work in un-weighted graphs and some of them have a fixed destination.

Therefore, we propose GAroute to solve this specific problem which obtains

high quality approximate solutions in polynomial time by using GA. Our

proposed GA refers to Ahn’s GA [11] which finds the shortest path from a

given source node to a given destination node. In the following subsections,

we describe our proposed GA for finding long paths and optimization

technique which include the genetic representation, population initialization,

mutation, crossover, fission, creation, selection, stopping criteria, and

optimization. We also compare our proposed GA with Ahn’s GA. Figure 18

shows our proposed GA flow chart. Besides conventional GA operators, we

propose two extra GA operators fission and creation to improve the quality

of solution.

Chapter 4. GAroute 69

4.2.1 Genetic Representation

A gene represents the ID of a peer. A chromosome contains a sequence

of genes which represents the locus of a query routing path. Unlike

conventional GAs, the length of a chromosome is variable. According to the

definition in (29), any loop in a path is invalid. Hence, every gene in a

chromosome is unique and the maximum length of any chromosome equals

to the total number of peers in the network. Inside a chromosome, the first

gene always represents the query initiating peer and the last gene represents

a destination peer which can be any peer in the network. Figure 19 shows an

example for representing two paths. The left figure shows the graph and two

paths (solid line and dotted line) from the query initiating peer A. The right

Start

Population initialization

End

Mutation
Crossover

Creation
Fission

Selection

Optimization

Satisfied
stopping
criteria?

Y

N

Figure 18. GA Flow Chart

Chapter 4. GAroute 70

figure shows the corresponding chromosomes.

The genetic representation of our proposed GA is similar to that of

Ahn’s GA except that the last gene always represents the given destination

node for Ahn’s GA.

4.2.2 Population Initialization

The purpose of the population initialization is to create chromosomes

for the first generation. Similar to Ahn’s GA, we use random initialization

instead of heuristic initialization for a better diversity of chromosomes.

The procedure of population initialization is that given an adjacency

matrix A and a query initiating peer x1, we randomly create N unique

chromosomes where N is the population size and n ≤ N. If there are not

enough unique chromosomes, we randomly fill up some duplicated

chromosomes to the remaining population. The population size should be

proportional to the number of peers in the network in order to have a better

quality of solution. To create a chromosome C, we first add x1 to C. We also

create an available peer list L and initialize L by adding all peers in the

E

H

B G

D

I

C

A

F

HF IDCBA HF IDCBA

GFECA GFECA

Variable length

Figure 19. Genetic Representation of Two Paths

Chapter 4. GAroute 71

network to L except x1. If a peer is in L, that means it has not been added to

C so it is available. The purpose of using L is to prevent any loop formed in

a path during the creation of chromosomes. This is similar to the use of a

topological information database for Ahn’s GA. Let xlast be the last peer in C.

We randomly choose an adjacent peer x of xlast in L. Then we add x to C and

remove x from L. This process continues until there is no more adjacent peer

in L. Algorithm 1 shows the creation procedure of a chromosome which

takes O(|V|) time where |V| is the total number of peers in the network.

Hence, the population initialization takes O(N · |V|) time. Figure 20 shows a

creation example of a chromosome.

The population initialization of our proposed GA is similar to that of

Ahn’s GA except that the last gene must be the given destination node for

Ahn’s GA. Therefore, all invalid chromosomes are reinitialized for Ahn’s

GA.

Algorithm 1. Chromosome Creation

Creation (A, x1) returns C
C := <x1>, L := {all peers except x1}, x := x1
While ∃y∈L Axy ≠ 0 do

x := y
Append x to C
Remove x from L

End while

Chapter 4. GAroute 72

4.2.3 Mutation

Similar to conventional GAs, the purpose of mutation is to reach the

optimal solution by mutating some genes in a chromosome. In each

generation, Nm = ⎡N · λm⎤ chromosomes are randomly chosen to be mutated

and added to the new population for the selection where N is the population

size and 0 ≤ λm ≤ 1 is the mutation proportion.

The procedure of mutation is that given an adjacency matrix A, a score

vector S and a chromosome C to be mutated, we randomly choose a

mutation point m which is between the second gene and last gene. Then we

delete all genes in C starting from m. We also create an available peer list L

and initialize L by adding all peers in the network to L except those peers

existing in C. If a peer is in L, this means that it has not been added to C so

it is available. The purpose of using L is to prevent any loop being formed in

a path during the mutation. Let xlast be the last peer in C. We choose an

adjacent peer x of xlast in L, which has the highest score in S, by a greedy

search. Then we add x to C and remove x from L. This process continues

E

B

D

C

A

Query
initiating peer

DD

ECBA ECBA

C =

L =

Initial:

D CD C

EBA EBA

C =

L =

CD ACD A

EB EB

C =

L =

ACD BACD B

EE

C =

L =

Pass 1:

Pass 2: Pass 3:

Figure 20. Creation of a Chromosome

Chapter 4. GAroute 73

until there is no more adjacent peer in L. Algorithm 2 shows the mutation

procedure of a chromosome which takes O(|V|) time where |V| is the total

number of peers in the network. Hence, the mutation of Nm chromosomes in

each generation takes O(Nm · |V|) time. Figure 21 shows a mutation example

of a chromosome. E is adjacent to C with the highest score (four) and H is

adjacent to F with the highest score (five).

The mutation of our proposed GA is slightly different from that of

Ahn’s GA. After deleting genes starting from m, Ahn’s GA randomly choose

an adjacent node instead of using the greedy search. We found that using the

greedy search in the mutation has a fast convergence. Although the quality

of solution is a bit lower, we improve it by using crossover and creation.

Algorithm 2. Chromosome Mutation

Mutation (A, S, C) returns C
Randomly choose m where 2 ≤ m ≤ |C|
For i := m to |C| do

Remove xi from C
End for
L := {all peers}, x := xm–1
For each x' in C do

Remove x' from L
End for
While ∃y∈L Axy ≠ 0 ∧ Sy is maximum do

x := y
Append x to C
Remove x from L

End while

Chapter 4. GAroute 74

4.2.4 Crossover

Since the mutation adopts a greedy search which may be trapped by

local optima, crossover is proposed to escape these traps by crossing two

chromosomes which produce better chromosomes. In each generation, Nc =

⎡N · λc⎤ chromosomes are randomly chosen to cross with other

chromosomes and added to the new population for the selection where N is

the population size and 0 ≤ λc ≤ 1 is the crossover proportion.

The procedure of crossover is that given two chromosomes C1 and C2,

we find out all pairs of common genes which form a list of potential

crossing points L. We randomly choose a pair of crossing points (r, s) in L

where 2 ≤ r ≤ |C1| and 2 ≤ s ≤ |C2|. Then we perform the crossover which

produces two new chromosomes C1' and C2' such that C1' contains the genes

from the first gene to the gene just before r in C1 and from the gene at s to

E

H

B G

D

I

C

A

F

3 4 3 1

1 2 0 5

E

H

B G

D

I

C

A

F

3 4 3 1

1 2 0 5

CBA CBA

HF IECBA HF IECBA

GFDCBA GFDCBA
Gain = 3 + 1 + 2 + 0 + 3 = 9

Gain = 3 + 1 + 4 + 0 + 5 + 1 = 14

Delete genes

Greedy search

Step 1:

Step 2:

Step 3:

Before:

After:

Mutation point

Figure 21. Mutation of a Chromosome

Chapter 4. GAroute 75

the last gene in C2, while C2' contains the genes from the first gene to the

gene just before s in C2 and from the gene at r to the last gene in C1. If there

is no common gene, then crossover is impossible. Algorithm 3 shows the

crossing points finding procedure of two chromosomes which takes O(l · log

l) time and Algorithm 4 shows the crossover procedure of two chromosomes

which takes O(l) time where l is the length of a chromosome. Hence, the

crossover of Nc chromosomes in each generation takes O(Nc · l · log l) time.

Figure 22 shows a crossover example of two chromosomes. The crossover

produces better chromosomes because both parents contain optimal partial

paths. Both C and F are common genes so there are two potential crossing

points. We choose C as the crossing point in this example. The crossover of

our proposed GA is exactly the same as that of Ahn’s GA.

Chapter 4. GAroute 76

Algorithm 3. Crossing Points Finding

Crossing-points-finding (C1, C2) returns L
Quick-sort peers’ IDs in C1 and C2 in non-descending order
L := φ, i := 1, j := 1
While i ≤ |C1| and j ≤ |C2| do

If ith sorted ID in C1 < jth sorted ID in C2 then
i := i + 1

Else if ith sorted ID in C1 > jth sorted ID in C2 then
j := j + 1

Else
If ith sorted ID in C1 ≠ query initiating peer ID then

r := original position of ith sorted ID in C1
s := original position of jth sorted ID in C2
Add (r, s) to L

End if
i := i + 1
j := j + 1

End if
End while

Algorithm 4. Chromosomes Crossover

Crossover (C1, C2, L) returns C1', C2'
Randomly choose (r, s) in L
C1' := φ, C2' := φ, x := C1, y := C2
For i := 1 to r–1 do

Append xi to C1'
End for
For i := s to |C2| do

Append yi to C1'
End for
For i := 1 to s–1 do

Append yi to C2'
End for
For i := r to |C1| do

Append xi to C2'
End for

Chapter 4. GAroute 77

E

H

B G

D

I

C

A

F

3 4 3 1

1 2 0 5

E

H

B G

D

I

C

A

F

3 4 3 1

1 2 0 5

HF IECBA HF IECBA
Gain = 3 + 1 + 4 + 0 + 5 + 1 = 14

Step 2:

Before:

After:

GFDCA GFDCA
Gain = 1 + 2 + 0 + 3 = 6

GFDCBA GFDCBA
Gain = 3 + 1 + 2 + 0 + 3 = 9

Step 1:

H IFECA H IFECA
Gain = 1 + 4 + 0 + 5 + 1 = 11

Potential crossing points

Crossing point

Figure 22. Crossover of Two Chromosomes

4.2.5 Fission

Since the crossover may produce invalid chromosomes which violate

the loop constraint in (29), fission is proposed to break an invalid

chromosome down to several valid chromosomes. Consider two

chromosomes C1 = <A, C, B> and C2 = <A, B, C, D, F, G> with the crossing

point (2, 3) in Figure 22, the two new chromosomes produced after the

crossover are C1' = <A, C, D, F, G> and C2' = <A, B, C, B>. However, C2' is

invalid since it violates the loop constraint. One of the solutions is to

remove any invalid chromosome after the crossover. But this wastes some

produced chromosomes because those invalid chromosomes can be repaired

by using fission which is a novel GA operator.

The procedure of fission is that given an invalid chromosome C, we

find out the first pair of common genes x which is the fission point (u, v)

Chapter 4. GAroute 78

where u < v. Then we perform the fission which produces two new

chromosomes C1' and C2' such that C1' contains the genes from the first gene

to the gene just before v in C, while C2' contains the genes from the first

gene to the gene just before u and from the gene at v to the last gene in C.

We recursively perform the fission procedure on C1' and C2' until all new

chromosomes are valid. Algorithm 5 shows the fission point finding

procedure of a chromosome which takes O(l) time and Algorithm 6 shows

the fission procedure of a chromosome which also takes O(l) time where l is

the length of a chromosome. Hence, the fission of Nf chromosomes in each

generation takes O(Nf · l) time. Figure 23 shows a fission example of a

chromosome. The first pair of common genes is C. The information gain of

both new chromosomes decreases but they become valid after fission.

Since the crossover of our proposed GA is exactly the same as that of

Ahn’s GA, the problem of invalid chromosomes also exists in Ahn’s GA.

Ahn’s GA uses a repair function to solve the problem by deleting genes

from u + 1 to v. Consider the example in Figure 23, the valid chromosome

obtained by the repair function is <A, B, C, D, F, G> which is a subset of the

valid chromosomes obtained by our proposed fission. The other

chromosome <A, B, C, D, F, E> is invalid for Ahn’s GA because the last

gene is not the given destination node G. Hence, our proposed fission is the

generalization of the repair function of Ahn’s GA.

Chapter 4. GAroute 79

Algorithm 5. Fission Point Finding

Fission-point-finding (C) returns (u, v)
u = 0, v = 0, L := φ
For i := 1 to |C| do

If xi ∉ L then
Add xi to L

Else
x := xi
v := i
i := |C|

End if
End for
For i := 1 to v–1 do

If xi = x then
u := i
i := v–1

End if
End for

Algorithm 6. Chromosome Fission

Fission (C, (u, v)) returns C1', C2'
C1' := φ, C2' := φ
For i := 1 to v–1 do

Append xi to C1'
End for
For i := 1 to u–1 do

Append xi to C2'
End for
For i := v to |C| do

Append xi to C2'
End for

Chapter 4. GAroute 80

E

H

B G

D

I

C

A

F

3 4 3 1

1 2 0 5

EFDCBA EFDCBA
Gain = 3 + 1 + 2 + 0 + 4 = 10

Step 2:After:

B GFDCA B GFDCA
Gain = 3 + 1 + 2 + 0 + 3 = 9

E

H

B G

D

I

C

A

F

3 4 3 1

1 2 0 5

Before:

FDCE GFDCBA FDCE GFDCBA
Gain = 3 + 1 + 2 + 0 + 4 + 0 + 0 + 0 + 3 = 13

Step 1: Fission point

Loop

Figure 23. Fission of a Chromosome

4.2.6 Creation

Since mutation and crossover produce evolved chromosomes which

provide fast convergence but less diversity, a novel GA operator called

creation is proposed to randomly create non-evolved chromosomes which

provide extra diversity. Creation is also significant to the quality of solution

when the crossover cannot be performed due to the lack of the potential

crossing point. On the other hand, the problem of the quality of solution

does not exist in Ahn’s GA even though the crossover cannot be performed.

The reason is that the mutation of Ahn’s GA adopts a random search instead

of a greedy search which already provides enough diversity.

In each generation, Nn = ⎡N · λn⎤ chromosomes are randomly created

Chapter 4. GAroute 81

and added to the new population for the selection where N is the population

size and λn ≥ 0 is the creation rate. The algorithm of creation is the same as

that of population initialization. Algorithm 1 shows the creation procedure

of a chromosome which takes O(|V|) time where |V| is the total number of

peers in the network. Hence, the creation of Nn chromosomes in each

generation takes O(Nn · |V|) time. Figure 20 shows a creation example of a

chromosome.

4.2.7 Selection

The selection process is to select the best chromosomes from the new

population for the next generation to ensure the population size is N as

mutation, crossover, fission, and creation produce new chromosomes which

exceed the fixed population size. In each generation, Ng good chromosomes

with the highest fitness are first selected where n ≤ Ng ≤ N and n is the

maximum number of paths to be returned by GAroute. The remaining

population is randomly filled by N – Ng poor chromosomes. This is to

enhance the diversity because those poor chromosomes may produce good

chromosomes in the future. The fitness fC of a chromosome C is exactly the

same as the information gain Hp of its corresponding path p (refer to (30)).

The sequence of selecting paths is important because it affects the

number of paths that cover the relevant peers. Consider two paths p1 = <A, B,

C> and p2 = <A, B, C, D> where A is the query initiating peer. If we first

select p1 and route the query through p1, we gain the information of B and C.

Chapter 4. GAroute 82

Then we select p2 and route the query through p2. We gain the information

of D only because the information of B and C is gained through p1. Totally,

we need to route two times to gain the information of B, C, and D. On the

other hand, if we first select p2 and route the query through p2, we gain the

information of B, C, and D. Therefore, we do not need to further select p1

and route the query through p1 because there is no more information gain.

Totally, we only need to route one time. From the above observation, we

should always select paths in a descending order by the information gain.

The procedure of selection is that given a score vector S, an original

population Po before the selection and the aforementioned N and Ng, we first

create a set of the current visited peers V' and initialize V' to an empty set.

We also calculate the fitness fi for each unselected chromosome Ci based on

S and V'. Then we select the chromosome C with the highest fitness

(primary condition) and maximum length (secondary condition). If there is

more than one chromosome with the highest fitness and maximum length,

then we randomly select one. Moreover, we update V' by adding all peers in

C to V'. This process continues until the number of selected chromosomes

reaches Ng. Finally, N – Ng unselected chromosomes are randomly selected

and a new population Pn is returned after the selection. Algorithm 7 shows

the selection procedure in each generation which takes O(Ng · |Po| · l) time

where l is the length of a chromosome. Figure 24 shows an example for

selecting two out of four chromosomes. In Pass 2, both second and third

chromosomes have the same fitness. We select the second chromosomes

Chapter 4. GAroute 83

because its length is longer.

The fitness of a chromosome in Ahn’s GA is inversely proportional to

the total cost of its corresponding path because Ahn’s GA aims at finding the

shortest path. Furthermore, the selection algorithm of Ahn’s GA is based on

the pair-wise tournament selection without replacement such that we select

the fitter chromosome in each two chromosomes.

4.2.8 Stopping Criteria

After the selection, a generation cycle is completed and there are three

ways for us to terminate which are the (1) solution convergence, (2)

Algorithm 7. Chromosome Selection

Selection (S, Po, N, Ng) returns Pn
Pn := φ, V' := φ
For k := 1 to Ng do

For i := 1 to |Po| do
Calculate fitness fi of Ci based on S and V'

End for
C := chromosome with highest fitness and max. length
Move C from Po to Pn
For each x in C do

Add x to V'
End for

End for
For k := 1 to N – Ng do

Randomly move a chromosome from Po to Pn
End for

Chapter 4. GAroute 84

minimum number of generations, and (3) maximum number of generations.

1) Solution Convergence: We compare all chromosomes in the current

generation with those in the previous generation. If they are all the same,

then our solution converges. However, it may take long time to converge

because each generation contains some randomly selected chromosomes

which are difficult to be the same. A better strategy is to compare Ng good

chromosomes only where Ng is the number of good chromosomes during the

selection. Such strategy makes a balance between the quality and time.

Since Ng good chromosomes are always sorted by their fitness after the

selection, the comparison of Ng good chromosomes between two

generations takes O(Ng · l) time where l is the length of a chromosome. On

H IFDCBA H IFDCBA
f = 3 + 1 + 2 + 0 + 5 + 1 = 12

Pass 1: V' = {}

E

H

B G

D

I

C

A

F

3 4 3 1

1 2 0 5

GFDCBA GFDCBA
f = 3 + 1 + 2 + 0 + 3 = 9

H IFECBA H IFECBA
f = 3 + 1 + 4 + 0 + 5 + 1 = 14

GFDCA GFDCA
f = 1 + 2 + 0 + 3 = 6

Pick this

H IFDCBA H IFDCBA
f = 0 + 0 + 2 + 0 + 0 + 0 = 2

Pass 2: V' = {B, C, E, F, H, I}

GFDCBA GFDCBA
f = 0 + 0 + 2 + 0 + 3 = 5

GFDCA GFDCA
f = 0 + 2 + 0 + 3 = 5

Pick this

Figure 24. Selection of Four Chromosomes

Chapter 4. GAroute 85

the other hand, Ahn’s GA stops when all chromosomes in the population are

the same which is slow.

2) Minimum Number of Generations: We introduce the minimum

number of generations Gmin for preventing under-training which yields low

quality solutions. We do not stop the iteration if the current number of

generations does not reach Gmin even if Ng good chromosomes are the same

between two generations.

Algorithm 8. Two-phase Tail Pruning

Two-phase-tail-pruning (S, P) returns P'
P' := φ, V' := φ
For p := first path to last path in P do

For x := last peer down to second peer in p do
If Sx = 0 or x ∈ V' then

Delete x from p
Else

x := second peer
End if

End for
Calculate information gain Hp of p based on S and V'
If Hp > 0 then

Append p to P'
For each x in p do

Add x to V'
End for

Else
p := last path

End if
End for

Chapter 4. GAroute 86

3) Maximum Number of Generations: We introduce the maximum

number of generations Gmax for preventing overtime. We stop the iteration at

once if the current number of generations exceeds Gmax even if Ng good

chromosomes are different between two generations.

4.2.9 Optimization

Optimization procedure can be performed after satisfying the stopping

criteria so that a better result is obtained. Since we obtain a sorted list of Ng

good chromosomes where Ng is the number of good chromosomes during

the selection, we can return the first n good chromosomes in the last

generation representing the required paths P where n is the maximum

number of paths requested by the query initiating peer and n ≤ Ng. However,

these returned paths can still be optimized by our proposed two-phase tail

pruning optimization technique.

The procedure of two-phase tail pruning is that given a score vector S

and a sorted list of paths P to be optimized. In Phase I, we prune away each

path p in P which information gain Hp is zero. In Phase II, we start from the

last peer in a path and prune away each peer x which score Sx is zero or is

visited through the previous paths (i.e. x ∈ V' where V' is a set of the current

visited peers). Finally, a sorted list of optimized path P' is returned after the

optimization. Algorithm 8 shows a faster two-phase tail pruning procedure

which takes O(n · l) time where l is the length of a path. Both Phase I and

Phase II are running at the same time. Figure 25 shows an example for the

Chapter 4. GAroute 87

two-phase tail pruning of four paths. Consider the second path in Phase II,

we do not remove B because the adjacent peer of A is not C.

Table 6 shows the difference between Ahn’s GA and GAroute. Finally,

Table 7 shows the time complexities of GAroute which are all in the

polynomial time. We verify them by the experimental results which are

discussed in Section 4.3.

FEDBA FEDBA
f = 4 + 2 + 3 + 0 = 9

FDCBA FDCBA
f = 0 + 1 + 0 + 0 = 1

FCBA FCBA
f = 0 + 0 + 0 = 0

FBA FBA
f = 0 + 0 = 0

Phase 1:

FEDBA FEDBA
f = 4 + 2 + 3 + 0 = 9

FDCBA FDCBA
f = 0 + 1 + 0 + 0 = 1

Phase 2:

EDBA EDBA
f = 4 + 2 + 3 = 9

CBA CBA
f = 0 + 1 = 1

Result:

Prune away

Prune away

5
A

3
E

0214Score
FDCBPeer

5
A

3
E

0214Score
FDCBPeer

Figure 25. Two-phase Tail Pruning of Four Paths

Chapter 4. GAroute 88

Table 6. Difference between Ahn’s GA and GAroute

 Ahn’s GA GAroute
Purpose Find one shortest-path

from one given source to
one given destination

Find n long paths from one
given source to any
destination

Genetic
representation

The last gene is always the
given destination

The last gene is any
destination

Population
initialization

May produce invalid
chromosomes

Always produce valid
chromosomes

Mutation Randomly choose an
adjacent node

Greedily choose an
adjacent node

Loop
elimination

Use a repair function to
eliminate loops in an
invalid chromosome

Use fission to break an
invalid chromosome down
to valid chromosomes

Diversity
enhancement

Use mutation to enhance
diversity

Use creation to provide
extra diversity

Fitness
function

Inversely proportional to
the total cost of its
corresponding path

Directly proportional to
the information gain of its
corresponding path

Selection Use pair-wise tournament
selection without
replacement

Base on the fitness and
chance to select good and
poor chromosomes

Stopping
criteria

Stop if all chromosomes in
the population are the
same

Besides Gmin and Gmax, it
stops if all good
chromosomes between two
consecutive generations
are the same

Optimization None Two-phase tail pruning

Chapter 4. GAroute 89

4.3 Experiments and Discussions

In this section, we summarize the experimental results which measure

the scalability and quality of different searching algorithms for finding

query routing paths in different network topologies and peer quantities. We

also verify the two improvements (lower bandwidth consumption and better

parallel search) of the query initiating peer in our proposed hybrid P2P

network model. Before presenting our experiments, we introduce our

computer configuration and GAroute parameters. We also outline our P2P

network topology generation algorithm.

1) Configuration and Parameters: All experiments are performed with

the same computer configuration (see Table 8). We conduct our experiments

with different parameter sets and choose the most suitable one (see Table 9)

so that we obtain the most representative results. In fact, the maximum

number of paths n and population size N should be proportional to the peer

Table 7. Time Complexities of GAroute

Procedure Time complexity
Population initialization O(N · |V|)
Mutation O(Nm · |V|)
Crossover O(Nc · l · log l)
Fission O(Nf · l)
Creation O(Nn · |V|)
Selection O(Ng · |Po| · l)
Stopping criteria checking O(Ng · l)
Optimization O(n · l)

Chapter 4. GAroute 90

quantity. However, we fix them to a specific value in order to measure their

effects on the quality of solution. In each generation, half of the population

performs mutation and another half of the population performs crossover as

the convergence and diversity are both important. We also create a few

non-evolved chromosomes so that a better quality of solution is obtained. In

addition, the parameters should satisfy the constraints that n ≤ Ng ≤ N and

Nm, Nc ≤ N.

2) P2P Network Topology Generation: We use our P2P network

topology generation algorithm, which simulates the joining scenario of

Table 8. Computer Configuration of GAroute Experiments

Item Setting
CPU Intel Pentium 4 at 3GHz
Memory 512MB DDR RAM
OS Red Hat Linux 9.0 with Kernel 2.4.20-31.9
Java VM Java 2 Standard Edition 1.4.2_05

Table 9. GAroute Parameters

Parameter Value
Max. no. of paths (n) 10
Population size (N) 100
No. of mutations (Nm) 50
No. of crossovers (Nc) 50
No. of creations (Nn) 10
No. of good chromosomes (Ng) 20
Min. no. of generations (Gmin) 0
Max. no. of generations (Gmax) 100

Chapter 4. GAroute 91

peers in a zone, to randomly generate undirected graphs for all experiments.

The graph is initialized to have only one peer. Each time when a new peer is

added to the graph, it links a random number of existing peers in the graph

based on their inter-connection speed. In our proposed hybrid P2P network

model, each peer chooses one or two peers to link and the expected number

E of existing peers to be linked by a new peer is 1.2. Both E and the

inter-connection speed are the parameters used to generate different graphs.

4.3.1 Property of Different Topologies

The motivation of this experiment is to study how different network

topologies would affect the scalability and quality of different searching

algorithms for finding query routing paths. Figure 26 shows the property of

different network topologies for 1,000 peers, which are generated by our

0

60

120

180

240

300

360

420

480

540

1 2 3 4 5 6 7 8 9 10
Degree

Fr
eq

ue
nc

y

E=1.0
E=1.5
E=2.0
E=2.5
E=3.0

Figure 26. Property of Different Network Topologies

Chapter 4. GAroute 92

P2P network topology generation algorithm. The x-axis shows the degree of

peers representing the number of edges and the y-axis shows the number of

peers that have the corresponding degree. The results show that the degree is

inversely proportional to the frequency because each new peer links to old

peers from time to time. Therefore, older peers are usually linked by more

peers that results in a higher degree and lower frequency, and newer peers

are usually linked by fewer peers that results in a lower degree and higher

frequency. The results also show that when the expected number E of

existing peers to be linked by a new peer increases, the number of edges of

each peer increases. Increasing edges in a graph dramatically increases the

time of brute-force search which is discussed in the following subsection.

4.3.2 Scalability and Quality in Different Topologies

The motivation of this experiment is to measure the scalability and

quality of Brute-force Search (BS), GAroute (GA) and Greedy Search (GS)

for finding query routing paths in different network topologies. We

demonstrate that GAroute achieves both good scalability and quality in

some network topologies. Before we analyze and interpret the results, we

outline the algorithm of (1) BS and (2) GS.

1) Algorithm of BS: We start at the query initiating peer and traverse

the graph by using depth-first search until a path p is generated. Then we

calculate the information gain Hp of p based on the score vector S. If Hp is

greater than the current maximum information gain Hmax, then p is the

Chapter 4. GAroute 93

current best query routing path and Hmax becomes Hp. We back-track p from

the last peer, look for another edge and traverse it until another path is

generated. This process continues until all paths are searched and we obtain

the best path. To obtain the second-best path, we update S and set the score

of those visited peers to zero. Then we reapply the same procedure. This

process continues until we obtain n paths. BS guarantees the paths obtained

are always optimal but it takes O(n · Npath) time where Npath is the number of

different paths in a graph. A path is an edge combination so Npath can be

very large.

2) Algorithm of GS: We start at the query initiating peer and traverse

the graph by using greedy search. We always select the next peer with the

highest score based on the score vector S until a path p is generated. Thus,

we obtain a good query routing path though it may not be the best. To obtain

another good path, we update S and set the score of those visited peers to

zero. Then we reapply the same procedure. This process continues until we

obtain n paths. GS takes O(n · |V|) time where |V| is the number of peers in a

graph. Sometimes, it may give low quality solutions.

To measure the (1) scalability and (2) quality of BS, GA, and GS for

finding query routing paths in different network topologies, we randomly

generate 10 different graphs for each E containing 50 peers where E is the

expected number of existing peers to be linked by a new peer. Then we run

BS, GA, and GS on a graph for 10 times and measure their average

searching time and quality. In all, we run each algorithm with each E for 100

Chapter 4. GAroute 94

times.

1) Scalability: Figure 27 shows the scalability in different network

topologies. We measure the real searching time in order to compare the

practicability of different algorithms. The curve BS is exponential because

BS takes O(n · Npath) time. When E increases, the number of edges of each

peer increases. Thus, the number of edge combinations Npath dramatically

increases. On the other hand, the searching time of GA is good and directly

proportional to E because when E increases, the number of edges of each

peer increases. Therefore, the connectivity increases and the number of

peers in a path increases which requires more time to perform GA

operations (see Table 7). Finally, the line GS is constant with ultrahigh

searching speed because it only takes O(n · |V|) time where n and |V| are

fixed (see Table 9).

0.0
0.3

0.6
0.9
1.2
1.5

1.8
2.1
2.4

2.7
3.0

1.0 1.2 1.4 1.6 1.8 2.0
Expected number E

Ti
m

e
(s

ec
on

ds
)

BS
GA
GS

Figure 27. Scalability in Different Network Topologies

Chapter 4. GAroute 95

2) Quality: Figure 28 shows the quality QA from Algorithm A in

different network topologies such that

BS

A
A H

H
Q = , (32)

where HA and HBS are the total information gain of n paths (refer to (30))

obtained by A and BS respectively. We use BS as the reference because BS

always gives global optimal solutions. Therefore, QBS is always one. Since

BS takes too long time to run if E is greater than 1.6, we can only calculate

the quality up to this value. We observe that QGA is high and QGS is low

because GS returns local optimal solutions. Both curves GA and GS tend to

the line BS when E increases because the number of edges of each peer

increases. Thus, the connectivity increases and the number of peers in a path

p increases. This makes the information gain of p increase and hence the

quality increases. The definition of the quality does not consider the length

0.0
0.1

0.2
0.3
0.4
0.5

0.6
0.7
0.8

0.9
1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Expected number E

Q
ua

lit
y

BS
GA
GS

Figure 28. Quality in Different Network Topologies

Chapter 4. GAroute 96

of the paths because we only focus on the total information gain in our

proposed hybrid P2P network model. However, we may also consider the

path length as a factor because the total length of the paths affects the

bandwidth consumption of the whole network and the maximum path length

affects the latency. To achieve this, we can simply modify (30) to normalize

the information gain of a path by its length.

From the experimental results, we demonstrate that BS is un-scalable

as it is highly dependent of the network topology though it always gives

global optimal solutions. Moreover, GS gives low quality solutions though it

is scalable. On the other hand, GAroute is scalable and gives high quality

solutions though there is a tradeoff between searching speed and quality.

4.3.3 Scalability and Quality in Different Quantities

The motivation of this experiment is to measure the (1) scalability and

(2) quality of BS, GA, and GS for finding query routing paths in different

peer quantities. We demonstrate that GAroute achieves both good scalability

and quality in some large scaled network topologies. To measure them, we

randomly generate 10 different graphs for each peer quantity and E is 1.2

(default value used in our proposed hybrid P2P network model), where E is

the expected number of existing peers to be linked by a new peer. Then we

run BS, GA, and GS on a graph for 10 times and measure their average

searching time and quality. In all, we run each algorithm with each peer

quantity for 100 times.

Chapter 4. GAroute 97

1) Scalability: Figure 29 and Figure 30 show the scalability in 100

peers for every 10 peers and 1,000 peers for every 100 peers respectively.

We measure the real searching time in order to compare the practicability of

different algorithms. The curve BS is exponential because BS takes O(n ·

0.00
0.05

0.10
0.15

0.20
0.25
0.30

0.35
0.40

0.45
0.50

0 20 40 60 80 100
Number of Peers

Ti
m

e
(s

ec
on

ds
)

BS
GA
GS

Figure 29. Scalability in 100 Peers

0.0
0.3

0.6
0.9

1.2
1.5
1.8

2.1
2.4

2.7
3.0

0 200 400 600 800 1000
Number of Peers

Ti
m

e
(s

ec
on

ds
)

GA GS

Figure 30. Scalability in 1,000 Peers

Chapter 4. GAroute 98

Npath) time. When the peer quantity increases, the total number of edges

increases. Thus, the number of edge combinations Npath dramatically

increases. On the other hand, the curve GA is approximately linear which is

interesting as it is theoretically super-linear (see Table 7). Figure 31 shows

the generation requirement of GA in 1,000 peers, which gives a possible

reason on the approximately linear searching time. We observe that the

generation requirement, which is a factor of searching time complexity, is

sub-linear. Also, the parameters n, N, Nm, Nc, Nn, and Ng are fixed (see Table

9) which do not affect the searching time complexity. Due to the effect of

sub-linear generation requirement and constant parameters, the curve GA

becomes approximately linear. Finally, the searching speed of GS is

ultrahigh because it only takes O(n · |V|) time where n is fixed.

2) Quality: Figure 32 shows the actual quality QA from Algorithm A

0
5

10
15

20
25
30

35
40

45
50

0 200 400 600 800 1000
Number of Peers

N
um

be
r o

f G
en

er
at

io
ns

GA

Figure 31. Generation Requirement of GA in 1,000 Peers

Chapter 4. GAroute 99

(refer to (32)) in 100 peers for every 10 peers obtained by A and BS

respectively. We use BS as the reference because BS always gives global

optimal solutions. Therefore, QBS is always one. Since BS takes too long

time to obtain QGA and QGS if the peer quantity is more than 100, we

calculate the relative quality instead. Figure 33 shows the relative quality

QA' from Algorithm A in 1,000 peers for every 100 peers such that

GA

A
A H

H
Q =' , (33)

where HA and HGA are the total information gain of n paths (refer to (30))

obtained by A and GA respectively. We use GA as the reference so QGA' is

always one. We observe that QGA is high in 100 peers. QGS' is low intuitively

represents that QGA is still high in 1,000 peers. However, QGA decreases

when the peer quantity increases because the total number of edges

increases. Thus, the number of different paths in a graph increases.

0.0
0.1

0.2
0.3
0.4
0.5

0.6
0.7
0.8

0.9
1.0

0 20 40 60 80 100
Number of Peers

Q
ua

lit
y

BS
GA
GS

Figure 32. Actual Quality in 100 Peers

Chapter 4. GAroute 100

Furthermore, the parameters N, Nm, Nc, Nn, and Ng are fixed (see Table 9)

which make the quality decrease. If the value of the parameters increases,

then the quality increases. However, the searching time also increases.

Moreover, QGS is low because GS returns local optimal solutions. QGS

decreases when the peer quantity increases because the chance for GS to

give low quality solutions increases when the number of different paths in a

graph increases. Finally, Figure 34 shows the convergence of GA in 100

peers. The curve GA tends to the line BS when the number of generations

increases. However, QGA slightly increases when the number of generations

is large. Therefore, introducing the maximum number of generations Gmax

reduces the unnecessary search if there is no big difference in the quality.

From the experimental results, we demonstrate that BS is un-scalable

as it is highly dependent of the peer quantity though it always gives global

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0 200 400 600 800 1000
Number of Peers

Re
la

tiv
e

Q
ua

lit
y

GA
GS

Figure 33. Relative Quality in 1,000 Peers

Chapter 4. GAroute 101

optimal solutions. Moreover, GS usually gives low quality solutions though

it is scalable. On the other hand, GAroute is scalable and gives high quality

solutions though there is a tradeoff between searching speed and quality.

Combining all experimental results, GAroute achieves both good scalability

(approximate linear) and quality (0.95 in 100 peers) in some large scaled

P2P network topologies.

4.3.4 Verification of Lower Bandwidth Consumption

The motivation of this experiment is to measure the improvement of

the query initiating peer bandwidth consumption in our proposed hybrid P2P

network model. We demonstrate that our model greatly reduces the query

initiating peer network traffic with a small overhead of the whole network

traffic. To measure the network traffic, we randomly generate 10 different

0.80
0.82

0.84
0.86

0.88
0.90
0.92

0.94
0.96

0.98
1.00

0 3 6 9 12 15 18 21 24 27 30
Number of Generations

Q
ua

lit
y

BS
GA

Figure 34. Convergence of GA in 100 Peers

Chapter 4. GAroute 102

graphs for each peer quantity |V| and E is 1.2 (default value used in our

proposed hybrid P2P network model), where E is the expected number of

existing peers to be linked by a new peer. Then we run GAroute on a graph

with different relevant peer proportions to obtain query routing paths. We

measure the average network traffic of the (1) query initiating peer and (2)

whole network based on DCM and QPM.

1) Query Initiating Peer Network Traffic: Figure 35 shows the query

initiating peer network traffic for every 10 percent relevant peer proportion.

Both DCM curves are approximately linear because the query initiating peer

sends a query packet to each relevant peer individually. If the number of

relevant peers increases, then the query initiating peer bandwidth

consumption increases. On the other hand, both QPM curves are nearly

constant because the query initiating peer only sends query packets to the

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100
Relevant Peers (%)

So
ur

ce
 P

ee
r T

ra
ff

ic
 (u

ni
ts)

|V|=500 (DCM)
|V|=500 (QPM)
|V|=1000 (DCM)
|V|=1000 (QPM)

Figure 35. Query Initiating Peer Network Traffic of DCM and QPM

Chapter 4. GAroute 103

next peers in the query routing paths instead of all relevant peers. Since the

degree of a peer is usually small according to our P2P network topology

property (see Figure 26), the query initiating peer consumes very low

bandwidth. Figure 36 shows the corresponding traffic reduction TR in

percentage for every 10 percent relevant peer proportion that is calculated

by

DCM

QPMDCM
R T

TT
T

−
= , (34)

where TDCM and TQPM are the traffic of DCM and QPM respectively. When

|V| increases, the number of relevant peers increases. TDCM also increases but

TQPM is unchanged. Hence, the traffic reduction increases which shows the

good scalability of our proposed hybrid P2P network model.

2) Whole Network Traffic: Figure 37 shows the whole network traffic

for every 10 percent relevant peer proportion. When |V| increases, the

88

90

92

94

96

98

100

0 20 40 60 80 100
Relevant Peer (%)

Tr
af

fic
 R

ed
uc

tio
n

(%
)

|V|=500 |V|=1000

Figure 36. Network Traffic Reduction of Query Initiating Peer by QPM

Chapter 4. GAroute 104

number of relevant peers increases. Hence, the whole network traffic of both

DCM and QPM increases. In addition, the whole network traffic of QPM is

always larger than or equals to that of DCM because query packets are

propagated from peer to peer for QPM. However, not all peers in the query

routing path are relevant. On the other hand, the query initiating peer always

sends query packets to relevant peers for DCM. Fortunately, the whole

network traffic of QPM is always bounded by that of DCM when all peers

are relevant. At this point (100 percent relevant peer proportion), they have

the same network traffic. Figure 38 shows the corresponding traffic

overhead TO for every 10 percent relevant peer proportion that is calculated

by the difference between the traffic of DCM and QPM. When the number

of relevant peers increases, the traffic overhead decreases because there are

more relevant peers in the query routing path. The overhead is zero if all

peers are relevant.

From the experimental results, we demonstrate that the query initiating

peer consumes high bandwidth for DCM, whereas it consumes very low

bandwidth for QPM. Moreover, using DCM is un-scalable. On the other

hand, using QPM is scalable though it has a small overhead on the whole

network traffic. In conclusion, we verify that the query initiating peer has

lower bandwidth consumption by using QPM.

Chapter 4. GAroute 105

4.3.5 Verification of Better Parallel Search

The motivation of this experiment is to measure the improvement of

the query time in our proposed hybrid P2P network model. We demonstrate

that our model is efficient if the peer quantity is large. To simulate the query

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100
Relevant Peers (%)

W
ho

le
 N

et
w

or
k

Tr
af

fic
 (u

ni
ts)

|V|=500 (DCM)
|V|=500 (QPM)
|V|=1000 (DCM)
|V|=1000 (QPM)

Figure 37. Whole Network Traffic of DCM and QPM

0
2

4
6

8
10
12

14
16

18
20

0 20 40 60 80 100
Relevant Peers (%)

Tr
af

fic
 O

ve
rh

ea
d

(u
ni

ts)

|V|=500
|V|=1000

Figure 38. Network Traffic Overhead of Whole Network by QPM

Chapter 4. GAroute 106

routing in our network, we generate two types of topologies which are

physical network topology and P2P network topology. The former one

represents the real topology which has the properties of the Internet. The

latter one represents the logical topology which has the properties of our

proposed hybrid P2P network model. A recent paper [54] mentions that the

Internet follows Autonomous System (AS) Model which has the small

world and power law properties. Therefore, we use BRITE [9] which is a

tool to generate physical network topologies based on the AS Model. We

also use our P2P network topology generation algorithm to generate P2P

network topologies based on the inter-connection speed of peers which is

inversely proportional to the physical distance between peers.

To measure the query time, we randomly generate 10 different sets of

network topologies and present the results of three selected sets. Each set

contains a physical network topology with 10,000 nodes, and a P2P network

topology with 1,000 peers and E is 1.2 (default value used in our proposed

hybrid P2P network model), where E is the expected number of existing

peers to be linked by a new peer. Those peers are the subset of the nodes of

the physical network topology. Then we run GAroute on each P2P network

topology to obtain the query routing paths, and calculate the query time for

both DCM and QPM. The query propagation time between two peers xi and

xj is the shortest path distance d(xi, xj) between the corresponding nodes in

the physical network topology. Recall that DCM has the poor semi-parallel

search problem that we spawn a few threads in each batch if we have a

Chapter 4. GAroute 107

limited thread resource. We need to wait for a batch to finish before starting

another batch. Thus, the query time tDCM for DCM is calculated by

∑
=

=
b

i
jijDCM xxdt

1
,1),(max , (35)

where b is the number of batches, x1 is the query initiating peer, and xi,j is

the jth peer in the ith batch. For QPM, we do not have the same problem

because the degree of a peer is very small according to our P2P network

topology property (see Figure 26). Thus, the query time tQPM for QPM is

calculated by

∑
−

=
+=

1||

1
1),(max

p

i
iipQPM xxdt , (36)

where xi is the ith peer in the query routing path p.

Figure 39 shows the query time of the three selected network

topologies for DCM and QPM. All DCM curves are approximately linear.

When the peer quantity increases, b also increases due to the constant thread

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10
Number of Batches

Q
ue

ry
 T

im
e

(u
ni

ts)

DCM1
QPM1
DCM2
QPM2
DCM3
QPM3

Figure 39. Query Time of Network Topologies for DCM and QPM

Chapter 4. GAroute 108

resource. Hence, the query time increases because (35) is dependent of b.

On the other hand, all QPM lines are constant because (36) is independent

of b. Figure 40 shows the corresponding time improvement that is

calculated by the difference between the query time of DCM and QPM.

When the peer quantity is small, b is small so that the time improvement is

negative because the query time is proportional to the path length for QPM.

However, the path length is always one for DCM. Thus, DCM is faster than

QPM for a small b. On the other hand, when the peer quantity increases, b

increases so that the time improvement increases and becomes positive

which shows the good scalability of our proposed hybrid P2P network

model.

From the experimental results, we demonstrate that using DCM is

un-scalable though it is faster than QPM in a small scaled P2P network. On

-3

-2

-1

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10
Number of Batches

Ti
m

e
Im

pr
ov

em
en

t (
un

its
)

T1 T2 T3

Figure 40. Query Time Improvement of Network Topologies by QPM

Chapter 4. GAroute 109

the other hand, using QPM is scalable and efficient if the P2P network scale

is large. In conclusion, we verify that the query initiating peer has better

parallel search by using QPM.

Chapter 5. Discussion 110

5. Discussion
In this chapter, we have a discussion on both S2S Searching and

GAroute for answering the questions and comments given by the reviewers.

For S2S Searching, we summarize the related questions and comments by

the following four points:

1) Commercial Significance: Some reviewers do not understand the

strength of S2S Searching over centralized search engines like Google.

Besides circumventing the three shortcomings (centralization of resources

used, outdated search results, and no control over information shared by

content owners) of centralized search engines, S2S Searching is optimal for

community information sharing. One of the problems of Google is that it

returns too many search results but only a few of them are useful. This is

due to the fact that Google is a universal topic search engine. On the other

hand, information retrieval by S2S Searching can deal with specific topics.

Sites with similar topics can join together to form a cluster so that more

relevant search results are useful with respect to the specific topic. Therefore,

S2S Searching competes commercially with Google in terms of its small

world property and simplicity of sharing and searching the information like

other P2P applications.

2) Global View of Results: Some reviewers think that S2S Searching

does not give a global view of the page ranking unlike those centralized

search engines. Actually in S2S Searching, the similarity value of a

Chapter 5. Discussion 111

document already gives the global view on how relevant the document is.

However, the priority value of a document only gives a local view on how

important the document is. In addition, it is possible for S2S Searching to

integrate with other page ranking algorithms. However, we focus more on

its P2P model and communication protocol in our research.

3) Ranking Control: Some reviewers ask why we want to allow site

owners to control the ranking of their own web pages because this is an

invitation to spam. To answer this question, we should understand that

advertising is necessary in the real world. Take Google as an example, those

advertised relevant pages are also shown at the top or in a separate column.

The one, who controls the ranking of the advertised pages, is the search

engine administrator. On the other hand, the advertised web page owners

cannot control their ranking in order to prevent spam. In S2S Searching, we

follow the same idea. The site owner is the administrator of their own search

engine so that they should have rights to control the ranking in their own

search engine by adjusting the priority value of the documents in the current

site. However, the priority value of the documents adjusted in other sites

takes no effect to the current site ranking. Therefore, spam can be

effectively prevented.

4) Security Issues: Some reviewers criticize that S2S Searching is

insecure since it is on top of HTTP where firewalls usually allow the data to

pass through. However, S2S Searching targets that it can be easily plugged

and played in a website without any administrator’s privilege. In addition,

Chapter 5. Discussion 112

the black list mechanism in S2S Searching can act as a firewall which

disallows some requests from bad peers.

For GAroute, we summarize the related questions and comments by the

following three points:

1) Future Work on Experiments: Some reviewers criticize that the

experiments for measuring the scalability and quality of GAroute are too

trivial as we only compare it with the Brute-force Search and Greedy Search.

The reason is that GAroute deals with a very special case of Longest Path

Problem which is multiple paths in a weighted graph with the cyclic

property. Unfortunately, most cited approximation algorithms cannot be

easily modified to solve our specific problem because some of them only

work in un-weighted graphs and some of them have a fixed destination.

Actually, we can still compare GAroute with Ahn’s GA in terms of

scalability, quality, and network traffic of the paths for the future work.

Theoretically, the network traffic of the paths obtained by Ahn’s GA should

be smaller than GAroute, but the quality of the paths obtained by GAroute

should be higher than Ahn’s GA, because Ahn’s GA only finds the shortest

path. Moreover, we can conduct experiments under a dynamic environment

to see how the rate of peer joining and leaving affects the overall

performance, topology maintenance cost, and the overall traffic overhead

including the maintenance.

2) Traffic Reduction and Overhead: Some reviewers misunderstand

that the traffic reduction measured in the experiment is for the whole

Chapter 5. Discussion 113

network. In fact, the reduction is in the query initiating peer only. For the

whole network traffic, there is a small overhead as shown in the

experimental results. This is due to irrelevant peers in query routing paths

which act as intermediate nodes to help propagating queries. The

significance of the traffic reduction in the query initiating peer is that we can

save a lot of bandwidth when we are searching by the P2P application.

Therefore, more bandwidth is available for other applications.

3) Single and Multiple Routes: Some reviewers are unclear to

distinguish between single route and multiple routes. Actually, GAroute

returns multiple routes, whereas Ahn’s GA returns single route. The purpose

of GAroute is to find n long paths from one given source to any destination

peer where the destination peer is not fixed. On the other hand, the purpose

of Ahn’s GA is to find one shortest-path from one given source to one given

destination peer where the destination peer is fixed.

Chapter 6. Conclusion 114

6. Conclusion
In this work, we give a literature review on both pure P2P networks

and hybrid P2P networks. Then we propose S2S Searching and GAroute for

information retrieval and query routing in P2P networks. Finally, our work

is summarized as follows.

For the literature review, we survey on P2P networks and query routing

strategies. The introduced pure P2P networks are Napster, Gnutella, Kazaa,

BitTorrent, Gnutella2, YouSearch, Discovir, and Freenet. For the query

routing strategies, we introduce the firework query model which uses

document clustering. And we introduce CAN, pSearch, Chord, Pastry, and

Tapestry which use distributed hash tables. We also briefly introduce the

research that is related to the P2P network security.

For S2S Searching, we address the three shortcomings (centralization

of resources used, outdated search results, and no control over information

shared by content owners) of centralized search engines which can be

circumvented by distributing search engines over peers which maintain their

updated local contents with full control by their owners. Therefore, we

propose a pure P2P network together with S2S Searching for Web

information retrieval. It helps site owners to turn their websites into

autonomous search engines without extra hardware and software cost. We

also develop S2S search engines and describe its system architecture.

Our proposed S2S Searching is summarized as follows. We use the

Chapter 6. Conclusion 115

modified vector space model for indexing and matching which is adaptive.

We solve the query flooding problem by our proposed query routing

algorithm based on distributed registrars. The content summary is a fixed

size hash table which stores the importance and confidence level of each

word. The relevance level of a site is the average score of the keywords.

Queries are routed to those sites with the highest scores and flooded to the

adjacent sites with a small probability. The S2S communication protocol

depends on the six CGIs which are starting CGI, searching CGI, pinging

CGI, joining CGI, leaving CGI, and updating CGI.

Finally, we summarize the experimental results which measure the

performance of indexing, performance of matching, performance of S2S

Searching, and quality of the content summary. According to these results,

we conclude that S2S Searching is scalable (approximate linear) and works

well in some large scaled S2S networks.

For GAroute, we address the two shortcomings (high bandwidth

consumption and poor semi-parallel search) of the direct connection model

which can be circumvented by the query propagation model. Therefore, we

propose a hybrid P2P network based on this model and introduce the

background of zones and zone managers. We also propose GAroute as a

query routing function used in zone managers. By giving the current P2P

network topology and relevance level of each peer, GAroute returns a list of

query routing paths that cover as many relevant peers as possible. We show

how to model this as a Longest Path Problem in a directed graph which is

Chapter 6. Conclusion 116

NP-complete. Due to the efficiency of GA, we obtain high quality

approximate solutions in polynomial time.

Our proposed GAroute is summarized as follows. We encode a path as

a variable length chromosome. The population is initialized with random

chromosomes. The mutation adopts a greedy search which provides fast

convergence. The crossover solves the suboptimal problem of mutation. The

fission breaks invalid chromosomes produced by crossover down to valid

chromosomes. The creation creates non-evolved chromosomes for extra

diversity. The selection is based on the fitness (information gain) of

chromosomes (paths). The optimization technique called two-phase tail

pruning removes dummy paths and cuts the path length to reduce the

network traffic and query time.

Finally, we summarize the experimental results which measure the

scalability and quality of different searching algorithms for finding query

routing paths in different network topologies and peer quantities. According

to these results, GAroute achieves both good scalability (approximate linear)

and quality (0.95 in 100 peers) in some large scaled P2P network topologies.

The two improvements (lower bandwidth consumption and better parallel

search) of the query initiating peer in our proposed hybrid P2P network

model are also verified by the experimental results. With our model, the

query initiating peer network traffic reduces more than 90% for 1,000 peers.

The semi-parallel search problem is greatly improved in a large scaled P2P

network. We conclude that both our proposed hybrid P2P network model

Chapter 6. Conclusion 117

and GAroute are scalable and work well.

Chapter 7. Bibliography 118

7. Bibliography
[1] A. Bjorklund and T. Husfeldt. Finding a Path of Superlogarithmic

Length. SIAM Journal on Computing, Volume 32, Issue 6, Pages
1395–1402, 2003.

[2] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object
Location and Routing for Large-scale Peer-to-Peer Systems. In
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms, Pages 329–350, 2001.

[3] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System
Concepts, Seventh Edition. John Wiley and Sons, 2004.

[4] AltaVista Website. http://www.altavista.com

[5] B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Communications of the ACM, Volume 13, Issue 7, Pages
422–426, 1970.

[6] B. Monien. How to Find Long Paths Efficiently. Annals of Discrete
Mathematics, Volume 25, Pages 239–254, 1985.

[7] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and Routing.
Technical Report, Computer Science Division, U. C. Berkeley, 2001.

[8] BitTorrent Website. http://www.bittorrent.com

[9] BRITE Website. http://www.cs.bu.edu/brite

[10] C. Tang, S. Dwarkadas, and Z. Xu. On Scaling Latent Semantic
Indexing for Large Peer-to-Peer Systems. In Proceedings of ACM
SIGIR, Pages 112–121, 2004.

[11] C. W. Ahn and R. S. Ramakrishna. A Genetic Algorithm for Shortest
Path Routing Problem and the Sizing of Populations. IEEE
Transactions on Evolutionary Computation, Volume 6, Issue 6, Pages
566–579, 2002.

Chapter 7. Bibliography 119

[12] C. Yang. Peer-to-Peer Architecture for Content-Based Music Retrieval
on Acoustic Data. In Proceedings of the 12th International World Wide
Web Conference, Pages 376–383, 2003.

[13] D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A Large-Scale
Study of the Evolution of Web Pages. In Proceedings of 12th
International World Wide Web Conference, Pages 669–678, 2003.

[14] D. R. Karger, R. Motwani, and G. D. S. Ramkumar. On Approximating
the Longest Path in a Graph. Algorithmica, Volume 18, Issue 1, Pages
82–98, 1997.

[15] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B.
Richard, S. Rollins, and Z. Xu. Peer-to-Peer Computing. Technical
Report, HP, 2002.

[16] F. Cornelli, E. Damiani, S. D. C. Vimercati, S. Paraboschi, and P.
Samarati. Choosing Reputable Servents in a P2P Network. In
Proceedings of the 11th International World Wide Web Conference,
Pages 376–386, 2002.

[17] FastTrack Introduction Website. http://en.wikipedia.org/wiki/FastTrack

[18] Freenet Project Website. http://freenetproject.org

[19] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems:
Concepts and Design. Addison Wesley, Third Edition, 2001.

[20] Gnutella Website. http://www.gnutella.com

[21] Gnutella2 Website. http://www.gnutella2.com

[22] Google Website. http://www.google.com

[23] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Looking Up Data in P2P Systems. Communications of the ACM,
Volume 46, Issue 2, Pages 43 – 48, 2003.

[24] H. L. Bodlaender. On Linear Time Minor Tests with Depth-First Search.
Journal of Algorithms, Volume 14, Issue 1, Pages 1–23, 1993.

Chapter 7. Bibliography 120

[25] Horner Scheme Introduction Website.
http://en.wikipedia.org/wiki/Horner_scheme

[26] I. King, C. H. Ng, and K. C. Sia. Distributed Content-Based Visual
Information Retrieval System on Peer-to-Peer Networks. ACM
Transactions on Information Systems, Volume 22, Issue 3, Pages
477–501, 2004.

[27] I. King, W. Y. Wong, and T. P. Lau. A Genetic Algorithm for Query
Routing in Hybrid Peer-to-Peer Networks. Submitted to IEEE
Transactions on Evolutionary Computation for review, 2005.

[28] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. In Proceedings of ACM SIGCOMM, Pages 149–160,
2001.

[29] J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment.
Journal of the ACM, Volume 46, Issue 5, Pages 604–632, 1999.

[30] Java Servlet Website. http://java.sun.com/products/servlet

[31] Java Technology Website. http://java.sun.com

[32] Kazaa Website. http://www.kazaa.com

[33] L. D. Whitley and M. D. Vose. Foundations of Genetic Algorithms 3.
Morgan Kaufmann, 1995.

[34] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation
Ranking: Bring Order to the Web. Technical Report, Stanford
University, 1998.

[35] LimeWire Website. http://www.limewire.com

[36] M. Bawa, R. J. Bayardo, S. Rajagopalan, and E. J. Shekita. Make it
Fresh, Make it Quick – Searching a Network of Personal Webservers.
In Proceedings of the 12th International World Wide Web Conference,
Pages 577–586, 2003.

Chapter 7. Bibliography 121

[37] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[38] M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices, Vector Spaces, and
Information Retrieval. SIAM Review, Volume 41, Issue 2, Pages
335–362, 1999.

[39] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM,
Volume 42, Issue 4, Pages 844–856, 1995.

[40] Napster Website. http://www.napster.com

[41] Peer-to-Peer Introduction Website.
http://en.wikipedia.org/wiki/Peer-to-peer

[42] R. J. Bayardo, R. Agrawal, D. Gruhl, and A. Somani. YouServ: A Web
Hosting and Content Sharing Tool for the Masses. In Proceedings of
11th International World Wide Web Conference, Pages 345–354, 2002.

[43] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The EigenTrust
Algorithm for Reputation Management in P2P Networks. In
Proceedings of the 12th International World Wide Web Conference,
Pages 640–651, 2003.

[44] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R.
Harshman. Indexing by Latent Semantic Analysis. Journal of the
American Society of Information Science, Volume 41, Issue 6, Pages
391–407, 1990.

[45] S. G. M. Koo, C. S. G. Lee, and K. Kannan. A
Genetic-Algorithm-Based Neighbor-Selection Strategy for Hybrid
Peer-to-Peer Networks. In Proceedings of the 13th International
Conference on Computer Communications and Networks, Pages
469–474, 2004.

[46] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In Proceedings of ACM
SIGCOMM, Pages 161–172, 2001.

Chapter 7. Bibliography 122

[47] The 12th International World Wide Web Conference Website.
http://www.www2003.org

[48] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Second Edition. The MIT Press, 2001.

[49] W. Y. Wong. Site-to-Site (S2S) Searching Using the P2P Framework
with CGI. In Proceedings of 13th International World Wide Web
Conference, Pages 360–361, 2004.

[50] W. Y. Wong and I. King. Site-to-Site (S2S) Searching with Query
Routing Using Distributed Registrars. In Proceedings of the Asia
Information Retrieval Symposium, Pages 241–244, 2004.

[51] W. Y. Wong, T. P. Lau, and I. King. Information Retrieval in P2P
Networks Using Genetic Algorithm. In Proceedings of the 14th
International World Wide Web Conference, Pages 922–923, 2005.

[52] XSLT Website. http://www.w3.org/Style/XSL

[53] Y. Liu, B. Zhang, Z. Chen, M. R. Lyu, and W. Y. Ma. Affinity Rank: A
New Scheme for Efficient Web Search. In Proceedings of 13th
International World Wide Web Conference, Pages 338–339, 2004.

[54] Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang. Location-Aware
Topology Matching in P2P Systems. In Proceedings of IEEE
INFOCOM, Pages 2220–2230, 2004.

[55] Yahoo Website. http://www.yahoo.com

Chapter 8. Appendix 123

8. Appendix
This appendix contains the supplementary information of S2S search

engine and GAroute library.

8.1 S2S Search Engine

In this appendix, we describe the perspectives of site owners and

search engine users with some screenshots.

8.1.1 Site Owner Perspective

S2S search engines help site owners to turn their websites into

autonomous search engines. To make their websites become the search

engines, they need to follow the four steps which are (1) S2S software

installation, (2) search engine administration, (3) S2S network management,

and (4) search page customization.

1) S2S Software Installation: The first step is to install the S2S

software in the website. The S2S software provides a search engine core

together with some CGIs for sites to communicate with each other. It also

provides the administration pages for site owners to administrate their

search engines, and Web interfaces for search engine users to search for Web

contents and then display results. The S2S software contains a basic set of

HTML files and CGI programs. We use Java Servlet to implement the CGI

programs because Java programs are platform-independent. The S2S

Chapter 8. Appendix 124

software is open source which can be downloaded at

“http://www.cse.cuhk.edu.hk/~miplab/s2s”. To install the S2S software, site

owners are only required to copy those HTML files and Servlet class files to

the document directory and Servlet class directory respectively and then

configure the Java properties file. The properties file stores system variables

such as the system paths, document paths, data paths, username, and

password of the administration pages.

2) Search Engine Administration: After installing the S2S software, site

owners can administrate their search engines in the administration pages.

They can manage their Web contents such as refreshing the local index and

content summary, setting the searchable status and priority value of each

document for advertising propose (see Figure 41). They can also adjust the

Figure 41. Screenshot of S2S Index Management

Chapter 8. Appendix 125

ranking parameters to customize the ranking equation (see Figure 42).

3) S2S Network Management: After managing local contents, site

owners are required to join other sites (see Figure 43). To locate a site, we

need to know the corresponding starting URL. For example, if the starting

URL is “http://www.s2s.com/servlet/s2s.”, then the corresponding URL for

the joining CGI is “http://www.s2s.com/servlet/s2s.join” and the

corresponding URL for the searching CGI is

“http://www.s2s.com/servlet/s2s.search”. In the case of Gnutella, we need to

know the peer’s IP address and port number so that we can locate it. Since

different sites join other different sites, the more sites they join, the wider

search they perform. In addition, site owners can manage the black list in

the administration pages (see Figure 44).

Figure 42. Screenshot of S2S Parameter Management

Chapter 8. Appendix 126

4) Search Page Customization: After joining the S2S network, site

Figure 43. Screenshot of S2S Network Management

Figure 44. Screenshot of S2S Black List Management

Chapter 8. Appendix 127

owners needs to add a search link or frame to their Web pages. The S2S

software provides the default search form so that site owners can directly

link to it. They only need to change the HTML form action of the default

search form so that it points to the correct starting CGI. They can also

customize the appearance of the search form by editing the HTML code.

Moreover, they can choose to generate search results in the XML format so

that they can write the Extensible Stylesheet Language Transformations

(XSLT) [52] code to customize the appearance of search results. After

performing the aforementioned four steps, the website becomes a S2S

search engine.

Figure 45. Screenshot of S2S Search Form

Chapter 8. Appendix 128

8.1.2 Search Engine User Perspective

S2S search engines are distributed in many websites. Therefore, search

engine users can go to any website which joins the S2S network to search

for the target information they want. After entering a website, users can find

a search form (see Figure 45). When they type some keywords, they can

choose to search for contents in the local site or in all sites which are in the

same S2S network. They can also select the keywords matching type which

includes “OR” and “AND”. Moreover, they can specify the TTL value to

limit the search space. It is a non-negative integer that defines the maximum

level of sites (excluding the local site) that the query request passes through.

If they enter the value as zero, then they only search in the local site. The

larger TTL value it has, the more results it obtains, but the longer time it

Figure 46. Screenshot of S2S Search Results

Chapter 8. Appendix 129

requires. After clicking the search button, the query request is propagated in

the S2S network. Within a short period, search results are displayed on the

screen. The results include documents’ filenames, URLs, dates, sizes,

similarities, and priorities. They are sorted by the ranking values which are

calculated by the ranking equation (see Figure 46).

8.2 GAroute Library

In this appendix, we describe the GAroute library which is used in zone

managers to find optimal query routing paths. It is implemented as the Java

package because Java programs are platform-independent. The library is

open source which can be downloaded at

“http://www.cse.cuhk.edu.hk/~miplab/garoute”. It contains only one

package (directory) garoute which contains six public classes. They are (1)

AdjacencyMatrix, (2) Chromosome, (3) IdIndex, (4) Router, (5) ScoreVector,

and (6) Score.

1) AdjacencyMatrix: This class is used to create objects for storing the

adjacency matrix of the P2P network topology. Table 10 shows the

corresponding class summary.

2) Chromosome: This class is used to create objects for storing a

chromosome which represents a path. Table 11 shows the corresponding

class summary.

3) IdIndex: This class is used to create objects for storing an inverted

Chapter 8. Appendix 130

index of a gene in a chromosome. Table 12 shows the corresponding class

summary.

4) Router: This class is to create objects for finding optimal query

routing paths. Table 13 shows the corresponding class summary.

5) ScoreVector: This class is to create objects for storing the score

vector. Table 14 shows the corresponding class summary.

6) Score: This class is to create objects for storing a score of a peer.

Table 15 shows the corresponding class summary.

Table 10. Class Summary of AdjacencyMatrix

Constructor or
method

Parameter
 return

Description

AdjacencyMatrix byte[][]
void

Constructor to set the adjacency
matrix

getMatrix void
byte[][]

Method to get the adjacency matrix

isAdjacent int, int
boolean

Method to test if the two peers are
adjacent

size void int Method to get the size of the
adjacency matrix

Chapter 8. Appendix 131

Table 11. Class Summary of Chromosome

Constructor or
method

Parameter
 return

Description

Chromosome int void Constructor to set the chromosome
with the initial gene

add int void Method to add the gene to the
chromosome

get int int Method to get the gene of the
chromosome with the specific
index

getSortedIdIndex void
IdIndex[]

Method to get the sorted genes of
the chromosome

equals Chromo-
some
boolean

Method to test if the two
chromosomes are equal

size void int Method to get the size of the
chromosome

Table 12. Class Summary of IdIndex

Constructor or
method

Parameter
 return

Description

IdIndex int, int
void

Constructor to store the ID and
inverted index of the gene

compareTo Object int Method to compare the two IdIndex
objects

getID void int Method to get the ID of the gene

getIndex void int Method to get the inverted index of
the gene

Chapter 8. Appendix 132

Table 13. Class Summary of Router

Constructor or
method

Parameter
 return

Description

Router void void Constructor to create the router

getInfoGains void
float[]

Method to get the information gain
of each path

getNoOf-
Generations

void int Method to get the number of
generations

getRoutingPaths void
int[][]

Method to get the optimal query
routing paths

setAdjacencyMatrix Adjacency-
Matrix
void

Method to set the adjacency matrix

setCreationRate float void Method to set the creation rate

setCrossover-
Proportion

float void Method to set the crossover
proportion

setMaxGenerations int void Method to set the maximum
number of generations

setMinGenerations int void Method to set the minimum number
of generations

setMutation-
Proportion

float void Method to set the mutation
proportion

setNoOfGood-
Chromosomes

int void Method to set the number of good
chromosomes for selection

setNoOfPaths int void Method to set the maximum
number of paths to be returned

setNoOfPeers int void Method to set the number of peer in

Chapter 8. Appendix 133

the network

setPopulationSize int void Method to set the population size

setScoreVector ScoreVector
 void

Method to set the score vector

setSourcePeer int void Method to set the query initiating
peer

Table 14. Class Summary of ScoreVector

Constructor or
method

Parameter
 return

Description

ScoreVector float[][]
void

Constructor to set the score vector

getScore int float Method to get the score of the
specific peer

getSortedID void int[] Method to get the sorted ID of the
peers based on their scores

getVector void
float[]

Method to get the score vector

size void int Method to get the size of the score
vector

Chapter 8. Appendix 134

Table 15. Class Summary of Score

Constructor or
method

Parameter
 return

Description

Score int, float
void

Constructor to set the score of the
peer

compareTo Object int Method to compare the two Score
objects

getID void int Method to get the ID of the peer

getScore void float Method to get the score of the peer

	1. Introduction
	1.1 Problem Definition
	1.2 Major Contributions
	1.2.1 S2S Searching
	1.2.2 GAroute

	1.3 Thesis Chapter Organization
	2. Related Work
	2.1 P2P Networks
	2.2 Query Routing Strategies
	2.3 P2P Network Security

	3. S2S Searching
	3.1 System Architecture
	3.1.1 Administration Module
	3.1.2 Search Module

	3.2 Indexing and Matching
	3.2.1 Background of Indexing and Matching
	3.2.2 Indexing Algorithm
	3.2.3 Matching Algorithm

	3.3 Query Routing
	3.3.1 Background of Query Routing
	3.3.2 Distributed Registrars and Content Summary
	3.3.3 Query Routing Algorithm
	3.3.4 Registrar Maintenance

	3.4 Communication Protocol
	3.4.1 Starting CGI
	3.4.2 Searching CGI
	3.4.3 Pinging CGI
	3.4.4 Joining CGI
	3.4.5 Leaving CGI
	3.4.6 Updating CGI

	3.5 Experiments and Discussions
	3.5.1 Performance of Indexing
	3.5.2 Performance of Matching
	3.5.3 Performance of S2S Searching
	3.5.4 Quality of Content Summary

	4. GAroute
	4.1 Proposed Hybrid P2P Network Model
	4.1.1 Background of Hybrid P2P Networks
	4.1.2 Roles of Zone Managers

	4.2 Proposed GAroute
	4.2.1 Genetic Representation
	4.2.2 Population Initialization
	4.2.3 Mutation
	4.2.4 Crossover
	4.2.5 Fission
	4.2.6 Creation
	4.2.7 Selection
	4.2.8 Stopping Criteria
	4.2.9 Optimization

	4.3 Experiments and Discussions
	4.3.1 Property of Different Topologies
	4.3.2 Scalability and Quality in Different Topologies
	4.3.3 Scalability and Quality in Different Quantities
	4.3.4 Verification of Lower Bandwidth Consumption
	4.3.5 Verification of Better Parallel Search

	5. Discussion
	6. Conclusion
	7. Bibliography
	1.
	8. Appendix
	8.1 S2S Search Engine
	8.1.1 Site Owner Perspective
	8.1.2 Search Engine User Perspective

	8.2 GAroute Library

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

