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Abstract 
 

Recently, information retrieval based on Peer-to-Peer (P2P) networks is 

becoming a popular and dynamic research topic. In this work, we study two 

scenarios with their own problems and we solve them by our proposed 

Site-to-Site (S2S) Searching in a pure P2P network and GAroute in a hybrid 

P2P network respectively. 

The first scenario is that Web information retrieval by Centralized 

Search Engines (CSEs) like Google have three shortcomings. First, CSEs 

are centralized so that they require expensive resources to handle search 

requests. Second, the search results are not always up-to-date. Third, 

website owners have no control over their shared contents such as 

preventing published contents from being searched. To circumvent the 

aforementioned shortcomings, we refer to Gnutella to distribute search 

engines called S2S search engines over websites (peers) in a pure P2P 

network, which maintain their updated local contents with full control by 

their owners. Hence, each website becomes an autonomous search engine 

and they join together to form a S2S Searching network. In this thesis, we 

show the system architecture, indexing and matching algorithms of S2S 

search engines. In addition, we explain our query routing algorithm based 

on distributed registrars which prevents the query flooding problem existing 

in Gnutella. Furthermore, we describe our S2S communication protocol 
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which is based on Common Gateway Interface (CGI). Finally, we present 

our experimental results which show that S2S Searching is scalable 

(approximate linear) in some large S2S networks. 

The second scenario is that content-based information retrieval in 

hybrid P2P networks like YouSearch using the Direct Connection Model 

(DCM) has two shortcomings. First, the query initiating peer consumes high 

bandwidth for its own network transmission. Second, we have poor 

semi-parallel search if there are too many relevant peers. To circumvent the 

aforementioned shortcomings, we introduce the Query Propagation Model 

(QPM) into YouSearch and form a new hybrid P2P network. In order to 

obtain optimal query routing paths in our network, we model our problem as 

the Longest Path Problem which is NP-complete and we propose a Genetic 

Algorithm (GA) called GAroute to obtain high quality approximate 

solutions in polynomial time. In this thesis, we describe our network and 

GAroute algorithm. In addition, we introduce two novel GA operators called 

fission and creation, and also an optimization technique called two-phase 

tail pruning to improve the quality of solutions. Finally, we present our 

experimental results which show that GAroute achieves both good 

scalability (approximate linear) and quality (0.95 in 100 peers) in some large 

scaled P2P network topologies. Moreover, the query initiating peer network 

traffic reduces more than 90 percents for 1,000 peers and the semi-parallel 

search problem is greatly improved. 
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論文摘要 

 

近來，以點對點網路進行資訊檢索正成為一個普遍和有活力的研究

題目。在是次研究當中，我們研究兩個不同的個案，它們各有不同的問

題，但我們分別用我們所建議的「站對站搜尋」(Site-to-Site Searching)

用於純粹點對點網路上，和「嘉禾」(GAroute)用於混合點對點網路上來

解決這兩個個案的問題。 

第一個個案是：以集中式搜尋器如 Google 進行資訊檢索會有三個

缺點。首先，集中式搜尋器需要昂貴的資源來處理所有搜尋要求。其次，

搜尋的結果總不是最更新的。最後，站長沒有他們分享內容的控制權，

例如防止已發表的內容被他人搜尋。為了改善以上的缺點，我們參考過

Gnutella 的做法來分佈一些名為站對站的搜尋器到不同的網站上，以成

為一個純粹點對點的網路，那些搜尋器會保持最更新的搜尋索引，並給

予站長完全的控制權。因此，每一個網站會成為一個自主的搜尋器，而

它們可以連結在一起，以成為一個站對站的搜尋網。在這份論文中，我

們會展示站對站搜尋器的系統構造，索引和配對的演算法。另外，我們

會解釋以分佈式登錄器為基礎的詢問路線安排演算法，這演算法可有效

地防止 Gnutella 的詢問氾濫問題。再者，我們會描述以通用閘道界面為

基礎的站對站通訊協議。最後，我們會展示實驗結果來證明站對站搜尋

是可以大規模化(約線性增長)的。 

第二個個案是：在混合點對點網路如 YouSearch 使用直接聯絡模型

進行內容基礎的資訊檢索會有兩個缺點。首先，詢問者會消費較多的網
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路傳輸頻寬。其次，如果有太多相關的搜尋點，詢問者會有較差的搜尋

表現。為了改善以上的缺點，我們把詢問傳播模型注入 YouSearch 內，

從而產生一種新的混合點對點網路。為了要在新的網路中獲得一些優質

的詢問路線，我們把這個難題模仿成最長路徑問題，因為最長路徑問題

是完整非決定多項式的，所以我們建議一種名為嘉禾的遺傳基因演算

法，用多項式時間來獲得優質的答案。在這份論文中，我們會描述所建

議的網路和嘉禾演算法。另外，我們會介紹兩個新穎的遺傳基因運算

子，名為分裂和創造，還有一種最佳化的技術，名為二期尾部剪除法，

以改善答案的質素。最後，我們會展示實驗結果來證明嘉禾是可以大規

模化(約線性增長)的，並能提供高質素的答案(在 1000 搜尋點中有 0.95

質素)。此外，詢問者搜尋 1000 搜尋點能減少 90%的交通量，並大大地

改善了搜尋表現。 
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1. Introduction 
Recently, information retrieval based on Peer-to-Peer (P2P) networks is 

becoming a popular and dynamic research topic. In this work, we research 

on both pure P2P networks and hybrid P2P networks. Pure P2P networks 

refer to those P2P networks without any centralized component, whereas 

hybrid P2P networks depend on centralized components for storing indices 

or content summaries of each peer. We are interested in how information can 

be efficiently retrieved in these networks and hence we analyze the existing 

solutions. However, the existing solutions have some problems in some 

specific cases. Therefore, we refer to the existing solutions and propose two 

different P2P network models with their effective query routing strategies, 

namely Site-to-Site (S2S) Searching [49], [50] and GAroute [51], to improve 

the information retrieval in the specific cases. S2S Searching is for the Web 

information retrieval in our proposed pure P2P network model, while 

GAroute is for the content-based information retrieval in our proposed 

hybrid P2P network model. In this chapter, we give the problem definition 

of the existing solutions (see Section 1.1) and the major contributions of 

both S2S Searching and GAroute (see Section 1.2). We also show the thesis 

chapter organization (see Section 1.3). 

 

1.1 Problem Definition 

Nowadays, information retrieval on the Web is popular and significant. 
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Web search engines become essential applications. However, Centralized 

Search Engines (CSEs) like Google [21], AltaVista [4], and Yahoo [55] have 

three shortcomings which are (1) centralization of resources used, (2) 

outdated search results, and (3) no control over information shared by 

content owners. 

1) Centralization of Resources Used: CSEs are centralized which 

require powerful servers to handle search requests. They also need a large 

storage space to store crawled contents and indices. Hardware cost is 

expensive for achieving high performance. Take Google as an example, 

their centralized server contains hundreds of computers inter-connecting 

together. And they need many hard-disks for storing crawled contents and 

indices. Moreover, CSEs have single point of failure. If their servers are 

down, we cannot perform any search. 

2) Outdated Search Results: CSEs preprocess the search by crawling 

Web contents and building the corresponding indices. Usually, the crawled 

contents and indices are outdated as Web pages are being updated from time 

to time [13]. The freshness of indices depends on the crawling strategy. Take 

Google as an example, there are often some dead and outdated links in 

search results. 

3) No Control over Information Shared: CSEs crawl published contents 

on the Web and make them become searchable without their owners’ 

permissions. The owners may only want their contents like private 

information to be accessed by their authorized people by giving them secret 
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Uniform Resource Locators (URLs). Although they can make their contents 

escape from crawlers by setting passwords or removing links in their Web 

pages, it is inflexible and requires technical knowledge. In addition, the 

owners cannot alter their ranking strategy for their prioritized contents. 

Although they can use meta-tags and different headings in their contents, it 

is inflexible and does not guarantee how their contents are ranked. 

The aforementioned shortcomings can be circumvented by distributing 

search engines over peers which maintain their updated local contents with 

full control by their owners. Gnutella [20] is a typical protocol designed for 

sharing and searching files in personal computers in a pure P2P network. 

However, Gnutella does not have an effective query routing strategy so that 

queries are flooded to all peers including irrelevant peers in the network 

which generates a lot of network traffic and wastes resources of all 

irrelevant peers. This is known as the query flooding problem [26]. To 

analyze the traffic cost of such network, let us consider a simple n-nary tree 

topology (see Figure 1). The root of the tree is the query initiating peer. The 

depth d of the tree is the TTL value of the query in the query initiating peer. 

Let the traffic cost for sending a query between two peers be one unit. The 

total traffic cost Tflood for searching in the whole network is obviously the 

sum of the geometric progression such that 

1
)1(

1 −
−

== ∑
= n

nnnT
dd

i

i
flood  units. (1)



Chapter 1.  Introduction  4 

In order to reduce the exponential traffic cost, routing query to relevant 

peers only is necessary. The query flooding problem in pure P2P networks is 

not only solved by some existing query routing algorithms like CAN [46] 

and Chord [28], but also some hybrid P2P networks like Kazaa [31] and 

YouSearch [36]. Pure P2P networks refer to those P2P networks without any 

centralized component, whereas hybrid P2P networks depend on centralized 

components (like super-nodes in Kazaa and the registrar in YouSearch) for 

storing indices or content summaries of each peer. By querying centralized 

components in hybrid P2P networks, each peer obtains a list of relevant 

peers so that it directly connects to all relevant peers to obtain document 

lists. Thus, the query flooding problem does not exist due to the Direct 

Connection Model (DCM). However, such model has two shortcomings 

which can further be improved. They are (1) high bandwidth consumption 
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Figure 1. Simple Four-nary Tree Topology with Depth Two 

 



Chapter 1.  Introduction  5 

and (2) poor semi-parallel search. 

1) High Bandwidth Consumption: The query initiating peer directly 

connects to all relevant peers and then sends a query packet to each peer 

individually. If the number of relevant peers is large, then the query 

initiating peer consumes high bandwidth for its own network transmission 

especially the case of content-based multimedia retrieval [26], [12]. 

2) Poor Semi-parallel Search: The query initiating peer spawns a 

thread to concurrently handle each direct connection to a relevant peer. 

However, a computer has a limited thread resource, which makes parallel 

connections to all relevant peers impossible if there are many [3]. Although 

we can still semi-concurrently connect to them by spawning a few threads in 

each batch, it is slow as we need to wait for a batch to finish before 

spawning another batch. This results in poor semi-parallel search. We may 

circumvent this by setting the maximum number of relevant peers to be 

searched or reduce the number of relevant peers by increasing the relevance 

threshold. However, we retrieve less information by using this solution. 

 

1.2 Major Contributions 

The major contributions of our work are S2S Searching [49], [50] and 

GAroute [51] which circumvent the aforementioned shortcomings of CSEs 

and DCM. 
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1.2.1 S2S Searching 

To circumvent the three aforementioned shortcomings of CSEs 

(centralization of resources used, outdated search results, and no control 

over information shared by content owners), we refer to Gnutella and 

propose a pure P2P network model for the Web information retrieval based 

on Common Gateway Interface (CGI). In our proposed pure P2P network 

model, each website is a peer and we call it a site. Moreover, we solve the 

query flooding problem of Gnutella by our proposed S2S Searching which 

routes queries based on distributed registrars for storing content summaries 

of adjacent sites. We also develop the S2S search engine which is an 

application of S2S Searching written in Java Servlet [30]. It helps site 

owners, whose websites are hosted by Internet Service Providers (ISPs), to 

turn their websites into autonomous search engines without extra hardware 

and software cost. Finally, S2S Searching provides (1) decentralized 

searching, (2) updated search results, and (3) full control over information 

shared by content owners. 

1) Decentralized Searching: S2S Searching is decentralized so each 

site needs less powerful machines to handle search requests and less storage 

space to store the local index. A normal Web server is sufficient for a high 

performance searching of a site. We can use a search form in any site which 

joins the S2S network to start searching Web contents. The query initiating 

site propagates the query request to its adjacent sites. Each site propagates 

the request, searches its own Web contents, and gathers search results. 
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Finally, all search results are propagated back to the query initiating site 

which are ranked and displayed to users (see Figure 2). Since S2S Searching 

uses CGI as the communication protocol which involves the 

request-response mechanism, we model the query as the request and the 

results as the response. In addition, there is no single point of failure. If 

some sites are down, we can still use other search forms in other sites. 

Moreover, S2S Searching skips those sites which are currently down and 

continues to search. Therefore, we can still obtain results from other live 

sites. 

2) Updated Search Results: S2S Searching always provides most 

updated search results because each site maintains its own local index which 

is always up-to-date. When a local content in a site is updated, the 

corresponding index is recalculated. Therefore, we do not have any dead 

and outdated link in search results. 

Start at 
this site
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45
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Figure 2. Query and Result Propagation in S2S Searching 
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3) Full Control over Information Shared: S2S Searching allows site 

owners to fully control their information shared as they become 

administrators of their own search engines. They can selectively disable 

their published contents to be searchable so as to increase the privacy. They 

can also prioritize their contents and ranking strategy in order to advertise 

and rank results in a more customized way. 

 

1.2.2 GAroute 

The two aforementioned shortcomings of DCM (high bandwidth 

consumption and poor semi-parallel search) can be circumvented by the 

Query Propagation Model (QPM) which is commonly applied in pure P2P 

networks. By referring to Kazaa and YouSearch networks, we propose our 

hybrid P2P network model which is based on QPM. Instead of directly 

connecting to all relevant peers, the query initiating peer queries the zone 

manager (like the super-node in Kazaa and registrar in YouSearch) for some 

optimal query routing paths searched by our proposed Genetic Algorithm 

(GA), and then propagates the query to all relevant peers through these 

paths. Therefore, we achieve two improvements which are (1) lower 

bandwidth consumption and (2) better parallel search. We verify them by 

our experimental results (see Section 4.3). 

1) Lower Bandwidth Consumption: The query initiating peer only 

sends query packets to the next peers in the query routing paths instead of 

all relevant peers. Hence, the query initiating peer consumes lower 
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bandwidth for its own network transmission. 

2) Better Parallel Search: The query initiating peer only directly 

connects to the next peers in the query routing paths. Hence, the maximum 

number of threads to be spawned by the query initiating peer, which equals 

to the number of its logically linked peers, is greatly reduced due to the 

small degree property of our proposed P2P network. Hence, the query 

initiating peer may be able to spawn all threads at one time which results in 

better parallel search. 

Figure 3 shows the comparison between DCM and QPM. If there are r 

relevant peers, the query initiating peer needs to consume r units of its own 

bandwidth in DCM, whereas it only needs to consume two units of its own 

bandwidth in QPM. If there are only two threads available, the query 

initiating peer needs to spawn b batches of threads for DCM, whereas it 

only needs to spawn one batch of threads for QPM. 

Besides our proposed hybrid P2P network model and zone managers, 

we propose a novel GA called GAroute used by zone managers as a function 
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Figure 3. Comparison between DCM and QPM 
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to search for some optimal query routing paths. By giving the current P2P 

network topology and relevance level of each peer, GAroute returns a list of 

query routing paths that cover as many relevant peers as possible. We model 

this as a Longest Path Problem in a directed cyclic graph which is 

NP-complete [37]. Nonetheless, we obtain high quality approximate 

solutions in polynomial time by using GA. 

 

1.3 Thesis Chapter Organization 

The rest of this thesis is organized as follows. Chapter 2 introduces the 

related work including different P2P networks, query routing strategies, and 

P2P network security. Our proposed S2S Searching and GAroute are 

described in Chapter 3 and Chapter 4 respectively. For S2S Searching, we 

describe the system architecture, algorithms for indexing, matching, and 

query routing, communication protocol, and experiments. For GAroute, we 

describe our proposed hybrid P2P network model, genetic algorithm for 

finding optimal query routing paths, and experiments. Moreover, Chapter 5 

contains the discussion for both S2S Searching and GAroute. Finally, we 

give the conclusion in Chapter 6, bibliography in Chapter 7, and appendix 

including S2S search engine and GAroute library in Chapter 8. 
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2. Related Work 
Since P2P applications are widely used nowadays, there are some 

related research on P2P technologies. In this chapter, we give a literature 

review on different P2P networks (see Section 2.1) and query routing 

strategies (see Section 2.2). We also compare them with our proposed S2S 

Searching and GAroute. Finally, we briefly introduce the research that is 

related to P2P network security (see Section 2.3). 

 

2.1 P2P Networks 

Mostly, P2P networks are used for sharing contents like audio, video, 

software, and other data files. P2P networks are logical networks that rely 

on computing power at the ends of a connection rather than in the networks 

themselves [41]. In Chapter 1, we mention that P2P networks can be divided 

into two types which are pure and hybrid P2P networks. Pure P2P networks 

do not have the concept of clients and servers. Instead, they have the 

concept of equal nodes which act like both “clients” and “servers” 

simultaneously to other nodes in the network. We call those nodes peers. 

The main difference between the client-server network model and P2P 

network model is that the data is sent between a client and a centralized 

server for the client-server network model, whereas the data is sent between 

peers for the P2P network model. Hybrid P2P networks use the client-server 

network model for some functions such as searching file indices, and use the 
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P2P network model for other functions such as downloading files. They are 

called “hybrid” because they combine the client-server and P2P network 

models. Hybrid P2P networks may have the scalability problem due to the 

use of centralized servers. However, there are three advantages of P2P 

network model over client-server network model which are distributed 

resource, increased reliability, and comprehensiveness of information [26]. 

In this section, we introduce eight different P2P networks from generation to 

generation. They are (1) Napster [40], (2) Gnutella [20], (3) Kazaa [32], (4) 

BitTorrent [8], (5) Gnutella2 [21], (6) YouSearch [36], (7) Discovir [26], and 

(8) Freenet [17]. 

Before the start of P2P, information sharing is usually through websites. 

When we search for some files, we go to some search engine websites [21], 

[4], [55] and search which return several lists of relevant websites. Then we 

go through some of these relevant websites to download the files that we 

want. This is the client-server network model where the search engines and 

relevant websites act as the servers. Obviously, this scenario has a major 

shortcoming that both search engines and relevant websites are centralized 

and suffer from high load. 

1) Napster: In order to decentralize servers, P2P networks are 

researched and developed. The first generation P2P networks still have a 

centralized file list like Napster which is a hybrid P2P network for music file 

sharing applications before its shutdown due to the piracy problem. It has a 

centralized server which requires the entire song lists of peers (personal 
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computers) to be uploaded for the indexing purpose. When we search for a 

song in a peer, it queries the central index server to find out all peers which 

have the song. Then we download the song from those relevant peers. 

However, this solution is too similar to the client-server network model. The 

main difference is that the files are no longer hosted in some Web servers. 

They are distributed over peers, but the searching process is still done in the 

central index server which is un-scalable because when the number of peers 

grows, then it requires more centralized resource to handle search requests. 

On the other hand, our proposed hybrid P2P network model is scalable due 

to the use of distributed index servers. 

2) Gnutella: In order to fully decentralize servers for the load balancing, 

the second generation P2P networks are developed which emphasize on 

pure P2P networks. Gnutella is a pure P2P network for file sharing 

applications. It does not have any centralized server. When we search for 

files by a peer, it broadcasts the query to all its connecting peers. Then the 

peers propagate the query to their adjacent peers and this process continues 

until exceeding the Time-to-Live (TTL) value. Each peer looks up its locally 

shared collection and responds to its requester. This model is very similar to 

S2S Searching but Gnutella is designed for searching files in personal 

computers instead of websites. We extend this model for Web information 

retrieval. Gnutella supports those peers which frequently join and leave the 

network. S2S Searching also supports this although peers do not frequently 

join or leave because websites are usually persistence. Although Gnutella 
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solves the scalability problem of Napster, it has the query flooding problem 

which generates a lot of network traffic and wastes resources of all 

irrelevant peers [26]. On the other hand, S2S Searching solves this problem 

by applying the proposed query routing algorithm using distributed 

registrars. 

3) Kazaa: In order to solve the query flooding problem of Gnutella, 

most P2P networks adopt a hybrid scheme like Kazaa. Kazaa is a file 

sharing application for a hybrid P2P network which uses FastTrack [17] as 

the P2P protocol. Although it does not have a centralized server, it is 

classified into hybrid P2P network because of the use of super-nodes. A 

super-node is a temporary index server for other peers. Any peer with a high 

computation power and fast network speed automatically becomes a 

super-node. When a peer joins the network, it finds an active super-node 

from its list of initial super-nodes. It also queries the active super-node for a 

list of other active super-nodes. Then it chooses a super-node as its index 

server and uploads a list of shared files. When it searches for a file, it 

directly queries the super-node, which also communicates with other 

super-nodes, for a list of relevant files with peer addresses. Then it directly 

downloads the files from those peers. This is very similar to our proposed 

hybrid P2P network model. The main difference is that the content summary 

instead of file index of the peer is uploaded to the zone manager (similar to 

the super-node) in our proposed hybrid P2P network model for 

content-based information retrieval. 
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4) BitTorrent: Besides searching the location of the target file, 

downloading the target file is also an important issue because it takes most 

time to do if the file is large. If the target file is only stored in a peer and we 

always download it, the peer becomes centralized server which is easy to be 

overload. Therefore, Kazaa may have this problem. BitTorrent is a P2P file 

distribution tool where files are broken into smaller fragments and 

distributed to peers in a pure P2P network. The fragments can be 

reassembled on a requesting machine in a random order. Thus, the parallel 

connections to all peers speed up the download process. To share a file, we 

create the corresponding torrent file which contains the file and tracker 

information. However, BitTorrent does not support indexing of torrent files. 

Thus, the torrent file is usually distributed to other users through websites. 

To download a file, we first open the torrent file and obtain the peers where 

its fragments reside through the tracker. Then we download the fragments in 

the available peers. When we finish downloading the entire file, our peer 

becomes an additional source for the file. BitTorrent uses the P2P concept 

for downloading files, whereas S2S Searching uses the P2P concept for 

searching Web documents. 

5) Gnutella2: By combining Kazaa and BitTorrent, Gnutella2 is a 

reworking of Gnutella which gives up its pure P2P structure and uses a new 

hybrid P2P structure in order to solve the query flooding problem and speed 

up the download process. The old Gnutella protocol is discarded except for 

the connection handshake. Similar to Kazaa, Gnutella2 divides peers into 
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two types which are leaves and hubs (super-nodes). Leaves have one or two 

connections to hubs, while hubs have hundreds connections to leaves and 

other hubs. The searching mechanism is very similar to Kazaa so that we do 

not describe again. Besides the improvement of the query flooding, 

Gnutella2 allows the file to be downloaded from multiple sources which is 

like BitTorrent. In addition, Gnutella2 improves Gnutella by the extensible 

binary XML-like packet format so that the future network improvements 

and individual vendor features can be added easily. Other features include 

network data compression and advanced metadata system. The switching of 

Napster to Gnutella and Gnutella to Gnutella2 shows that there is no 

absolute advantage of pure P2P networks over hybrid P2P networks. 

6) YouSearch: So far, the P2P networks that we introduce are not for 

the content-based information retrieval. YouSearch is a Web search engine 

for content-based full text search which is designed for searching contents in 

a hybrid P2P network of personal Web servers [41]. YouSearch adopts the 

method in Napster with a few improvements on the load of the index server. 

Similar to Napster, YouSearch depends on a centralized registrar which is a 

light-weight index server. However, the registrar stores only the content 

summary instead of the full index of each peer because storing the full index 

is impractical as the size may be very large. Each peer creates its own 

content summary by using Bloom filter [5] and pushes the summary to the 

registrar. When we search for contents by a peer, it queries the registrar to 

obtain a list of relevant peers with some false positives as the content 
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summary is only a hash table contained the index terms. Then it directly 

queries the relevant peers to remove those false positives. Although this 

direct connection model solves the query flooding problem, such model has 

two shortcomings which are high bandwidth consumption and poor 

semi-parallel search (see Section 1.1). On the other hand, our proposed 

hybrid P2P network model circumvents these shortcomings by introducing 

the query propagation model in hybrid P2P networks. 

7) Discovir: Besides YouSearch, Discovir is a content-based image 

retrieval application for a pure P2P network. It is built on top of LimeWire 

[35] which uses the Gnutella protocol. Each peer is responsible for 

performing the feature extraction on those shared image files. These features 

include the color, texture, and shape. When we search for similar images by 

a peer, we can select a sample image and specify a feature extraction 

method. Then the peer transforms the image content to a feature vector 

based on what extraction method we choose. The feature vector and 

extraction method are propagated from peer to peer. Each peer tries to match 

the sample image with their local images by the feature vector. Moreover, 

Discovir solves the query flooding problem by using the firework query 

model which is based on the document clustering (see Section 2.2). 

Content-based image retrieval can also be plugged into S2S Searching. In 

that case, the query is the feature vector. 

8) Freenet: The third generation peer-to-peer networks are those which 

have anonymity features built in. Freenet is a censorship-resistant data store 
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for a pure P2P network. Since it emphasizes on the censorship and 

anonymity, there is a tradeoff that it is slower and does not have integrated 

search functionality. All stored documents are segmented, encrypted, and 

distributed over anonymous peers so that it is difficult for a person to trace 

which peers are hosting a particular file. Freenet does not have the query 

flooding problem because it adopts a key-based routing. To publish a 

document, it is routed from peer to peer and stored in the anonymous 

destination peer. Those intermediate peers do not know which the initiating 

peer is. Since the same routing algorithm is used for all published 

documents, they form a cluster of similar documents which is similar to 

Discovir. To search a document with a given key, the peer uses the same 

key-based routing to locate the destination peers that may contain the target. 

Since the routing algorithm is heuristic in nature, we cannot guarantee that it 

always find the target. The main difference between Freenet and S2S 

searching is that peers of the former one stores other peers’ contents, 

whereas peers of the later one stores local contents. Third generation 

networks, however, have not reached mass usage for file sharing because of 

the extreme overhead which anonymity features introduce, multiplying the 

bandwidth required to send a file with each intermediary used [41]. 

Table 1 and Table 2 show the comparison of the aforementioned pure 

and hybrid P2P networks respectively. 
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Table 1. Comparison of Pure P2P Networks 

 Sharing Peer Query routing 
Gnutella Any file Store local files No 

BitTorrent Mainly video 
files 

Store file 
fragments 

Tracker 

Discovir Image files Store local files Firework query 
model 

Freenet Documents Store documents 
published from 
other peers 

Key-based 

S2S Searching HTML 
documents 

Store a website Distributed 
registrars 

 

Table 2. Comparison of Hybrid P2P Networks 

 Sharing Peer Hybrid model 
Napster Audio files Store local files Index server 

Kazaa Any file Store local files 
and other peers’ 
indices 

Super-nodes 

Gnutella2 Any file Store local and 
other peers’ 
indices and files

Leaves and hubs 

YouSearch HTML 
documents 

Store local files Registrar 

GAroute Any file Store local files Zone managers 
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2.2 Query Routing Strategies 

In a P2P file sharing system, files are always indexed in order to 

improve the performance of searching. When we search for a file, we search 

in the file index instead of the files themselves. File indices can be stored by 

using the centralized approach, localized approach, or distributed approach. 

For the centralized approach, a centralized server stores the index of all 

peers. Examples are Napster and YouSearch. For the localized approach, 

each peer stores the index of its locally shared files. Examples are Gnutella 

and Discovir. For the distributed approach, the index of locally shared files 

is distributed to other peers. Freenet is an example. In this section, we 

introduce two different query routing strategies which are (1) document 

clustering and (2) Distributed Hash Table (DHT) for the localized approach 

and distributed approach respectively. Moreover, query routing is not 

necessary for the centralized approach because all indices are stored in the 

centralized server. 

1) Document Clustering: One of the query routing strategies for the 

localized approach is the firework query model [36] in Discovir which is 

based on the document clustering. There are two types of links which are 

random links and attractive links. Random links are connections of peers 

which peers randomly make to other peers in the network. Attractive links 

are connections of peers which peers explicitly make to other peers when 

two peers share the similar data. The attractive links self-organize or cluster 
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a group of peers with similar contents. In this model, a query first walks 

around the network from peer to peer by random links. Once it reaches the 

target cluster, it is broadcasted by peers using attractive links inside the 

cluster (see Figure 4). The TTL value of the query message does not 

decrease in attractive links. Unfortunately, this query routing strategy 

depends on a random walk which fails if it does not walk to the target 

cluster. In addition, Discovir uses the firework query model to route queries 

based on summarized indices which is like S2S Searching. In that case, the 

summarized index is the feature vector. 

2) DHT: The distributed approach requires some query routing 

strategies so that we are able to look up the index location by given a key. 

DHT is one of the most popular techniques to distribute document keys or 

indices over peers [22]. CAN [45] models the key as the point on a 

 

Figure 4. Firework Query Model 
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d-dimension Cartesian coordinate space, while each peer is responsible for 

the key-value pairs inside its specific region. pSearch [10] is a modification 

of CAN for content-based full text search applications which models the key 

as a latent semantic index [43]. Chord [28] models the key as an m-bit 

identifier and arranges the peers into a logical ring topology to determine 

which peer is responsible for storing which key-value pair. Pastry [2] and 

Tapestry [7] are similar which are based on the Plaxton mesh. Identifiers are 

assigned based on a hash on the IP address of each peer [15]. Pastry differs 

from Tapestry in the method by which it handles network locality and 

replication. 

 

2.3 P2P Network Security 

Besides the aforementioned query routing strategies, there is also some 

research about the security of P2P networks. Here, we briefly introduce two 

of them. 

Cornelli proposes an approach [16] to P2P security where servents can 

keep track and share the information about the reputation of their peers with 

each other. The reputation sharing depends on a distributed polling 

algorithm such that resource requestors can assess the reliability of 

perspective providers before initiating the download. As the result, it 

complements the existing P2P protocols and keeps the current level of 

anonymity of requestors and providers. 
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Kamvar proposes the EigenTrust algorithm [43] for the reputation 

management in P2P networks which decreases the number of downloads of 

inauthentic files. The algorithm assigns each peer a unique global trust value 

which is based on the peer upload history. The peers use these global trust 

values to choose the peers from whom they download. As the result, the 

network effectively identifies malicious peers and isolates them from the 

network after. 
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3. S2S Searching 
In the previous chapters, we introduce the related work of different P2P 

networks. In this chapter, we describe our proposed pure P2P network 

model and S2S Searching for the Web information retrieval. The chapter is 

organized as follows. In Section 3.1, we describe the system architecture of 

S2S search engines. The indexing and matching algorithms used in S2S 

search engines are shown in Section 3.2. We also describe the query routing 

algorithms and communication protocol in Section 3.3 and Section 3.4 

respectively. Finally, we show the experimental results with some 

discussions in Section 3.5. For the perspectives of site owners and search 

engine users, please refer to Section 8.1 in the appendix. 

 

3.1 System Architecture 

There are two modules with several components in a S2S search engine. 

They are the administration module and search module. In this section, we 

describe their components and functions. 

 

3.1.1 Administration Module 

The administration module is accessed by site owners to administrate 

their S2S search engines. As shown in Figure 5, it has four components. 

They are the (1) administrator, (2) local index manager, (3) ranking 

manager, and (4) network manager. 
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1) Administrator: The administrator provides Web interfaces for site 

owners to manage their sites. Before managing their sites, they are required 

to login. After successful login, they can manage the local index, ranking 

parameters, and S2S network in the administration pages. 

2) Local Index Manager: The local index manager is responsible for 

managing the local index. It is invoked by the indexing CGI when site 

owners want to refresh the local index and content summary after updating 

their Web contents. S2S search engines have no background job running 

because all programs are invoked by CGI as a request. Therefore, it is 

necessary to invoke the indexing CGI manually. However, it is still possible 

to do this automatically by using Hyper Text Markup Language (HTML) tag. 

For example, the tag 

<meta http-equiv = "refresh" content = "60; url=indexing"> 

tells the browser to refresh CGI URL “indexing” every sixty seconds. Hence, 

site owners can keep their browsers open to ensure that the local index is 

Administrator
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Figure 5. Administration Module and Its Components 

 



Chapter 3.  S2S Searching  26 

updating from time to time. For the indexing algorithm, we modify the 

existing Vector Space Model (VSM) [38] to be adaptive (see Section 3.2). 

Its performance is analyzed in Section 3.5. When the indexing CGI is called, 

it first traverses document directories and obtains all filenames. But it skips 

those CGI programs directories and other files which are listed in the 

invisible list. The invisible list determines whether a file is searchable. For 

each file, it compares the last indexing date with the last modification date. 

If the last modification date is more recent, then it recalculates the index. 

Finally, both index summary and content summary are built. For the index 

summary, it stores the meta-data of all documents such as filename, size, 

and indexing date. For the content summary, it is a fixed size hash table 

which stores the importance and confidence of the words. The updated 

content summary is then compared with the old content summary. If they 

are not the same, then the updated content summary is broadcasted to all 

adjacent sites for registrar maintenance (see Section 3.3). 

3) Ranking Manager: The ranking manager is responsible for 

managing the priority value of each local document and the ranking 

parameters p and s (refer to (2)). The priority value is used to determine the 

importance of the corresponding document for advertising purpose. It is a 

real number which is normalized between zero and one. The higher priority 

value the document has, the higher position it is ranked. In addition, the 

priority value of other sites’ documents are unchangeable and always set to 

0.5. This is to prevent other site owners from always setting the priority 
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values of their documents to have maximum value. Only site owners can 

alter the ranking strategy in their own sites because the search engines 

belong to them. 

4) Network Manager: The network manager is responsible for 

managing the S2S network. Site owners can add or remove some sites 

through this manager. To locate a site, we need to know the corresponding 

starting URL which is the root URL of CGI programs. This is similar to 

Gnutella that we need to know the Internet Protocol (IP) address of a peer in 

order to locate it. Before adding a site, site owners can ping it in the 

administration pages to obtain its information such as its response time and 

current state. When they try to add a site by giving the starting URL, the 

network manager also pings it by calling its pinging CGI (see Section 3.4). 

If the given URL is reachable, the network manager adds a record in the 

peers information file. The network manager also calls the joining CGI (see 

Section 3.4) of that site because joining is two-way. In addition, site owners 

can manage the black list which stores a list of banned IP addresses of other 

sites and the masks. It acts like a firewall. When some sites are in the black 

list, the current site does not accept any request from them. Using black list 

mechanism prevents those malicious sites to attack a site. 

 

3.1.2 Search Module 

The search module is the core of S2S Searching. It is accessed by 

search engine users to search the target information in both local site and 
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other sites which are in the same S2S network. As shown in Figure 6, it has 

five components. They are the (1) query starter, (2) searcher, (3) peer 

threads producer, (4) keywords matcher, and (5) ranker. 

1) Query Starter: The query starter provides Web interfaces for search 

engine users to search the target information. When it receives a query 

request from the search form, it first generates a unique request ID. The ID 

is composed of the current time and a random number to ensure the 

uniqueness. Then it is passed to the local searching CGI (see Section 3.4) 

together with keywords and other parameters in the search form. The local 

searching CGI program searches the target information in the local site and 

also forwards the query request to adjacent sites. Two sites are adjacent if 

they know the starting URLs of each other. The local searching CGI 

program returns a list of results to the query starter together with the starting 
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Figure 6. Search Module and Its Components 
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URLs of the sites that contain any document which similarity is greater than 

the configurable quality threshold. The query starter joins those high quality 

sites by calling their joining CGIs. The more frequent we search in a site, 

the larger number of qualified sites we join. Finally, it forwards the results 

to the ranker and gets back ranked results. Then it outputs the ranked results 

in the HTML or Extensible Markup Language (XML) format which is 

specified in CGI parameters. 

2) Searcher: The searcher is the entry point of the local searching CGI. 

When it receives a query request from the local query starter or other sites’ 

searching CGIs, it first checks whether the requester is in the black list. If it 

is, then the query request is dropped. After passing the black list test, the 

searcher checks if the request ID exists in the file. If it exists, the current 

request is a repetitive request due to some loops in the S2S network. 

Therefore, the query request is dropped. If it does not exist, it passes the 

request ID test and the searcher adds the current request ID to the file. 

Request ID records are cleaned from time to time in order to save the 

storage space. The maximum number of request ID stored is configurable. 

Similar to Gnutella, the search scope of S2S Searching is controlled by 

using the Time-to-Live (TTL) mechanism. Therefore, the next step is to 

check whether the TTL value from CGI parameters is greater than zero. If it 

is, then the searcher asks the peer threads producer to route the query 

request to adjacent sites (see Section 3.3). At the same time, it asks the 

keywords matcher to search local contents by giving keywords. The peer 
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threads producer and keywords matcher work in parallel. After some time, 

both of them return results which include documents’ information and 

starting URLs of the sites. The searcher then gathers these results and 

returns to the requester. 

3) Peer Threads Producer: The peer threads producer is responsible for 

spawning threads to route a query request to adjacent sites. When it is called 

by the searcher, it spawns a requested number of threads. Each thread calls a 

unique site’s searching CGI and waits for its return. The starting URLs of 

the sites are stored in the peers information file. A timeout mechanism is 

used to prevent some threads from waiting for too long time. The timeout 

time is configurable. Since the waiting time for other sites to return their 

results is dominant, the peer threads producer is always idle after sending 

the query request to all adjacent sites. Therefore, the keywords matcher gets 

full CPU resource to search local contents at that time. Other sites’ searchers 

also work in parallel. Hence, the searching process is highly distributed and 

efficient. Finally, the peer threads producer finishes waiting all threads to 

join and returns gathered results to the searcher. The reason for waiting is 

that we need to gather all results for ranking so that they are synchronized. 

4) Keywords Matcher: The keywords matcher is responsible for 

searching local contents by giving keywords. When it is called by the 

searcher, it first extracts the keywords and gets the index summary in the 

local index file. It tries to match the keywords with the index by using our 

matching algorithm based on the modified VSM. Once it matches, the 
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similarity is calculated. Usually, the keywords matcher utilizes the full CPU 

resource as the peer threads producer is idle for waiting other sites’ 

searching CGIs to return. This makes the searching process very efficient. 

Finally, the keywords matcher returns the results to the searcher. 

5) Ranker: The ranker is responsible for ranking search results based 

on priorities and similarities of documents which are real numbers between 

zero and one. Priorities are stored locally. Therefore, only local documents 

take effect of their priority values because site owners should have rights to 

advertise their documents in their own search engines. Other site owners are 

not allowed to rank their documents higher in other sites by setting higher 

priorities. This avoids cheating. If a document does not belong to a site, it is 

always set to the normal priority 0.5. The final ranking value rank is 

calculated by 

simspriorityprank ×+×=  where 1=+ sp . (2)

The ranking parameters p and s are real numbers between zero and one 

which are configurable by site owners according to their preferences. The 

range of the ranking value is also between zero and one. Different sites have 

their own ranking parameters which result in different ranking for the same 

document. In addition, it is possible that the ranking partially depends on the 

importance of the Web pages such as PageRank [34], HITS [29], and 

Affinity Rank [53]. Finally, the ranker sorts search results in the descending 

order by the ranking value. The ranked results are returned to the query 

starter. 
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3.2 Indexing and Matching 

In this section, we introduce the background of indexing and matching. 

We also describe our indexing and matching algorithms based on the 

modified VSM. 

 

3.2.1 Background of Indexing and Matching 

In order to improve the matching speed, indexing documents is 

necessary. VSM is one of the popular indexing algorithms. It represents 

documents and queries by term vectors. The term weighting tij of the term 

(word) wi in the document dj is calculated by 

iijij idftft ⋅=  where 
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tf is known as the term frequency, idf is known as the inverse document 

frequency, fij is the raw frequency of wi in dj, Nd is the total number of 

documents, and ni is the number of documents in which wi appears. 

Similarly, the query term weighting tiq is calculated by the above equations. 

The similarity sim between the document dj and query q is calculated by 

cosine the angle between the document and query such that 
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where Nt is the total number of index terms. However, when there are some 

documents added, deleted, or updated, the new idf values are completely 
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different. Therefore, the whole term weighting matrix needs to be 

recalculated and the whole index file needs to be overwritten. Since the 

Nt-by-Nd term weighting matrix is very large, writing the index file is very 

time-consuming which results in slow indexing time. 

 

3.2.2 Indexing Algorithm 

Due to the aforementioned shortcoming, we give up the idf value of 

each term. We only store the tf value of each term which results in faster 

indexing time. Therefore, our indexing algorithm treats every document 

independently. The index of each document is stored in an independent 

index file. When there is a document added, we calculate its index 

independently and store it in an independent index file. A new record is 

added to the index summary which contains the path and filename of the 

document, indexing date, and the corresponding index file ID. When there is 

a document deleted, we delete its index file as well and then delete the 

corresponding record in the index summary. When there is a document 

updated, we recalculate its index independently and update its 

corresponding index file. We also update its indexing date in the index 

summary. Other index files of other documents remain unchanged. Hence, 

we achieve a fast and adaptive update. 

For the index calculation, we extract alpha-numerical words in a text 

document and filter out stop words like “a”, “an”, “the”, etc. Numbers are 

also filtered away. Then we convert all meaningful words to lower-cased 



Chapter 3.  S2S Searching  34 

words. Let N be the number of different words in a particular document. We 

define the word set W as 

{ }NiwW i ≤≤= 1| . (5)

For each word wi in W, its corresponding frequency f(wi) is calculated. We 

define the word importance I(wi) of the ith word relative to the whole 

document as 

)(max
)(

)(
1 k

N
k

i
i wf

wf
wI

=

= . (6)

Actually, the word importance is the same as the term frequency of VSM. 

Then we group the words by their first alphabets. There are at most 26 

groups. N grouped vectors which are in the form of (wi, I(wi)) are stored in a 

local index file of a particular document. The word occurrence locations L 

of the inverted index can also be stored. However, it consumes much space 

and its overhead is shown in Section 3.5. In addition, we build an index 

table I which contains file offsets and lengths of each group. The index table 

is also stored in the same index file. 

 

3.2.3 Matching Algorithm 

After indexing each document, we can quickly match the keywords 

with each document by looking at the corresponding index file. Therefore, 

to obtain updated results, recalculate the index is necessary if some 

documents are updated. 

For the keywords matching, by given the keywords, we extract 
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alpha-numerical keywords and filter out stop words like “a”, “an”, “the”, etc. 

Numbers are also filtered away. Then we convert all meaningful keywords 

to lower-cased keywords. Let n be the number of different keywords. We 

define the keyword set K as 

{ }nikK i ≤≤= 1| . (7)

To perform keywords matching in a document, we may sequentially scan 

the corresponding index file and quit the scanning procedure at once if they 

are matched. The file scanning takes O(N) time. However, it can be 

improved by the following method. Let m be the number of different first 

alphabets in K. We define the first alphabet set A as 

{ }nmmiaA i ≤∧≤≤≤= 261| . (8)

To perform keywords matching in a document, for each alphabet ai in A, we 

look up the index table I for the file offset and length. Then we jump to the 

corresponding position and perform the sequential scanning within the 

length. When we compare with the former keywords matching, the file 

scanning time is greatly reduced to a fraction of m / 26 approximately, 

assuming those 26 alphabets are evenly distributed. Hence, The file 

scanning takes O(N · m / 26) time. The improvement is shown in Section 3.5. 

We define the similarity value si of ki as 
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There are two types of keywords matching which are (1) OR and (2) AND. 

1) OR Matching: For each local index file of a particular document, the 
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similarity value sim is calculated by 

∑
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2) AND Matching: For each local index file of a particular document, 

the similarity value sim is calculated by 
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3.3 Query Routing 

In this section, we introduce the background of query routing. We 

describe our proposed query routing algorithm based on distributed 

registrars. The content summary generation and registrar maintenance are 

also presented. 

 

3.3.1 Background of Query Routing 

P2P networks like Gnutella have the query flooding property. All peers 

broadcast query requests to all their connecting peers. This model has two 

advantages. (1) The search is complete because all peers in the same P2P 

network within a specific TTL receive the query request. Therefore, all 

peers can search their local contents and return results to the query initiating 

peer. (2) The results obtained are global optimal because all peers return 

their optimal results to the query initiating peer. Therefore, the query 

initiating peer can select the most relevant results. However, this model 
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introduces the query flooding problem which is mentioned in Section 1.1. 

This problem arises from all peers flooding the query to their connecting 

peers as well as those irrelevant peers. Consequently, this problem generates 

a lot of network traffic and wastes resources of all irrelevant peers. The 

network traffic of a simple n-nary tree topology (see Figure 1) is analyzed in 

Section 1.1. 

In order to reduce the exponential traffic cost (refer to (1)), routing 

query to relevant peers only is necessary. The query flooding problem can 

be solved by some existing query routing algorithms like CAN [45] and 

Chord [28] in pure P2P networks. They use Distributed Hash Table (DHT) 

to distribute indices to other peers. Since S2S Searching targets on those 

websites hosted by ISP Web servers which space is very limited and a site 

may need to store many indices of other sites if we apply the DHT model, 

this makes S2S Searching to be impractical. Content-based full text search 

applications like YouSearch [36] depends on a centralized registrar for 

storing content summaries of each peer. By querying the registrar, each peer 

obtains a list of relevant peers so that it directly connects to all relevant 

peers to obtain document lists. Thus, the query flooding problem does not 

exist. However, this model has two shortcomings. (1) It depends on a 

centralized registrar which is un-scalable. The centralized registrar also 

needs to store many data of all peers. (2) It has the registrar flooding 

problem because all peers query the centralized registrar from time to time. 

Moreover, when peers update their local contents, they also push their 
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content summaries to the centralized registrar. 

 

3.3.2 Distributed Registrars and Content Summary 

In order to solve the query flooding problem in S2S Searching, we 

improve the method of YouSearch and propose our own query routing 

algorithm based on distributed registrars which is fast and scalable. The idea 

is to distribute registrars over sites. Each site manages its own registrar 

which contains content summaries of all adjacent sites. This model solves 

the scalability problem of YouSearch. Figure 7 shows an example. The 

registrar of site B stores the content summaries of sites A, C, and E. When 

we use site B to search with some keywords, site B first looks up its own 

registrar. If site E has the highest chance to match the keywords (higher 

relevance level). Then site B routes the query to site E. Site E receives this 

request and also follows the same strategy to route the query. 

The registrar is a file which contains starting URLs as IDs of adjacent 

sites and their corresponding content summaries. YouSearch uses Bloom 

filter [5] to generate content summaries. However, we can only know 
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Figure 7. A S2S Network Topology 
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whether a site contains the given keywords instead of knowing its relevance 

level. Therefore, Bloom filter cannot meet our requirement. In S2S 

Searching, the content summary of a site is a fixed size hash table which 

stores the scores of different words of all documents in a site. We define the 

content summary S as 

{ }missS ii ≤≤∧≤≤= 110| , (12)

where m is the number of blocks in the hash table. In order to obtain an even 

distribution, m should be a prime number. A better choice for m is that 

12 −= pm , (13)

where p is a prime number. In S2S search engines, p is 11. Hence, S contains 

2,047 blocks which take 8,188 bytes, assuming a floating point number 

takes four bytes. If the maximum number of adjacent sites is 100, then the 

registrar takes less than 800KB to store content summaries. Given a 

lower-cased alpha-numerical word w, the hash function H(w) of S is defined 

as 
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where l is the length of w. In S2S search engines, the maximum value of l is 

fixed to 13 to prevent the integer overflow. If the ith character is a number, 

then ci is fixed to 96. Otherwise, ci is the ASCII code of the alphabet. The 

quality of H is analyzed in Section 3.5. We use Horner Scheme [25] for a 

faster calculation and the hash function becomes 
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To build a content summary, we traverse index files and get the 

information about the words and frequencies. Let N be the total number of 

different words in a site. We define the word set W as 

{ }NiwW i ≤≤= 1| . (16)

For each word wi in W, its total frequency f(wi) of all documents is 

calculated. We define the word importance I(wi) of the ith word relative to 

the whole site as 
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We also define the hash set HSi of all words which have the same hash code 

i as 

{ }iwHWwwHS jjji =∧∈= )(| . (18)

Then the ith element si of the content summary is calculated by 
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Actually, si not only stores the average word importance for all wj in HSi, but 

also stores the confidence level CLi which is inversely proportional to the 

number of collisions in si. When we compare si in different sites, the larger 

value of si has, the more important and confident the word wj appears in that 

site. Finally, S contains the generated content summary of the adjacent site 



Chapter 3.  S2S Searching  41 

and the registrar stores a list of adjacent sites and their corresponding S. 

 

3.3.3 Query Routing Algorithm 

When a site needs to route a query, it first looks up its own registrar. 

For each content summary S in the registrar, it calculates the score 

(relevance level) of an adjacent site with the given lower-cased 

alpha-numerical keywords. Let n be the number of different keywords. We 

define the keyword set K as 

{ }nikK i ≤≤= 1| . (20)

There are two types of keywords matching which are (1) OR and (2) AND. 

1) OR Matching: The score of a site, which is normalized between zero 

and one, is defined as 

∑
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2) AND Matching: The score of a site, which is normalized between 

zero and one, is defined as 
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After calculating scores of Na adjacent sites, a list of relevant sites with 

some false positives is obtained. It routes the query to Na' sites, which have 

the highest scores, such that 

⎡ ⎤aa NfN ⋅=' , (23)

where the traffic reduction factor f is a real number between zero and one 
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for reducing the network traffic. For example, if f is 0.2 and the current site 

has 10 adjacent sites, then the query is routed to the two sites which have 

the highest scores. If there are some sites which have the same highest 

scores, then we randomly pick them. 

Our proposed query routing algorithm greatly solves the query flooding 

problem. However, it has two shortcomings. (1) The search is incomplete 

because not all sites in the same S2S network within a specific TTL receive 

the query request. Therefore, not all sites search their local contents and 

return their results to the query initiating site. (2) The results obtained are 

local optimal because our proposed algorithm performs a greedy search. Not 

all relevant sites search their local contents and return their results to the 

query initiating site. Therefore, the query initiating site cannot obtain global 

optimal results. Since this is a tradeoff, we make a balance between the 

query routing and query flooding. We enable infrequent query flooding in a 

site with a small probability p. When it receives a query request, it has the 

probabilities p and 1-p to use the infrequent query flooding and query 

routing algorithm respectively. With infrequent query flooding, our 

proposed algorithm improves the search to be semi-complete and 

semi-global optimal. We analyze the previous simple n-nary tree topology 

(see Figure 1) for the new query routing model. The depth d of the tree is 

the TTL value of the query in the query initiating peer. Assume the 

infrequent query flooding probability is p and traffic reduction factor is f. 

The expected fan-out degree n of each site is calculated by 
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])1([ fppnn −+= . (24)

Let the traffic cost for sending a query between two peers be one unit. The 

total traffic cost Troute for searching in the whole network is 
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Now, we compare it with the query flooding model. If every node has 10 

degrees of fan-out (n = 10) and the TTL value is also 10 (d = 10), then the 

total traffic cost for the query flooding model Tflood (refer to (1)) is 

11,111,111,110 units. On the other hand, if every node has a query flooding 

probability 0.1 (p = 0.1) and traffic reduction factor 0.2 (f = 0.2), then the 

expected fan-out degree n (refer to (24)) is 2.8 and the total traffic cost for 

the query routing model Troute (refer to (25)) is only 46,073 units. When the 

TTL value increases, the total traffic cost significantly decreases comparing 

with the query flooding model. Hence, our proposed algorithm solves the 

query flooding problem well. Table 3 shows the comparison of different 

query routing algorithms. 

 

Table 3. Comparison of Query Routing Algorithms 

 Query flooding Query routing Infrequent flooding 
Search Complete Incomplete Semi-complete 
Results Global optimal Local optimal Semi-global optimal 
Traffic Expensive: 
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3.3.4 Registrar Maintenance 

In order to maintain the most updated content summaries, the 

maintenance of registrars is necessary. Recall that every site stores its 

adjacent sites’ content summaries in its own registrar. It is necessary for 

adjacent sites to send their updated content summaries if their contents are 

updated. Therefore, when a site updates its local contents, it recalculates its 

local index and also content summary. If the updated content summary is 

different from the old one, then it broadcasts its updated content summary to 

all adjacent sites by calling their updating CGIs (see Section 3.4). This 

model does not introduce the registrar flooding problem of YouSearch 

because update is usually infrequent and it only disturbs adjacent sites in 

one level. Figure 7 shows an example. When site B is updated, it broadcasts 

its content summary to sites A, C, and E. Other non-adjacent sites are 

unaffected as their registrars do not store the content summary of site B. In 

addition, broadcasting content summary in one level is rather cheap. 

Assume it takes four bytes to store a floating point number. Then it takes 4 · 

m · Na bytes to broadcast, where m is the number of blocks in a content 

summary and Na is the number of adjacent sites. In S2S search engines, m is 

2,047. If the maximum number of adjacent sites is 100, then it takes less 

than 800KB to broadcast and each site receives 8KB data. 
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3.4 Communication Protocol 

S2S Searching targets on those websites which is hosted by ISP Web 

servers. Therefore, we assume that site owners have very limited privilege 

to administrate their sites. For example, they are only allowed to transfer 

their files between their local computers and Web servers through File 

Transfer Protocol (FTP). It is a challenge to make S2S search engines plug 

into most sites easily and do not require any system administrator to install 

some special software. Taking these into consideration, CGI seems to be the 

best choice for the communication protocol which has four advantages. (1) 

Most Web servers support CGI programming languages such as Java Servlet. 

(2) Site owners can install CGI programs by themselves. The usual step is to 

copy CGI programs to the CGI directory. Thus, they do not need to ask any 

system administrator to install. (3) CGI is on top of Hyper Text Transfer 

Protocol (HTTP) where firewalls usually allow these packets to pass 

through. Thus, they do not need to ask any system administrator to open 

other ports in firewalls. (4) CGI programs are located by URLs which are 

location transparent [19]. This is very important because if the IP address of 

the Web server is changed due to a server migration, then the CGI URLs are 

still unchanged. There are six CGIs for the communication protocol. They 

are the starting CGI, searching CGI, pinging CGI, joining CGI, leaving CGI, 

and updating CGI which are described in this section. Table 4 shows their 

summary. 
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3.4.1 Starting CGI 

The starting CGI is called by search forms for starting search requests. 

After it is called, it calls the local searching CGI for obtaining search results. 

The CGI name is start. There are five parameters. (1) The parameter key 

(string type) specifies the keywords to be searched. (2) The parameter type 

Table 4. Summary of Six CGIs 

 Name Parameter and Type Return 
Starting 
CGI 

start key (string), 
type (“or” / “and”), 
scope (“global” / “local”), 
ttl (integer), 
style (“html” / “xml”) 

HTML / XML 
code 

Searching 
CGI 

search id (string), 
key (string), 
type (“or” / “and”), 
ttl (integer), 
threshold (float) 

Documents’ info, 
starting URL 

Pinging 
CGI 

ping option (“status” / “peers” 
/ “echo”), 
value (string) 

Depend on option 

Joining 
CGI 

join url (string) Successfulness 

Leaving 
CGI 

leave url (string) Successfulness 

Updating 
CGI 

update url (string), 
summary (binary) 

Successfulness 
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(string type, either “or” or “and”) specifies the keywords matching type. (3) 

The parameter scope (string type, either “global” or “local”) specifies the 

searching scope of the S2S network. (4) The parameter ttl (integer type) 

specifies the maximum level of sites (excluding the local site) that the query 

request passes through. (5) The parameter style (string type, either “html” or 

“xml”) specifies whether the style of the search results is either in the 

HTML or XML format. It returns the HTML or XML code which contains 

ranked results. 

 

3.4.2 Searching CGI 

The searching CGI is called by the starting CGI or other sites for 

searching the target information. After it is called, it also calls other 

searching CGIs of adjacent sites to route the query request. The CGI name is 

search. There are five parameters. (1) The parameter id (string type) 

specifies the unique ID of the query request. (2) The parameter key (string 

type) specifies the keywords to be searched. (3) The parameter type (string 

type, either “or” or “and”) specifies the keywords matching type. (4) The 

parameter ttl (integer type) specifies the current TTL value of the query 

request. (5) The parameter threshold (float type) specifies the quality 

threshold for site joining. It returns a list of results which includes 

documents’ filenames, URLs, dates, sizes, and similarities. If there is any 

document which similarity is greater than the quality threshold, then the 

starting URL of the current site is also returned. 
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3.4.3 Pinging CGI 

The pinging CGI is called by the joining CGI or other sites for 

querying the information about the current site such as the response time 

and number of sites joined. The CGI name is ping. There is a parameter 

option (string type) which specifies the query option. It returns the 

information which depends on the query option. There are three options 

which are “status”, “peers”, and “echo”. (1) The option “status” is to check 

if the current site is alive which returns the string “ok”. (2) The option 

“peers” is to query the number of sites joined. (3) The option “echo” takes 

one parameter value (string type) and then echoes the input string. It is used 

to calculate the response time of the current site. 

 

3.4.4 Joining CGI 

The joining CGI is called by other sites for requesting the current site 

to join another site which starting URL is specified in the parameter. After it 

is called, it calls the pinging CGI of the target site to check whether it is 

valid. The CGI name is join. There is a parameter url (string type) which 

specifies the target site’s starting URL. It returns the successfulness of 

joining. 

 

3.4.5 Leaving CGI 

The leaving CGI is called by other sites for requesting the current site 
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to leave another site which starting URL is specified in the parameter. The 

CGI name is leave. There is a parameter url (string type) which specifies the 

target site’s starting URL. It returns the successfulness of leaving. 

 

3.4.6 Updating CGI 

The updating CGI is called by other sites for updating another site’s 

content summary in the current site’s registrar which starting URL is 

specified in the parameter. The CGI name is update. There are two 

parameters. (1) The parameter url (string type) specifies the target site’s 

starting URL. (2) The parameter summary (binary data in string type) 

specifies the content summary of the target site. It returns successfulness of 

updating. 

 

3.5 Experiments and Discussions 

In this section, we summarize the experimental results with some 

discussions. We measure the (1) performance of indexing, (2) performance 

of matching, (3) performance of S2S Searching, and (4) quality of the 

content summary. All experiments are performed with the same computer 

configuration (see Table 5). The computer has enough physical memory so 

that it does not require any memory swapping. It also has a fast network 

speed to simulate those Web servers which are placed in data centers. 

However, it has a slow file Input/Output (I/O) speed as they only use 
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Network File System (NFS) instead of local raid-disks. Its overall 

performance is less than a recent dedicated Web server. 

 

3.5.1 Performance of Indexing 

This experiment is to measure the performance of indexing in both size 

and time. In Section 3.2, we mention that the word occurrence locations L of 

the inverted index can also be stored in index files. To measure the size and 

time differences between the presence and absence of L, we randomly select 

31 HTML posters in the Twelfth International World Wide Web Conference 

[47]. The total document size of the text data to be indexed is 441KB. We 

incrementally add the document size from 11KB (first poster) to 441KB 

(last poster) and measure the corresponding (1) indexing size and (2) 

indexing time. 

1) Indexing Size: Figure 8 shows the relationship between the original 

document size and indexing size with and without L. The average 

Table 5. Computer Configuration of S2S Searching Experiments 

Item Setting 
CPU Sun Blade 1000 at 900MHz 
Memory 2GB RAM 
Network 100Mbps 
Disk NFS 
OS Sun Solaris 8 
Java VM Java 2 Standard Edition 1.4.2_05 
Web server Jakarta Tomcat 3.3.2 
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index-to-document ratio (slope of the line) with and without L are about 

0.74 and 0.45 respectively. Both presence and absence of L take linear size. 

However, storing L in index files consumes much space as the overhead. 

Without L, the size is reduced by about 40 percent. The usage of L is that 

when we display the search result of a document, we may also display its 

part of text that contains the given keywords. Using L reduces the time for 

locating the target text but increases the space consumption. Due to the 

space limitation of websites hosted by ISP Web servers, we simply discard L 

which is like YouSearch (see Figure 2 of [36]). 

2) Indexing Time: Figure 9 shows the relationship between the original 

document size and indexing time with and without L. Recall that our 

indexing algorithm is adaptive so that when there is a document added or 

updated, we only recalculate the index of the corresponding document. 

Other index files are unaffected. However, the time measured in this 
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experiment is the worst case that all documents are updated so that they 

need to be re-indexed. Both presence and absence of L take linear time. 

Actually, the bottleneck is in the file I/O as we store the document and index 

files in NFS which is much slower than local raid-disks. Therefore, it 

requires some time to read the document file and write the index files. 

Without L, the time is reduced by about 20 percent because we do not need 

to write L to the disk. 

 

3.5.2 Performance of Matching 

This experiment is to measure the performance of matching in time. In 

Section 3.2, we mention that we build an index table I which contains file 

offsets and lengths of each first alphabet group for a faster matching. To 

measure the time differences between the presence and absence of I, we 

randomly select 31 HTML posters in the Twelfth International World Wide 
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Web Conference. The total document size of the text data to be matched is 

441KB. We incrementally add the document size from 11KB (first poster) to 

441KB (last poster) and measure the corresponding matching time with 

some random keywords. 

Figure 10 shows the relationship between the original document size 

and matching time with and without I. Both presence and absence of I take 

linear time. Actually, the bottleneck is in the file I/O as we store index files 

in NFS which is much slower than local raid-disks. Therefore, it requires 

some time to read the index files. With I, the time is reduced by about 84 

percent which is very significant. The reason of the great improvement is 

that without I, we sequentially scan the index files which take a lot of time. 

However, with I, we look up I for the file offset and length of the first 

alphabet of keywords. Then we jump to the corresponding position and 

perform the sequential scanning within the length. Theoretically, the file 
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scanning time is greatly reduced to a fraction of m / 26 approximately where 

m is the total number of different first alphabets of the keywords, assuming 

those 26 alphabets are evenly distributed. 

 

3.5.3 Performance of S2S Searching 

This experiment is to measure the performance of S2S Searching in 

both (1) searching time and (2) searching time dependency by simulation. 

1) Searching Time: We measure the performance of S2S Searching in 

searching time by simulation. The total number of virtual sites to be 

searched is 10,000 which are randomly connected and evenly distributed in 

two computers. Each virtual site contains 400KB documents and the 

matching time is about 0.1 second according to Figure 10. We search in 

these 10,000 virtual sites and measure the searching time with different TTL 

values. During searching, query packets are propagated between two 
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computers through the network to simulate the real query propagation 

scenario. Figure 11 shows the relationship between the TTL value and 

searching time. The time measured includes the matching time and query 

propagation time of all virtual sites. However, the result propagation time, 

which is proportional to the amount of search results, is not included. From 

the experimental results, we demonstrate that S2S Searching is efficient in 

some large scaled S2S networks. The efficiency is due to the fact that the 

searching process is highly distributed and is done in parallel. When a site 

receives a query, it first concurrently forwards the query to its adjacent sites 

and then performs the matching during the wait of returned results. 

Therefore, the query can reach all sites quickly. On the other hand, if the site 

first performs the matching and then concurrently forwards the query to its 

adjacent sites, the searching time increases a lot as the query reaches all 

sites slowly. 

2) Searching Time Dependence: We measure the performance of S2S 

Searching in searching time dependence by simulation. There are 10 sites 

which are connected by a linear structure (see Figure 12) which adjacency 

matrix A is 

1 2 3 10…
 

Figure 12. Linear Structure of 10 Sites 
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⎩
⎨
⎧ =−

=
otherwise0

1  if 1 ji
Aij . (26)

Figure 13 shows the searching time in 10 trials with different matching time. 

The results are obtained by the following procedure. First, we set the 

matching time of the 10 sites to one second and measure the searching time 

which is indicated by the curve labeled “normal”. Second, we change the 

matching time of nine sites to half second and measure the searching time 

which is indicated by the curve labeled “fast”. However, the searching time 

does not improve. Then we change the matching time of the nine sites back 

to one second. Finally, we change the matching time of one site to two 

seconds and measure the searching time which is indicated by the curve 

labeled “slow”. The searching time increases to about two seconds. From 

the experimental results, we demonstrate that the searching time depends on 

the slowest site which involves in searching. The reason is that the query is 
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first propagated to adjacent sites. Then each site performs the matching. 

Those fast sites which finish their matching always wait for those slow sites 

to return their results. If there is any slow site that joins the S2S network, the 

searching time may be bad. Therefore, S2S Searching solves this problem 

by applying the timeout mechanism. During searching, slow sites that are 

timeout are skipped. 

 

3.5.4 Quality of Content Summary 

This experiment is to measure the quality of the content summary in 

our proposed query routing algorithm. In Section 3.3, we mention that the 

content summary is a fixed size (2,047 blocks) hash table which stores the 

scores of different words of all documents in a site. Therefore, the quality of 

the content summary can be measured in terms of the number of collisions. 

We randomly select some HTML posters in the Twelfth International World 

Wide Web Conference as the documents in a site. Then we build the 

corresponding content summary and measure the number of collisions in 

each block of the hash table. We only present one of our most representative 

results. 

Figure 14 shows the pie chart of the usage and the number of collisions 

C of the content summary hash table. The content summary contains 31 

documents. After removing the stop words, the total number of different 

words to be hashed is 5,423. There are 2,047 blocks in the hash table. For an 

even distribution, each block should ideally have about 1.65 collisions. First, 
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we calculate the usage of the hash table which is about 93%. This result 

shows that the hash table is quite efficient. Second, we calculate the average 

number of collisions of the hash table which is about 1.85 (near to the ideal 

case 1.65) with less standard deviation 1.53. This result shows that the hash 

table is quite evenly distributed and confident. Therefore, the content 

summary is quite high in the quality. Actually, the quality depends on l and 

m in the hash function (refer to (14) and (15)). If they are larger, then the 

quality is higher. The larger value of l has, the more characters are involved 

in the calculation, but a bigger integer type is needed. The larger value of m 

has, the more blocks are available in the hash table, but a bigger memory 

size is needed. 
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4. GAroute 
GA is a general search algorithm that imitates the evolution process in 

the nature [31]. Recently, GAs have been widely used to solve different 

network and graph problems. Koo [45] proposes a GA to solve the 

neighbor-selection problem in the BitTorrent network which enhances the 

decision process performed at the tracker for transfer coordination. Ahn [11] 

proposes a GA to solve the shortest path routing problem in a physical 

network. One of the popular network and graph problems, which can be 

efficiently solved by GA, is the query routing problem in P2P networks. 

In the previous chapter, we describe our proposed pure P2P network 

model and S2S Searching for the Web information retrieval. In this chapter, 

we describe our proposed hybrid P2P network model and GAroute for the 

content-based information retrieval based on GA to solve the query routing 

problem. The chapter is organized as follows. In Section 4.1, we introduce 

the background of our proposed hybrid P2P network model. In Section 4.2, 

we describe our proposed GAroute with problem modeling and detail 

explanation of the GA operators. Finally, we show the experimental results 

with some discussions in Section 4.3. For the GAroute library, please refer 

to Section 8.2 in the appendix. 

 

4.1 Proposed Hybrid P2P Network Model 

In this section, we introduce the background of hybrid P2P networks. 
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We also briefly describe our proposed hybrid P2P network model based on 

zones and zone managers. 

 

4.1.1 Background of Hybrid P2P Networks 

YouSearch is a content-based full text search application which uses 

the registrar as the centralized server to store content summaries of each 

peer. By querying the registrar, we obtain a list of relevant peers so that we 

query the relevant peers to obtain document lists. We cannot obtain the 

document lists by only querying the registrar because it only stores the 

content summaries rather than the indices of each text document of each 

peer. Otherwise, it is too space consuming and impractical. The use of the 

registrar and DCM makes the application un-scalable when the network 

scale increases. 

Kazaa is a file sharing application which improves the scalability by 

using super-nodes. If a peer is fast in both computation and network speed, 

it becomes a super-node. Each super-node is like a small registrar which 

stores indices of each file of a few peers, and there are some 

communications between super-nodes. Therefore, by querying a super-node, 

we obtain relevant file lists in the whole network. However, Kazaa is not 

designed for content-based information retrieval. It is also space consuming 

if we store indices of multimedia objects in a super-node. 

In order to solve the scalability problem of content-based information 

retrieval and improve the overhead of the DCM, we refer to Kazaa and 
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YouSearch, and propose a hybrid P2P network model based on QPM. The 

whole network is divided by several zones. A zone is a set of peers logically 

linking together by a structure which is based on their inter-connection 

speed. Hence, it prevents the topology mismatching problem [54]. Each 

zone is managed by a zone manager which is a dedicated server like a big 

super-node in Kazaa and distributed registrar in YouSearch (see Figure 15). 

The size (number of peers) of a zone depends on the computation power of 

its corresponding zone manager. We may interpret a zone as an Internet 

Service Provider (ISP). The peers that belong to the same ISP have fast 

inter-connection speed so that they join the same zone. We describe the roles 

of zone manages in the next subsection. 
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Figure 15. Structured P2P Network with Three Zones 
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4.1.2 Roles of Zone Managers 

Similar to the registrar, the zone manager stores content summaries of 

each peer within its zone. When a peer updates its local content, it 

recalculates its content summary and pushes its summary to its zone 

managers. YouSearch and our proposed S2S Searching generate content 

summaries for content-based full text search applications by using Bloom 

filter [5] and simple hash function (see Section 3.3) respectively. We use the 

method in our proposed S2S Searching to generate content summaries 

because it efficiently calculates the relevance level of each peer by given a 

query. In addition to managing the content summaries, the zone manager 

manages the current P2P network topology within its zone. We outline the 

three actions of each peer that involve zone managers. 

1) Joining Network: We assume that each peer knows some initial zone 

managers before it joins the network and there are some communications 

between zone managers. When a new peer joins the network, it queries an 

arbitrary initial zone manager to obtain other zone managers in different 

zones. Then it chooses a zone with the fastest zone manager and smallest 

zone size to join. When it joins the zone, it queries the zone managers to 

obtain a set of peers within the zone. Then it chooses one or two peers with 

the fastest inter-connection speed to link. The link between two peers is 

logical so that logically linking two peers means physically updating the 

current P2P network topology stored in the zone manager. It also pushes its 

content summary to the zone manager. In addition, when a peer detects that 
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its zone manager is down, it joins another zone by the same joining 

procedure. 

2) Leaving Network: When an existing peer leaves the network, it 

informs its zone manager to remove its content summary and update the 

current P2P network topology within its zone. If other existing peers are 

disjointed due to the leaving peer, then the zone manager adds random links 

to link the neighbors of the leaving peer together. We assume that if two 

peers are close (fast inter-connection speed) to each other and linked 

together, then their neighbors are also close. Therefore, randomly linking the 

neighbors of the leaving peer retains the structure of the zone as close peers 

are still linked together. Figure 16 shows an example of the leaving scenario. 

When L left, we check whether there exists any path between AB, BC, and 

AC. If not, then A, B, and C are disjointed. We add random links AB and BC 

to link them together. Since LA, LB, and LC are close, AB and BC are also 

close according to our assumption. In addition, when a zone manager 

detects that a peer is down, it treats that peer as a leaving peer and uses the 

same leaving procedure. 

3) Querying: When a query initiating peer initiates a query, it queries 

LB

A

C B
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C B
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L is leaving Peers are disjoined Add random links  
Figure 16. Problem of Peers Disjointing Due to a Leaving Peer 
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its zone manager to obtain query routing paths in its zone. The zone 

manager also queries other zone managers (similar to Kazaa) to obtain 

query routing paths in other zones. In this case, another zone manager 

becomes the query initiating peer which links all peers in its zone like a hub 

and finds query routing paths in its zone. Finally, all query routing paths 

from different zones are returned to the query initiating peer. Then it 

propagates the query to all relevant peers through these paths to obtain 

document lists. There are two ways that the results (document lists) can be 

sent. For the first way, the results are propagated from peer to peer back to 

the query initiating peer through the inverted query routing path which is 

like QPM. However, this increases the whole network traffic as each peer 

receives, adds and forwards the results to the next peer in the inverted query 

routing path. For the second way, the results are directly sent to the query 

initiating peers which is like DCM. This reduces the whole network traffic 

and does not lead to the two aforementioned shortcomings of DCM. Since 

the same results are received at the query initiating peers by both ways, the 

query initiating peer does not have lower bandwidth consumption by the 

first way. Since the results usually do not arrive at the query initiating peer 

at the same time by both ways, the query initiating peer does not have better 

parallel search by the first way. In addition, the query initiating peer can 

obtain partial results by the second way which has a faster response, 

whereas the query initiating peer needs to wait for the whole results by the 

first way which has a slower response. Therefore, the second way is better 
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than the first way and we adopt the second way in our proposed hybrid P2P 

network model. 

To find optimal query routing paths within a zone, we propose a novel 

GA called GAroute. We focus on our proposed GAroute in the next section. 

 

4.2 Proposed GAroute 

By giving the current P2P network topology and relevance level of 

each peer (see Figure 17), GAroute returns a list of query routing paths that 

cover as many relevant peers as possible. We model the query routing 

problem as a directed graph problem G such that 

),( EVG = , (27)

where V is a set of vertices representing peers and E is a set of edges 

representing the connectivity between peers. We use an adjacency matrix A 

to represent the current P2P network topology which is stored in the zone 

manager. Two peers are adjacent if they are linked together. A non-zero 

value in Aij represents that there is a link from peer i to peer j. For the 

relevance level of a peer, different applications may have different 
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Figure 17. Structured P2P Network in a Zone with Scores 
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definitions. For example, file sharing applications may define the relevance 

level of a peer as the number of files that the query matches in that peer. 

Content-based information retrieval applications may treat the relevance 

level of a peer as the average similarity between the query and all contents 

in that peer. In our application, we use the latter definition. We model the 

relevance level as a score and we use a score vector S to store the scores of 

all peers. We denote Si as the score of peer i which is query-sensitive and is 

calculated by the zone manager. We also denote the query initiating peer as 

x1 and the maximum number of paths to be returned as n. Then we pass A, S, 

x1, and n to GAroute as parameters which returns a list of query routing 

paths P such that 

( )nipP i ≤≤= 1| . (28)

where a query routing path p is 

)()0(
1, jixxjii xxjiAxp

ii
≠⇔≠∧≠∀=

+
. (29)

The if-and-only-if statement in the above equation constrains the path to be 

simple (loop-free). Loops in a path are meaningless for query routing 

because some peers receive duplicated queries and return duplicated results. 

Given a list of query routing paths P, we define the information gain 

Hp of a path p in P as the sum of the scores of those unvisited peers such 

that 
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ρx is known as the penalty of the peer x and V' is a set of the current visited 

peers. Different applications may have different penalty equations. We 

define the penalty of a peer to be the same as its score because those visited 

peers give us duplicated results for a duplicated query so their scores are 

zero. For example, we have to route two paths p1 = <A, C, E, F, G> and p2 = 

<A, C, E, F, H, I> where A is the query initiating peer (see Figure 17). After 

routing a query by p1, the information gain is eight units. However, after 

routing a query by p2, the information gain is six units instead of 14 units 

because the peers C, E, and F are visited by the first path. Therefore, their 

scores are zero in the second path. 

Our problem is to find at most n query routing paths P from a query 

initiating peer to any destination peer which maximize the total information 

gain where 

∑
=≤≤

==
n
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i

i

HnxSAGArouteP
1)1|(

1 maxarg),,,( . (31)

We model this as a Longest Path Problem which is NP-complete. Although 

O(|V|2) time Dijkstra’s algorithm can be modified to find the longest path, it 

only works for directed acyclic graphs [37]. 

Since it is unlikely to have a polynomial time algorithm for finding the 

longest path in cyclic graphs, related approximation algorithms are proposed 

to solve this problem in polynomial time with a path length bound [48]. 

Both Monien’s algorithm [6] and Bodlaender’s algorithm [23] find a long 

path with a length bound Ω(log L / log log L) where L is the length of the 
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optimal solution. Alon’s Color-coding algorithm [39] finds a better long 

path with a length bound Ω(log L). Bjorklund’s algorithm [1] improves the 

length bound by dividing a graph into connected components such that the 

length bound is Ω((log L / log log L)2). For bounded degree graphs, it 

further improves the length bound to Ω(log2 L / log log L). Moreover, 

Karger’s algorithm [14] finds a long path with a length bound Ω(L½ / log L) 

in sparse Hamiltonian graphs. 

However, all aforementioned algorithms cannot be easily modified for 

our specific longest path query routing problem because some of them only 

work in un-weighted graphs and some of them have a fixed destination. 

Therefore, we propose GAroute to solve this specific problem which obtains 

high quality approximate solutions in polynomial time by using GA. Our 

proposed GA refers to Ahn’s GA [11] which finds the shortest path from a 

given source node to a given destination node. In the following subsections, 

we describe our proposed GA for finding long paths and optimization 

technique which include the genetic representation, population initialization, 

mutation, crossover, fission, creation, selection, stopping criteria, and 

optimization. We also compare our proposed GA with Ahn’s GA. Figure 18 

shows our proposed GA flow chart. Besides conventional GA operators, we 

propose two extra GA operators fission and creation to improve the quality 

of solution. 
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4.2.1 Genetic Representation 

A gene represents the ID of a peer. A chromosome contains a sequence 

of genes which represents the locus of a query routing path. Unlike 

conventional GAs, the length of a chromosome is variable. According to the 

definition in (29), any loop in a path is invalid. Hence, every gene in a 

chromosome is unique and the maximum length of any chromosome equals 

to the total number of peers in the network. Inside a chromosome, the first 

gene always represents the query initiating peer and the last gene represents 

a destination peer which can be any peer in the network. Figure 19 shows an 

example for representing two paths. The left figure shows the graph and two 

paths (solid line and dotted line) from the query initiating peer A. The right 
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Figure 18. GA Flow Chart 
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figure shows the corresponding chromosomes. 

The genetic representation of our proposed GA is similar to that of 

Ahn’s GA except that the last gene always represents the given destination 

node for Ahn’s GA. 

 

4.2.2 Population Initialization 

The purpose of the population initialization is to create chromosomes 

for the first generation. Similar to Ahn’s GA, we use random initialization 

instead of heuristic initialization for a better diversity of chromosomes. 

The procedure of population initialization is that given an adjacency 

matrix A and a query initiating peer x1, we randomly create N unique 

chromosomes where N is the population size and n ≤ N. If there are not 

enough unique chromosomes, we randomly fill up some duplicated 

chromosomes to the remaining population. The population size should be 

proportional to the number of peers in the network in order to have a better 

quality of solution. To create a chromosome C, we first add x1 to C. We also 

create an available peer list L and initialize L by adding all peers in the 
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Figure 19. Genetic Representation of Two Paths 
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network to L except x1. If a peer is in L, that means it has not been added to 

C so it is available. The purpose of using L is to prevent any loop formed in 

a path during the creation of chromosomes. This is similar to the use of a 

topological information database for Ahn’s GA. Let xlast be the last peer in C. 

We randomly choose an adjacent peer x of xlast in L. Then we add x to C and 

remove x from L. This process continues until there is no more adjacent peer 

in L. Algorithm 1 shows the creation procedure of a chromosome which 

takes O(|V|) time where |V| is the total number of peers in the network. 

Hence, the population initialization takes O(N · |V|) time. Figure 20 shows a 

creation example of a chromosome. 

The population initialization of our proposed GA is similar to that of 

Ahn’s GA except that the last gene must be the given destination node for 

Ahn’s GA. Therefore, all invalid chromosomes are reinitialized for Ahn’s 

GA. 

 

 

Algorithm 1. Chromosome Creation 

Creation (A, x1) returns C 
C := <x1>, L := {all peers except x1}, x := x1 
While ∃y∈L Axy ≠ 0 do 

x := y 
Append x to C 
Remove x from L 

End while 
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4.2.3 Mutation 

Similar to conventional GAs, the purpose of mutation is to reach the 

optimal solution by mutating some genes in a chromosome. In each 

generation, Nm = ⎡N · λm⎤ chromosomes are randomly chosen to be mutated 

and added to the new population for the selection where N is the population 

size and 0 ≤ λm ≤ 1 is the mutation proportion. 

The procedure of mutation is that given an adjacency matrix A, a score 

vector S and a chromosome C to be mutated, we randomly choose a 

mutation point m which is between the second gene and last gene. Then we 

delete all genes in C starting from m. We also create an available peer list L 

and initialize L by adding all peers in the network to L except those peers 

existing in C. If a peer is in L, this means that it has not been added to C so 

it is available. The purpose of using L is to prevent any loop being formed in 

a path during the mutation. Let xlast be the last peer in C. We choose an 

adjacent peer x of xlast in L, which has the highest score in S, by a greedy 

search. Then we add x to C and remove x from L. This process continues 
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Figure 20. Creation of a Chromosome 
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until there is no more adjacent peer in L. Algorithm 2 shows the mutation 

procedure of a chromosome which takes O(|V|) time where |V| is the total 

number of peers in the network. Hence, the mutation of Nm chromosomes in 

each generation takes O(Nm · |V|) time. Figure 21 shows a mutation example 

of a chromosome. E is adjacent to C with the highest score (four) and H is 

adjacent to F with the highest score (five). 

The mutation of our proposed GA is slightly different from that of 

Ahn’s GA. After deleting genes starting from m, Ahn’s GA randomly choose 

an adjacent node instead of using the greedy search. We found that using the 

greedy search in the mutation has a fast convergence. Although the quality 

of solution is a bit lower, we improve it by using crossover and creation. 

Algorithm 2. Chromosome Mutation 

Mutation (A, S, C) returns C 
Randomly choose m where 2 ≤ m ≤ |C| 
For i := m to |C| do 

Remove xi from C 
End for 
L := {all peers}, x := xm–1 
For each x' in C do 

Remove x' from L 
End for 
While ∃y∈L Axy ≠ 0 ∧ Sy is maximum do 

x := y 
Append x to C 
Remove x from L 

End while 
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4.2.4 Crossover 

Since the mutation adopts a greedy search which may be trapped by 

local optima, crossover is proposed to escape these traps by crossing two 

chromosomes which produce better chromosomes. In each generation, Nc = 

⎡N · λc⎤ chromosomes are randomly chosen to cross with other 

chromosomes and added to the new population for the selection where N is 

the population size and 0 ≤ λc ≤ 1 is the crossover proportion. 

The procedure of crossover is that given two chromosomes C1 and C2, 

we find out all pairs of common genes which form a list of potential 

crossing points L. We randomly choose a pair of crossing points (r, s) in L 

where 2 ≤ r ≤ |C1| and 2 ≤ s ≤ |C2|. Then we perform the crossover which 

produces two new chromosomes C1' and C2' such that C1' contains the genes 

from the first gene to the gene just before r in C1 and from the gene at s to 
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Figure 21. Mutation of a Chromosome 
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the last gene in C2, while C2' contains the genes from the first gene to the 

gene just before s in C2 and from the gene at r to the last gene in C1. If there 

is no common gene, then crossover is impossible. Algorithm 3 shows the 

crossing points finding procedure of two chromosomes which takes O(l · log 

l) time and Algorithm 4 shows the crossover procedure of two chromosomes 

which takes O(l) time where l is the length of a chromosome. Hence, the 

crossover of Nc chromosomes in each generation takes O(Nc · l · log l) time. 

Figure 22 shows a crossover example of two chromosomes. The crossover 

produces better chromosomes because both parents contain optimal partial 

paths. Both C and F are common genes so there are two potential crossing 

points. We choose C as the crossing point in this example. The crossover of 

our proposed GA is exactly the same as that of Ahn’s GA. 
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Algorithm 3. Crossing Points Finding 

Crossing-points-finding (C1, C2) returns L 
Quick-sort peers’ IDs in C1 and C2 in non-descending order 
L := φ, i := 1, j := 1 
While i ≤ |C1| and j ≤ |C2| do 

If ith sorted ID in C1 < jth sorted ID in C2 then 
i := i + 1 

Else if ith sorted ID in C1 > jth sorted ID in C2 then 
j := j + 1 

Else 
If ith sorted ID in C1 ≠ query initiating peer ID then 

r := original position of ith sorted ID in C1 
s := original position of jth sorted ID in C2 
Add (r, s) to L 

End if 
i := i + 1 
j := j + 1 

End if 
End while 

 

Algorithm 4. Chromosomes Crossover 

Crossover (C1, C2, L) returns C1', C2' 
Randomly choose (r, s) in L 
C1' := φ, C2' := φ, x := C1, y := C2 
For i := 1 to r–1 do 

Append xi to C1' 
End for 
For i := s to |C2| do 

Append yi to C1' 
End for 
For i := 1 to s–1 do 

Append yi to C2' 
End for 
For i := r to |C1| do 

Append xi to C2' 
End for 
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Figure 22. Crossover of Two Chromosomes 

 

4.2.5 Fission 

Since the crossover may produce invalid chromosomes which violate 

the loop constraint in (29), fission is proposed to break an invalid 

chromosome down to several valid chromosomes. Consider two 

chromosomes C1 = <A, C, B> and C2 = <A, B, C, D, F, G> with the crossing 

point (2, 3) in Figure 22, the two new chromosomes produced after the 

crossover are C1' = <A, C, D, F, G> and C2' = <A, B, C, B>. However, C2' is 

invalid since it violates the loop constraint. One of the solutions is to 

remove any invalid chromosome after the crossover. But this wastes some 

produced chromosomes because those invalid chromosomes can be repaired 

by using fission which is a novel GA operator. 

The procedure of fission is that given an invalid chromosome C, we 

find out the first pair of common genes x which is the fission point (u, v) 
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where u < v. Then we perform the fission which produces two new 

chromosomes C1' and C2' such that C1' contains the genes from the first gene 

to the gene just before v in C, while C2' contains the genes from the first 

gene to the gene just before u and from the gene at v to the last gene in C. 

We recursively perform the fission procedure on C1' and C2' until all new 

chromosomes are valid. Algorithm 5 shows the fission point finding 

procedure of a chromosome which takes O(l) time and Algorithm 6 shows 

the fission procedure of a chromosome which also takes O(l) time where l is 

the length of a chromosome. Hence, the fission of Nf chromosomes in each 

generation takes O(Nf · l) time. Figure 23 shows a fission example of a 

chromosome. The first pair of common genes is C. The information gain of 

both new chromosomes decreases but they become valid after fission. 

Since the crossover of our proposed GA is exactly the same as that of 

Ahn’s GA, the problem of invalid chromosomes also exists in Ahn’s GA. 

Ahn’s GA uses a repair function to solve the problem by deleting genes 

from u + 1 to v. Consider the example in Figure 23, the valid chromosome 

obtained by the repair function is <A, B, C, D, F, G> which is a subset of the 

valid chromosomes obtained by our proposed fission. The other 

chromosome <A, B, C, D, F, E> is invalid for Ahn’s GA because the last 

gene is not the given destination node G. Hence, our proposed fission is the 

generalization of the repair function of Ahn’s GA. 

 

 



Chapter 4.  GAroute  79 

Algorithm 5. Fission Point Finding 

Fission-point-finding (C) returns (u, v) 
u = 0, v = 0, L := φ 
For i := 1 to |C| do 

If xi ∉ L then 
Add xi to L 

Else 
x := xi 
v := i 
i := |C| 

End if 
End for 
For i := 1 to v–1 do 

If xi = x then 
u := i 
i := v–1 

End if 
End for 

 

Algorithm 6. Chromosome Fission 

Fission (C, (u, v)) returns C1', C2' 
C1' := φ, C2' := φ 
For i := 1 to v–1 do 

Append xi to C1' 
End for 
For i := 1 to u–1 do 

Append xi to C2' 
End for 
For i := v to |C| do 

Append xi to C2' 
End for 
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Figure 23. Fission of a Chromosome 

 

4.2.6 Creation 

Since mutation and crossover produce evolved chromosomes which 

provide fast convergence but less diversity, a novel GA operator called 

creation is proposed to randomly create non-evolved chromosomes which 

provide extra diversity. Creation is also significant to the quality of solution 

when the crossover cannot be performed due to the lack of the potential 

crossing point. On the other hand, the problem of the quality of solution 

does not exist in Ahn’s GA even though the crossover cannot be performed. 

The reason is that the mutation of Ahn’s GA adopts a random search instead 

of a greedy search which already provides enough diversity. 

In each generation, Nn = ⎡N · λn⎤ chromosomes are randomly created 
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and added to the new population for the selection where N is the population 

size and λn ≥ 0 is the creation rate. The algorithm of creation is the same as 

that of population initialization. Algorithm 1 shows the creation procedure 

of a chromosome which takes O(|V|) time where |V| is the total number of 

peers in the network. Hence, the creation of Nn chromosomes in each 

generation takes O(Nn · |V|) time. Figure 20 shows a creation example of a 

chromosome. 

 

4.2.7 Selection 

The selection process is to select the best chromosomes from the new 

population for the next generation to ensure the population size is N as 

mutation, crossover, fission, and creation produce new chromosomes which 

exceed the fixed population size. In each generation, Ng good chromosomes 

with the highest fitness are first selected where n ≤ Ng ≤ N and n is the 

maximum number of paths to be returned by GAroute. The remaining 

population is randomly filled by N – Ng poor chromosomes. This is to 

enhance the diversity because those poor chromosomes may produce good 

chromosomes in the future. The fitness fC of a chromosome C is exactly the 

same as the information gain Hp of its corresponding path p (refer to (30)). 

The sequence of selecting paths is important because it affects the 

number of paths that cover the relevant peers. Consider two paths p1 = <A, B, 

C> and p2 = <A, B, C, D> where A is the query initiating peer. If we first 

select p1 and route the query through p1, we gain the information of B and C. 
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Then we select p2 and route the query through p2. We gain the information 

of D only because the information of B and C is gained through p1. Totally, 

we need to route two times to gain the information of B, C, and D. On the 

other hand, if we first select p2 and route the query through p2, we gain the 

information of B, C, and D. Therefore, we do not need to further select p1 

and route the query through p1 because there is no more information gain. 

Totally, we only need to route one time. From the above observation, we 

should always select paths in a descending order by the information gain. 

The procedure of selection is that given a score vector S, an original 

population Po before the selection and the aforementioned N and Ng, we first 

create a set of the current visited peers V' and initialize V' to an empty set. 

We also calculate the fitness fi for each unselected chromosome Ci based on 

S and V'. Then we select the chromosome C with the highest fitness 

(primary condition) and maximum length (secondary condition). If there is 

more than one chromosome with the highest fitness and maximum length, 

then we randomly select one. Moreover, we update V' by adding all peers in 

C to V'. This process continues until the number of selected chromosomes 

reaches Ng. Finally, N – Ng unselected chromosomes are randomly selected 

and a new population Pn is returned after the selection. Algorithm 7 shows 

the selection procedure in each generation which takes O(Ng · |Po| · l) time 

where l is the length of a chromosome. Figure 24 shows an example for 

selecting two out of four chromosomes. In Pass 2, both second and third 

chromosomes have the same fitness. We select the second chromosomes 
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because its length is longer. 

The fitness of a chromosome in Ahn’s GA is inversely proportional to 

the total cost of its corresponding path because Ahn’s GA aims at finding the 

shortest path. Furthermore, the selection algorithm of Ahn’s GA is based on 

the pair-wise tournament selection without replacement such that we select 

the fitter chromosome in each two chromosomes. 

 

4.2.8 Stopping Criteria 

After the selection, a generation cycle is completed and there are three 

ways for us to terminate which are the (1) solution convergence, (2) 

Algorithm 7. Chromosome Selection 

Selection (S, Po, N, Ng) returns Pn 
Pn := φ, V' := φ 
For k := 1 to Ng do 

For i := 1 to |Po| do 
Calculate fitness fi of Ci based on S and V' 

End for 
C := chromosome with highest fitness and max. length 
Move C from Po to Pn 
For each x in C do 

Add x to V' 
End for 

End for 
For k := 1 to N – Ng do 

Randomly move a chromosome from Po to Pn 
End for 
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minimum number of generations, and (3) maximum number of generations. 

1) Solution Convergence: We compare all chromosomes in the current 

generation with those in the previous generation. If they are all the same, 

then our solution converges. However, it may take long time to converge 

because each generation contains some randomly selected chromosomes 

which are difficult to be the same. A better strategy is to compare Ng good 

chromosomes only where Ng is the number of good chromosomes during the 

selection. Such strategy makes a balance between the quality and time. 

Since Ng good chromosomes are always sorted by their fitness after the 

selection, the comparison of Ng good chromosomes between two 

generations takes O(Ng · l) time where l is the length of a chromosome. On 
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Figure 24. Selection of Four Chromosomes 
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the other hand, Ahn’s GA stops when all chromosomes in the population are 

the same which is slow. 

2) Minimum Number of Generations: We introduce the minimum 

number of generations Gmin for preventing under-training which yields low 

quality solutions. We do not stop the iteration if the current number of 

generations does not reach Gmin even if Ng good chromosomes are the same 

between two generations. 

Algorithm 8. Two-phase Tail Pruning 

Two-phase-tail-pruning (S, P) returns P' 
P' := φ, V' := φ 
For p := first path to last path in P do 

For x := last peer down to second peer in p do 
If Sx = 0 or x ∈ V' then 

Delete x from p 
Else 

x := second peer 
End if 

End for 
Calculate information gain Hp of p based on S and V' 
If Hp > 0 then 

Append p to P' 
For each x in p do 

Add x to V' 
End for 

Else 
p := last path 

End if 
End for 
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3) Maximum Number of Generations: We introduce the maximum 

number of generations Gmax for preventing overtime. We stop the iteration at 

once if the current number of generations exceeds Gmax even if Ng good 

chromosomes are different between two generations. 

 

4.2.9 Optimization 

Optimization procedure can be performed after satisfying the stopping 

criteria so that a better result is obtained. Since we obtain a sorted list of Ng 

good chromosomes where Ng is the number of good chromosomes during 

the selection, we can return the first n good chromosomes in the last 

generation representing the required paths P where n is the maximum 

number of paths requested by the query initiating peer and n ≤ Ng. However, 

these returned paths can still be optimized by our proposed two-phase tail 

pruning optimization technique. 

The procedure of two-phase tail pruning is that given a score vector S 

and a sorted list of paths P to be optimized. In Phase I, we prune away each 

path p in P which information gain Hp is zero. In Phase II, we start from the 

last peer in a path and prune away each peer x which score Sx is zero or is 

visited through the previous paths (i.e. x ∈ V' where V' is a set of the current 

visited peers). Finally, a sorted list of optimized path P' is returned after the 

optimization. Algorithm 8 shows a faster two-phase tail pruning procedure 

which takes O(n · l) time where l is the length of a path. Both Phase I and 

Phase II are running at the same time. Figure 25 shows an example for the 
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two-phase tail pruning of four paths. Consider the second path in Phase II, 

we do not remove B because the adjacent peer of A is not C. 

Table 6 shows the difference between Ahn’s GA and GAroute. Finally, 

Table 7 shows the time complexities of GAroute which are all in the 

polynomial time. We verify them by the experimental results which are 

discussed in Section 4.3. 
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Figure 25. Two-phase Tail Pruning of Four Paths 
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Table 6. Difference between Ahn’s GA and GAroute 

 Ahn’s GA GAroute 
Purpose Find one shortest-path 

from one given source to 
one given destination 

Find n long paths from one 
given source to any 
destination 

Genetic 
representation 

The last gene is always the 
given destination 

The last gene is any 
destination 

Population 
initialization 

May produce invalid 
chromosomes 

Always produce valid 
chromosomes 

Mutation Randomly choose an 
adjacent node 

Greedily choose an 
adjacent node 

Loop 
elimination 

Use a repair function to 
eliminate loops in an 
invalid chromosome 

Use fission to break an 
invalid chromosome down 
to valid chromosomes 

Diversity 
enhancement 

Use mutation to enhance 
diversity 

Use creation to provide 
extra diversity 

Fitness 
function 

Inversely proportional to 
the total cost of its 
corresponding path 

Directly proportional to 
the information gain of its 
corresponding path 

Selection Use pair-wise tournament 
selection without 
replacement 

Base on the fitness and 
chance to select good and 
poor chromosomes 

Stopping 
criteria 

Stop if all chromosomes in 
the population are the 
same 

Besides Gmin and Gmax, it 
stops if all good 
chromosomes between two 
consecutive generations 
are the same 

Optimization None Two-phase tail pruning 
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4.3 Experiments and Discussions 

In this section, we summarize the experimental results which measure 

the scalability and quality of different searching algorithms for finding 

query routing paths in different network topologies and peer quantities. We 

also verify the two improvements (lower bandwidth consumption and better 

parallel search) of the query initiating peer in our proposed hybrid P2P 

network model. Before presenting our experiments, we introduce our 

computer configuration and GAroute parameters. We also outline our P2P 

network topology generation algorithm. 

1) Configuration and Parameters: All experiments are performed with 

the same computer configuration (see Table 8). We conduct our experiments 

with different parameter sets and choose the most suitable one (see Table 9) 

so that we obtain the most representative results. In fact, the maximum 

number of paths n and population size N should be proportional to the peer 

Table 7. Time Complexities of GAroute 

Procedure Time complexity 
Population initialization O(N · |V|) 
Mutation O(Nm · |V|) 
Crossover O(Nc · l · log l) 
Fission O(Nf · l) 
Creation O(Nn · |V|) 
Selection O(Ng · |Po| · l) 
Stopping criteria checking O(Ng · l) 
Optimization O(n · l) 
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quantity. However, we fix them to a specific value in order to measure their 

effects on the quality of solution. In each generation, half of the population 

performs mutation and another half of the population performs crossover as 

the convergence and diversity are both important. We also create a few 

non-evolved chromosomes so that a better quality of solution is obtained. In 

addition, the parameters should satisfy the constraints that n ≤ Ng ≤ N and 

Nm, Nc ≤ N. 

2) P2P Network Topology Generation: We use our P2P network 

topology generation algorithm, which simulates the joining scenario of 

Table 8. Computer Configuration of GAroute Experiments 

Item Setting 
CPU Intel Pentium 4 at 3GHz 
Memory 512MB DDR RAM 
OS Red Hat Linux 9.0 with Kernel 2.4.20-31.9 
Java VM Java 2 Standard Edition 1.4.2_05 

 

Table 9. GAroute Parameters 

Parameter Value 
Max. no. of paths (n) 10 
Population size (N) 100 
No. of mutations (Nm) 50 
No. of crossovers (Nc) 50 
No. of creations (Nn) 10 
No. of good chromosomes (Ng) 20 
Min. no. of generations (Gmin) 0 
Max. no. of generations (Gmax) 100 

 



Chapter 4.  GAroute  91 

peers in a zone, to randomly generate undirected graphs for all experiments. 

The graph is initialized to have only one peer. Each time when a new peer is 

added to the graph, it links a random number of existing peers in the graph 

based on their inter-connection speed. In our proposed hybrid P2P network 

model, each peer chooses one or two peers to link and the expected number 

E of existing peers to be linked by a new peer is 1.2. Both E and the 

inter-connection speed are the parameters used to generate different graphs. 

 

4.3.1 Property of Different Topologies 

The motivation of this experiment is to study how different network 

topologies would affect the scalability and quality of different searching 

algorithms for finding query routing paths. Figure 26 shows the property of 

different network topologies for 1,000 peers, which are generated by our 
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Figure 26. Property of Different Network Topologies 
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P2P network topology generation algorithm. The x-axis shows the degree of 

peers representing the number of edges and the y-axis shows the number of 

peers that have the corresponding degree. The results show that the degree is 

inversely proportional to the frequency because each new peer links to old 

peers from time to time. Therefore, older peers are usually linked by more 

peers that results in a higher degree and lower frequency, and newer peers 

are usually linked by fewer peers that results in a lower degree and higher 

frequency. The results also show that when the expected number E of 

existing peers to be linked by a new peer increases, the number of edges of 

each peer increases. Increasing edges in a graph dramatically increases the 

time of brute-force search which is discussed in the following subsection. 

 

4.3.2 Scalability and Quality in Different Topologies 

The motivation of this experiment is to measure the scalability and 

quality of Brute-force Search (BS), GAroute (GA) and Greedy Search (GS) 

for finding query routing paths in different network topologies. We 

demonstrate that GAroute achieves both good scalability and quality in 

some network topologies. Before we analyze and interpret the results, we 

outline the algorithm of (1) BS and (2) GS. 

1) Algorithm of BS: We start at the query initiating peer and traverse 

the graph by using depth-first search until a path p is generated. Then we 

calculate the information gain Hp of p based on the score vector S. If Hp is 

greater than the current maximum information gain Hmax, then p is the 



Chapter 4.  GAroute  93 

current best query routing path and Hmax becomes Hp. We back-track p from 

the last peer, look for another edge and traverse it until another path is 

generated. This process continues until all paths are searched and we obtain 

the best path. To obtain the second-best path, we update S and set the score 

of those visited peers to zero. Then we reapply the same procedure. This 

process continues until we obtain n paths. BS guarantees the paths obtained 

are always optimal but it takes O(n · Npath) time where Npath is the number of 

different paths in a graph. A path is an edge combination so Npath can be 

very large. 

2) Algorithm of GS: We start at the query initiating peer and traverse 

the graph by using greedy search. We always select the next peer with the 

highest score based on the score vector S until a path p is generated. Thus, 

we obtain a good query routing path though it may not be the best. To obtain 

another good path, we update S and set the score of those visited peers to 

zero. Then we reapply the same procedure. This process continues until we 

obtain n paths. GS takes O(n · |V|) time where |V| is the number of peers in a 

graph. Sometimes, it may give low quality solutions. 

To measure the (1) scalability and (2) quality of BS, GA, and GS for 

finding query routing paths in different network topologies, we randomly 

generate 10 different graphs for each E containing 50 peers where E is the 

expected number of existing peers to be linked by a new peer. Then we run 

BS, GA, and GS on a graph for 10 times and measure their average 

searching time and quality. In all, we run each algorithm with each E for 100 
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times. 

1) Scalability: Figure 27 shows the scalability in different network 

topologies. We measure the real searching time in order to compare the 

practicability of different algorithms. The curve BS is exponential because 

BS takes O(n · Npath) time. When E increases, the number of edges of each 

peer increases. Thus, the number of edge combinations Npath dramatically 

increases. On the other hand, the searching time of GA is good and directly 

proportional to E because when E increases, the number of edges of each 

peer increases. Therefore, the connectivity increases and the number of 

peers in a path increases which requires more time to perform GA 

operations (see Table 7). Finally, the line GS is constant with ultrahigh 

searching speed because it only takes O(n · |V|) time where n and |V| are 

fixed (see Table 9). 
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Figure 27. Scalability in Different Network Topologies 
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2) Quality: Figure 28 shows the quality QA from Algorithm A in 

different network topologies such that 

BS

A
A H

H
Q = , (32)

where HA and HBS are the total information gain of n paths (refer to (30)) 

obtained by A and BS respectively. We use BS as the reference because BS 

always gives global optimal solutions. Therefore, QBS is always one. Since 

BS takes too long time to run if E is greater than 1.6, we can only calculate 

the quality up to this value. We observe that QGA is high and QGS is low 

because GS returns local optimal solutions. Both curves GA and GS tend to 

the line BS when E increases because the number of edges of each peer 

increases. Thus, the connectivity increases and the number of peers in a path 

p increases. This makes the information gain of p increase and hence the 

quality increases. The definition of the quality does not consider the length 
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Figure 28. Quality in Different Network Topologies 
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of the paths because we only focus on the total information gain in our 

proposed hybrid P2P network model. However, we may also consider the 

path length as a factor because the total length of the paths affects the 

bandwidth consumption of the whole network and the maximum path length 

affects the latency. To achieve this, we can simply modify (30) to normalize 

the information gain of a path by its length. 

From the experimental results, we demonstrate that BS is un-scalable 

as it is highly dependent of the network topology though it always gives 

global optimal solutions. Moreover, GS gives low quality solutions though it 

is scalable. On the other hand, GAroute is scalable and gives high quality 

solutions though there is a tradeoff between searching speed and quality. 

 

4.3.3 Scalability and Quality in Different Quantities 

The motivation of this experiment is to measure the (1) scalability and 

(2) quality of BS, GA, and GS for finding query routing paths in different 

peer quantities. We demonstrate that GAroute achieves both good scalability 

and quality in some large scaled network topologies. To measure them, we 

randomly generate 10 different graphs for each peer quantity and E is 1.2 

(default value used in our proposed hybrid P2P network model), where E is 

the expected number of existing peers to be linked by a new peer. Then we 

run BS, GA, and GS on a graph for 10 times and measure their average 

searching time and quality. In all, we run each algorithm with each peer 

quantity for 100 times. 
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1) Scalability: Figure 29 and Figure 30 show the scalability in 100 

peers for every 10 peers and 1,000 peers for every 100 peers respectively. 

We measure the real searching time in order to compare the practicability of 

different algorithms. The curve BS is exponential because BS takes O(n · 
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Figure 29. Scalability in 100 Peers 
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Figure 30. Scalability in 1,000 Peers 
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Npath) time. When the peer quantity increases, the total number of edges 

increases. Thus, the number of edge combinations Npath dramatically 

increases. On the other hand, the curve GA is approximately linear which is 

interesting as it is theoretically super-linear (see Table 7). Figure 31 shows 

the generation requirement of GA in 1,000 peers, which gives a possible 

reason on the approximately linear searching time. We observe that the 

generation requirement, which is a factor of searching time complexity, is 

sub-linear. Also, the parameters n, N, Nm, Nc, Nn, and Ng are fixed (see Table 

9) which do not affect the searching time complexity. Due to the effect of 

sub-linear generation requirement and constant parameters, the curve GA 

becomes approximately linear. Finally, the searching speed of GS is 

ultrahigh because it only takes O(n · |V|) time where n is fixed. 

2) Quality: Figure 32 shows the actual quality QA from Algorithm A 
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Figure 31. Generation Requirement of GA in 1,000 Peers 
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(refer to (32)) in 100 peers for every 10 peers obtained by A and BS 

respectively. We use BS as the reference because BS always gives global 

optimal solutions. Therefore, QBS is always one. Since BS takes too long 

time to obtain QGA and QGS if the peer quantity is more than 100, we 

calculate the relative quality instead. Figure 33 shows the relative quality 

QA' from Algorithm A in 1,000 peers for every 100 peers such that 

GA

A
A H

H
Q =' , (33)

where HA and HGA are the total information gain of n paths (refer to (30)) 

obtained by A and GA respectively. We use GA as the reference so QGA' is 

always one. We observe that QGA is high in 100 peers. QGS' is low intuitively 

represents that QGA is still high in 1,000 peers. However, QGA decreases 

when the peer quantity increases because the total number of edges 

increases. Thus, the number of different paths in a graph increases. 
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Figure 32. Actual Quality in 100 Peers 
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Furthermore, the parameters N, Nm, Nc, Nn, and Ng are fixed (see Table 9) 

which make the quality decrease. If the value of the parameters increases, 

then the quality increases. However, the searching time also increases. 

Moreover, QGS is low because GS returns local optimal solutions. QGS 

decreases when the peer quantity increases because the chance for GS to 

give low quality solutions increases when the number of different paths in a 

graph increases. Finally, Figure 34 shows the convergence of GA in 100 

peers. The curve GA tends to the line BS when the number of generations 

increases. However, QGA slightly increases when the number of generations 

is large. Therefore, introducing the maximum number of generations Gmax 

reduces the unnecessary search if there is no big difference in the quality. 

From the experimental results, we demonstrate that BS is un-scalable 

as it is highly dependent of the peer quantity though it always gives global 
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Figure 33. Relative Quality in 1,000 Peers 
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optimal solutions. Moreover, GS usually gives low quality solutions though 

it is scalable. On the other hand, GAroute is scalable and gives high quality 

solutions though there is a tradeoff between searching speed and quality. 

Combining all experimental results, GAroute achieves both good scalability 

(approximate linear) and quality (0.95 in 100 peers) in some large scaled 

P2P network topologies. 

 

4.3.4 Verification of Lower Bandwidth Consumption 

The motivation of this experiment is to measure the improvement of 

the query initiating peer bandwidth consumption in our proposed hybrid P2P 

network model. We demonstrate that our model greatly reduces the query 

initiating peer network traffic with a small overhead of the whole network 

traffic. To measure the network traffic, we randomly generate 10 different 
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Figure 34. Convergence of GA in 100 Peers 
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graphs for each peer quantity |V| and E is 1.2 (default value used in our 

proposed hybrid P2P network model), where E is the expected number of 

existing peers to be linked by a new peer. Then we run GAroute on a graph 

with different relevant peer proportions to obtain query routing paths. We 

measure the average network traffic of the (1) query initiating peer and (2) 

whole network based on DCM and QPM. 

1) Query Initiating Peer Network Traffic: Figure 35 shows the query 

initiating peer network traffic for every 10 percent relevant peer proportion. 

Both DCM curves are approximately linear because the query initiating peer 

sends a query packet to each relevant peer individually. If the number of 

relevant peers increases, then the query initiating peer bandwidth 

consumption increases. On the other hand, both QPM curves are nearly 

constant because the query initiating peer only sends query packets to the 
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Figure 35. Query Initiating Peer Network Traffic of DCM and QPM 
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next peers in the query routing paths instead of all relevant peers. Since the 

degree of a peer is usually small according to our P2P network topology 

property (see Figure 26), the query initiating peer consumes very low 

bandwidth. Figure 36 shows the corresponding traffic reduction TR in 

percentage for every 10 percent relevant peer proportion that is calculated 

by 

DCM

QPMDCM
R T

TT
T

−
= , (34)

where TDCM and TQPM are the traffic of DCM and QPM respectively. When 

|V| increases, the number of relevant peers increases. TDCM also increases but 

TQPM is unchanged. Hence, the traffic reduction increases which shows the 

good scalability of our proposed hybrid P2P network model. 

2) Whole Network Traffic: Figure 37 shows the whole network traffic 

for every 10 percent relevant peer proportion. When |V| increases, the 
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Figure 36. Network Traffic Reduction of Query Initiating Peer by QPM 
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number of relevant peers increases. Hence, the whole network traffic of both 

DCM and QPM increases. In addition, the whole network traffic of QPM is 

always larger than or equals to that of DCM because query packets are 

propagated from peer to peer for QPM. However, not all peers in the query 

routing path are relevant. On the other hand, the query initiating peer always 

sends query packets to relevant peers for DCM. Fortunately, the whole 

network traffic of QPM is always bounded by that of DCM when all peers 

are relevant. At this point (100 percent relevant peer proportion), they have 

the same network traffic. Figure 38 shows the corresponding traffic 

overhead TO for every 10 percent relevant peer proportion that is calculated 

by the difference between the traffic of DCM and QPM. When the number 

of relevant peers increases, the traffic overhead decreases because there are 

more relevant peers in the query routing path. The overhead is zero if all 

peers are relevant. 

From the experimental results, we demonstrate that the query initiating 

peer consumes high bandwidth for DCM, whereas it consumes very low 

bandwidth for QPM. Moreover, using DCM is un-scalable. On the other 

hand, using QPM is scalable though it has a small overhead on the whole 

network traffic. In conclusion, we verify that the query initiating peer has 

lower bandwidth consumption by using QPM. 
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4.3.5 Verification of Better Parallel Search 

The motivation of this experiment is to measure the improvement of 

the query time in our proposed hybrid P2P network model. We demonstrate 

that our model is efficient if the peer quantity is large. To simulate the query 
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Figure 37. Whole Network Traffic of DCM and QPM 
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Figure 38. Network Traffic Overhead of Whole Network by QPM 
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routing in our network, we generate two types of topologies which are 

physical network topology and P2P network topology. The former one 

represents the real topology which has the properties of the Internet. The 

latter one represents the logical topology which has the properties of our 

proposed hybrid P2P network model. A recent paper [54] mentions that the 

Internet follows Autonomous System (AS) Model which has the small 

world and power law properties. Therefore, we use BRITE [9] which is a 

tool to generate physical network topologies based on the AS Model. We 

also use our P2P network topology generation algorithm to generate P2P 

network topologies based on the inter-connection speed of peers which is 

inversely proportional to the physical distance between peers. 

To measure the query time, we randomly generate 10 different sets of 

network topologies and present the results of three selected sets. Each set 

contains a physical network topology with 10,000 nodes, and a P2P network 

topology with 1,000 peers and E is 1.2 (default value used in our proposed 

hybrid P2P network model), where E is the expected number of existing 

peers to be linked by a new peer. Those peers are the subset of the nodes of 

the physical network topology. Then we run GAroute on each P2P network 

topology to obtain the query routing paths, and calculate the query time for 

both DCM and QPM. The query propagation time between two peers xi and 

xj is the shortest path distance d(xi, xj) between the corresponding nodes in 

the physical network topology. Recall that DCM has the poor semi-parallel 

search problem that we spawn a few threads in each batch if we have a 
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limited thread resource. We need to wait for a batch to finish before starting 

another batch. Thus, the query time tDCM for DCM is calculated by 

∑
=

=
b

i
jijDCM xxdt

1
,1 ),(max , (35)

where b is the number of batches, x1 is the query initiating peer, and xi,j is 

the jth peer in the ith batch. For QPM, we do not have the same problem 

because the degree of a peer is very small according to our P2P network 

topology property (see Figure 26). Thus, the query time tQPM for QPM is 

calculated by 

∑
−

=
+=

1||

1
1 ),(max

p

i
iipQPM xxdt , (36)

where xi is the ith peer in the query routing path p. 

Figure 39 shows the query time of the three selected network 

topologies for DCM and QPM. All DCM curves are approximately linear. 

When the peer quantity increases, b also increases due to the constant thread 
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Figure 39. Query Time of Network Topologies for DCM and QPM 
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resource. Hence, the query time increases because (35) is dependent of b. 

On the other hand, all QPM lines are constant because (36) is independent 

of b. Figure 40 shows the corresponding time improvement that is 

calculated by the difference between the query time of DCM and QPM. 

When the peer quantity is small, b is small so that the time improvement is 

negative because the query time is proportional to the path length for QPM. 

However, the path length is always one for DCM. Thus, DCM is faster than 

QPM for a small b. On the other hand, when the peer quantity increases, b 

increases so that the time improvement increases and becomes positive 

which shows the good scalability of our proposed hybrid P2P network 

model. 

From the experimental results, we demonstrate that using DCM is 

un-scalable though it is faster than QPM in a small scaled P2P network. On 

-3

-2

-1

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10
Number of Batches

Ti
m

e 
Im

pr
ov

em
en

t (
un

its
)

T1 T2 T3

 

Figure 40. Query Time Improvement of Network Topologies by QPM 
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the other hand, using QPM is scalable and efficient if the P2P network scale 

is large. In conclusion, we verify that the query initiating peer has better 

parallel search by using QPM. 
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5. Discussion 
In this chapter, we have a discussion on both S2S Searching and 

GAroute for answering the questions and comments given by the reviewers. 

For S2S Searching, we summarize the related questions and comments by 

the following four points: 

1) Commercial Significance: Some reviewers do not understand the 

strength of S2S Searching over centralized search engines like Google. 

Besides circumventing the three shortcomings (centralization of resources 

used, outdated search results, and no control over information shared by 

content owners) of centralized search engines, S2S Searching is optimal for 

community information sharing. One of the problems of Google is that it 

returns too many search results but only a few of them are useful. This is 

due to the fact that Google is a universal topic search engine. On the other 

hand, information retrieval by S2S Searching can deal with specific topics. 

Sites with similar topics can join together to form a cluster so that more 

relevant search results are useful with respect to the specific topic. Therefore, 

S2S Searching competes commercially with Google in terms of its small 

world property and simplicity of sharing and searching the information like 

other P2P applications. 

2) Global View of Results: Some reviewers think that S2S Searching 

does not give a global view of the page ranking unlike those centralized 

search engines. Actually in S2S Searching, the similarity value of a 
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document already gives the global view on how relevant the document is. 

However, the priority value of a document only gives a local view on how 

important the document is. In addition, it is possible for S2S Searching to 

integrate with other page ranking algorithms. However, we focus more on 

its P2P model and communication protocol in our research. 

3) Ranking Control: Some reviewers ask why we want to allow site 

owners to control the ranking of their own web pages because this is an 

invitation to spam. To answer this question, we should understand that 

advertising is necessary in the real world. Take Google as an example, those 

advertised relevant pages are also shown at the top or in a separate column. 

The one, who controls the ranking of the advertised pages, is the search 

engine administrator. On the other hand, the advertised web page owners 

cannot control their ranking in order to prevent spam. In S2S Searching, we 

follow the same idea. The site owner is the administrator of their own search 

engine so that they should have rights to control the ranking in their own 

search engine by adjusting the priority value of the documents in the current 

site. However, the priority value of the documents adjusted in other sites 

takes no effect to the current site ranking. Therefore, spam can be 

effectively prevented. 

4) Security Issues: Some reviewers criticize that S2S Searching is 

insecure since it is on top of HTTP where firewalls usually allow the data to 

pass through. However, S2S Searching targets that it can be easily plugged 

and played in a website without any administrator’s privilege. In addition, 
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the black list mechanism in S2S Searching can act as a firewall which 

disallows some requests from bad peers. 

For GAroute, we summarize the related questions and comments by the 

following three points: 

1) Future Work on Experiments: Some reviewers criticize that the 

experiments for measuring the scalability and quality of GAroute are too 

trivial as we only compare it with the Brute-force Search and Greedy Search. 

The reason is that GAroute deals with a very special case of Longest Path 

Problem which is multiple paths in a weighted graph with the cyclic 

property. Unfortunately, most cited approximation algorithms cannot be 

easily modified to solve our specific problem because some of them only 

work in un-weighted graphs and some of them have a fixed destination. 

Actually, we can still compare GAroute with Ahn’s GA in terms of 

scalability, quality, and network traffic of the paths for the future work. 

Theoretically, the network traffic of the paths obtained by Ahn’s GA should 

be smaller than GAroute, but the quality of the paths obtained by GAroute 

should be higher than Ahn’s GA, because Ahn’s GA only finds the shortest 

path. Moreover, we can conduct experiments under a dynamic environment 

to see how the rate of peer joining and leaving affects the overall 

performance, topology maintenance cost, and the overall traffic overhead 

including the maintenance. 

2) Traffic Reduction and Overhead: Some reviewers misunderstand 

that the traffic reduction measured in the experiment is for the whole 
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network. In fact, the reduction is in the query initiating peer only. For the 

whole network traffic, there is a small overhead as shown in the 

experimental results. This is due to irrelevant peers in query routing paths 

which act as intermediate nodes to help propagating queries. The 

significance of the traffic reduction in the query initiating peer is that we can 

save a lot of bandwidth when we are searching by the P2P application. 

Therefore, more bandwidth is available for other applications. 

3) Single and Multiple Routes: Some reviewers are unclear to 

distinguish between single route and multiple routes. Actually, GAroute 

returns multiple routes, whereas Ahn’s GA returns single route. The purpose 

of GAroute is to find n long paths from one given source to any destination 

peer where the destination peer is not fixed. On the other hand, the purpose 

of Ahn’s GA is to find one shortest-path from one given source to one given 

destination peer where the destination peer is fixed. 
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6. Conclusion 
In this work, we give a literature review on both pure P2P networks 

and hybrid P2P networks. Then we propose S2S Searching and GAroute for 

information retrieval and query routing in P2P networks. Finally, our work 

is summarized as follows. 

For the literature review, we survey on P2P networks and query routing 

strategies. The introduced pure P2P networks are Napster, Gnutella, Kazaa, 

BitTorrent, Gnutella2, YouSearch, Discovir, and Freenet. For the query 

routing strategies, we introduce the firework query model which uses 

document clustering. And we introduce CAN, pSearch, Chord, Pastry, and 

Tapestry which use distributed hash tables. We also briefly introduce the 

research that is related to the P2P network security. 

For S2S Searching, we address the three shortcomings (centralization 

of resources used, outdated search results, and no control over information 

shared by content owners) of centralized search engines which can be 

circumvented by distributing search engines over peers which maintain their 

updated local contents with full control by their owners. Therefore, we 

propose a pure P2P network together with S2S Searching for Web 

information retrieval. It helps site owners to turn their websites into 

autonomous search engines without extra hardware and software cost. We 

also develop S2S search engines and describe its system architecture. 

Our proposed S2S Searching is summarized as follows. We use the 
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modified vector space model for indexing and matching which is adaptive. 

We solve the query flooding problem by our proposed query routing 

algorithm based on distributed registrars. The content summary is a fixed 

size hash table which stores the importance and confidence level of each 

word. The relevance level of a site is the average score of the keywords. 

Queries are routed to those sites with the highest scores and flooded to the 

adjacent sites with a small probability. The S2S communication protocol 

depends on the six CGIs which are starting CGI, searching CGI, pinging 

CGI, joining CGI, leaving CGI, and updating CGI. 

Finally, we summarize the experimental results which measure the 

performance of indexing, performance of matching, performance of S2S 

Searching, and quality of the content summary. According to these results, 

we conclude that S2S Searching is scalable (approximate linear) and works 

well in some large scaled S2S networks. 

For GAroute, we address the two shortcomings (high bandwidth 

consumption and poor semi-parallel search) of the direct connection model 

which can be circumvented by the query propagation model. Therefore, we 

propose a hybrid P2P network based on this model and introduce the 

background of zones and zone managers. We also propose GAroute as a 

query routing function used in zone managers. By giving the current P2P 

network topology and relevance level of each peer, GAroute returns a list of 

query routing paths that cover as many relevant peers as possible. We show 

how to model this as a Longest Path Problem in a directed graph which is 
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NP-complete. Due to the efficiency of GA, we obtain high quality 

approximate solutions in polynomial time. 

Our proposed GAroute is summarized as follows. We encode a path as 

a variable length chromosome. The population is initialized with random 

chromosomes. The mutation adopts a greedy search which provides fast 

convergence. The crossover solves the suboptimal problem of mutation. The 

fission breaks invalid chromosomes produced by crossover down to valid 

chromosomes. The creation creates non-evolved chromosomes for extra 

diversity. The selection is based on the fitness (information gain) of 

chromosomes (paths). The optimization technique called two-phase tail 

pruning removes dummy paths and cuts the path length to reduce the 

network traffic and query time. 

Finally, we summarize the experimental results which measure the 

scalability and quality of different searching algorithms for finding query 

routing paths in different network topologies and peer quantities. According 

to these results, GAroute achieves both good scalability (approximate linear) 

and quality (0.95 in 100 peers) in some large scaled P2P network topologies. 

The two improvements (lower bandwidth consumption and better parallel 

search) of the query initiating peer in our proposed hybrid P2P network 

model are also verified by the experimental results. With our model, the 

query initiating peer network traffic reduces more than 90% for 1,000 peers. 

The semi-parallel search problem is greatly improved in a large scaled P2P 

network. We conclude that both our proposed hybrid P2P network model 
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and GAroute are scalable and work well. 
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8. Appendix 
This appendix contains the supplementary information of S2S search 

engine and GAroute library. 

 

8.1 S2S Search Engine 

In this appendix, we describe the perspectives of site owners and 

search engine users with some screenshots. 

 

8.1.1 Site Owner Perspective 

S2S search engines help site owners to turn their websites into 

autonomous search engines. To make their websites become the search 

engines, they need to follow the four steps which are (1) S2S software 

installation, (2) search engine administration, (3) S2S network management, 

and (4) search page customization. 

1) S2S Software Installation: The first step is to install the S2S 

software in the website. The S2S software provides a search engine core 

together with some CGIs for sites to communicate with each other. It also 

provides the administration pages for site owners to administrate their 

search engines, and Web interfaces for search engine users to search for Web 

contents and then display results. The S2S software contains a basic set of 

HTML files and CGI programs. We use Java Servlet to implement the CGI 

programs because Java programs are platform-independent. The S2S 
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software is open source which can be downloaded at 

“http://www.cse.cuhk.edu.hk/~miplab/s2s”. To install the S2S software, site 

owners are only required to copy those HTML files and Servlet class files to 

the document directory and Servlet class directory respectively and then 

configure the Java properties file. The properties file stores system variables 

such as the system paths, document paths, data paths, username, and 

password of the administration pages. 

2) Search Engine Administration: After installing the S2S software, site 

owners can administrate their search engines in the administration pages. 

They can manage their Web contents such as refreshing the local index and 

content summary, setting the searchable status and priority value of each 

document for advertising propose (see Figure 41). They can also adjust the 

 

Figure 41. Screenshot of S2S Index Management 
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ranking parameters to customize the ranking equation (see Figure 42). 

3) S2S Network Management: After managing local contents, site 

owners are required to join other sites (see Figure 43). To locate a site, we 

need to know the corresponding starting URL. For example, if the starting 

URL is “http://www.s2s.com/servlet/s2s.”, then the corresponding URL for 

the joining CGI is “http://www.s2s.com/servlet/s2s.join” and the 

corresponding URL for the searching CGI is 

“http://www.s2s.com/servlet/s2s.search”. In the case of Gnutella, we need to 

know the peer’s IP address and port number so that we can locate it. Since 

different sites join other different sites, the more sites they join, the wider 

search they perform. In addition, site owners can manage the black list in 

the administration pages (see Figure 44). 

 

Figure 42. Screenshot of S2S Parameter Management 
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4) Search Page Customization: After joining the S2S network, site 

 

Figure 43. Screenshot of S2S Network Management 

 

 

Figure 44. Screenshot of S2S Black List Management 
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owners needs to add a search link or frame to their Web pages. The S2S 

software provides the default search form so that site owners can directly 

link to it. They only need to change the HTML form action of the default 

search form so that it points to the correct starting CGI. They can also 

customize the appearance of the search form by editing the HTML code. 

Moreover, they can choose to generate search results in the XML format so 

that they can write the Extensible Stylesheet Language Transformations 

(XSLT) [52] code to customize the appearance of search results. After 

performing the aforementioned four steps, the website becomes a S2S 

search engine. 

 

 

  

Figure 45. Screenshot of S2S Search Form 
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8.1.2 Search Engine User Perspective 

S2S search engines are distributed in many websites. Therefore, search 

engine users can go to any website which joins the S2S network to search 

for the target information they want. After entering a website, users can find 

a search form (see Figure 45). When they type some keywords, they can 

choose to search for contents in the local site or in all sites which are in the 

same S2S network. They can also select the keywords matching type which 

includes “OR” and “AND”. Moreover, they can specify the TTL value to 

limit the search space. It is a non-negative integer that defines the maximum 

level of sites (excluding the local site) that the query request passes through. 

If they enter the value as zero, then they only search in the local site. The 

larger TTL value it has, the more results it obtains, but the longer time it 

 

Figure 46. Screenshot of S2S Search Results 
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requires. After clicking the search button, the query request is propagated in 

the S2S network. Within a short period, search results are displayed on the 

screen. The results include documents’ filenames, URLs, dates, sizes, 

similarities, and priorities. They are sorted by the ranking values which are 

calculated by the ranking equation (see Figure 46). 

 

8.2 GAroute Library 

In this appendix, we describe the GAroute library which is used in zone 

managers to find optimal query routing paths. It is implemented as the Java 

package because Java programs are platform-independent. The library is 

open source which can be downloaded at 

“http://www.cse.cuhk.edu.hk/~miplab/garoute”. It contains only one 

package (directory) garoute which contains six public classes. They are (1) 

AdjacencyMatrix, (2) Chromosome, (3) IdIndex, (4) Router, (5) ScoreVector, 

and (6) Score. 

1) AdjacencyMatrix: This class is used to create objects for storing the 

adjacency matrix of the P2P network topology. Table 10 shows the 

corresponding class summary. 

2) Chromosome: This class is used to create objects for storing a 

chromosome which represents a path. Table 11 shows the corresponding 

class summary. 

3) IdIndex: This class is used to create objects for storing an inverted 
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index of a gene in a chromosome. Table 12 shows the corresponding class 

summary. 

4) Router: This class is to create objects for finding optimal query 

routing paths. Table 13 shows the corresponding class summary. 

5) ScoreVector: This class is to create objects for storing the score 

vector. Table 14 shows the corresponding class summary. 

6) Score: This class is to create objects for storing a score of a peer. 

Table 15 shows the corresponding class summary. 

 

 

 

 

 

Table 10. Class Summary of AdjacencyMatrix 

Constructor or 
method 

Parameter 
 return 

Description 

AdjacencyMatrix byte[][]  
void 

Constructor to set the adjacency 
matrix 

getMatrix void  
byte[][] 

Method to get the adjacency matrix 

isAdjacent int, int  
boolean 

Method to test if the two peers are 
adjacent 

size void  int Method to get the size of the 
adjacency matrix 
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Table 11. Class Summary of Chromosome 

Constructor or 
method 

Parameter 
 return 

Description 

Chromosome int  void Constructor to set the chromosome 
with the initial gene 

add int  void Method to add the gene to the 
chromosome 

get int  int Method to get the gene of the 
chromosome with the specific 
index 

getSortedIdIndex void  
IdIndex[] 

Method to get the sorted genes of 
the chromosome 

equals Chromo- 
some  
boolean 

Method to test if the two 
chromosomes are equal 

size void  int Method to get the size of the 
chromosome 

 

Table 12. Class Summary of IdIndex 

Constructor or 
method 

Parameter 
 return 

Description 

IdIndex int, int  
void 

Constructor to store the ID and 
inverted index of the gene 

compareTo Object  int Method to compare the two IdIndex 
objects 

getID void  int Method to get the ID of the gene 

getIndex void  int Method to get the inverted index of 
the gene 



Chapter 8.  Appendix  132 

Table 13. Class Summary of Router 

Constructor or 
method 

Parameter 
 return 

Description 

Router void  void Constructor to create the router 

getInfoGains void  
float[] 

Method to get the information gain 
of each path 

getNoOf- 
Generations 

void  int Method to get the number of 
generations 

getRoutingPaths void  
int[][] 

Method to get the optimal query 
routing paths 

setAdjacencyMatrix Adjacency- 
Matrix  
void 

Method to set the adjacency matrix 

setCreationRate float  void Method to set the creation rate 

setCrossover- 
Proportion 

float  void Method to set the crossover 
proportion 

setMaxGenerations int  void Method to set the maximum 
number of generations 

setMinGenerations int  void Method to set the minimum number 
of generations 

setMutation- 
Proportion 

float  void Method to set the mutation 
proportion 

setNoOfGood- 
Chromosomes 

int  void Method to set the number of good 
chromosomes for selection 

setNoOfPaths int  void Method to set the maximum 
number of paths to be returned 

setNoOfPeers int  void Method to set the number of peer in 
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the network 

setPopulationSize int  void Method to set the population size 

setScoreVector ScoreVector 
 void 

Method to set the score vector 

setSourcePeer int  void Method to set the query initiating 
peer 

 

Table 14. Class Summary of ScoreVector 

Constructor or 
method 

Parameter 
 return 

Description 

ScoreVector float[][]  
void 

Constructor to set the score vector 

getScore int  float Method to get the score of the 
specific peer 

getSortedID void  int[] Method to get the sorted ID of the 
peers based on their scores 

getVector void  
float[] 

Method to get the score vector 

size void  int Method to get the size of the score 
vector 
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Table 15. Class Summary of Score 

Constructor or 
method 

Parameter 
 return 

Description 

Score int, float  
void 

Constructor to set the score of the 
peer 

compareTo Object  int Method to compare the two Score 
objects 

getID void  int Method to get the ID of the peer 

getScore void  float Method to get the score of the peer 
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