

ADVISE: Advanced Digital Video Information
Segmentation Engine

By

Chung-Wing NG

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Philosophy
in

Department of Computer Science & Engineering

Supervised by:

Prof. Michael R. LYU and Prof. Irwin King

© The Chinese University of Hong Kong
July 2002

The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in a
proposed publication must seek copyright release from the Dean of the Graduate
School.

ii

ADVISE: Advanced Digital Video Information
Segmentation Engine

submitted by

Chung-Wing NG

for the degree of Master of Philosophy

at The Chinese University of Hong Kong

Abstract
Video over Internet is getting more popular in education, entertainment, and

information sharing. Since it is time-consuming to download and browse most

part of a video before we know the video contents, it is difficult to find out a piece

of video that we want among the vast video sources in the Internet repositories.

Therefore, in this thesis, we propose a web-based video retrieval and browsing

enhancement system called ADVISE, Advanced Digital Video Information

Segmentation Engine, to solve the above problem.

There are three major modules in ADVISE: the first one is the video

table-of-contents (V-ToC) construction, the second one is the video

summarization, and the third one is the video matching.

A V-ToC is an image-based video description, which provides users an

abstract of the video contents. Since there are numerous images contained in a

video, it is a difficult task to select and organize key images to show the video

contents, unless we first understand the video structure. We use regional color

histogram feature with the adaptive threshold to build up a 4-level tree structure

for a video. According to this structure, key images are selected and organized

into the V-ToC for describing the video contents. We present the V-ToC in a

web-based format using XML with XSL. The V-ToC structure generated is

evaluated in a set of experiment. We found that our current approach generate

iii

the most accurate structure among four different settings.

The video summarization module extracts the major contents of a video.

This module is important because different users have their different needs on

extracting the video contents. We have proposed a video summarization

algorithm, which accepts user’s inputs to tailor the video contents extraction.

The algorithm employs a statistical approach in order to select video features

favored by the user. Furthermore, we have applied the clustering technique to

refine the video segments selection, such that a smoother video summary can be

generated. The resulting summary is delivered to the user in a SMIL

presentation format. We have evaluated the video summarization algorithm

using two experiments. The first one is used to measure the quality of the

resulting video summary. We found that our algorithm is able to adjust the

contents selection according to the user’s preferences. For the second

experiment, we evaluate the clustering results in the refinement. We found that

the refinement process can reduce the quality of the video summary while

improving the smoothness.

The video matching module is used to measure the similarity between two

videos. There are many possible algorithms to match the video features in

different temporal ordering, however seldom of them concern on the structure of

videos. Now, based on the V-ToC tree structure mentioned above, we have

proposed two video tree matching algorithms. The first one is the non-ordered

tree matching algorithm and the second one is the ordered tree matching algorithm.

They are different because the ordered tree matching algorithm considers the

temporal ordering of video features while the non-ordered one does not. Our

experiments on a set of various videos demonstrate that the proposed tree

matching algorithms produce similar ranking results to what human will produce.

We have implemented the proposed ADVISE system to demonstrate our

work. It provides all the features, which are mentioned above, to the Internet

users. Hence, users can browse and retrieve videos efficiently using ADVISE.

iv

ADVISE: Advanced Digital Video Information
Segmentation Engine

submitted by

Chung-Wing NG

for the degree of Master of Philosophy

at The Chinese University of Hong Kong

論文摘要
現今的互聯網視頻越見普及。它可應用於教育、娛樂及資訊分享等方面。由

於要了解視頻的內容，必需先把它下載，然後瀏覽大部份片段。這確是一件

相當費時的工作。而在互聯網上的大量視頻來源中，我們更難逐一去根據內

容來找到所想要的視頻。因此，在這一篇論文中，我們提出了一個可在網絡

上應用的視頻提取及瀏覽系統，名叫 ADVISE，Advanced Digital Video

Information Segmentation Engine(高階數碼視頻資訊分割引擎)。我們以此

系統來解決上述所提及的問題。

ADVISE 包含了三個模組。其中，第一個模組負責提供視頻目錄(Video

Table-of-Contents) ， 而 第 二 個 則 負 責 提 供 視 頻 撮 要 (Video

Summarization)，最後，第三個則負責視頻相似度的配對(Video Matching)。

視頻目錄是一個影像形式的視頻描述。它的作用是給我們了解視頻的大概內

容。因為視頻是集合了大量影像，所以從中抽取及整理較為重要的影像來表

現視頻內容是很困難的。我們必須先了解視頻的結構。我們運用了分區色譜

柱狀圖的方法及可適應的分界值來建立一個視頻專用的四層樹狀結構。根據

這個結構，我們可選取重要的影像及排列它們在視頻目錄中，用以描述視頻

的內容。我們使用了 XML 及 XSL 技術將視頻目錄以網頁形式存放，令使用者

v

可以更方便地通過網絡到 ADVISE 瀏覽。為了實驗上列視頻目錄結構的準確

性，我們比較了四種不同的方法。由此發現，在 ADVISE 中使用了的方法是比

較準確的。

另一個 ADVISE 提供的是負責視頻概要的模組。其主要目的是抽取比較重要的

片段作為視頻撮要，以減省使用者所須的瀏覽時間。由於使用者們各有所需，

因此，我們便難於使用單一的方法去製作視頻撮要予不同的使用者。而在

ADVISE 中，我們的視頻撮要演算法是因應使用者所輸入的設定而提取視頻內

容的。那演算法運用統計的方法來撮選使用者所喜愛的視頻特徵。除此之外，

我們運用了尋找叢集技術來改善所得撮要的順暢度。在得出了視頻撮要後，

ADVISE 把它製作成 SMIL 的格式。這樣使用者便可輕易地透過網絡接收到所

需的視頻撮要。我們用了兩個實驗來檢討 ADVISE 的視頻撮要演算法。第一個

實驗是用作了解所得出視頻撮要的質素。結果顯示出我們的演算法能有效地

根據使用者的需要而選取視頻內容，在第二個實驗中，我們測試尋找叢集技

術對所得撮要的效果。我們發現該尋找叢集技術能有效地改善順暢度。

最後是視頻配對模組，它是用作計算兩段視頻之間的相似度。雖然現有不少

方法能配對視頻中的特徵，但甚少會重視視頻的結構。由於我們認為視頻結

構對計算相似度有著相當的重要性，因此，就製作視頻目錄的模組中所提及

的樹狀視頻結構，ADVISE 提供了兩項演算法，用以配對視頻的結構。第一項

演算法是非序列式的樹結構配對，而第二項演算法是序列式的演算的樹結構

配對。兩項演算法的方別是在於序列式的演算法會依據視頻特徵出現的次序

來配對，但非序列式的並不會重視該出現次序。我們以一系列的實驗，比較

了所提出的演算法及人工的結果。這顯示出 ADVISE 所提供的演算法能有效地

作出相似的配對。

我們集合了上述的三個模組，建立了 ADVISE 系統。它確能幫助使用者有效地

在網絡上提取及瀏覽視頻。

vi

Acknowledgment

I would like to take this opportunity to express my gratitude to my supervisors,

Prof. Michael R. Lyu and Prof. Irwin King, for their generous guidance and

patience to me during the research time. The inspiring advice from Prof. Lyu

and Prof. King are extremely essential and valuable in my research papers, which

is published in CISST2001 and WWW2002, as well as my thesis.

I am also grateful for the time and valuable suggestions that Prof. M.C. Lee

and Prof. T.T. Wong have given in marking my term papers and term

presentations.

I would also like to show my gratitude to the Department of Computer

Science and Engineering, CUHK, for the provision of the best equipment and

pleasant office environment for high quality research.

I want to give my thanks to my fellow colleagues, Edward Yau, Sam Sze,

Kenny Kwok, Vincent Cheung, Jacky Ma, Joe Lau, Keith Wong, Ocean Cheung,

K.H. Tsoi, Harvest Jang, Sunny Tang, and M.L. Ho. They have helped me in

solving technical problems, enlightened me with new research ideas, and given

me encouragement and supports. They have given me a joyful and wonderful

time in my research.

Finally, my special thanks must go to my family who has given me the

greatest support and encouragement, so that I can keep concentrated on my

postgraduate study.

vii

Table of Contents

Abstract.. ii

Acknowledgment.. vi

Table of Contents... vii

List of Tables.. x

List of Figures... xi

Chapter 1 Introduction ... 1

1.1 Image-based Video Description ... 2

1.2 Video Summary ... 5

1.3 Video Matching.. 6

1.4 Contributions.. 7

1.5 Outline of Thesis.. 8

Chapter 2 Literature Review.. 10

2.1 Video Retrieval in Digital Video Libraries ...11

2.1.1 The VISION Project...11

2.1.2 The INFORMEDIA Project .. 12

2.1.3 Discussion ... 13

2.2 Video Structuring ... 14

2.2.1 Video Segmentation .. 16

2.2.2 Color histogram Extraction... 17

2.2.3 Further Structuring .. 18

2.3 XML Technologies... 19

2.3.1 XML Syntax.. 20

2.3.2 Document Type Definition, DTD.. 21

2.3.3 Extensible Stylesheet Language, XSL 21

2.4 SMIL Technology .. 22

viii

2.4.1 SMIL Syntax ... 23

2.4.2 Model of SMIL Applications .. 23

Chapter 3 Overview of ADVISE .. 25

3.1 Objectives .. 26

3.2 System Architecture ... 26

3.2.1 Video Preprocessing Module .. 26

3.2.2 Web-based Video Retrieval Module ... 30

3.2.3 Video Streaming Server .. 34

3.3 Summary .. 35

Chapter 4 Construction of Video Table-of-Contents (V-ToC)................... 36

4.1 Video Structuring ... 37

4.1.1 Terms and Definitions ... 37

4.1.2 Regional Color Histograms... 39

4.1.3 Video Shot Boundaries Detection ... 43

4.1.4 Video Groups Formation... 47

4.1.5 Video Scenes Formation ... 50

4.2 Storage and Presentation.. 53

4.2.1 Definition of XML Video Structure .. 54

4.2.2 V-ToC Presentation Using XSL .. 55

4.3 Evaluation of Video Structure.. 58

Chapter 5 Video Summarization ... 62

5.1 Terms and Definitions.. 64

5.2 Video Features Used for Summarization ... 65

5.3 Video Summarization Algorithm ... 67

5.3.1 Combining Extracted Video Segments 68

5.3.2 Scoring the Extracted Video Segments 69

5.3.3 Selecting Extracted Video Segments .. 70

5.3.4 Refining the Selection Result.. 71

5.4 Video Summary in SMIL... 74

5.5 Evaluations... 76

5.5.1 Experiment 1: Percentages of Features Extracted.................. 76

ix

5.5.2 Experiment 2: Evaluation of the Refinement Process............ 78

Chapter 6 Video Matching Using V-ToC... 80

6.1 Terms and Definitions.. 81

6.2 Video Features Used for Matching .. 82

6.3 Non-ordered Tree Matching Algorithm ... 83

6.4 Ordered Tree Matching Algorithms ... 87

6.5 Evaluation of Video Matching ... 91

6.5.1 Applying Non-ordered Tree Matching...................................... 92

6.5.2 Applying Ordered Tree Matching ... 94

Chapter 7 Conclusion.. 96

Bibliography .. 100

x

List of Tables

Table 1.1 Summary of Video Descriptions .. 3

Table 1.2 Differences between Video Description and Video Summary 5

Table 2.1 Comparison between VISION, INFORMEDIA and ADVISE 14

Table 4.1 Summary of Color Histogram Settings .. 42

Table 4.2 Our Current Setting for Weight of Regional Color Histograms......... 42

Table 4.3 Associations between XML elements for V-ToC............................... 55

Table 4.4 Comparing Video Segmentation Results with the Human Judgments61

Table 5.1 User Inputs for Video Summarization.. 67

Table 5.2 Clustered Segments in Form of Time... 75

Table 5.3 Inputs for Experiment 1.. 77

Table 5.4 Average Values for All Results in Experiment 1 78

Table 5.5 Results for Experiment 2.. 79

Table 6.1 Video Tree Structure Information... 92

Table 6.2 Human’s Ranking for Color Histogram Feature 92

Table 6.3 Human’s Ranking for Shot Style Feature... 92

Table 6.4 Ranking Results for Non-ordered Tree Matching for Color Histogram

Feature... 93

Table 6.5 Ranking Results for Non-ordered Tree Matching for Shot Style

Feature... 94

Table 6.6 Ranking Results of Ordered Tree Matching for Color Histogram

Feature... 95

Table 6.7 Ranking Results of Ordered Tree Matching for Shot Style Feature... 95

xi

List of Figures

Figure 2.1 Hierarchy of Video Components... 15

Figure 2.2 Video Tree Structure ... 15

Figure 2.3 Illustration of Video Segmentation Process 16

Figure 2.4 An Example Color Histogram... 17

Figure 2.5 Illustration of Video Groups and Video Scenes 19

Figure 2.6 An Example of XML Document... 20

Figure 2.7 Tree Hierarchy of the Example XML Document.............................. 21

Figure 2.8 DTD for the Example XML Document .. 21

Figure 2.9 XSL for the Example XML Document ... 22

Figure 2.10 Web-based Output Presentation for the Example 22

Figure 2.11 An Example for SMIL Source .. 23

Figure 2.12 An Example for SMIL Presentation.. 24

Figure 2.13 Model for Video Personalization Systems using SMIL.................... 24

Figure 3.1 System Architecture of ADVISE .. 27

Figure 3.2 The Implementation of the Video Preprocessing Module................. 28

Figure 3.3 Setting Panel for the Video Preprocessing Module........................... 29

Figure 3.4 Save V-ToC Structure into XML... 29

Figure 3.5 A List of V-ToCs ... 31

Figure 3.6 User Input Panel for Video Summarization 32

Figure 3.7 Playing Video Summary ... 33

Figure 3.8 Interface for Video Matching .. 33

Figure 3.9 RealSystem Administator Page... 34

Figure 4.1 Workflow for V-ToC construction... 37

Figure 4.2 RGB and HSV Color Models.. 40

Figure 4.3 Problems for Global Approaches and Regional Approaches 41

Figure 4.4 Five Regions in a Video Frame... 43

Figure 4.5 Finding the Optimal Threshold ... 45

Figure 4.6 Formation of Video Shot Level for V-ToC.. 46

Figure 4.7 Temporal Factor for Video Groups Formation.................................. 48

xii

Figure 4.8 Formation of Video Group Level of V-ToC...................................... 50

Figure 4.9 An Interview Video ... 50

Figure 4.10 Different Cases of Video Scene Formation....................................... 52

Figure 4.11 Formation of the Whole V-ToC Structure ... 53

Figure 4.12 DTD for XML V-ToC Structure.. 56

Figure 4.13 XML V-ToC Structure... 56

Figure 4.14 XSL Segment for Transforming XML V-ToC Structure................... 57

Figure 4.15 Web-based Presentation of V-ToC using XSL 59

Figure 5.1 Video Features for Summarization.. 67

Figure 5.2 Scoring the Extracted Video Segments ... 70

Figure 5.3 Selecting Extracted Video Segments .. 71

Figure 5.4 Problem for Disjointed Video Segments... 72

Figure 5.5 Result of K-mean Clustering... 72

Figure 5.6 Transforming Selected Segments into a Clustered Segment 73

Figure 5.7 Selecting Clustered Segments in Video Summary............................ 74

Figure 5.8 A Clustered Segment in SMIL .. 75

Figure 5.9 An Example Source for SMIL .. 75

Figure 5.10 SMIL Video Summary .. 76

Figure 5.11 Results in Graphs for Experiment 2 .. 79

Figure 6.1 Child Similarity Matrix ... 82

Figure 6.2 Matching Video Using a Non-ordered Approach.............................. 83

Figure 6.3 The Best Matched Nodes in ChildSim ... 85

Figure 6.4 Non-ordered Tree Matching.. 85

Figure 6.5 Penalty of Matching Video Segments ... 86

Figure 6.6 The Best Ordered and Matched Nodes in ChildSim 88

Figure 6.7 Ordered Tree Matching ... 88

Figure 6.8 An Example for Dynamic Programming .. 89

Figure 6.9 An Example for Recursive Dynamic Programming 91

Figure 6.10 Matching Video Features .. 91

...| | | | |

1

Chapter 1

Introduction

Nowadays, since the rapid development of the Internet technologies, information

sharing on the Internet is not limited in textual format. With the higher network

bandwidth, people can retrieve information in the form of multimedia including

images, audio, and particularly, video. According to the Home PC Portrait

survey by PC Data, an estimated 57.2% of Internet users watched video clips, and

7.3% edited video clips on their personal computers, in the year 2000 [12].

Video is getting popular in education, entertainment and other multimedia

applications [2][3]. It is because video enriches the content delivery by

combining visual, audio, and textual information in multiple data streams. Now

many companies provide video sharing services, which further speeds up the

growth of the volume of Internet videos [25][41].

Under this evident growth, users may find it difficult while to search for

some video contents they want from vast available sources. Hence, the

management of video data on the Internet is an urgent need. It can help users to

retrieve their favorite videos efficiently. Although many researchers have

investigated this video content retrieval problem [21][52] and the designs of

digital video libraries [9][16][22], there are still many interesting problems to be

solved.

In this thesis, we propose a web-based system, called ADVISE, Advanced

Digital Video Information Segmentation Engine [28]. The system can

enhance video browsing and retrieval by providing a set of services through the

 2

Internet. We propose three different solutions, which facilitates browsing and

retrieval of video over the Internet. They are:

Image-based Video Description gives a brief description for users to know

the video contents at once.

Video Summary reduces the time to browse a video by abstracting the

important parts of video contents.

Video Matching measures the similarity between videos, such that videos

with similar contents can be found efficiently.

We explain our work in these three areas in later sections.

1.1 Image-based Video Description
Without any descriptions about a video, we need to spend time to download and

browse it before we know the contents. This is a time-consuming process when

there is a large amount of videos available. It is impossible to know all the video

contents, if we do not have any descriptions about them. A solution to solve this

problem is hiring a person to annotate each video available. However, the

man-power involved is too huge. We prefer to solve the problem through an

automatic way. By preprocessing the raw video, we can automatically generate a

video description, which can definitely help users in understanding the video

contents while saving the time on downloading and browsing the whole video.

As we have mentioned above, video is a combination of images, audio and

text, thus, it is a convenient way to generate the description by selecting video

information from only one of these three aspects.

For text-based description, the most common generation method is the

extraction of caption text from the video [11][23]. This kind of description with

video captions is convenient for users to understand the video contents at once by

reading through. It can be used on videos which always have captions, likes

news broadcasts and movies. However, we find that there are many other videos

 3

without enough captions for description, especially for personal video

productions.

For audio-based description, the most popular method is the generation of

textual transcripts using speech recognition [16][45]. This method is as easy to

read as the text-based description above, and it can also distinguish the speakers

through the speech. Since this approach can be applied only on videos with

people’s speech. Besides, most current speech recognitions cannot give very

confident results except for those models with excellent training set [16].

For image-based description, the desirable way to present to video contents is

to extract key video frame images [8][15][29][35][43]. With those extracted

images well organized according to the video structure, we can concretely know

what have been shown in the video, and estimate the whole video story by the

organization. We find that videos may not always have caption and speech, but

they seldom contain meaningless images only. For example, to describe the

contents of a scenery video, an image-based description is the most appropriate.

Table 1.1 summarizes the pros and cons of the three different types of video

descriptions.

Table 1.1 Summary of Video Descriptions

 Strengths Weakness

Text-based
description

 Easy to understand the
meaning

 Compact and small in size
 Textual searchable

 Not applicable to videos
without captions

Audio-based
description

 Easy to understand the
meaning

 Compact and small in size
 Textual searchable
 Able to distinguish the

speakers

 Not applicable to video
with no human speech

 Worrying accuracy
about speech
recognitions

Image-based
description

 Able to see the actual
video images

 Applicable to most videos
 Image-based searchable

 Larger in size while
comparing with the
text-based one

 4

In this thesis, our proposed ADVISE system provides the image-based video

description. It automates the generation of the visual descriptions for videos.

As we mentioned above, video key frame extraction is needed for generating the

description. Those key frame images are always extracted through the video

segmentation process [8][15][29][35][43]. We will discuss various video

segmentation processes in Section 2.2.

Instead of barely listing all the extracted key frame images, Unhihashi [43]

prepares his image-based video description in the way similar to the

representation in comic books. He calculates the importance score for each key

frame images by the rarity and duration of its corresponding video segment.

Then those key images are packed together according to the importance score,

where the larger area for higher score. As a result, the resulting video

description is in form of a comic book style.

While Unhihashi’s idea, which calculates the importance scores in a quite

simple way, gives only a few concerns on the video structure, Rui [35] proposes

another image-based description, which can present the whole video structure.

He calls his work as a Table-of-Content (ToC) for videos. It is because he finds

that a video ToC, which functions similarly to the one in a book, can facilitate

browsing of a video by capturing the structure in it. The video structure defined

by Rui will be discussed in Section 2.2.

Now, we discuss briefly our image-based video description in our research

work. We first employ the Rui’s video structure and generate Video

Table-of-Contents (V-ToC) in a modified approach [13][21][35][51]. Then we

store the V-Toc in the eXtensible Markup Language (XML) format [46]. An

XML Document Type Definition (DTD) is defined to provide grammars for the

components of the video structure, and to maintain the consistency of XML.

Hence, by using the eXtensible Stylesheet Language (XSL) [47], we further

transform the XML video structure into a well readable web interface, which is

used as the image-based video description on the Internet. We will discuss the

XML technologies in Section 2.3.

 5

1.2 Video Summary
Apart from the video description discussed above, the second goal for ADVISE is

to generate video summary for the users. We notice that users may not be easily

satisfied by the video description mentioned above with image-based information

only. The video description can just help them to remove most unwanted videos,

such that they can further investigate those remaining. Instead of attempting to

guess the video contents at once through the image-based video description, users

are now willing to spend some more time on getting more information from the

selected video. Therefore, a video summary, which is an abstract of the

important parts of the video, is well suitable for user’s need. Table 1.2

summarizes the differences between the image-based video description and the

video summary.

Table 1.2 Differences between Video Description and Video Summary

 Image-based Video
Description Video Summary

Time Can be read at once Takes certain duration to play
Format Key frame images Video

Features
captured Only image-based features

All kinds of features including
image-based, audio-based, and
text-based

Usage To give the rough idea about
the contents

To show selected important
contents

The key problem in video summarization is the selection of important

segments from the source video. Since we find that quality of summarization

depends greatly on the interest of each target user, it is almost impossible to

design a single approach to fit into every user’s appetite. However, by accepting

settings from each user before summarization, it is easier to determine which

kinds of contents are more important to the user. This kind of user input model

is widely used in other video retrieval applications [30][39][40][50], but it has not

yet been applied on video summarization.

 6

Once the contents for the video summary are confirmed, the next question is

about the format of video summary, which can be generated and returned

efficiently through the Internet. The Synchronized Multimedia Integration

Language (SMIL) [48] is a good choice for us to solve this problem. SMIL is

often applied to various online video personalization systems [17][18][30].

Through similar mechanisms, we can then easily define an individual SMIL

presentation, which customizes contents from the source video. The resulting

SMIL presentation can be returned back to the user through a streaming protocol

on the Internet [32]. We will detail the SMIL technology in Section 2.4.

1.3 Video Matching
Instead of getting information from each video using video description and video

summary, ADVISE also enables the matching of similarity between two videos.

There are numerous solutions worked out by different researchers [1][24][26].

However, this problem is still challenging since it is difficult to extract video

features that represent the content for matching, and there are many possible

algorithms to match the temporal ordering of video features.

Mohan suggests an efficient video matching method [26]. He first extracts

the DC coefficients of frames from MPEG videos. These DC coefficients of

frames are used to formulate a sequence of feature vectors called fingerprints, in

order to represent the video actions in the corresponding video sequence. Then,

he applies sequential matching to find out similar fingerprints for videos in the

database.

Instead of using general sequential matching, Adjeroh et al. [1] design a

different scheme for matching video sequences. He models the video matching

problem as a pattern matching problem. Various video features can be extracted

from a video sequence, and are formulated into a video string (vString), which is a

sequence of symbols, to represent the video sequence. He proposes a new

approach of measuring string edit distance specialized for vString, so that such

resulting distance is used to represent the similarity between video sequences.

 7

Shearer et al. [38] suggest focusing more on the similarity of video frame

images. He expresses the image similarity as the graph isomorphism detection

problem. The graph is encoded according to the relationships between video

objects over time [53]. He then designs a decision tree algorithm to detect the

isomorphic sub-graphs between two video sequences. Thus, the videos are

similar if their graphs are isomorphic.

Lienhart’s method [24] pays more attention to the structure of videos,

comparing with the above approaches. He suggests that video should be

examined in different levels, where these levels are frame, shot, scene and video.

A recursively approach is applied over those levels of temporal resolution, so that

reordered sequences can be detected through a re-sequencing measure proposed.

By regarding Rui’s video structure [35] as a hierarchical tree structure, we

can apply our own structural matching algorithm to measure the video similarity.

We propose two tree matching algorithms [27], they are the non-ordered tree

matching algorithm and the ordered tree matching algorithm. They are different

because the ordered tree matching algorithm is constrained by the temporal

ordering but the non-ordered tree matching algorithm is not. Therefore, the

ordered tree matching algorithm can be applied for matching video with

similarities in both structure and video features, while the non-ordered tree

matching algorithm can be applied for matching video with similar video features

only.

1.4 Contributions
Our research work makes the following contributions:

1. We have proposed the whole framework of a video browsing and

retrieval system called ADVISE, Advanced Digital Video Information

Segmentation Engine [28].

2. We have proposed the automated generation of an image-based video

description in ADVISE. The video description is called Video

 8

Table-of-Contents (V-ToC). It provides users a convenient way to

estimate the video contents at once. The video description in XML

format is transformed into a web-based format using XSL.

3. We have proposed the summarization of video in ADVISE. It

generates a video summary containing the most important parts of the

source video. With the video summary, a user can know more about

the video contents than browsing the video description. A user input

model is used to tailor video summary with contents according to user’s

preferences. Video summary are delivered in a SMIL presentation, so

that it can be generated efficiently and the user can easily access it

through the Internet.

4. We have proposed two video tree matching algorithms [27] in

ADVISE. They measure the similarity between videos. The first

algorithm is the non-ordered tree matching algorithm, and the second

one is the ordered tree matching algorithm. These similarity measures

enable users to search videos with similar contents efficiently.

1.5 Outline of Thesis

In Chapter 2, we describe several technologies related to our research work.

First, we describe the video pre-processing in digital video libraries. Also, we

review the video structuring techniques carried out on top of the video

segmentation results. Besides, we discuss the XML and SMIL technologies,

which are used in our proposed system.

In Chapter 3, we describe the design of the proposed system, ADVISE [28].

It provides a set of services, which assists users in browsing and retrieval of

videos over the Internet. We detail the application interface of each component

in ADVISE and describe the relations between those components.

In Chapter 4, we detail the construction of the Video Table-of-Contents

(V-ToC). We illustrate the extraction of video features and we use these

 9

features in the structuring process of the video. This structuring process results

in the V-ToC of a video, which is formatted into a XML structure, and is

presented in a web-based format using XSL. At the end of this chapter, we

carry out experiments to evaluate the video structuring results.

In Chapter 5, we discuss our video summarization algorithm. We illustrate

how to select contents into the video summary by considering user’s inputs.

Also, we talk about the presentation of the resulting video summary in a SMIL

format. At the end of chapter, we evaluate our video summarization.

In Chapter 6, we describe the algorithms for matching the video similarity.

We detail first the two proposed video tree matching algorithms [27] and make

comparison between them. Besides, a set of experiments is designed to

demonstrate the results of our video matching algorithms.

Finally, we conclude this thesis in Chapter 7.

 10

Chapter 2

Literature Review

In this chapter, we discuss several technologies related to our research work.

In Section 2.1, we describe how digital video libraries process videos before

they are ready for retrieval. We take the VISION project [22] and the

INFORMEDIA Project [9][15][44][45] as examples, so that we know how they

currently work without a better structuring of videos. We expect that the

structuring techniques in the following section can further assist the retrieval of

video in digital video libraries.

In Section 2.2, we have a review on building video structures. It includes

various video segmentation and structuring techniques. Since our video

description, V-ToC, is constructed based on the video structure, so these

techniques greatly affect the quality of the V-ToC.

In Section 2.3, we give an overview of XML technologies that are used in

our work. It includes the introduction of XML syntax, DTD, and XSL. These

technologies help us in storing and presenting the V-ToC properly.

In Section 2.4, we briefly introduce the SMIL technologies. SMIL is a

markup language designed for performing multimedia presentations. More and

more video personalization applications use SMIL presentations to deliver their

customized videos. The major reason is the easy generation of SMIL. We

present the common model of those applications in this section. In our research,

we apply SMIL on the presentation of our video summary.

 11

2.1 Video Retrieval in Digital Video

Libraries
Digital Video Library is a comprehensive system, which integrates a variety of

video analyzing techniques, including speech recognition, face recognition, and

video caption extraction, to provide content-based indexing and retrieval of video

to users [15][22]. To enable these services, raw videos will undergo two key

pre-processing steps. The first step is the video features extraction and the

second step is the video segmentation. In the following paragraphs, we will

discuss these steps in two well-defined digital video libraries, the VISION project

proposed by Li et al. [22] and the INFORMEDIA Digital Video Library project at

Carnegie Mellon University [9][15][44][45].

2.1.1 The VISION Project

In the VISION project, three different video features are extracted. The first one

is to construct the color distributions for video images through a histogram-based

image analysis. Although it tries to have a rough matching of the objects

appearing on video, this approach provides a very good balance between an

efficient extraction and acceptable image similarity metrics [22]. The second

feature is the video captions. Captions are extracted from video frames and

divided into tokens (words). These tokens are reduced to their word stems, and

stop words are removed. So, they become the keywords to represent the video.

The third feature extracted is the audio energy level from the audio track of the

raw video.

By using those features extracted, VISION carries out segmentation of the

videos. With the color histograms, VISION identifies shots by dividing the

video at the sharp histogram changes. The resulting video shots are examined

for possible merging of related shots into scenes using the extracted audio energy

level and the keywords. If there are people talking at the shot transitions, it

results in a high audio energy level. VISION expects shots with high audio

 12

energy level at the transition can be merged for presenting a series of related

topics. With the caption keywords, VISION evaluates the contents relevancy for

shots by counting the number of same keywords appearing in them. The shots

relevant in textual contents are further merged to video scenes as the final

segmentation result.

2.1.2 The INFORMEDIA Project

The INFORMEDIA project employs a more complex video features extraction

model. The video features extraction can be classified into three categories, the

audio analysis, the image analysis, and the natural-language processing [15][45].

For the audio analysis, in addition to extracting the audio energy level similar to

VISION, INFORMEDIA generates the full transcript, which is more informative,

by automatically using speech recognition techniques. In the image analysis,

INFORMEDIA also extract color histograms and caption text from video frames.

In addition, it detects two more video features. First, human faces appearing on

video are detected as one video feature. Second, video motions are extracted as

another video feature. INFORMEDIA uses the camera motion approach, which

tracks changes of individual regions in frames, and creates a vector representation

of motions. In the natural-language processing, INFORMEDIA investigates the

content relevancy based on the transcript results from the speech recognition and

the caption text extraction. Similar to VISION, INFORMEDIA performs

keywords stemming to produce a textual description for video. Probabilistic

matching is also applied on those keywords to return an ordered ranking on video

content relevancy.

INFORMEDIA proposes three video segmentation approaches using

different video features extracted. The first approach is a simple color histogram

difference measure, which is equivalent to the shots detection in VISION. It is

efficient to give an initial segmentation. The second approach improves the first

approach by considering both image features and audio features. In addition to

the audio energy level used in the scene formation of VISION, the speech

recognition result is used to determine the contents changes, and consequently, the

 13

approach becomes content-based and more reliable. The third approach is to

consider the camera motions such as zooming, panning, and forward camera

motions. This method can demonstrate the image flow, but it does not promise a

content-based segmentation.

2.1.3 Discussion

We now discuss the video segmentation process of both the above projects

and compare with our proposed system, ADVISE.

Both VISION and INFORMEDIA projects use simple histogram-based video

shots detection as the basic video structure. However, they discover that using

the histogram approach is not sufficient for a content-based segmentation.

Therefore, other than the image-based feature, they employ also textual and audio

features of video in their segmentation process. They do not give much concern

on the structure of the video. Both of the projects use the shot-based structure.

It is only a sequential segmentation according to the different video features

collected. As a result, they cannot give any information about the organization

of the video contents.

In our ADVISE system, we focus on the structure of videos. We generate

the video structure using the histogram-based approach, without the assistant of

textual and audio features. We expect that a hierarchical video structure, which

we will discuss in Section 2.2, can provide a more organized image-based analysis

mechanism for the video contents. Thus, compared with the above projects,

ADVISE can efficiently generate the video structure with only the

histogram-based method. Besides, it can give a good organization while

integrating with other types of video features. Therefore, the video structure can

enhance the video indexing and retrieval of the digital video libraries in the latter

stages.

We summarize the difference of video segmentation between VISION,

INFORMEDIA and ADVISE in Table 2.1.

 14

Table 2.1 Comparison between VISION, INFORMEDIA and ADVISE

 VISION INFORMEDIA ADVISE

Feature
Used

Color histogram,
caption text and audio
energy level

Color histogram,
caption text, human
faces, audio energy
level and speech in
video

Color histogram

Structure
of Video Shot-based structure Shot-based structure

A video structure
with 4 levels of video
components

Pros
 Multi-modal for

using various
video features

 Multi-modal for
using various
video features

 Structure
generated
efficiently

 Show the
organization of
contents

Cons

 Moderate
complex for
using 4 features

 Give no
information
about the
contents
organization

 More complex
for using too
many features

 Give no
information
about the
contents
organization

 Use only the
color histogram
feature

In the following section, we discuss about the video structure employed in

ADVISE.

2.2 Video Structuring
According Rui’s definition, a video can be decomposed into a well-defined

structure consisting of five levels [35].

1. Video shot is an unbroken sequence of frames recorded from a single

camera. It is the building block of a video.

2. Key frame is the frame, which can represent the salient content of a

shot.

3. Video scene is defined as a collection of shots related to the video

content, and the temporally adjacent ones. It depicts and conveys the

concept or story of a video.

 15

4. Video group is an intermediate entity between the physical shots and the

video scenes. The shots in a video group are visually similar and

temporally close to each other.

5. Video is at the root level and it contains all the components defined

above.

The hierarchy of these video components is demonstrated in Figure 2.1. We

can transform the hierarchy into a structured format as shown in Figure 2.2. This

structure can be regarded as a specialized tree whose tree depth equals to four.

In the following sections, we review the video segmentation and structuring

techniques using the video components defined.

Key Frames
Key Frames

Video Shots
Video Shots

Video Groups
Video Groups

Video Scenes
Video Scenes

Video
Video

Time

Group 1

Group 2

Group 3 Group 4

Group 5

Group 6

Figure 2.1 Hierarchy of Video Components

Video
Video

Scene 1
Scene 1

Scene 2
Scene 2

Scene 3
Scene 3

Group 1
Group 1

Group 2
Group 2

Group 3
Group 3

Group 4
Group 4

Group 5
Group 5

Group 6
Group 6

Shot 1,5,10
Shot 1,5,10

Shot 2,4,7,9
Shot 2,4,7,9

Shot 3,6,8
Shot 3,6,8

Shot 11,13
Shot 11,13

Shot 12
Shot 12

Shot 14
Shot 14

Video Level

Video Scene Level

Video Group Level

Video Shot Level

Figure 2.2 Video Tree Structure

 16

2.2.1 Video Segmentation

The first step to structure a video is the segmentation process. There are various

kinds of video segmentations. However, most of them try to segments the video

at certain points of discontinuity. Hanjalic et al. [15] illustrate the general idea of

video segmentation as shown in Figure 2.3. Two video frames are selected from

the sequence and used as input. In the segmentation, required features are first

extracted from the input frames. Then, a metric is used to quantify the feature

variation from the two selected frames. The resulting discontinuity value is the

magnitude of the variation. Hence, we can say that there is a discontinuous point

while the discontinuity value is greater than certain threshold values or functions

in the detector.

Input Video

Time Sequence
of Video

Video Frames

Video Segmentation Process

Feature
Extraction

Feature
Extraction

Metric
Compute the
discontinuity
value between

fk,fk+l

Metric
Compute the
discontinuity
value between

fk,fk+l

Detector
If discontinuity
value is greater

than a threshold,
a shot boundary

occurs

Detector
If discontinuity
value is greater

than a threshold,
a shot boundary

occurs
Frame fk

Frame fk+l

Figure 2.3 Illustration of Video Segmentation Process

The major difference between various video segmentations is the extraction

of different features. Most of the video segmentation methods can be

categorized into image-based, audio-based and text-based. Some other methods

are always the mixtures of those categories. A simple audio-based method

segments a video according the sharp changes in audio energy level [22][45],

while a simple text-based segments a video by the detection of updates of caption

text [23]. For the image-based segmentation, most of the methods attempt to

detect the discontinuity of camera shots in the video. Different image-based

features are used for shot boundary detection [6][7][13][15][51]. Among those

features, we find that intensity level of pixels [5][6][15][51], color histograms

 17

[6][7][13][15], and motion vectors [4][6][15] are the most efficient.

Our research work focuses mainly on the approach based on color

histograms. It is because the histograms approach [42], which collects the global

color information in each frame, is considerably accurate on passing object

motions in video shots. The intensity level and motion vectors approaches are

always over sensitive to that case.

2.2.2 Color histogram Extraction

For each input video frame, we build up a color histogram. A color histogram

can be collected using various color models, RGB, YIQ, CMY, HSV, etc. A

color model is divides into a number of bins, where each bin contains a range of

color values. Then those bins collects the color pixels on frame with have color

values fall into the same range. As a result, each value in the histogram is the

number of collected pixel in a bin. Here we give an example of color histogram

using a 64-bin RGB model and the corresponding video frame image on Figure

2.4.

Figure 2.4 An Example Color Histogram

Once color histogram is constructed for each frame, we can use different

distance functions [13] to obtain the value of discontinuity value described in

Section 2.2.1. The simplest distance function is the sum of absolute differences

of corresponding bins for both histograms. Then we can determine the shot

 18

boundary using a threshold. A shot boundary occurs in between two video

frames if the discontinuity value is greater than the threshold value; otherwise, no

shot boundary occurs. After the shot boundary detection, a video is divided into

shots, which consist of a sequence of similar frames.

2.2.3 Further Structuring

In order to provide an effective grouped analysis, some researchers suggest

reducing the number of video fragments by grouping similar shots into a video

group [2][15][21][24][29][35][52]. A cluster-based approach [35][52] can be

applied on the video group formation. With the resulting video groups, we can

go through some higher level analysis of the video contents [15][29]. First, we

can know the organization of video materials along the video sequence. Besides,

we can figure out which group of materials is rather important according to the

number of member shots and shots’ durations. Therefore, in the video group

level, we start to explore more characteristics of the video contents.

Rui [35] further defines the video scene level by composing of content

related groups. He points out that the video group formation, which takes only

the visual content into account, leads to the lost of the temporal factor. The

resulting video groups are discontinuous in time sequence; however, it always

happens that adjacent video shots are related in the video contents, although they

do not belong to the same video group. Therefore, Rui applies a time

constrained clustering technique to further collect the video groups into video

scenes. These resulting scenes are continuous in time sequence, and should be

more understandable than the video groups. We illustrate the relation between

video groups and video scenes in Figure 2.5.

The use of video groups and video scenes are important in video analysis.

It is because there is no exact method to understand the contents in a video.

However, with video groups and video scenes, we can be easier to examine the

video contents according to the video structure. The video groups and video

scenes provide the organization of video shots. It is directly related to how the

 19

video contents, which are shown in video shots, are linked up together. Thus, it

is more effective to understand a video from scene to scene instead of from shot to

shot.

In our ADVISE system, we extend the use of Rui’s video structure in two

ways. First, we apply the video structure on building an image-based video

description. The video description can clearly illustrate the organization of the

video using a set of well-arranged video key frames. It enables users to

understand to the video contents immediately. Second, we apply video matching

technique on the video structure. We measure the similarity of video features

appeared on the video along the video structure. It results in a structural

matching for the videos. We will discuss these techniques in the later Chapters.

...

Group B

Group A Group D

Group C

Scene Y
(Starts at a new story)

Scene X
 (Collects contents in the same story)

Figure 2.5 Illustration of Video Groups and Video Scenes

2.3 XML Technologies

Extensible Markup Language (XML) [46] is a standard adopted by the World

Wide Web Consortium (W3C) in 1998. It is a restricted form of the standard

generalized markup language. The design of XML makes documents flexible,

easily accessible, and independent of platform. These features bring XML in

advanced to our document description languages, and thus, lead to the widely uses

 20

of XML in various kinds of applications. XML gradually becomes the standard

for exchange and representation of data and information.

In our research work, we apply XML on the storage of the V-ToC. XML is

used because it can provide a flexible nested hierarchical structure, which is well

suitable for the V-ToC structure described in Section 2.2. Also, XML can be

transformed easily into a web-based format using XSL, and hence, the V-ToC

structure is accessible on the Internet.

2.3.1 XML Syntax

XML [46] represents data in a plain-text format. A pair of markup tags is used to

encapsulate a piece of data, which is then called an XML element. Other than

textual data, XML elements can contain other elements, such that we can build up

a nested hierarchical structure. XML also allows us to associate attributes with

an element. These attributes act like the properties for the data element.

Example 2.1 illustrates the basic syntax of XML.

Example 2.1 Refer to Figure 2.6, we use XML to represent details of a book.

The pair of tags <book> and </book> encapsulates other elements like, <title>,

<year>, etc. These elements build up a hierarchy as shown in Figure 2.7.

Attribute unit with value cm defines a property for the <height> element.

<book id="7">
<title>ASP, ADO, and XML complete</title>
<year>2001</year>
<subjects>
<topic>Internet programming</topic>
<topic>Web sites design</topic>

</subjects>
<descriptions>
<pages>1012</pages>
<height unit="cm">23</height>

</descriptions>
</book>

Figure 2.6 An Example of XML Document

 21

book

title year subjects

topic topic

description

pages height

Figure 2.7 Tree Hierarchy of the Example XML Document

2.3.2 Document Type Definition, DTD

To construct a new structure using XML, we always need a DTD to maintain the

consistency of the structure [49]. We define all the elements, attributes and

relative association of elements inside a DTD, which serves as a grammar book to

check for any exception in the XML document. Here we define the DTD for the

above example XML document at Figure 2.8.

<!ELEMENT book (title, year, subjects, description)>
 <!ATTLIST book id CDATA #REQUIRED>
<!ELEMENT title (#CDATA)>
<!ELEMENT year (#CDATA)>
<!ELEMENT subjects (topic+)>
<!ELEMEMT topics (#CDATA)>

<!ELEMENT description (pages, height)>
 <!ELEMENT pages (#CDATA)>
 <!ELEMENT height (#CDATA)>
 <!ATTLIST height unit CDATA #REQUIRED>

Figure 2.8 DTD for the Example XML Document

2.3.3 Extensible Stylesheet Language, XSL

Since XML does not provide any presentable interface by itself, then XSL [47]

plays an important role in transforming XML documents to a neat presentation.

XSL provides filtering and sorting functions such that we can select and well

order data into the output presentation. HTML is a common output format while

we use XSL transformation. Thus, the XML data can be presented using a

 22

web-based interface. Here we give an example XSL transformation and its

output at Figure 2.9 and Figure 2.10 respectively.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
<xsl:template match="/">
<html><body>

 <xsl:for-each select="book" order-by="number(@id)">
 <hr/>Title: <xsl:value-of select="title"/>

 Year: <xsl:value-of select="year"/>

 Pages: <xsl:value-of select="pages"/>
<hr/>
 </xsl:for-each>
</body></html>

</xsl:template>
</xsl:stylesheet>

Figure 2.9 XSL for the Example XML Document

Figure 2.10 Web-based Output Presentation for the Example

2.4 SMIL Technology
Synchronized Multimedia Integration Language (SMIL), which is first announced

on 1998, is another standard recommended by W3C [48]. It is designed for

performing synchronized multimedia presentation on the Internet. We can use

SMIL to specify the temporal behavior of the presentation, design the layout on

the screen, and associate media objects with hyperlinks. SMIL documents are

actually in XML format with well-defined DTD, such that SMIL browsers can

interpret the tags and make proper layouts or operations. This mechanism is

similar to opening HTML on common web browsers. There are several SMIL

browsers available on the Internet, e.g., GRiNS [31] and RealPlayer [32] [33].

RealPlayer allows SMIL presentation to load streamed media clips through the

Real Time Streaming Protocol (RTSP), so that the playback always keep

synchronized according to the timeline [32].

 23

2.4.1 SMIL Syntax

Since SMIL [48] is in form of a specific and well-defined XML, it uses markup

tag pairs to define media objects in the presentation. We demonstrate the use of

SMIL in Example 2.2.

Example 2.2 Figure 2.11 shows the source of a sample SMIL presentation.

The presentation consists of two video clips, 1.rm and 2.rm, which are streamed

from different hosts using the RTSP protocol. We use clip-begin and clip-end

attributes at the video element to define the relative position at the source videos.

For example, we have taken the video segment from the 0-th second to the 8-th

second from 1.rm. Besides, we can define the layout of the presentation using

layout, root-layout and region tags. We can play the SMIL with a

RealPlayer [33] as shown in Figure 2.12.

<?xml version="1.0"?>
<smil xmlns="http://www.w3.org/2000/SMIL20/CR/Language">
<head>
 <layout type="text/smil-basic-layout">
 <root-layout width="550" height="300"/>
 <region id="r1"/>
 </layout>
</head>
<body>
 <seq>
 <video src="rtsp://host1/1.rm" clip-begin="0s" clip-end="8s" region="r1"/>
 <video src="rtsp://host2/2.rm" clip-begin="5s" clip-end="15s" region="r1"/>
 </seq>
</body>
</smil>

Figure 2.11 An Example for SMIL Source

2.4.2 Model of SMIL Applications

SMIL is often applied to online video personalization systems [17][18][30]. Two

main reasons make SMIL favorable. First, SMIL benefits from the XML

plain-text property. Web server can receive selections of preferred video clips

from users through a web interface, and instantly generate the corresponding

SMIL presentation with server-side scripting languages such as PERL, PHP, ASP,

etc. The selected video clips are wrapped by SMIL and played according to

 24

users’ preference [17]. This model is demonstrated in Figure 2.13. The second

reason is the network and client adaptability of SMIL [18]. It can dynamically

configure the most appropriate media object for streaming, which depends on

client display capabilities and connection speed. It would be convenient and safe

for the SMIL browser on the client side to handle these limitations, instead of

including additional considerations while generating the SMIL presentation.

Figure 2.12 An Example for SMIL Presentation

Online user
terminal

Web-based
Interface

Web Server

Server-side Script
Submit

customization
request

Return customized
SMIL presentation

1. Interpret the
selection request

2. Generate
customized SMIL
presentationRealPlayer

Figure 2.13 Model for Video Personalization Systems using SMIL

 25

Chapter 3

Overview of ADVISE

In this chapter, we are going to describe the design of the ADVISE system [28].

ADVISE is a web-based video browsing and retrieval system. It provides a set

of services to help users in understanding the video contents and the retrieve

similar videos efficiently.

In Section 3.1, we first discuss the objectives for the design of ADVISE.

There are four major objectives that ADVISE can achieve. We aim at enhancing

the browsing and retrieval of video on the Internet through these objectives.

In Section 3.2, we describe the detail system architecture of ADVISE.

There are three major modules in ADVISE. They are the video processing

module, the web-based video retrieval module, and the video streaming server.

The web-based video retrieval module is, in fact, the interface for Internet

users to access the video browsing and retrieval services provided by ADVISE.

These services are V-ToC presentation, generation of SMIL video summary, and

the query of similar videos. We briefly describe how they perform in Section

3.2.2. However the detail mechanism under these services will be discussed in

later chapters.

We demonstrate the ADVISE system using the application interface that we

have implemented. A set of screenshots is shown to illustrate how the ADVISE

system works.

 26

In Section 3.3, we summarize the major parts of this chapter.

3.1 Objectives
As we have mentioned in Chapter 1, there are not enough information provided

for users to select a piece of video that they want from the abundant video sources

in the Internet repositories. Therefore, it is an urgent need to design a system

which provides a better management of those videos on the Internet.

In this thesis, the system we designed for the above purpose is called

ADVISE. There are four major objectives for the design of ADVISE:

1. to provide a efficient way to describe the video contents;

2. to save the time for browsing the whole video to know the contents;

3. to search videos with similarity in certain video features; and

4. to provide services through the Internet.

According to these objectives, ADVISE is designed to provide a set of

services on the Internet. These services enable users to have a better

understanding of the video contents and an efficient retrieval of the videos.

3.2 System Architecture
The system architecture of ADVISE is shown in Figure 3.1, it consists of a video

preprocessing module, a web-based video retrieval module, and a video streaming

server. We discuss these three modules in the following sections.

3.2.1 Video Preprocessing Module

The video preprocessing module is used for generating a structure of Video

Table-of-Contents (V-ToC) for a new input video and performing the similarity

matching of the new video with other videos in the database.

 27

Input Raw Video

Web-based Video Retrieval
Module

Web-based Video Retrieval
Module

Internet User Terminal

1. Query for the
V-ToC to know the

video contents

2b. Return Customized
SMIL Video Summary

to user

2a. Submit
Selection Request

XML V-TOCs
presented with

XSL

Video Preprocessing
Module

Video Matching

V-ToC Construction

Video Matching
ResultsStreaming Video Server

Streaming Video Server

Indexed Video
Database

Generation of
SMIL Video
Summary

3. Query on
similar videos

ADVISE

Figure 3.1 System Architecture of ADVISE

This video preprocessing module is an offline module operated by the

administrator of the ADVISE system. We have implemented it using Visual C++

with DirectX. The interface is shown in Figure 3.2. We can input different

types of raw videos into this module, for example, AVI, MPEG, Quick Time

Movie, and Windows Media Video (WMV), which is provided by DirectX. The

administrator preprocesses any new video source and prepares the video

information for user to retrieve through the Internet.

There are two steps in this module; V-ToC construction and video matching.

Step 1: V-ToC Construction

We first structure the input video into a four level video tree structure called

V-ToC. It extracts video features from the video as the ground information in

video segmentation. Videos are segmented into four types of video components,

video shots, video groups, video scenes and the video itself. We organize these

video components hierarchically into a tree-like structure. Since this tree

structure can show the organization of the video contents, so it acts as the

table-of-contents for a video.

 28

We can select several video segmentation options on the setting panel of this

preprocessing module as shown in Figure 3.3. We can select whether to use an

adaptive threshold instead of a fixed threshold, as well as the weighted regional

histograms instead of a global color histogram for each video frame. Once the

V-ToC structure is generated, we can save it into an XML format as shown in

Figure 3.4. The XML V-ToC is then ready for presentation in the web-based

video retrieval module in the later section. The detail mechanism of the V-ToC

construction will be described in Chapter 4.

Figure 3.2 The Implementation of the Video Preprocessing Module

Step 2: Video Matching

Other than V-ToC generation, we proceed the video matching on this

preprocessing module. We compare videos based their corresponding V-ToCs.

Occurrences of video features in both videos are the key factors to determine the

similarity between them. Since the V-ToCs are in the form of a specialized tree

structure, we employ two tree matching algorithms to measure the similarity

between them. The two matching algorithms are (i) the non-ordered tree

 29

matching algorithm and (ii) the ordered tree matching algorithm. These

algorithms are different because the ordered tree matching algorithm concerns on

the temporal ordering of video features while the non-ordered tree matching

algorithm does not. As a result, the ordered approach can show the result of

similarity in video structure while the non-ordered approach can show the result

of similarity in video contents. Therefore, both results are useful references for a

user to look for a similar video that he may want. We will discuss these video

matching algorithms in detail in Chapter 6.

Figure 3.3 Setting Panel for the Video Preprocessing Module

Figure 3.4 Save V-ToC Structure into XML

 30

As it is shown on the setting panel in Figure 3.3, we can perform both the

non-ordered video tree matching and the ordered video tree matching algorithms

to get the similarity scores. The ADVISE administrator measures the similarity

score between the new input video with other videos stored in the video database.

The resulting scores are recorded and saved in a database. These scores are

prepared for users to query for similar videos, through the web-based video

retrieval module in the next section.

3.2.2 Web-based Video Retrieval Module

The web-based video retrieval module is in fact the interface for users to access

the services provided ADVISE.

On the server side, all the contents of this module are prepared in a

web-based format. A web server, which is capable to execute PHP scripts, is

used to transmit our contents to the user. The PHP scripts will be used in some

of the services below.

At the client side, a user is suggested to use the media browser of RealOne

Player [33] to browse the contents of ADVISE. It is convenient for the user to

retrieval video at the same time using the player.

There are three web services provided by ADVISE. They are the V-ToC

presentation, the generation of SMIL video summary, and the query of similar

videos.

Service 1: V-ToC Presentation

As we mentioned in the step 1 of Section 3.2.1, an XML V-ToC is generated for

each input video. We can further present it in a web-based format using XSL as

shown in Figure 3.5. This presentation is an image-based description for the

video.

 31

A user can know the contents for a list of video at once, by having a quick

look on the V-ToCs. Then, he can easily select his interested pieces efficiently as

they know the video contents. It saves a lot of time from downloading and

browsing the video one by one.

Figure 3.5 A List of V-ToCs

Service 2: Generation of SMIL Video Summary

Once a piece of video is selected according to the V-ToC, the user may want to

extract only the important contents from the video for browsing. Then, ADVISE

enables the user to generate a video summary, which is customized for his needs.

We employ a user input model to customize a video summary. A set of

video features is defined, so that we calculate the score for each video segment

according the ratings provided by the user. Then, we use a clustering method to

adjust the video segments selection in order to generate a smooth summary of

video. We present the video summary back to the user with a SMIL format, and

thus a user can easily retrieve the summary through the Internet. The details of

video summarization will be discussed in Chapter 5.

 32

The user input panel to adjust the weights of features and other settings is

shown in Figure 3.6. Once the summarization settings are received on the web

server, a PHP script is invoked to interpret the request and generate the

corresponding SMIL presentation.

We can further include some more details of each video segment by using the

V-ToC. Since the XML and SMIL are both in plain text format, we can apply the

PHP script, which consists of an XML parser, to transform the information in

V-ToC structure into the SMIL presentation. Then the resulting SMIL is divided

into three regions. In the first region, those selected video shots form a video

sequence. The second region contains a text stream, which is aligned with the

video sequence to show the scene, group and shot numbers of the playing video

segment. In the third region, the corresponding key frame for the video segment

is shown. The user is then able to play his customized SMIL video summary

through the Internet with the RealOne player as shown in Figure 3.7.

Figure 3.6 User Input Panel for Video Summarization

 33

Figure 3.7 Playing Video Summary

Service 3: Querying Similar Videos

A user can also query for similar videos in ADVISE. We use a PHP script to

retrieve the stored video matching results described in the step 2 of Section 3.2.1.

We enable user to use the video name as the query. He can also select

matching either the color histogram feature or the shot style feature. A number

of similar videos are listed in descending order of the similarity score. We hide

those results with similarity score lower than 30%. It is because those results are

not likely to be similar to the querying video.

After searching the similar videos, a user can browse the V-ToC in order to

see whether the resulting video is the one that he looks for. The web-based video

matching interface is demonstrated in Figure 3.8.

Figure 3.8 Interface for Video Matching

 34

3.2.3 Video Streaming Server

The third module in ADVISE is the video streaming server. It is responsible for

delivering videos on the Internet.

We use a Real System Server [33] as the streaming server in ADVISE.

Figure 3.9 shows the interface for the server configurations. A streaming

protocol, RTSP, is used in this server, such that videos can be sent in streams.

Then, we can start playing the video immediately before the full video is

downloaded. With the help of the streaming service, we can also select to play

some specific video segments from a video, which resides on the server, using a

SMIL presentation. This mechanism is used in delivering our SMIL video

summary to the users.

As we have mentioned in Section 3.2.1, ADVISE accepts different video

formats, some of them may not be compatible with RTSP. Therefore, we need to

convert all the source videos into RealMedia such that they can be streamed using

RTSP [33]. We use the RealProducer provided by the Real Networks [34] to

convert the videos. The resulting RealMedia videos are then stored in the video

database before they are retrieved by the users of ADVISE.

Figure 3.9 RealSystem Administator Page

 35

3.3 Summary
We have described the overall architecture of the ADVISE system. There are

three major modules in ADVISE. The first one is the video processing module,

the second one is the web-based video retrieval module, and the third one is the

video streaming server.

The web-based video retrieval module is, in fact, the interface for Internet

users to access the ADVISE system. It provides three services to the users.

They are the V-ToC presentation, the generation of SMIL video summary, and the

query of similar videos.

We have briefly described how those services perform in Section 3.2.2.

However the detail mechanism of these services will be discussed in later chapters.

Therefore, we will discuss the construction of V-ToC in Chapter 4, the video

summarization in Chapter 5, and the video matching in Chapter 6.

 36

Chapter 4

Construction of Video

Table-of-Contents (V-ToC)

In this chapter, we describe our approach on the construction of V-ToC, which is

an image-based video description mentioned in Chapter 1. We organize the

construction process into two major parts. The first one is about the video

structuring and the second one is about the structure storage and presentation.

Figure 4.1 stretches the workflow of the V-ToC construction.

In Section 4.1, we structure a video into a 4-level tree structure as described

in Section 2.2. A color histogram approach with the additional regions setting

[15] is used in the feature extraction step. Then, in the video shot boundaries

detection and video groups formation, we employ an entropic threshold function

[51], in order to make our approach adaptive. Next, we figure out the video

scenes formation step, which concerns on the temporal factor from the video

sequence. These are the steps to build up the V-ToC structure.

XML is used to store the V-ToC structure. In Section 4.2, we define a set of

XML elements to document the structure in a nested hierarchy. Also, we define

a DTD to maintain the consistency of the XML structure. To make a

presentation of the XML structure, we use XSL to transform it into a web-based

format. The web-based presentation is designed to provide users a concise and

neat description of the video.

 37

In the Section 4.3, we detail the experiment of the generated video structure

and evaluate the results.

Video
Features
Extraction

Video Shot
Boundaries
Detection

Video
Groups

Formation

Video
Scenes

Formation

Video Structuring Process

Video Structure Presentation

Storage of
the Structure

in XML

Web-based
Presentation
using XSL

Construction of V-ToC

Figure 4.1 Workflow for V-ToC construction

4.1 Video Structuring

4.1.1 Terms and Definitions

Before we start to discuss the algorithm for video structuring, we define several

key concepts as follows. We extend Rui’s definition, which is introduced in

Section 2.2, in a mathematical format.

Definition 4.1 The structure of a V-ToC is defined as a 4-level tree structure,

which is shown in Figure 2.2. It consists of the video level, the video scene level,

the video group level, and the video shot level.

Definition 4.2 A video is defined as a sequence of frame images. It is

represented by),,,(21 nfffV L= , where fi is the i-th indexed frame of the video

 38

and n is the number of total frames in the video, V.

Definition 4.3 A video shot boundary occurs when the frame-to-frame

distance, ()1, +xx ffz , between two consecutive video frames, fx and fx+1, is greater

than a certain threshold, T. We use the frame index, x+1, to locate the video shot

boundary.

Definition 4.4 To compare the similarity between two video frames, fx and fy,

we define the frame-to-frame distance as ()yx ffz , . This distance is the

difference of the quantified video features between two video frames. This is

symmetrical between any two video frames.

Definition 4.5 At the video shot level, a video shot, s, is defined as a video

sub-sequence, which has video shot boundaries occur at the beginning and the

end only. A shot can be written as),,,,(21 jiiii ffffs +++= L , or in term of an

ordered pair],[jii ffs += , where njii ≤+≤≤)(1 and 1, ≥ji . We illustrate the

properties of a video shot in Equation (4.1).

TffzTffz

Tffz

jijiii

yxjiiiiyx

>>

≤∀

+++−

+++∈

),(),(

),(

11

),,2,1,(,

 and
and

 L

 (4.1)

Definition 4.6 We define a key frame be the first frame in the video shot.

For the shot, si, we denote its corresponding key frame as ki.

Definition 4.7 A video group is defined as a set of video shots. It can be

written as },,,{
321
Laaa sssg = , where maaa ≤≤ L,,,1 321 , and m is the number of

video shots in the video. There are two properties for the member shots.

i) The frame-to-frame distance between the key frames of any two member

shots is not greater than the threshold, Tkeyframe. It is formulated in

Equation (4.2).

 keyframejiaaaji Tkkz ≤∀ ∈),(,...},,{, 321
 (4.2)

ii) The time separation between any two member shots on the video

 39

sequence is not greater than the threshold, Ttemporal, for this temporal

factor. It is formulated in Equation (4.3).

temporalii

yxayxaaaa

Tyx

ffsffs
iiiiiii

<−

==∀

−

∈ −−−

1

,...},{],[],[
11132

 , if
 (4.3)

Definition 4.8 A video scene is defined as a set of video groups. It can be

written as },,,{
321
Lbbb gggc = , where pbbb ≤≤ L,,,1 321 , and p is the number of

video groups in the video. Those video groups in a scene are mutually exclusive

and they can be combined together to form a continuous video shot sequence, that

is),,,,(21 jiiii ssssc +++= L , where j is the total number of members shots in all

groups. Besides, no subset of a scene can form another continuous shot

sequence.

By using the above definitions, we detail the formation of V-ToC structure in

the following sections. The first step is the extraction of regional color

histograms as the video feature. Based on the extracted color feature, we carry

out video shot boundary detection algorithm in the second step. Then, the third

and forth steps are formations of video groups and video scenes respectively.

4.1.2 Regional Color Histograms

There are two major settings for our color histograms. The first one is the use of

Hue-Saturation-Value (HSV) color model, and the second one the division of

video frames into several regions.

Instead of a RGB color model, we use a HSV model for our color histograms.

These two color models can be graphically presented as shown in Figure 4.2. A

HSV model is more suitable for building color histograms of video frames

[15][35]. It is because a RGB model is always too sensitive to the color changes

due to light intensity, while in a HSV model, we can easily avoid this problem by

detecting the color value which varies along the V-axis. We find that it is rather

essential in shot boundary detection, since there are always instabilities of lighting

effect in videos, for example, flash light, and sunshine.

 40

In our setting, we use a 64-bin color histogram. It consists of a 2

dimensional color space for H and S values. The H values are divided into 16

intervals and the S values are divided into 4 intervals. It results into 64 different

ranges of color value. If we further divide the color space into more bins, for

example 256 or 512 bins, it will be too sensitive to color changes. Therefore 64

color bins is an appropriate configuration.

Cyan
(0,1,1)

Black
(0,0,0)

White
(1,1,1)

Blue
(0,0,1)

Magenta
(1,0,1)

Red
(1,1,1)

Yellow
(1,1,0)

Green
(0,1,0)

R

G

B

Red-Green-Blue (RGB) Color Model Hue-Saturation-Value (HSV) Color Model

Yellow

Red (0o)

MagentaBlue
(240o)

Green
(120o)

Cyan White (V=1)

V

H (in angle)
S

Figure 4.2 RGB and HSV Color Models

Since the traditional color histogram method can only detect the global color

changes between video frames, we improve it by using regional color histograms.

By using histograms for regions, we are able to catch a more localized color

distribution in a video frame. As a result, we can avoid missing the boundary

between two frames having different objects but with the same combinations on

them. Besides, we can see that the major object is always shot at the center

region of the camera, while the regions around are the background. When there

is a rapid change in background color between two consecutive video frames, it

causes great difference in color histograms of those frames. Then, a shot

boundary detection algorithm will wrongly expect that a shot boundary occurs

between the two frames. If we divide the video frame into several weighted

regions, we can avoid the false detection by focusing mainly on the most

important part located at the center.

 41

Though there are benefits to localize the color histograms, we cannot create

too many regions on the video frames. It is because a huge computation time is

needed to calculate the difference between frames with many regional color

histograms. It demands large memory storage for all the histograms. Other

than these problems, we find that adding regions increases the sensitivity to

objects across regions. That means objects shifting from region to region can

causes great differences in regional color histograms, and it leads to the false

detection of shot boundary. Figure 4.3 demonstrates those problems for a region

color histogram to tackle.

We also summarize the pros and cons of the above settings in Table 4.1.

Global Color Histogram Approach

False Detection

Background Changes

Same Color Combination

Missed Detection for Video Shot Boundary

Approach with Too Much Regions

False Detection

Objects Moving Across Regions

Figure 4.3 Problems for Global Approaches and Regional Approaches

In our configuration, we divide a video frame to five regions as shown in

Figure 4.4. They include a rectangular region at the center and 4 corner regions.

We also build the color histogram for the whole video frame, which we number it

as region 6. It is because we want to avoid the false detection caused by objects

moving across regions. The color histogram for the whole video frame is the

global histogram, which help us to keep a balance between a global approach and

a regional approach as we mentioned above.

 42

Table 4.1 Summary of Color Histogram Settings

 Pros Cons
Use of HSV Model Can detect color

changes caused by
lighting effects

 Require additional
transformation

Use of Regional
Histograms Can detect certain local

color changes
 Can be set insensitive

to background changes

 Increase the
computations and
memory usage

 Sensitive to objects
across regions

As a result, we collect six histograms for each video frame. When we

calculate the total difference between two video frames, a weight can be applied

to each regional color histogram. We expect that the global histogram should be

the most weighted, the one for center region should be the second important, and

the corner regions are the least important. Our current setting is listed in Table

4.2.

Table 4.2 Our Current Setting for Weight of Regional Color Histograms

Region Weight
1. Center 0.2
2. Left Upper 0.1
3. Left Lower 0.1
4. Right Upper 0.1
5. Right Lower 0.1
6. Global 0.4

In order to calculate the frame-to-frame distance defined in Definition 4.4,

we now use the color histograms as the quantified video feature. For two video

frames, fx and fy, we calculate the frame-to-frame distance, z(fx,fy), using a simple

absolute distance of their color histograms as in Equation (4.4).

 43

()∑

∑

∀

=

×=

−=

i
iyxiyx

N

j
iyixyxi

w),f(fz),fz(f

(j)Hist(j)Hist),f(fz

 ,histograms

1

,,

 (4.4)

Histx,i(j) denotes the j-th color bin in the histogram for region i in frame fx.

zi(fx,fy) is the difference in region i between two frames. wi is the weight of a

region.

By using Equation (4.4), we can find out all the frame-to-frame distances,

z(fx,fx+1), between any two consecutive video frames, fx and fx+1. According to

Definition 4.3, these results are used to determine the occurrences of video shot

boundaries.

Figure 4.4 Five Regions in a Video Frame

4.1.3 Video Shot Boundaries Detection

Once we gather all the frame-to-frame distances between consecutive video

frames, we need a threshold, T, to determine whether a video shot boundary

occurs as defined in Definition 4.3. Since the choice of threshold can greatly

affect the result of video shot boundaries detection, we need to adjust the value

using adaptive approach according to each video. We employ the algorithm

suggested by Yu [51], which uses entropies to adjust the threshold. It is an

efficient algorithm to calculate an adaptive threshold.

 44

The first step is building the statistics for the calculated frame-to-frame

distances. Let the largest frame-to-frame distance, max(z(fx,fx+1)), among n

video frames to be zmax. We divide the range of values from 0 to zmax into q

intervals. The size of each interval is zmax divided by q. Then for each interval,

we can count the number of the frame-to-frame distances which values fall into

the range. The counted number, counti, for an interval, i, is calculate as in

Equation (4.5).



 =

=−
=−

≤≤









−








=∑

−

=

+

otherwise
 when

 where

ia
ia
ia

qii
qz

),fz(f
count

n

x

xx
i

,0)(
,1)(

1,
/

1

1 max

1

δ
δ

δ
 (4.5)

The second step is the calculation of probability distributions and entropies.

If we pick a threshold value, t, in between 1 and q, we can divide those q intervals

into two classes at t, one for the video shot boundaries and the other for the

non-boundaries. These two classes have their corresponding probability

distributions for the frame-to-frame distances. By assuming the threshold value

to be t, the probabilities for the non-boundaries, Pns(i,t), and the boundaries, Ps(i,t),

at interval i are calculated using Equation (4.6). Also, the entropies for the

non-boundaries, Hns(t) and boundaries, Hs(t), and the sum of those entropies, H(t),

are then calculated according to Equation (4.7).

qi , t
count

count
tiP

ti ,
count

counttiP

q

tj
j

j
s

t

j
j

i
ns

≤≤+=

≤≤=

∑

∑

+=

=

1),(

1),(

1

1
 (4.6)

)()()(

)(log)()(

)(log)()(

1

1

tHtHtH

iPiPtH

iPiPtH

sns

q

ti
sss

t

i
nsnsns

+=

−=

−=

∑

∑

+=

=

 (4.7)

 45

After we have calculated all the entropies, H(t), for each value of t in

between 1 and q, we can find an optimal threshold, topt, at which H(t) is the largest.

It is formulated in Equation (4.8). The optimal threshold, topt, is in fact the most

informative point to divide the intervals into two classes. Figure 4.5 illustrates,

in a graphical format, the approach to find an optimal threshold, topt.

{ })(max)(
,...,2,1

tHtH
qtopt

=
= (4.8)

Th
e

nu
m

be
r o

f f
ra

m
e-

to
-fr

am
e

di
st

an
ce

s
in

 e
ac

h
in

te
rv

al

q intervals of frame-to-frame distance values

At topt ,
H(topt) is maximum

Non-boundaries

Video shot
boundaries

Figure 4.5 Finding the Optimal Threshold

Finally, we can calculate the required adaptive threshold, T, which equals topt

times the size of an interval, as shown in Equation (4.9).

q
ztT opt

max×= (4.9)

We can then determine the video shot boundaries using the resulting adaptive

threshold value as shown Equation (4.10).

boundaryshot a Not
occursboundary Shot





⇒
⇒

≤
>

+ T
T

) ,fz(f lxx (4.10)

 46

After finding all the video shot boundaries, we can divide the whole video

sequence into a number of video shots. We can use the calculated

frame-to-frame distances and the adaptive threshold to formulate the video shots

according to Definition 4.5. We also illustrate the shots formation in Example

4.1. We regard the set of resulting video shots as the video shot level of the

V-ToC. Figure 4.6 shows the formation of the video shot level for V-ToC.

Example 4.1 Given a video,),,,(150021 fffV L= , having 1500 frames. By

using the above calculations, we found that the following frame-to-frame

distances are greater than the adaptive threshold, T.

TffzTffzTffzTffz),(),(),(),(1446144512961295678677211210 >>>> ,,,

As a result, we can conclude that the video shot boundaries are located right

after frames f210, f677, f1295 and f1445. Then we divide the video sequence at those

frames, such that the video shots, s1 to s5, are represented as follows.

[] [] [] [] []150014461445129612956786772112101 , , , , , ffsffsffsffsffs ===== 54321 ,,,,

According to Definition 4.6, we take the first frame of each video shot to be

the key frame of the shot. A key frame represents the video shot in the video

groups and video scenes formation. We detail those formations in the following

sections.

...Video Shot 1 Video Shot 2 Video Shot 3

Fr
am

e
21

0
Fr

am
e

21
0

Fr
am

e
21

2
Fr

am
e

21
2

Fr
am

e
21

3
Fr

am
e

21
3

Fr
am

e
67

6
Fr

am
e

67
6

...

Fr
am

e
21

1
Fr

am
e

21
1

Fr
am

e
67

8
Fr

am
e

67
8

Fr
am

e
67

7
Fr

am
e

67
7

......

Detected Shot
Boundary

Detected Shot
Boundary

(Key Frame
of Shot)

(Video Shot Level of V-ToC)

Figure 4.6 Formation of Video Shot Level for V-ToC

 47

4.1.4 Video Groups Formation

After dividing a video into video shots, our next step is collecting similar shots

into video groups. A video group is defined in Definition 4.7. There are two

problems to be solved in the video groups’ formation. The first one is the

finding the threshold, Tkeyframe, to test the feature similarities between key frames

of member shots. The second problem is finding the threshold, Ttemporal, to

control the time separation between member shots.

For the first problem, we can directly use the threshold, T, which obtained in

the video shot boundaries detection, as Tkeyframe. It is shown in Equation (4.11).

Since T can determine similar video frames in a sequence, we use the same value

for Tkeyframe, such that we can find similar key frames from different video shots.

There are other methods to find the inter-shot dissimilarity in [15], we can use

them to find out a more accurate value for Tkeyframe. However, it is more

convenient to use the value of T because most of those methods involved a lot of

computations, which may not really worth doing.

.TTkeyframe = (4.11)

For the second problem, we are going to find the value of Ttemporal, which can

avoid grouping shots separated far apart. Rui suggests that video shots separated

far apart are not likely to be related in the video contents [35]. Figure 4.7 is an

example for this case. Therefore we need to choose the value of Ttemporal

carefully.

Assume there are m video shots in the video, and then Ttemporal is calculated

by the average length of video shots, si, times a predefined constant factor, K.

Equation (4.12) shows the calculation of Ttemporal. According to the result of Rui,

a video shot, which is ten times the average shot length apart from other video

shot, is probably not related [35]. As a result, in our current setting, K is equal to

10.

 48

 where




−=
=

×=
∑
=

xy)length(s
],f[f s

K
m

slength
T

i

yxi

m

i
i

temporal
1

)(

 (4.12)

...

Commercial

...

CommercialLengthy TV Programme

...

Group A Group B
Should Not Be Combined Together

Figure 4.7 Temporal Factor for Video Groups Formation

Once we have set the thresholds, we can use an efficient algorithm to group

the video shots.

Since it is not efficient to ensure the first property of a video group in

Definition 4.7, we modify this property in order to fit into our algorithm.

Instead of finding the frame-to-frame distances between all key frames in the

video group, we calculate only two of them. The first one is the distance

between the key frame, kx, of a video shot, sx, and the key frame, ky, of the first

member shot, sy, in the group. The second one is the distance between kx and the

key frame, kz, of the last member shot, sz, in the group. Finally, we take the

average of the two distances to be the shot-to-group distance, zg(). We formulate

these calculations in Equation (4.13). In our algorithm, we assign a video shot to

the video group by comparing the shot-to-group distance with the threshold,

Tkeyframe.

 distance, grouptoshot

:),,,(group,a video and , shot, a video Given

2
),kz(k),kz(k

),g(sz--

sssgs

zxyx
ixg

zwyix

+
=

= L

 (4.13)

 49

The video groups formation algorithm is summarized in Algorithm 4.1.

Each video shot from the input shot sequence is examined in turn. By finding

the smallest shot-to-group distance, we can take an existing group which is the

most similar to the current shot. In order to fulfill the two properties of a video

group, we assign the current shot to the group when (i) the shot-to-group distance

is smaller than Tkeyframe, and (ii) the time separation between the current shot and

the last member of the group is smaller than Ttemporal. Otherwise, we need to

create a new video group for the current shot.

Input: A sequence of m video shots, ()msss ,,, 21 L .

Output: A set of p video groups, ()pgggG ,,, 21 L= , where ig is the i-th
 video group.
1. Add a group 1g to G , and assign 1s to 1g .

2. for each xs in ()msss ,,, 32 L

3. for each ig in G ,

4. Calculate the shot-to-group distance,),g(sz ixg .
5. end for
6. Find ()),(min),(ixggaxg gszgsz

i∀
= , among all the existing groups.

7. Test:
 i) keyframeaxg Tgsz ≤),(

 ii) temporalTvw ≤− , where w is the index of first frame in xs

 and v is the index of last frame in the last member shot of
 ag .
8. if i) and ii),
9. then assign xs to ag .

10. else add a group bg to G , and assign xs to bg .
11. end if
12. end for

Algorithm 4.1 Video Groups Formation

By using the above algorithm, we can formulate a set of video groups, which

collect similar video shots. We can then know the number of times that a video

shot repeats and the number of different shot groups appeared on the video.

Figure 4.8 demonstrate the formation the video group level in V-ToC using

an example.

 50

Vi
de

o
Sh

ot
 4

Vi
de

o
Sh

ot
 6

...

Vi
de

o
Sh

ot
 2(Video Shot Level of V-ToC)

...Video Group 1 Video Group 2 Video Group 3(Video Group Level of V-ToC)

Vi
de

o
Sh

ot
 3

Vi
de

o
Sh

ot
 5

Vi
de

o
Sh

ot
 7

...

Figure 4.8 Formation of Video Group Level of V-ToC

4.1.5 Video Scenes Formation

Based on the video groups prepared, we can construct video scenes in this step.

According to Definition 4.8, we combine a set of adjacent video groups into a

continuous video shot sequence. Since member shots of those video groups are

appearing in turns, it is reasonable that they are quite related in video contents

[29][35]. As a result, we can combine them into a scene which extracts a

complete segment of the video story. Example 4.2 is a common example to

illustrate this idea.

Example 4.2 In an interview video as shown in Figure 4.9, there are shots

taken on the interviewer and interviewee at different view angles. Then video

groups, which contain those different kinds of shots, always appear across each

other throughout the interview. Therefore, we can expect that if we combine

those concurrent video groups to a video scene, the resulting segment of video will

have its own substantive content.

Group A

Group B

Group C

Figure 4.9 An Interview Video

 51

There are two steps to form video scenes. First we need to sort video

groups according to the temporal order of their first member, which is the most

preceding video shot in the group. Second, we compare the time slots for the

first and the last member in the group with the time slot for each scene.

After the groups are sorted, there are only three cases we need to handle in

the second step. (1) We assign a group to a scene if it is overlapped with the

time interval of the scene. (2) If a group includes the first member within the

scene time and the last member outside the scene time, we also assign the group to

the scene. However, in this case, we need to expand the time interval of the

scene to cover this group. (3) If a group is not overlapped with any scene, we

create a new scene for the group. The examples for these three cases are shown

in Figure 4.10. All video scenes are formed after every video group is examined

in turns.

We summarize this algorithm in Algorithm 4.2.

Input: A sequence of p video groups, ()pgggG ,,, 21 L= , where ig ’s are

 ordered by the temporal sequence of their first member shots.

Output: A set of r video scenes, ()rcccC ,,, 21 L= , where jc is the j-th
 video scene.
1. Add a scene 1c to C , and assign 1g to 1c , such that 1c can also

represented by a sequence of member shots of 1g .

2. Set the number of scenes, 1=r
3. for each),,(zyi ssg L= in G

4. if z x y w <<< , //case(2)
5. then
6. i) assign ig to),,(xwr ssc L=

7. ii) update rc to),,(zw ss L .
8. else
9. if z x y w <<< , //case(3)
10. then
11. i) add a new scene 1+rc to C , and assign 1g to 1+rc .

12. ii) 1+rc can be represented by),,(zy ss L .

13. iii) 1+= rr
14. else //case(1): zx y w <<<

15. i) assign ig to),,(xwr ssc L=
16. end if
17. end if
18. end for

Algorithm 4.2 Video Scenes Formation

 52

Scene B

Scene A Scene B

su
Video
Shot :

Case (1) : w<y<z<x

Group gi

Scene A Scene B (Assign gi to B)

Case (2) : w<y<x<z

Group gi

Scene A Scene B (Assign gi to B and extend B to sz)

Case (3) : w<x<y<z

Group G1

Scene A Scene C (Create Scene C and assign gi to C)

sv sw sx

sy sz

szsy

szswsu sv

su sv sw sx

su sv sw sx

sy sz

sy sz

Figure 4.10 Different Cases of Video Scene Formation

After the video scenes formation, we need to build up the tree structure as

defined in Definition 4.2. We have extracted all the required components under

the video scene level for V-ToC. According to those sets of video scenes, video

groups and video shots, we can organize the video components into nodes of the

tree structure as shown in Figure 4.11. Finally, at the video level, there is only

one single node, which collects all video scenes as child nodes, represents the

whole video.

 53

Vi
de

o
Sh

ot
 4

Vi
de

o
Sh

ot
 6 ...

Vi
de

o
Sh

ot
 2

(Video Shot Level of V-ToC)

...(Video Group Level of V-ToC)

Vi
de

o
Sh

ot
 3

Vi
de

o
Sh

ot
 5

Vi
de

o
Sh

ot
 7...

Video
Group 1

Video
Group 2

Video
Group 3

Video
Group 4

Video
Group 5

Video Scene 2Video Scene 1 Video Scene 3 ...(Video Scene Level of V-ToC)

(Video Level of V-ToC) The Whole Video

Figure 4.11 Formation of the Whole V-ToC Structure

4.2 Storage and Presentation
Once the V-ToC structure is built, we store it in an XML format. We use XML

for V-ToC storage because of four major benefits. First, we can build up an

organized and compact data structure for using the nested hierarchy of XML [46].

It will be efficient to identify each video component by the corresponding XML

element defined. Second, with the plain-text property of XML, we are able to

modify any items, reorganize the structure, or query the stored information

comfortably. Third, by the extensibility of XML, we can be flexible to include

additional information in the video structure. Defining a new set of elements can

extend the video tree structure, and carry other video features, including caption

text from video caption extraction, transcript from speech recognition, or the

presence of face detection. For the fourth major benefit, due to the growing

importance of XML as a standard data exchange protocol on the Internet, we can

widely spread the V-ToC structure to other multimedia applications with the XML

format.

We design an XML data structure in the following to store the V-ToC. A

DTD is defined to maintain the consistency of the V-ToC data structure. Besides,

we detail the presentation of the V-ToC structure on a web-based format using

XSL transformation.

 54

4.2.1 Definition of XML Video Structure

We define seven XML elements to store the 4-level tree structure of V-ToC.

Those elements are in the following.

 <advise> is used to encapsulate all elements for V-ToC structure, such

that it is convenient for exchanging data structure between our XML

applications.

 <video> is the root level component of the V-ToC structure. It

contains multiple scenes. It has two attributes, length and src.

length states the video duration and src point to the file location of

the video source.

 <scene> represents a video scene component in the V-ToC structure.

It contains video groups. An attribute, id, is associated with <scene>,

and represents the scene number.

 <group> is a video group in the V-ToC structure. It consists of

multiple video shots. Similar to scene, it contains an attribute, id,

which is the group number.

 <shot> is a video shot in the V-ToC structure. It also has an attribute,

id, to represent the shot number. It can carry different video

information, including the time and the key frame.

 <keyframe> is an element to store the key frame for the corresponding

video shot. The attribute, img, points to the location of the stored key

frame image. The attribute, id, is used to represent the video frame

index.

 <time> contains an attribute, value, which is used to record the

beginning time, in seconds, of a shot in the video sequence. This

value is a positive integer. For example, a value, 11, means that the

shot starts at 11 seconds in the video sequence. The time value is

important because most video browsing applications use time to locate

a video shot instead of video frame index. The value is calculated by

Equation (4.14).

 55

 rateframe video indexframe video ×=value (4.14)

We use these elements to construct a nested XML hierarchy for the V-ToC

structure. We use the elements <video>, <scene>, <group> and <shot> to

represent the four level of video components, and organize into a tree-like

structure as shown in Figure 2.2. Also, we associate each <shot> with the

<keyframe> and <time> elements, so that more video features and other

information about a video shot can be included in the XML V-ToC. The

associations between the above elements are summarized in Table 4.3.

Table 4.3 Associations between XML elements for V-ToC

XML Elements Child Nodes Attributes
<advise> … </advise> video -
<video> … </video> scene length, src
<scene> … </scene> group id
<group> … </group> shot id
<shot> … </shot> time, keyframe id

<keyframe/> - img, id
<time/> - value

In order to maintain the consistency, we define a DTD [49] for the V-ToC

structure. We define the DTD with all those elements, their relations and

associated attributes. The DTD we employed is defined in Figure 4.12. An

example XML V-ToC structure according to the defined DTD is shown in Figure

4.13.

4.2.2 V-ToC Presentation Using XSL

In this section, we transform the XML into a web-based presentation by using the

XSL transformation [10][47]. Although the data structure of the V-ToC is

well-defined, it does not place any limitations to the design of the web-based

interface to present the V-ToC. Therefore, apart from simply showing the V-ToC

structure, we aim at providing users for the best way to understand the video

contents at once.

 56

<?xml version="1.0"?>
<!ELEMENT advise (video+)>
<!ELEMENT video (scene+)>
 <!ATTLIST video length CDATA #REQUIRED>
 <!ATTLIST video src CDATA #REQUIRED>
<!ELEMENT scene (group+)>
 <!ATTLIST scene id CDATA #REQUIRED>
<!ELEMENT group (shot+)>
 <!ATTLIST group id CDATA #REQUIRED>
<!ELEMENT shot (keyframe+, time+)>
 <!ATTLIST shot id CDATA #REQUIRED>
<!ELEMENT keyframe EMPTY>
 <!ATTLIST keyframe img CDATA #REQUIRED>
<!ATTLIST keyframe id CDATA #REQUIRED>

<!ELEMENT time EMPTY>
 <!ATTLIST time value CDATA #REQUIRED>

Figure 4.12 DTD for XML V-ToC Structure

<?xml version="1.0"?>
<!DOCTYPE advise SYSTEM "./toc.dtd">
<advise>
<video length="25" src="rstp://localhost/video1.rm">
<scene id="1">
 <group id="1">
 <shot id="1">
 <keyframe img="./sh_1.jpg" id="1"/>
 <time value="0"/>
 </shot>
 <shot id="3">
 <keyframe img="./sh_3.jpg" id="359"/>
 <time value="11"/>
 </shot>
 </group>
 <group id="2">
 <shot id="2">
 <keyframe img="./sh_2.jpg" id="217"/>
 <time value="7"/>
 </shot>
 </group>
</scene>
<scene id="2">
 <group id="3">
 <shot id="4">
 <keyframe img="./sh_4.jpg" id="611"/>
 <time value="20"/>
 </shot>
 </group>
</scene>
</video>
</advise>

Figure 4.13 XML V-ToC Structure

 57

We make use of the XSL filtering and sorting techniques alternatively to

extract the required XML data from the V-ToC. A simplified segment of the

XSL is quoted in Figure 4.14. In this XSL segment, we order the video shot

components according to the attribute id in each shot. Then, in an HTML table

row, we print out the scene id, the group id, and the shot id. After that, we

show the key frame image using an HTML image tag with the source location

stored at the keyframe img attribute. Besides, we print the corresponding time

instance recorded at the value attribute of the element time.

<xsl:for-each select="advise/video/scene/group/shot"
order-by="../@id">
<tr class="nfont">
 <th><xsl:value-of select="../../@id"/></th>
 <th><xsl:value-of select="../@id"/></th>
 <th><xsl:value-of select="@id"/></th>
 <th align="left">

<xsl:attribute name="src">

<xsl:value-of select="keyframe/@img"/>
</xsl:attribute>

 at <xsl:value-of select="time/@value"/> sec
</th>

</tr>
</xsl:for-each>

Figure 4.14 XSL Segment for Transforming XML V-ToC Structure

 A sample web-based presentation of the V-ToC structure is shown in

Figure 4.15. There are four major features in our design.

The first one is the clear display of the basic video information. It consists

of the video source location and the length of video duration. A user can easily

identify which video that the V-ToC is describing.

Secondly, we provide a sequential video story line, which is actually the set

of video shots sorted according to the temporal ordering. We find that user can

follow the video story along the shots sequence.

Third, we allow user to fold or unfold any video component inside the V-ToC

region. We put our video components on HTML layers and use JavaScript to

enable the control of the showing and hiding functions. By folding and

 58

unfolding video components, a user can have a better understanding of the

contents organization. They can also customize the outlook of the V-ToC

structure, such that key contents are shown while those less important sections are

hidden.

The last major feature is the enlargement of key frame images. Since it

allocates a very large area if we use images of their original sizes, we need to

minimize the size of those images on the V-ToC. However, the smaller images

may not be enough to provide a clear view for a user to see the detail of the

contents. Therefore, we enable a user to enlarge each key frame image by a

simple mouse click, when he wants to view it in detail. We use JavaScript to

catch to mouse click and resize the selected image on the display. We also

recover the resized image, such that it would never stay allocating the space on

the page.

With the design of these features, we make the web-based presentation of the

V-ToC concise and convenient to users. They can easily understand the contents

of the video in a short time using this image-based video description, V-ToC.

4.3 Evaluation of Video Structure
In this section, we evaluate the V-ToC structure generated. Since a more

accurate video structure can better describe the video content to the users, an

experiment is carried out to evaluate the accuracy of the video segmentation

process in our system. We have taken four commercials as a simple test set for

our system. The number of shots, groups and scenes in the set of videos are first

examined by human. We then use these results to compare different

segmentation approaches. We then perform video segmentation on the

experimental video set with four segmentation approaches. The results are

compared with the human judgments and shown in Table 4.4.

 59

Folding/Unfolding Video Components

Sequential Video Story Line

Enlarging Images

Basic Video Information

Figure 4.15 Web-based Presentation of V-ToC using XSL

In the first approach, video segmentation is based on single color histogram

on each frame and a fixed threshold to determine the video shot boundaries.

This is the most basic approach, which detects only the global color changes

between video frames with one color histogram for each of them. It is

convenient to set a common threshold value for video shots detection. However,

through this approach, we find that the results are not quite accurate because there

are always misdetections of video shots. Especially for video 2, the number of

detected video shots is 2 times of the result judged by human. However, for

video 3, the number of over detected video shots is much smaller. That means,

the predefined threshold is suitable for certain videos but it causes a great error

rate for other videos.

In the second approach, we try to improve the first approach by using an

adaptive threshold for video shots detection. As we described in Section 4.1.3,

the adaptive threshold is calculated using entropies. The results of this approach

are more accurate then the first approach. It is because most of the misdetections

are removed by using an appropriate threshold value for each video. The over

 60

detection problem is reduced greatly, particularly for video 2 and video 4. It is

because the adaptive threshold is effectively adjusted according to each video

such that it can classify the video shot boundaries and non-boundaries.

Both the first and the second approach use single color histogram for each

video frame. In the third approach, weight regional color histograms are used

stead. This approach attempts to catch the local color differences between video

frames. The segmentation result of this approach is similar to that of the first

approach. However, we find that this approach can refine the segmentation

results by overcoming the deficiency of applying global color differences. There

are decreases in number of detected video shots for video 1 and 2 while increases

for video 3 and 4. It shows that this approach can overcome the over detection

problem for video 1 and 2 and the misdetection problem for video 3 and 4. We

have illustrated these problems for using global color histogram in Figure 4.3

The fourth approach is the implementation of our system. We employ the

weighted regional color histograms and the adaptive threshold in our system.

Comparing with the previous approaches, we find that the results of our system

are the closest to the human judgments. In fact, the video segmentation process

of our system is improved over the other approaches and it is the most accurate

one among them. As this approach combines both the second approach and the

third approach, it takes those advantages from regional color histograms and the

adaptive threshold. Although the result for detecting video shots is just similar

to that of the second approach, the video groups and video scenes formation are

improved with the help of regional color histograms.

Finally, we compare our results with the segmentation of the INFORMEDIA

project [9][15][44][45]. We found that INFORMEDIA give better results in

video shot detection. Therefore, we should further improve the video shot

detection in ADVISE. Although the INFORMEDIA is superior to ADVISE in

video shot detection, it does not give any further information about the

organization of those shots. So, we can also conclude that using the shot-based

structure only in INFORMEDIA is the deficiency compared with ADVISE.

 61

Table 4.4 Comparing Video Segmentation Results with the Human Judgments

 Video Frames Shots Group Scene

Human Judgments Video 1 874 12 4 3
 Video 2 1571 15 8 2
 Video 3 901 18 5 2
 Video 4 894 14 5 2

First Approach Video 1 874 19 7 5
- using single color histogram Video 2 1571 29 12 3
- with fixed threshold Video 3 901 21 8 4
 Video 4 894 25 10 5
 Accuracy 0.594 0.591 0.542

Second Approach Video 1 874 16 6 4
- using single color histogram Video 2 1571 16 9 3
- with adaptive threshold Video 3 901 21 8 3
 Video 4 894 13 6 3
 Accuracy 0.858 0.753 0.688

Third Approach Video 1 874 18 6 4
- using weighted regional Video 2 1571 19 11 3
 color histograms Video 3 901 25 10 3
- with fixed threshold Video 4 894 27 12 5
 Accuracy 0.634 0.578 0.621

ADVISE Video 1 874 16 5 4
- using weighted regional Video 2 1571 16 8 3
 color histograms Video 3 901 19 7 2
- with adaptive threshold Video 4 894 17 7 3
 Accuracy 0.812 0.807 0.771

INFORMEDIA Video 1 874 12 - -
- using a shot-based structure Video 2 1571 15 - -
 only Video 3 901 17 - -
 Video 4 894 14 - -
 Accuracy 0.985 - -

 62

Chapter 5

Video Summarization

In this chapter, we present an algorithm to automate the video summarization.

Based on the V-ToC tree structure generated in Chapter 4, we can retrieve video

features and then select video segments into a video summary.

We expect the video summary can provide users more video information than

the V-ToC we discussed in Chapter 4. Since the V-ToC describes the video

contents using the video key frame images, a user is still not able to know exactly

all the contents because a video delivers information also in form of audio and

text apart from image. Therefore, a video summary, which is a shortened form

of the source video, can give the user all types of information, and hence, he can

know the video contents exactly.

There are two major objectives for a video summary. First, we want to

browse only the major contents of the whole video from the summary. Second,

we want to shorten the duration of the summary in order to browse it efficiently.

According to these two objectives, our video summary is designed as follows.

A video summary is combined by a set of video segments, which contain the

important video features of the source video. These important features are in

fact the most valuable contents of the video. The summary with more

important features is better in quality, as it collects the major video contents.

However, our first problem is the different users’ preferences about the

importance of video features. We find that each user may have different

opinions on whether a video feature is valuable in a video. As a result, the

 63

quality of a video summary really depends on each user’s preferences. Besides

the quality of a video summary, the duration depends also on the need of each

user. Since a longer video summary contains more video contents while a

shorter one can be browsed efficiently, then a user needs to make a decision on

either getting more information or spending less time on the summary.

Therefore our second problem is to customize the video summary according the

time constraint provided by the user.

We propose a statistical approach to select the contents for the video

summary. In our system, we accept user’s input about their preferences on the

set of video features that we provided. We can then calculate a score for each

video segment based on the user’s preferences, such that if the score is high, the

video segment contains more preferred video features; otherwise, it contains less

preferred video features. Under a user defined time constraint, we can only

select those segments with higher scores into our video summary, such that the

summary contains more preferred video features. The generated video summary

is therefore able to fit into user’s appetite. Since there may be too many

discontinuous and short segments selected into the video summary, it is difficult

for a user to browse it comfortably. Hence, we refine the selection of segment

with a clustering method, in order to reduce the discontinuity and make the video

summary smoother for browsing.

We detail the video summarization algorithm in the following sections. In

Section 5.1, we first define the key terms used in our video summarization

algorithm. Then in Section 5.2, we describe those video features provided for

user to select. In Section 5.3, we detail the video summarization algorithm based

on the provided video features. Moreover, in Section 5.4, we describe the

presentation of video summarization result using SMIL presentation. Finally in

Section 5.5, we evaluate our video summarization algorithms using a set of

experiments.

 64

5.1 Terms and Definitions
In this section, we define a set of key terms for the video summarization algorithm

as follows.

Definition 5.1 An extracted video segment, e, is defined as a subsequence of

the source video,),,,(21 nfffV L= . The segment is formulated in Equation

(5.1).

nyx
ff

fff
e

yx

yxx ≤≤≤




= + 1 ,
],[

),,,(1 L (5.1)

Definition 5.2 The score of an extracted video segment, score(e), is defined

as the summation of the weights, wj, for the video features, featurej, existing in the

segment. It is shown in Equation (5.2).





=
=

×= ∑
∀

otherwise
 inexists when

 where
efeature

feature
feature

wfeatureescore

j

j

j

feature
jj

j

,0)(
,1)(

)()(

δ
δ

δ

 (5.2)

Definition 5.3 A video summary, V', is defined as a subset of the source

video, V . It consists of a set of extracted video segments, ei. As shown in

Equation (5.3) .

nie
eeeV

VV

i

n

,,1,
},,,{'

'

21

L

L

=
=

⊆

 any where
 (5.3)

Definition 5.4 The duration of video summary, d(V'), is defined as the

summation of all the member video segment lengths. It is shown in Equation

(5.4).

 65

 where




−=
=

=∑
=

xy)length(e
],f[f e

elengthVd

i

yxi

n

i
i

1
)()'(

 (5.4)

Definition 5.5 The time constraint, Ttime, of a video summary is defined as

the maximum video summary duration in seconds. It should not be smaller than

by the video summary duration dividing the video frame rate. We use the time

constraint to limit the summary duration as shown in Equation (5.5).

timeTVd
≤

rateframevideo
)'((5.5)

Definition 5.6 The score for the video summary is defined as the mean score

of the member video segments. We illustrate the calculation using Equation

(5.6).

()

)'(

)()(
)'(1

Vd

elengthescore
Vscore

n

i
ii∑

=
×

= (5.6)

5.2 Video Features Used for

Summarization
Before we start our video summarization algorithm, we need to extract a set of

features from the video in order to calculate the score for each video segment.

Different video features, which appear on the video sequence, can be used in our

video summarization algorithm. With more video features employed in our

algorithm, a user can have a more flexible selection of his interested video

segments. The resulting video summary can then be customized for the user

more accurately. In our system, we employ five video features. They are:

human face detection, male voice recognition, female voice recognition, volume

level, and caption text detection. These features bring us most important

 66

information about the video content. We describe the extractions of these video

features in the following paragraphs.

Human face detection is used to locate the presences of human face in video

segments. We use this video feature because human faces are always important

to the video contents [44], especially for interview videos and news broadcasts.

Human faces, which appear at the middle of the screen and occupy large areas, are

more important to the video. In our algorithm, we detect the human face which

appeared on the video manually. We locate the video segments with human

faces, which cover at least half of the area for the center region (refer to the five

regions defined in Section 4.1.2).

Apart from the human face, we extract the human voice feature in our

summarization. We use the application created by a group of undergraduate

student to classify human voice in video [14]. Since human voice gives a special

waveform pattern and falls into certain frequency range, it can always be

recognized from the audio channel of a video. We can then use a voice

classification method, which considers parameters like voice level, pitch and

frequency, to determine the male and female voice. By using this classification

method, we can extract video segments with male voice or video segments with

female voice.

The volume level measures the loudness of video segments in decibel, dB.

This level is calculated by the amplitude of the sound wave in a video segment.

A higher volume level means a loud sound, while a lower one means a quiet

sound or even silence. As quiet sounds and silence are like to appear at the

video shot boundaries, so they can almost give no information about the video

contents. Thus, we can use the average volume level to cut off the video

segments with quiet sounds or silence. In our algorithm, since normal human

conversation ranged from about 40dB to 60dB, we extract video segments with

volume level higher than 35dB.

Caption text on videos provides a lot of important information for the video

contents. For example, the video script on screen shows the audio contents

 67

directly. We can apply caption text localization methods to index the captions in

the video sequence [23][36]. In our algorithm, we use the application created by

our fellow student, who implemented the algorithm suggested by Sato et al. [36].

It extracts all the video segments with caption text on them.

We can extract the video segments for each video feature as shown in Figure

5.1. Based on those video features defined, we apply our video summarization

algorithm to generate the video summary.

f1

Male Voice

Female Voice

Human Faces

Volume > 35dB

Caption Text

Feature Exists

Feature Not Exist

Video Frames Sequence

f80 f100 f300 f500 f5000 f5300 f6000

Figure 5.1 Video Features for Summarization

5.3 Video Summarization Algorithm
Since we notice that the quality of summarization depends on the interest of the

target user, therefore, it is almost impossible to design a single approach, which

can fit into every user’s appetite. As a result, we need to accept inputs from the

user, such that it is easier to determine which kinds of contents are more valuable

to the user. Inputs from the user are summarized in Table 5.1.

Table 5.1 User Inputs for Video Summarization

Input Variable name Range of value

Weight for human faces wface From 1 to 10

Weight for male voice wmale From 1 to 10

Weight for female voice wfemale From 1 to 10

Weight for volume level wvolume From 1 to 10

 68

Weight for caption text wcaption From 1 to 10

Time constraint for video summary Ttime Any integer in sec.

Clustering control constant K Any integer

There are four steps to summarize a video. The first step is the reordering

of the extracted video segments in order to avoid overlapping. The second step

is calculation the score for each video segment. Then, the third step is the

selection of video segments according to both the scores and the time constraint.

Finally, the fourth step is the refinement of the selections using a clustering

technique.

5.3.1 Combining Extracted Video Segments

In the first step, we generate a single set of non-overlapping video segments.

Since we have five sets of extracted video segments, we cannot combine them

together directly because of the partially overlapping regions as shown in Figure

5.1. Therefore, for each member segment,],[yx ff , in all the five sets, we need

to sort the frames, fx and fy+1, at the boundaries. We can then create a single set

of video segments, ei’s, as shown in Equation (5.7). We also illustrate the

formation of the new set of video segments in

Example 5.1.

11,],[

},,,,{

11

21

−≤≤= −+
niffe

fff

ii

n

aai

aaa

 where

 frames videosorted ofset a Given L
 (5.7)

Example 5.1 Given the sets of extracted video segments for different video

features as shown in Figure 5.1.

Human faces:],[,],[52995000991 ffff
Male voice:],[,],[52995000991 ffff
Female voice:],[,],[59995300499100 ffff
Volume > 35dB:],[,],[529950005001 ffff
Caption text:],[,],[,],[59995300499300791 ffffff

We can sort the indexing frames and remove those duplicated, in order to get the

 69

following set.

},,,,,,,{ 600053005000500300100801 ffffffff

The resulting set of extracted video segments is formulated as follows.

],[],,[],,[
],,[],,[],,[],,[

59995300752995000649995005

49930042991003998027911

ffeffeffe
ffeffeffeffe

===
====

5.3.2 Scoring the Extracted Video Segments

After formulating a set of extracted video segments, we calculate the score for

each of the member segments in the second step. The calculation of the score for

each segment is defined in Definition 5.2. We can illustrate the scores

calculation in Example 5.2.

Example 5.2 Given the combined set of extracted video segments,

},,,,,,{ 7654321 eeeeeee , which are formulated in Example 5.1. Assume the user

input weights are given, and then we can calculate the score for each segment, ei,

as follows. The scores can be represented in a graphical format as shown in

Figure 5.2.
















=
=
=
=
=
=

=
×+×+×+×+×=

×+×+

×+×+×=

=====

3)(
21)(
0)(
6)(
5)(
21)(

22
11312081101

)()(

)()()()(

1328,10

7

6

5

4

3

2

1

escore
escore
escore
escore
escore

escore

wfeaturewfeature

wfeaturewfeaturewfeatureescore

wwwww

captioncaptionfacevolume

femalefemalemalemalefaceface

captionvolumefemalemaleface

 and

 , , , , Given

δδ

δδδ

 70

e7

e1 e2

e3
e4

e6

f1 f80 f100 f300 f500 f5000 f5300 f6000

Video Frames Sequence

Sc
or

e
fo

r V
id

eo
 S

eg
m

en
ts

22

e5

21

6
5
3

0

Figure 5.2 Scoring the Extracted Video Segments

5.3.3 Selecting Extracted Video Segments

In the third step, we select the extracted video segments into the summary

according to the scores. Since there is time constraint, Ttime, defined in

Definition 5.5, only a limited number of segments are selected. We first sort the

extracted video segments in descending order of the calculated score. Then, we

pick up the segments from the highest score one into the video summary, V’.

Until the duration of the summary, d(V’) divided the video frame rate, reaches the

time constraint, we stop picking more video segments. The selection process is

summarized in Algorithm 5.1.

Input: Given a set of extracted video segments, },,,{ 21 neee L , the
 scores for the segments, and the video frame rate.
Output: A set of segments selected into the video summary, 'V

1. Sort the segments in descending order of their scores.

)()()(
},,,{

21

21

anaa

anaa

escoreescoreescore
eee

≥≥≥ L

L

that such

2. for each i in n,,2,1 L

3. if timeTframerateVd ≤÷)'(

4. then Add aie to 'V

5. else break
6. end if
7. end for

Algorithm 5.1 Selection of Extracted Video Segments

 71

Example 5.3 Given the time constraint, Ttime, we try to make selection of

extracted video segments according to the segments and the scores that we

calculated in Example 5.2. The selection result is shown in Figure 5.3.

framerateTVd
framerateT

V'd

eeeV'

escoreescoreescoreescoreescoreescoreescore

fpsframerateT

time
time

time

×≤⇒
=×=×

=++=

=

≥≥≥≥≥≥

==

)'(
4503015

3942981878)(

},,{

)()()()()()()(

30sec15

621

5734621

 and

 therefore,

 , Given

e7

e1

e3
e4

e6

f1 f80 f100 f300 f500 f5000 f5300 f6000

Video Frames Sequence

22

e5

21

6
5
3

e2

Selected Segment

0

Sc
or

e
fo

r V
id

eo
 S

eg
m

en
ts

Figure 5.3 Selecting Extracted Video Segments

5.3.4 Refining the Selection Result

In the last step for the video summarization algorithm, we refine the selection

result above, in order to generate a smoother video summary. Since we find that

the selected video segments are always short and disjointed, then the resulting

summary cannot be browsed smoothly as shown in Figure 5.4. As a result, we

propose this refinement process to solve the above problem. Based on the time

sequence of the selected segments, we collect adjacent segments together using

the clustering technique. Thus, we can pick a cluster of segments, which is long

enough and continuous, instead of those disjointed short segments in order to

make the video summary smoother.

 72

e a1 e a3

Video Frames Sequence

e a2

Selected
Segment

ea4

e a5 e a6

Short Disjointed
Spaces

Figure 5.4 Problem for Disjointed Video Segments

We apply the K-mean clustering technique [19] in the refinement process.

The number of resulting clusters is set by the clustering control constant, K,

defined by the user. The clustering process classifies the selected segments into

K clusters along the video frames sequence. Then the number of disjointed

segments in the video summary is limited by the K clusters.

We model our refinement process into the K-mean clustering algorithm in

Algorithm 5.2. For a selected video segments, ei, and a mean point, mk, the

distance between, dist(ei,mk), is defined as in Equation (5.8). Then we can

calculate the mean point, mk, for a cluster, uk, using Equation (5.9). An example

for K-mean clustering is shown in Figure 5.5.

),min(),(

],[

zyzxmedist

fmffe

ki

zkyxi

−−=

== , , Given
 (5.8)

Kk
u

yx

z

fm

k

uffe

zk

kyxi ,,2,1,
2

,

],[
L∈

+

=

=

∑
=∀

 inmembers ofnumber
 where in

 (5.9)

ea1 ea3

Video Frames Sequence

ea2

Selected
Segment

ea4

ea5 ea6

Cluster u1 Cluster u 2

Figure 5.5 Result of K-mean Clustering

 73

Input: Given a set of selected video segments, },,,{ 21 neee L .

Output: K segment clusters, },,,{ 21 Kuuu L

1. Make an initial guess of the means, Kmmm ,,, 21 L , for clusters

Kuuu ,,, 21 L respectively.

2. while changes in Kmmm ,,, 21 L

3. i) Assign each ie in },,,{ 21 neee L to the nearest cluster.
4. ii) Calculate the new mean points using Equation (5.9).
5. end while

Algorithm 5.2 K-mean Clustering for Selection Refinement

Now, we finalize our selection by picking clusters into the video summary.

Once we find out the clusters, we connect all the member segments into a whole

block of video frames sequence as shown in Figure 5.6. The block is so called

a clustered video segment. Then we calculate the score for each clustered

segment as the summation of the member scores times the corresponding

segment length. It is shown in Equation (5.10).

∑
∈∀

×=

=

ue
ii

yx

i

elengthescoreuscore

ffu

)()()(

],[, cluster a Given
 (5.10)

ea1 ea3ea2 e a4

Cluster u1

Cluster
Score Video

Frames

Figure 5.6 Transforming Selected Segments into a Clustered Segment

Since the disjointed spaces between the selected segments are now included,

we need to remove certain clustered segments in order to satisfy the time

constraint, Ttime. Similar to the approach mentioned in Section 5.3.3, we first sort

the clustered segments in descending order of their scores. Then, we select the

clustered segments into the video summary, V', from one with the highest score,

 74

until the time constraint is reached. The duration can be checked by Equation

(5.11). The selection of clustered segments is illustrated in Figure 5.7.

time

i

TVd
ulengthVd

≤

=∑
)'(

)()'(
that such

 (5.11)

u1

C
lu

st
er

 S
co

re
s

Video
Frames

u2 u3

u4

Selected
Cluster

Figure 5.7 Selecting Clustered Segments in Video Summary

By using the refinement process, we pick clustered segments into the video

summary instead of short and disjointed segments selected in Section 5.3.3. As a

result, the video summary becomes a sequence of clustered segments as shown in

Equation (5.12). It will be smooth enough to provide the user the major video

contents that he wants. The quality for the video summary can be measured by

the score defined in Equation (5.13), which is modified from Definition 5.6.

),,,('
,,,,

21

21

n

n

uuuV
uuu

L

L

=
 clusters, selected Given

 (5.12)

)'(

)(
)'(1

Vd

uscore
Vscore

n

i
i∑

== (5.13)

5.4 Video Summary in SMIL
In order to demonstrate the video summary, we transform our resulting set of

clustered segments into SMIL format. As we have mentioned in Section 2.4, we

can specify the temporal behavior of video clips in a SMIL presentation.

Therefore, in our video summary, we make the required clustered segments in

form of video clip objects for SMIL, and order them into a video sequence. In

Example 5.4, we demonstrate the transformation into SMIL.

 75

Example 5.4 Given a video summary, V’=(u1,u2,u3), where the clustered

segments are as follows.

],[210015001 ffu = ,],[45004200 ffu = ,],[82508100 ffu =

In Table 5.2, we transform the clustered segments into the time sequences of video

according to the video frame rate. Given frame rate equals 30 fps.

Table 5.2 Clustered Segments in Form of Time

Time in Seconds Clustered
Segments Begin End

u1 50 70
u2 140 150
u3 270 275

Each clustered segments is written as a video clip object in SMIL. For example,

u1 is shown in Figure 5.8. All the clustered segments are organized in a

sequential order in SMIL as shown in Figure 5.9. In Figure 5.10, we play the

resulting SMIL video summary.

<video id="u1" src="rtsp://host1/1.rm"
clip-begin="50s" clip-end="70s" region="video"
fill="freeze"/>

Figure 5.8 A Clustered Segment in SMIL

<?xml version="1.0"?>
<smil xmlns="http://www.w3.org/2000/SMIL20/CR/Language">
<head>
 <layout type="text/smil-basic-layout">
 <root-layout width="362" height="298" background-color="black"/>
 <region id="video" left="5" top="5" width="352" height="288"

fit="fill"/>
 </layout>
</head>
<body>
 <seq>
 <video id="u1" src="rtsp://host/data.rm" clip-begin="50s"
 clip-end="70s" region="video" fill="freeze"/>
 <video id="u2" src="rtsp://host/data.rm" clip-begin="140s"
 clip-end="150s" region="video" fill="freeze"/>
 <video id="u3" src="rtsp://host/data.rm" clip-begin="270s"
 clip-end="275s" region="video" fill="freeze"/>
 </seq>
</body>
</smil>

Figure 5.9 An Example Source for SMIL

 76

Figure 5.10 SMIL Video Summary

5.5 Evaluations
In this section, we design two experiments to evaluate our video summary. First

we evaluate the quality of the video summary by the percentage of each feature

extracted. Second, we evaluate the performance of the refinement process.

5.5.1 Experiment 1: Percentages of Features

Extracted

As we have mentioned that the video summarization result depends greatly on the

user’s preferences, there is no standard method to evaluate the results. However,

we can use several extreme cases of the user’s inputs, such that we can easily

determine whether the summarization algorithm works.

For different sets of user inputs, we set up our experiments as follows. We

apply the inputs on a set of videos with duration around 200 seconds. If we set

the time constraint, Ttime, to be 60 seconds and all the weights for video features

are the same, we would expect that our video summary includes around 30% of

each feature from the source video. However, when we try to increase the

weight for a specific feature, we would expect that a higher percentage of that

 77

feature can be extracted from the source video. The percentage extracted for a

feature, Ptotal, can be calculated using Equation (5.14). We also calculate the

percentage of the extracted feature in a video summary, Psummary, as shown in

Equation (5.15).

 videosource the infeaturethat containing durationtotal
summary video infeaturethat containing duration

=)(featurePtotal (5.14)

summary videothe of durationtotal
summary video infeaturethat containing duration =(feature)Psummary (5.15)

We present six cases in this experiment. They are: Case (1) Same Weight

for Each Feature, Case (2) Human Face Favoring, Case (3) Male Voice

Favoring, Case (4) Female Voice Favoring, Case (5) Volume Level Favoring,

and Case (6) Caption Text Favoring. The inputs are tabulated in Table 5.3.

Table 5.3 Inputs for Experiment 1

 wface wmale wfemale wvolume wcaption Ttime K

Case (1) 5 5 5 5 5 60 10

Case (2) 10 1 1 1 1 60 10

Case (3) 1 10 1 1 1 60 10

Case (4) 1 1 10 1 1 60 10

Case (5) 1 1 1 10 1 60 10

Case (6) 1 1 1 1 10 60 10

The average values for all the results are tabulated in Table 5.4. According

to the results, we find that the percentages, Ptotal and Psummary, vary with the input

weights. A higher weight for the feature results in higher percentages of that

feature in the source video and the video summary. Therefore, we can conclude

that our video summary can be successfully customized to fit the user’s interest.

 78

Table 5.4 Average Values for All Results in Experiment 1

 Human
Face

Male
voice

Female
voice

Volume
level

Caption
text

Case (1) :
Ptotal 0.45 0.28 0.30 0.29 0.64

Psummary 0.77 0.25 0.62 0.45 0.14
Case (2) :

Ptotal 0.50 0.20 0.34 0.06 0.23
Psummary 0.96 0.19 0.78 0.10 0.06

Case (3) :
Ptotal 0.41 0.84 0.08 0.07 0.46

Psummary 0.76 0.80 0.17 0.11 0.11
Case (4) :

Ptotal 0.35 0.15 0.46 0.30 0.26
Psummary 0.61 0.18 0.97 0.47 0.06

Case (5) :
Ptotal 0.13 0.03 0.43 0.64 0.30

Psummary 0.22 0.03 0.90 0.97 0.07
Case (6) :

Ptotal 0.43 0.32 0.22 0.15 0.89
Psummary 0.83 0.31 0.52 0.26 0.22

5.5.2 Experiment 2: Evaluation of the

Refinement Process

In this experiment, we evaluate the effect of the refinement process in making a

smoother video summary. Since clustered segments are selected instead of all

the short and disjoint segments with highest scores, we sacrifice the quality of the

video summary in certain extent. Therefore in this experiment, we examine the

effect on the score of the video summary while increasing the number of clusters.

Figure 5.11 shows the results for three videos. According the graphs, we

find that the score of video summary for using clustered segments (after

refinement) approaches the score of video summary for using short and disjoint

segments (before refinement), as the number of clusters increases. There are

penalty in scores while we are reducing the number of number of clusters wanted

for refinement.

 79

However, from the above results, we can also find that the penalty decreases

zero until certain value for number of clusters. In Table 5.5, we can see that the

number of fragments in video summary, at which there are no penalty, is greatly

reduced after the refinement process; hence, the resulting summary is more

continuous and smoother.

Figure 5.11 Results in Graphs for Experiment 2

Table 5.5 Results for Experiment 2

 Before Refinement After Refinement

Video 1 21 13 (at K=12)

Video 2 21 10 (at K=11)

Video 3 30 18 (at K=18)

0

2

4

6

8

10

12

14

4 6 8 10 12 14 16 18 20 22

Clustering
Cont rol

Constant , K

After Refinement

Before Refinement

Score

(a) Video 1

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35

Clustering
Cont rol

Constant , K

After Refinement

Before Refinement

Score

(c) Video 3

0

2

4

6

8

10

12

14

4 6 8 10 12 14 16 18 20 22

Clustering
Cont rol

Constant , K

After Refinement

Before Refinement

Score

(b) Video 2

 80

Chapter 6

Video Matching Using V-ToC

In this chapter, we describe our video matching algorithms for finding similar

videos. Based on the V-ToC tree structure generated in Chapter 4, we can apply

a tree matching algorithm to measure the similarity between two V-ToC trees.

We propose two tree matching algorithms in this chapter [27]. The first

algorithm is the non-ordered tree matching algorithm, and the second one is the

ordered-tree matching algorithm. Our tree matching algorithms are different a

general tree matching algorithm because the V-ToC tree we generated is well

structured and with tree depth always equal to four. We need to measure the

similarity according the four levels of video components. In both of our

algorithms, the matching processes start from the top of the tree and proceeds to

the next sub-level in an orderly manner, i.e., scene to scene, group to group, and

shots to shots. Similarity measure is calculated at each corresponding level

between the two video trees. There is a major different between the two

algorithms. The non-ordered tree matching algorithm does not consider the

temporal ordering of video features, while the ordered tree matching algorithm

considers the features ordering as a key factor to determine the similarity between

videos.

We detail the two video tree matching algorithms in the following sections.

In Section 6.1, we first define several key terms for video tree matching. Then in

Section 6.2, we talk about the video features used for video matching. In Section

6.4 and 6.4, we introduce the non-ordered tree matching algorithm and the

 81

ordered tree matching algorithm respectively. Finally, we evaluate our video tree

matching algorithms with a set of experiments in Section 6.5.

6.1 Terms and Definitions
In this section, we define several key terms for the video tree matching algorithms.

Since our video matching algorithm is applied on top the V-ToC tree structure,

those definitions in Section 4.1.1 also hold. Apart from those definitions, we

define a new set of concepts in the following.

Definition 6.1 The feature similarity between two video tree node, nodex and

nodey, is defined as ()yx nodenodesim , . This is a normalized score ranged from 0

to 1, where 0 means dissimilar and 1 means similar. The input nodes must be at

the same tree level.

Definition 6.2 A child similarity matrix, ChildSim, of two video tree node,

nodex and nodey, is the table, which stores all the feature similarities between

child nodes of nodex and child nodes of nodey. The value for i-th column and j-th

row in the matrix is ChildSim(i,j). It is defined in Equation (6.1). Besides, we

give an example child similarity matrix at Example 6.1.

() ybjxaibjai

bbyaax

nodechildnodechildchildchildsimjiChildSim

childchildnodechildchildnode

 in , inall for

:),,(and),,(Given

,),(
2121

=

== LL
 (6.1)

Example 6.1 Given two video groups ()138311 ,,, ssssg = and

()10952 ,, sssg = . If we have the following feature similarities, then we can

tabulate the values into a child similarity matrix, as shown in Figure 6.1.

() () ()
() () ()
() () ()
() () () 0.1,,0.0,,2.0,

,9.0,,6.0,,1.0,
,4.0,,4.0,,8.0,

,1.0,,9.0,,5.0,

1013913513

1089858

1039353

1019151

===
===
===
===

sssimsssimsssim
sssimsssimsssim
sssimsssimsssim
sssimsssimsssim

 82

0.5 0.9 0.1 0.2

0.8 0.4 0.4 0.0

0.1 0.6 0.9 1.0

s1 s3 s8

g1

g2

s5

s9

s10

s13

Figure 6.1 Child Similarity Matrix

Definition 6.3 The video similarity between, videox and videoy, is defined as

()yx videovideosim , . We apply a video tree matching algorithm, which make use

of the child similarity matrix to generate a one-to-one mapping of the most similar

child nodes, such that a similarity score can be propagated from the feature

similarities of the child nodes.

6.2 Video Features Used for Matching
There are two video features that are used in our video matching algorithms.

The first one is the color histogram and the second one is the shot style.

The color histogram feature is useful for matching the global color content of

frames in the video. As we have described in Section 4.1.2, we make use of the

histogram difference between two frames to determine the visual similarity. If

the difference is small, the frames are similar; otherwise, these frames are

different. In our algorithm, since a video shot is a sequence of frames with

similar content, the key frame is used a representative in the matching process.

Then the frame-to-frame distance of the key frames in two video shots is used to

calculate the similarity between two video shots.

The shot style feature is composed of the camera motion and the length of

the shot. The camera motion [4] consists of zooming, horizontal movements,

vertical movements, and still which means that there is no camera motion. In a

shot, there could be many camera motion segments. For examples, a shot of a

 83

person may consist of zooming in and zooming out camera segments. In our

algorithm, we use the first camera motion segments to represent the camera

motion for the shot. The length of the shot is the summation of all the camera

motion segment durations in the shot. The camera movement and the length of

the shot can reflect the pace of the video. For example, if a shot is short and the

camera moves in different directions, we would expect that the video has a fast

pace. The pace of video can help us to determine the type of video since we

know that action videos are faster and artistic videos are typically slower.

6.3 Non-ordered Tree Matching

Algorithm
In the non-ordered tree matching, video features are matched without any

constraint of the temporal sequence. In other words, this method is able to match

video features in any order, as shown in Figure 6.2.

Video A Video B

Shot 1 Shot 2 Shot 1 Shot 2

Similar

Figure 6.2 Matching Video Using a Non-ordered Approach

The algorithm examines the structural V-ToC trees of two videos in a

top-down manner, i.e., from the video level to the video shot level. However the

scoring of similarity of the video is propagated from bottom-up.

 84

At the video level, the video scene level and the video group level

Before we get down to the video shot level, there are three steps to work out

the feature similarities for each level. First, the algorithm needs to retrieve the

feature similarities of all child nodes by traversing down the tree. For example,

when we need to find the similarities between two videos, we need to know how

similar their scenes are. In the second step, we tabulate all the feature

similarities of the child nodes in a child similarity matrix defined in Definition 6.2.

Then in the third step, we calculate the feature similarity of the current level with

a scoring function called MaxSum(), and propagate the resulting score up to the

parent level.

The MaxSum() function is used to sum up the similarities of the best match

of the child nodes and then return the normalized value of the sum. We use the

feature similarities at Example 6.1 to show an example of the best match in

Figure 6.3. Figure 6.4 demonstrates the matching in tree format. To calculate

the sum, we can add up the maximum score at each column. However, in most

of the cases, the number of scenes, groups and shots in videos are not the same.

Then, the tabulated matrix of child feature similarities is not in square shape, and

there is one to multiple mappings. For example, the third row in Figure 6.3, s10

from g2 matches both s8 and s13 of g2. Then, the sum calculated is different if we

take the summation of row maximum instead of column maximum. Therefore,

in our algorithm, we want to set the feature similarity to respect to the dimension

with a smaller value, such that we would not penalize matching of video segments

to its full version. We explain this penalty in Figure 6.5. Hence, when the

number of rows is smaller than the number of columns, the feature similarity is

calculated by dividing the row maximum sum with the number of rows; otherwise,

the similarity is calculated by dividing column maximum sum with the number of

columns. Equation (6.2) shows the calculation of the feature similarity between

nodex and nodey. Let the number of child nodes for nodex and the number of

child nodes for nodex be u and v respectively. Then, the number of columns and

the number of rows in the child similarity matrix are also u and v respectively.

 85















<

≤
==
∑

∑

= ≤≤∀

= ≤≤∀

uv
v

jiChildSim

vu
u

jiChildSim

MaxSum),nodesim(node v

j ui

u

i vj

yx

 if

 if

,
)),((max

,
)),((max

)(

1 0

1 0

ChildSim (6.2)

0.5 0.9 0.1 0.2

0.8 0.4 0.4 0.0

0.1 0.6 0.9 1.0

s1 s3 s8

g1

g2

s5

s9

s10

s13

Max. Value of a Row

Figure 6.3 The Best Matched Nodes in ChildSim

g2g1

s1 s3 s8 s13 s10s5 s9

In Temporal Ordering In Temporal Ordering

Matching Best Matched Nodes
Are Filled with the

Same Color

Figure 6.4 Non-ordered Tree Matching

Example 6.2 Given two video groups ()138311 ,,, ssssg = and

()10952 ,, sssg = . We get the feature similarities of child nodes as shown in Figure

6.3. Since the number of rows is fewer than the number of columns, therefore we

select the best matched nodes according to the rows. The feature similarity for

g1 and g2 is calculated as follows.

9.0
3

0.18.09.0
21 =

++
=),gsim(g

 86

0.2 0.9 0.3 0.1

0.3 0.3 1.0 0.1

0.1 0.1 0.1 1.0

g1 g2 g3 c1
c2

g1

g2

g3

g4

Max. Value of a Row

Score of Row Max. Sum = (0.9+1.0+1.0)/3 = 0.97

Other Max. Value of a Column

Score of Column Max. Sum = (0.3+0.9+1.0+1.0)/4 = 0.80

Penalized

Figure 6.5 Penalty of Matching Video Segments

At the video shot level

The algorithm calculates the feature similarities based on the shot feature,

which is the color histogram and the shot style.

The color histogram similarity is calculated using the key frames of shots.

We use the frame-to-frame distance of color histogram defined in Equation (4.4).

The result, which is the difference of the color histograms, is normalized. Then

the color histogram similarity, ColorSim(sx,sy), between video shots sx with key

frame kx and sy with key frame ky is defined in Equation (6.3). We apply a

simple normalizing function, normalize(), to normalize the frame-to-frame

distance. As a result, the resulting color histogram similarity is a value ranged

from 0 to 1.

)(1),kz(knormalize),sColorSim(s yxyx −= (6.3)

 87

The shot style feature similarity is set to be the ratio of lengths of video shots

when the representative camera motions are the same. For example, the camera

motions of two shots, sx and sy, are the same, and length of sx is smaller than that

of sy, then the shot style feature similarity is equal to length of sx divided by length

of sy, as shown in Equation (6.4). The length of a video shot is mentioned in

Equation (4.12).









<

=
otherwise

 if

)()(

,
)(
)(

,
)(
)(

yx

x

y

y

x

yx

slengthslength

slength
slength
slength
slength

),sStyleSim(s (6.4)

After calculating both feature similarities, the algorithm then propagates the

shot level feature similarity to the upper level.

6.4 Ordered Tree Matching Algorithms
The ordered tree matching algorithm is different from the non-ordered matching

in the previous section because it considers the temporal ordering of the shot

features. It allows only matching of feature similarities with temporal constraint.

Therefore, the condition on Figure 6.2 is not considered as very similar any more.

The score of similarities propagated up is the summation of feature similarities for

the best-ordered child nodes matching.

An ordered tree matching is significant because it can capture the difference

in video similarity due to the changes of features ordering. The reordering of

features can form a different tree structure. The non-ordered algorithm cannot

detect these kinds of structural differences. An ordered matching algorithm is

designed to tighten the similarity measurement by the temporal sequences

constraints, so that we give more concern on the video structure.

In this algorithm, we traverse the V-ToC tree in the same manner as in the

non-ordered tree matching algorithm.

 88

At the video level, the video scene level and the video group level

At each tree level, we use a MaxOrderedSum() function instead of the

MaxSum() function in the non-ordered matching. The MaxOrderedSum()

function considers the ordering while finding out the sum of feature similarities

for the best matched child nodes. Figure 6.6 shows an example best ordered and

matched child nodes on the child similarity matrix used in Example 6.1. The

selected set matches a sequence of video shots from both videos. Figure 6.7

demonstrates this matching function in a tree format.

0.5 0.9 0.1 0.2

0.8 0.4 0.4 0.0

0.1 0.6 0.9 1.0

s1 s3 s8

g1

g2

s5

s9

s10

s13

Best matched child nodes

Figure 6.6 The Best Ordered and Matched Nodes in ChildSim

g2g1

s1 s3 s8 s13 s10s5 s9

Temporal Order Temporal Order

Matching Best Ordered and
Matched Nodes Are
Filled with the Same

Color

Figure 6.7 Ordered Tree Matching

We use the dynamic programming technique to make the calculations more

efficient [37]. There are four steps for our algorithm to find out the feature

similarity of the current level. In the first step, we initialize a matrix D with all

values equal to zero. Then in the second step, we fill up the matrix according to

Equation (6.5), such that we look for a maximum sum of the similarity scores

 89

along the child nodes sequence. Let ChildSim contains u columns and v rows.

The third step is getting the maximum sum at D(u+1,v+1) once D is filled.

Finally, the feature similarity is calculated by the normalized sum as shown in

Equation (6.6). Now, we use the data from Example 6.1 to show the feature

similarity calculation in Example 6.3.

))1,(),,(),(max()1,1(++=++ jiDjiChildSimjiDjiD (6.5)

),max()(
v

sum
u

sumSumMaxOrdered),nodesim(node yx == ChildSim (6.6)

Example 6.3 For the data from Example 6.1, we need to initialize a 5 by 4

matrix, D, with each value equals to zero. We fill in the values in D, according

to Equation (6.5). The resulting D is shown in Figure 6.8. Then, we can get the

maximum sum at D(5,4) = 2.3. The feature similarity between g1 and g2 is

calculated by:

77.0)
3
3.2,

4
3.2max(21 ==),gsim(g

0 0 0 0 0

0 0.5 0.9 0.1 0.2

0 0.8 0.9 1.3 1.3

0 0.1 1.4 1.8 2.3

s1 s3 s8 s13

s5

s9

s10

D

g2

g1

Figure 6.8 An Example for Dynamic Programming

 90

At the video shot level

We extract the two video features using the same techniques as mentioned in

the non-ordered tree matching algorithm, Section 6.3. We propagate the

calculated feature similarities to the upper levels until we get the final result.

We implement the whole ordered tree matching algorithm using a recursive

function. The algorithm is summarized in Algorithm 6.1. We start the

matching process at the root level by),(ba videovideochingOrderedMat . It

traverses all the tree nodes along each tree level to propagate the feature

similarities up recursively. We use Figure 6.9 to illustrate to this recursive

process.

Input: Given two tree nodes,),,(auaax childchildchildnode ,21 L= and

),21 bvbby childchildchildnode L,,(= .

Output: Score of feature similarity (ColorSim or StyleSim)

1. function OrderedMatching(xnode , ynode)
2. if current node level is video shot level
3. then
4. return either ColorSim or StyleSim as feature similarity

5. else //at upper levels
6. i) Initialize D with elements equal to zero.

7. ii) Fill in D for each ui ,,1 L∈ and vj ,,1L∈ with:

))1,(),,(),(max()1,1(++=++ jiDchildchildchingOrderedMatjiDjiD bjai

8. iii) return))1,1(,)1,1(max(
v

vuD
u

vuD ++++

9. end if
10. end function

Algorithm 6.1 Recursive Dynamic Programming for Ordered Tree Matching

 91

sim(Videoa,Videob) =

0 0 0 0

0 D(2,2) D(3,2) D(4,2)

0 D(2,3) D(3,3) D(4,3)

c1

cb1

cb2

D

Videob

Videoa

c2 c3

D(4,3)
2

0 0 0

0 D1(2,2) D1(3,2)

0 D1(2,3) D1(3,3)

ChildSim(1,1)

=

g2

C1
of Video b

D1
g1

C 1
of Video a

g1

g2

D1 (3,3)

2

0 0 0

0 D2(2,2) D2(3,2)

0 D2(2,3) D2(3,3)

g1
of Videoa

g1
of Videob

D2 s1 s5

s1

s3
ChildSim()

Figure 6.9 An Example for Recursive Dynamic Programming

6.5 Evaluation of Video Matching
In this section, the proposed tree matching algorithms will be evaluated by

comparing the results of a small set of videos with the human's ranking results;

one example is in Figure 6.10. Some information of the videos is shown in Table

6.1. The human's ranking results of the videos are shown in Table 6.2 and Table

6.3. There are 5 videos matching with each others using the proposed

algorithms.

Figure 6.10 Matching Video Features

 92

Table 6.1 Video Tree Structure Information

Videos Number of shots Number of Groups Number of scenes

Video 1 12 4 3

Video 2 14 5 2

Video 3 16 6 3

Video 4 18 6 2

Video 5 27 9 6

Table 6.2 Human’s Ranking for Color Histogram Feature

Ranking of
Videos

Most Similar

1
2 3

Least Similar

4

Video 1 Video 2 Video 3 Video 4 Video 5

Video 2 Video 1 Video 4 Video 3 Video 5

Video 3 Video 1 Video 2 Video 4 Video 5

Video 4 Video 2 Video 1 Video 3 Video 5

Video 5 Video 2 Video 1 Video 3 Video 4

Table 6.3 Human’s Ranking for Shot Style Feature

Ranking of
Videos

Most Similar

1
2 3

Least Similar

4

Video 1 Video 2 Video 3 Video 4 Video 5

Video 2 Video 1 Video 3 Video 4 Video 5

Video 3 Video 1 Video 2 Video 4 Video 5

Video 4 Video 2 Video 1 Video 3 Video 5

Video 5 Video 2 Video 3 Video 1 Video 4

6.5.1 Applying Non-ordered Tree Matching

According to the feature similarity scores calculated by the non-ordered tree

 93

matching algorithm, we rank the similarities between each video and the others.

For example, when we match video 1 with the other 4 videos, if we find that video

2 have the highest similarity score, video 2 is the most similar one to video 1.

The ranking results from non-ordered tree matching are shown on Table 6.4 and

Table 6.5.

 For color histogram features, we can compare Table 6.2 and Table 6.4. We

find that the results are quite similar. The last column in Table 6.4 is the same as

the last column in Table 6.2. That means the non-ordered algorithm can

successfully find out the least similar video according to each source video.

Also, the rows for video 3 and video 4 in Table 6.4 are the same as their

corresponding rows in Table 6.2. So, our algorithm can determine exactly the

same similarities with the human judgments for these two videos. Since there

are only few interchanges in the resulting orders, our algorithm can measure the

similarity for the color histogram feature quite accurately.

 For shot style feature, we compare Table 6.3 and Table 6.5. The results in

both tables are again quite similar. Our algorithm can find out all the least

similar videos for the shot style feature. Moreover, the rows for video 3 and

video 5 in both result tables are the same. Although there are again some

interchanges in other rows, our algorithm is quite accurate in finding the similarity

for the shot style feature.

Table 6.4 Ranking Results for Non-ordered Tree Matching for Color Histogram

Feature

Ranking of
Videos

Most Similar

1
2 3

Least Similar

4

Video 1 Video 3 Video 2 Video 4 Video 5

Video 2 Video 4 Video 1 Video 3 Video 5

Video 3 Video 1 Video 2 Video 4 Video 5

Video 4 Video 2 Video 1 Video 3 Video 5

Video 5 Video 3 Video 2 Video 1 Video 4

 94

Table 6.5 Ranking Results for Non-ordered Tree Matching for Shot Style

Feature

Ranking of
Videos

Most Similar

1
2 3

Least Similar

4

Video 1 Video 3 Video 2 Video 4 Video 5

Video 2 Video 4 Video 3 Video 1 Video 5

Video 3 Video 1 Video 2 Video 4 Video 5

Video 4 Video 2 Video 3 Video 1 Video 5

Video 5 Video 2 Video 3 Video 1 Video 4

6.5.2 Applying Ordered Tree Matching

Similar to the ranking in non-ordered tree matching, we rank the videos according

to the result of the ordered tree matching. The ranks are shown in Table 6.6 and

Table 6.7.

 We compare the results in Table 6.2 and Table 6.6 for color histogram feature.

In these two tables, the results in the least similar columns are the same. Thus,

the ordered algorithm can find out the least similar video according each source

video. Also, refer to Table 6.6, the algorithm can identify three most similar

videos in column 1 and the row for video 5 is the same as the corresponding row

in Table 6.2. Therefore, our algorithm is able to give similar result as the human

judgment for color histogram feature.

 For the shot style feature, we look up the results in Table 6.3 and Table 6.7.

Our algorithm can find out that video 5 is the least similar to video 1, video 2 and

video 4. Also, for video 4 and video 5, the video 2 is most similar candidate

among the video set. These results in Table 6.7 are the same in Table 6.3. The

result for shot style feature is less accurate because it is quite difficult for human

to remember and judge the ordered similarity for video shot motions. Therefore,

our computed results cannot well satisfy the human judgment for shot style

feature.

 95

Table 6.6 Ranking Results of Ordered Tree Matching for Color Histogram

Feature

Ranking of
Videos

Most Similar

1
2 3

Least Similar

4

Video 1 Video 3 Video 2 Video 4 Video 5

Video 2 Video 4 Video 5 Video 1 Video 3

Video 3 Video 1 Video 4 Video 2 Video 5

Video 4 Video 2 Video 3 Video 1 Video 5

Video 5 Video 2 Video 1 Video 3 Video 4

Table 6.7 Ranking Results of Ordered Tree Matching for Shot Style Feature

Ranking of
Videos

Most Similar

1
2 3

Least Similar

4

Video 1 Video 3 Video 4 Video 2 Video 5

Video 2 Video 4 Video 5 Video 3 Video 1

Video 3 Video 4 Video 1 Video 2 Video 5

Video 4 Video 2 Video 3 Video 1 Video 5

Video 5 Video 2 Video 4 Video 3 Video 1

 96

Chapter 7

Conclusion

Video over Internet is getting more popular now than ever before, due to the rapid

growth of the Internet bandwidth and the growing use of video in education,

entertainment, and information sharing. Among the vast video sources, it is

difficult for users to search for their desired pieces. We address two problems

about video retrieval. First, we do not know the contents of video before we

download and browse it. Second, it is difficult to find videos with similar video

contents. In our research, we have designed the web-based video retrieval

system called ADVISE, Advanced Digital Video Information Segmentation

Engine, to solve the above problems.

For the first problem mentioned above, we find that it is always more

efficient for a user to search for his desired videos if some descriptions are

provided. A meaningful video description can help us to know the contents at

once, so that we do not need to waste the time on downloading a huge video clip,

which in fact, we are not interested. As a result, video descriptions can enhance

efficient browsing and retrieval of video contents. Textual description extracted

from video caption text is a commonly used solution; however, text may not

always well describe the video as the contents are delivered by combining visual,

audio, and textual information. ADVISE proposes two kinds of video

descriptions to solve the problem. It generates the video table-of-contents,

V-ToC, and the video summary for user to know the video contents in a short

period of time.

 97

The V-ToC is an image-based video description. It describes the video

contents to the users on the Internet. We propose the automated generation of

the V-ToC structure. A color histogram based approach has been employed in

our system. We have improved a general color histogram based method using

regional color histograms and the adaptive threshold. The resulting structure is

in form of a four levels tree structure. We have designed an XML structure to

store the V-ToC. A DTD is defined in order to maintain the consistence of XML.

The XML V-ToC is further presented on a web-based interface using the XSL

transformation. In addition, we have performed an experiment to evaluate the

V-ToC structure generated

The video summary collects the essential features of a video. It is used to

provide more video information then the V-ToC. We proposed the video

summarization algorithm, which accepts user’s inputs. The user can set the

weights for video features, and the time constraint he wanted. Therefore, the

resulting video summary would be suitable for the need of the user. We

proposed a clustering approach to refine the selection of video segments into the

video summary. It can increase the smoothness of the summary by reducing the

number of fragments. We have designed two experiments to evaluate the video

summarization algorithm. The first one has evaluated the flexibility for

customizing the video content. We have found that the algorithm can generate

video summary according the user’s inputs. In the second experiment, we

evaluate the effect of the refining process. We have found that the refinement

process reduces the score of the video summary in some extents; however, it helps

greatly on improving the smoothness of the summary.

In the second problem, we focus on finding similar videos contents. There

are various video matching algorithms developed, but seldom of them consider

the structure of video. We find that using different algorithms and different

video features can result in a different matching. Since we have built up the

V-ToC structure in a tree format, therefore, we proposed two tree matching

algorithms in our ADVISE system to match the video contents.

 98

We have proposed two tree matching algorithms. The first one is the

non-ordered tree matching algorithm and the second one is the ordered tree

matching algorithm. The major difference between them is the concern on

temporal ordering of the video features. The ordered matching algorithm

considers the temporal ordering while the non-ordered one not. We applied two

video features on video matching. They are the color histogram feature and the

shot style feature. We have evaluated the video matching algorithms using a set

of experiment. We found that the video matching algorithms are able to

determine the video similarity.

To demonstrate all the proposed works, we have implemented ADVISE into

a practical system. We have constructed the backend video processing engine to

generate the V-ToC and to perform video matching. Then, we have built the

web-based video retrieval system, which organizes the V-ToC, provides an

interface for video summarization, and also is used for querying the video

matching results.

Finally, we summarize our contributions.

 The ADVISE system, which enhanced video browsing and retrieval

system on the Internet, has been proposed.

 The generation and presentation of the image-based video description,

V-ToC, have been proposed. The V-ToC structure has been evaluated

using a set of experiments.

 The automated summarization of video into SMIL format has been

proposed. Experiments have been performed to evaluate the video

summarization results.

 Two video tree matching algorithms for measuring the similarity

between videos have been proposed. The results have been evaluated

by a set of experiments.

 99

We find the proposed ADVISE system brings us convenience in searching

videos. The V-ToC, video summary, and video matching work well in ADVISE

to assist the video browsing and retrieval for users on the Internet.

There are three major directions that we can further enhance our research

work. First, we need to improve the accuracy of the V-ToC construction process.

We can employ more video features other than color histograms to assists the

video shot detections and groupings. A better construction of V-ToC can also

improve the video matching results. Second, we can further research on the

video summarization algorithm in order to provide a more optimized content

selection. A constraint satisfaction problem is one possible way to model the

video summarization. As a result, we can optimize summarization process using

constraint satisfaction programming. Third, we can further extend the data

management techniques for our XML V-ToC. We can make use of the XML

hierarchical structure to design some video information searching schemes.

Then the extracted video features can be well-organized into an XML-based

database system. The querying of video features will be made more efficient.

Our ADVISE system can be extended by further research on these three

directions.

 100

Bibliography

[1] D.A. Adjeroh, M.C. Lee, I. King. A Distance Measure for Video

Sequence Similarity Matching. In International Workshop on

Multi-Media Database Management Systems, pages 72-79, 1998.

[2] Adobe Systems Incorporated, Sharing Photos On the Web, Sept 1999.

http://www.adobe.com/aboutadobe/pressroom/pressmaterials/pdfs/activesh

are/activeshare.pdf

[3] Apple Computer Inc., Digital Video: Putting Ideas in Motion with Apple

Digital Video Technologies. http://www.apple.com/scitech/appletech/dv/

[4] E. Ardizzone, M. La Cascia, A. Avanzato, A. Bruna. Video Indexing

Using MPEG Motion Compensation Vectors. In Proceedings of IEEE

Conference on Multimedia Computing and Systems (ICMCS), volume 2,

pages725-729, June, 1999.

[5] M. Bertini, A.D. Bimbo, P. Pala. Content-based indexing and retrieval of

TV news. In Elsevier Pattern Recognition Letters, volume 22, pages

503-516, 2001.

[6] J.S. Boreczky, L.A. Rowe. Comparison of video shot boundary detection

techniques. In Proceedings of SPIE Conference: Storage and Retrieval

for Image and Video Databases, volume 2670, pages 170-179, 1996.

 101

[7] P. Browne, A.F. Smeaton, N. Murphy, N. O'Connor, S. Marlow, C.

Berrut. Evaluating and Combining Digital Video Shot Boundary

Detection Algorithms. In Proceedings of the Irish Machine Vision and

Image Processing Conference (IMVIP 2000), August 2000.

[8] P. Chiu, A. Girgensohn, W. Polak, E. Rieffel, L. Wilcox. A genetic

algorithm for video segmentation and summarization. In IEEE

International Conference on Multimedia and Expo, volume 3, pages

1329-1332, 2000.

[9] M. Christel, D. Martin. Information Visualization within a Digital Video

Library. Journal of Intelligent Information Systems, volume 11, no. 3,

pages 235-257, 1998.

[10] M.G. Christel, B. Maher, A. Begun. XSLT for Tailored Access to

Digital Video Library. In Proceedings of the First ACM/IEEE-CS Joint

Conference on Digital Libraries, page 290-299, June 2001.

[11] Byung Tae Chun, Younglae Bae, Tai-Yun Kim. Text Extraction in

Videos using Topographical Features of Characters. In 1999 IEEE

International Fuzzy Systems Conference Proceedings, August, 1999.

[12] Creativepro.com, POPcast Selected by MGI to Offer Personal

Broadcasting Services to MGI VideoWave 4 Users, November 14, 2000.

http://www.creativepro.com/story/news/10207.html

[13] A. Dailianas. Comparison of automatic video segmentation algorithms.

In Proceedings of SPIE Photonics East’95: Integration Issues in Large

Commercial Media Delivery Systems, October 1995.

 102

[14] Z. H. Gao, L. Mo. Final Year Project LYU0103: Speech Recognition

Techniques for Digital Video Library, The Chinese University of Hong

Kong, 2001.

[15] A. Hanjalic, G.C. Langelaar, P.M.B. van Roosmalen, J. Biemond, R.L.

Lagendijk. Image and Video Databases: Restoration, Watermarking and

Retrieval, Elsevier Science, ISBN 0-444-50502-4, Amsterdam (NL), 2000.

[16] A.G. Hauptmann, M.J. Witbrock, M.G. Christel. Artificial Intelligence

Techniques in the Interface to a Digital Video Library. In Proceedings of

the CHI-97 Computer-Human Interface Conference New Orleans LA,

March 1997.

[17] R. Hjelsvold, S. Vdaygiri, Y. Léauté. Web-based Personalization and

Management of Interactive Video. In Proceedings of the Tenth

International World Wide Web Conference, page 129-139, May 2001.

[18] J. Hunter, S. Little. Building and Indexing a Distributed Multimedia

Presentation Archive using SMIL. In Proceedings of the 5th European

Conference on Research and Advanced Technology for Digital Libraries,

ECDL '01, pages 415-428, September 2001.

[19] A.K. Jain, M.N. Murty, P.J. Flynn. Data Clustering: A Review. In

ACM Computing Surveys, 31(3), pages 264-323, September 1999.

[20] V. Kobla, D.S. Doermann, C. Faloutsos. VideoTrails: Representing and

Visualizing Structure in Video Sequences. In Proceedings of ACM

Multimedia Conference, pages 335-346, November 1997.

 103

[21] J.L. Koh, C.S. Lee, A.L.P. Chen. Semantic video model for

content-based retrieval. In IEEE International Conference on

Multimedia Computer and Systems, volume 2, pages 472-478, 1999.

[22] W. Li, S. Gauch, J. Gauch, K.M. Pua. VISION: A Digital Video Library.

In ACM Digital Libraries, pages 19-27, 1996.

[23] R. Lienhart. Automatic Text Segmentation and Text Recognition for

Video Indexing. In Multimedia Systems. Hrsg.: ACM. Berlin-Heidelberg:

Springer-Verlag, S. 69-81, volume 8, 2000.

[24] R. Lienhart, W. Effelsberg, R. Jain. VisualGrep: A Systematic method to

compare and retrieve video sequences. In Storage and Retrieval for

Image and Video Databases VI, SPIE, volume 3312, page 271, Jan 1998.

[25] MGI, share.videowave.com. http://share.videowave.com/

[26] R. Mohan. Video Sequence Matching. In Proceedings of the 1998

IEEE International Conference on Acoustics, Speech and Signal

Processing, volume 6, pages 3697-3700, 1998.

[27] C.W. Ng, I. King, M.R. Lyu. Video Comparison Using Tree Matching

Algorithm. In Proceedings of the International Conference on Imaging

Science, Systems, and Technology, volume 1, pages 184-190, Las Vegas,

Nevada, USA, June 2001.

[28] C.W. Ng, M.R. Lyu. ADVISE: Advanced Digital Video Information

Segmentation Engine. In Poster Proceedings of the Eleventh

International World Wide Web Conference, Honolulu, Hawaii, USA, May

2002.

 104

[29] J.Y. Pan, C. Faloutsos. VideoGraph: A New Tool for Video Mining and

Classification. In Proceedings of the First ACM/IEEE-CS Joint

Conference on Digital Libraries, page 116-117, June 2001.

[30] P. Pan, G. Davenport. I-Views: A Community-oriented System for

Sharing Streaming Video on the Internet. In Computer Networks: The

International Journal of Computer and Telecommunications Networking,

volume 33, issue 1-6, page 567-581, June 2001.

[31] Oratrix Development, GRiNS Player for SMIL 2.

http://www.oratrix.com/GRiNS/

[32] Real Networks Inc, RealPlayer 8.

http://www.real.com/playerplus/index.html

[33] Real Networks Inc, RealOne Player. http://www.realone.com

[34] Real Networks Inc, Real System Server.

http://www.realnetworks.com/products/servers/professional/index.html

[35] Y. Rui, T.S. Hunag, and S. Mehrotra. Constructing Table-of-Content for

Videos. In ACM Multimedia Systems Journal, Special Issue Multimedia

Systems on Video Libraries, volume 7, no. 5, pages 359-368, Sept 1999.

[36] T. Sato, T. Kanade, E.K. Hughes, M.A. Smith. Video OCR for digital

news archive. In Proceedings of IEEE International Workshop on

Content-based Access of Image and Video Database, pages 52-60, 1998.

[37] M.K. Shan and S.Y. Lee. Content-based video retrieval based on similarity

of frame sequence. In International Workshop on Multi-Media Database

Management Systems, pages 90-97, 1998.

 105

[38] K. Shearer, H. Bunke, S. Venkatesh. Video indexing and similarity

retrieval by largest common sub-graph detection using decision trees. In

Elsevier Pattern Recognition Letters, volume 34, pages 1075-1091, 2001.

[39] J.R. Smith, S.F. Chang. Querying by Color Regions using the

VisualSEEk Content-Based Visual Query System. In Intelligent

Multimedia Information Retrieval, IJCAI, 1997.

[40] J. R. Smith, S. Srinivasan, A. Amir, S. Basu, G. Iyengar, C.Y. Lin, M.

Naphade, D. Ponceleon, B.L. Tseng. Integrating Features, Models, and

Semantics for TREC Video Retrieval. In Proceedings of NIST TREC-10

Text Retrieval Conference, pages 240-249, Gaithersburg, Maryland, Nov

2001

[41] Sony Electronics e-Solutions Company LLC, ImageStation.

http://www.imagestation.com/

[42] M.J. Swain and D.H. Ballard. Color Indexing. International Journal of

Computer Vision, volume 7, issue 1, pages 11-32, 1991.

[43] S. Uchihashi, J. Foote, A. Girgensohn, J. Boreczky. Video Manga:

Generating Semantically Meaningful Video Summaries. In Proceedings

of the ACM Multimedia 1999, pages 383-392, 1999.

[44] H.D. Wactlar. New Directions in Video Information Extraction and

Summarization. In Proceedings of the 10th DELOS Workshop, Santorini,

Greece, June 1999.

 106

[45] H.D. Wactlar, T. Kanade, M.A. Smith, S.M. Stevens. Intelligent Access

to Digital Video: Informedia Project. Computer, volume 29, issue 5,

pages 46-52, May 1996.

[46] W3C Recommendation, Extensible Makeup Language (XML) 1.0

Specification (Second Edition).

http://www.w3.org/TR/2000/REC-xml-20001006, 6 October 2000.

[47] W3C Recommendation, Extensible Stylesheet Language (XSL) 1.0

Specification. http://www.w3.org/TR/2001/REC-xsl-20011015, 15

October, 2001.

[48] W3C Recommendation, Synchronized Multimedia Integration Language

(SMIL 2.0) Specification. http://www.w3.org/TR/smil20/, 7 August

2001.

[49] W3Schools Online Web Tutorials, DTD Tutorial.

http://www.w3schools.com/dtd/dtd_elements.asp

[50] H.H. Yu, W. Wolf. A Visual Search System for Video and Image

Databases. In Proceedings of the 1997 International Conference on

Multimedia Computing and Systems, pages 517-524, June 1997.

[51] J. Yu, M.D. Srinath. An efficient method for scene cut detection. In

Elsevier Pattern Recognition Letters, volume 22, pages 1379-1391, 2001.

[52] D. Zhong, H.J. Zhang, S.F. Chang. Clustering methods for video

browsing and annotation. Technical report, Columbia University, 1997.

 107

[53] J.Y. Zhou, E.P. Ong, C.C. Ko. Video object segmentation and tracking

for content-based video coding. In IEEE International Conference on

Multimedia and Expo, volume 3, pages 1555-1558, 2000.

