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Abstract

Video over Internet is getting more popular in education, entertainment, and
information sharing. Since it is time-consuming to download and browse most
part of a video before we know the video contents, it is difficult to find out a piece
of video that we want among the vast video sources in the Internet repositories.
Therefore, in this thesis, we propose a web-based video retrieval and browsing
enhancement system called ADVISE, Advanced Digital Video Information

Segmentation Engine, to solve the above problem.

There are three major modules in ADVISE: the first one is the video
table-of-contents (V-ToC) construction, the second one is the video

summarization, and the third one is the video matching.

A V-ToC is an image-based video description, which provides users an
abstract of the video contents. Since there are numerous images contained in a
video, it is a difficult task to select and organize key images to show the video
contents, unless we first understand the video structure. We use regional color
histogram feature with the adaptive threshold to build up a 4-level tree structure
for a video. According to this structure, key images are selected and organized
into the V-ToC for describing the video contents. We present the V-ToC in a
web-based format using XML with XSL. The V-ToC structure generated is

evaluated in a set of experiment. We found that our current approach generate
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the most accurate structure among four different settings.

The video summarization module extracts the major contents of a video.
This module is important because different users have their different needs on
extracting the video contents. We have proposed a video summarization
algorithm, which accepts user’s inputs to tailor the video contents extraction.
The algorithm employs a statistical approach in order to select video features
favored by the user. Furthermore, we have applied the clustering technique to
refine the video segments selection, such that a smoother video summary can be
generated. The resulting summary is delivered to the user in a SMIL
presentation format. We have evaluated the video summarization algorithm
using two experiments. The first one is used to measure the quality of the
resulting video summary. We found that our algorithm is able to adjust the
contents selection according to the user’s preferences. For the second
experiment, we evaluate the clustering results in the refinement. We found that
the refinement process can reduce the quality of the video summary while

improving the smoothness.

The video matching module is used to measure the similarity between two
videos. There are many possible algorithms to match the video features in
different temporal ordering, however seldom of them concern on the structure of
videos. Now, based on the V-ToC tree structure mentioned above, we have
proposed two video tree matching algorithms. The first one is the non-ordered
tree matching algorithm and the second one is the ordered tree matching algorithm.
They are different because the ordered tree matching algorithm considers the
temporal ordering of video features while the non-ordered one does not. Our
experiments on a set of various videos demonstrate that the proposed tree

matching algorithms produce similar ranking results to what human will produce.

We have implemented the proposed ADVISE system to demonstrate our
work. It provides all the features, which are mentioned above, to the Internet

users. Hence, users can browse and retrieve videos efficiently using ADVISE.
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Chapter 1

Introduction

Nowadays, since the rapid development of the Internet technologies, information
sharing on the Internet is not limited in textual format. With the higher network
bandwidth, people can retrieve information in the form of multimedia including
images, audio, and particularly, video. According to the Home PC Portrait
survey by PC Data, an estimated 57.2% of Internet users watched video clips, and
7.3% edited video clips on their personal computers, in the year 2000 [12].
Video is getting popular in education, entertainment and other multimedia
applications [2][3]. It is because video enriches the content delivery by
combining visual, audio, and textual information in multiple data streams. Now
many companies provide video sharing services, which further speeds up the

growth of the volume of Internet videos [25][41].

Under this evident growth, users may find it difficult while to search for
some video contents they want from vast available sources. Hence, the
management of video data on the Internet is an urgent need. It can help users to
retrieve their favorite videos efficiently. Although many researchers have
investigated this video content retrieval problem [21][52] and the designs of
digital video libraries [9][16][22], there are still many interesting problems to be

solved.

In this thesis, we propose a web-based system, called ADVISE, Advanced
Digital Video Information Segmentation Engine [28]. The system can

enhance video browsing and retrieval by providing a set of services through the



Internet. We propose three different solutions, which facilitates browsing and

retrieval of video over the Internet. They are:

Image-based Video Description gives a brief description for users to know

the video contents at once.

Video Summary reduces the time to browse a video by abstracting the

important parts of video contents.

Video Matching measures the similarity between videos, such that videos

with similar contents can be found efficiently.

We explain our work in these three areas in later sections.

1.1 Image-based Video Description

Without any descriptions about a video, we need to spend time to download and
browse it before we know the contents. This is a time-consuming process when
there is a large amount of videos available. It is impossible to know all the video
contents, if we do not have any descriptions about them. A solution to solve this
problem is hiring a person to annotate each video available. However, the
man-power involved is too huge. We prefer to solve the problem through an
automatic way. By preprocessing the raw video, we can automatically generate a
video description, which can definitely help users in understanding the video

contents while saving the time on downloading and browsing the whole video.

As we have mentioned above, video is a combination of images, audio and
text, thus, it is a convenient way to generate the description by selecting video

information from only one of these three aspects.

For text-based description, the most common generation method is the
extraction of caption text from the video [11][23]. This kind of description with
video captions is convenient for users to understand the video contents at once by
reading through. It can be used on videos which always have captions, likes

news broadcasts and movies. However, we find that there are many other videos



without enough captions for description, especially for personal video

productions.

For audio-based description, the most popular method is the generation of
textual transcripts using speech recognition [16][45]. This method is as easy to
read as the text-based description above, and it can also distinguish the speakers
through the speech. Since this approach can be applied only on videos with
people’s speech. Besides, most current speech recognitions cannot give very

confident results except for those models with excellent training set [16].

For image-based description, the desirable way to present to video contents is
to extract key video frame images [8][15][29][35][43]. With those extracted
images well organized according to the video structure, we can concretely know
what have been shown in the video, and estimate the whole video story by the
organization. We find that videos may not always have caption and speech, but
they seldom contain meaningless images only. For example, to describe the

contents of a scenery video, an image-based description is the most appropriate.

Table 1.1 summarizes the pros and cons of the three different types of video

descriptions.
Table 1.1 Summary of Video Descriptions
Strengths Weakness
*  Easy to understand the *  Not applicable to videos
Text-based meaning without captions

description | *  Compact and small in size
e Textual searchable

*  Easy to understand the *  Not applicable to video
meaning with no human speech
Audio-based | * Compact and small insize | *  Worrying accuracy
description | *  Textual searchable about speech
*  Able to distinguish the recognitions
speakers
*  Able to see the actual e  Larger in size while
Image-based video images comparing with the
description | *  Applicable to most videos text-based one

*  Image-based searchable




In this thesis, our proposed ADVISE system provides the image-based video
description. It automates the generation of the visual descriptions for videos.
As we mentioned above, video key frame extraction is needed for generating the
description. Those key frame images are always extracted through the video
segmentation process [8][15][29][35][43]. We will discuss various video

segmentation processes in Section 2.2.

Instead of barely listing all the extracted key frame images, Unhihashi [43]
prepares his image-based video description in the way similar to the
representation in comic books. He calculates the importance score for each key
frame images by the rarity and duration of its corresponding video segment.
Then those key images are packed together according to the importance score,
where the larger area for higher score. As a result, the resulting video

description is in form of a comic book style.

While Unhihashi’s idea, which calculates the importance scores in a quite
simple way, gives only a few concerns on the video structure, Rui [35] proposes
another image-based description, which can present the whole video structure.
He calls his work as a Table-of-Content (ToC) for videos. It is because he finds
that a video ToC, which functions similarly to the one in a book, can facilitate
browsing of a video by capturing the structure in it. The video structure defined

by Rui will be discussed in Section 2.2.

Now, we discuss briefly our image-based video description in our research
work.  We first employ the Rui’s video structure and generate Video
Table-of-Contents (V-ToC) in a modified approach [13][21][35][51]. Then we
store the V-Toc in the eXtensible Markup Language (XML) format [46]. An
XML Document Type Definition (DTD) is defined to provide grammars for the
components of the video structure, and to maintain the consistency of XML.
Hence, by using the eXtensible Stylesheet Language (XSL) [47], we further
transform the XML video structure into a well readable web interface, which is
used as the image-based video description on the Internet. We will discuss the

XML technologies in Section 2.3.



1.2 Video Summary

Apart from the video description discussed above, the second goal for ADVISE is
to generate video summary for the users. We notice that users may not be easily
satisfied by the video description mentioned above with image-based information
only. The video description can just help them to remove most unwanted videos,
such that they can further investigate those remaining. Instead of attempting to
guess the video contents at once through the image-based video description, users
are now willing to spend some more time on getting more information from the
selected video. Therefore, a video summary, which is an abstract of the
important parts of the video, is well suitable for user’s need. Table 1.2
summarizes the differences between the image-based video description and the

video summary.

Table 1.2 Differences between Video Description and Video Summary

Image-ba§eq Video Video Summary
Description
Time Can be read at once Takes certain duration to play
Format | Key frame images Video
Features All kinds of features including
U Only image-based features image-based, audio-based, and
captured
text-based
To give the rough idea about To show selected important
Usage
the contents contents

The key problem in video summarization is the selection of important
segments from the source video. Since we find that quality of summarization
depends greatly on the interest of each target user, it is almost impossible to
design a single approach to fit into every user’s appetite. However, by accepting
settings from each user before summarization, it is easier to determine which
kinds of contents are more important to the user. This kind of user input model
is widely used in other video retrieval applications [30][39][40][50], but it has not

yet been applied on video summarization.



Once the contents for the video summary are confirmed, the next question is
about the format of video summary, which can be generated and returned
efficiently through the Internet. The Synchronized Multimedia Integration
Language (SMIL) [48] is a good choice for us to solve this problem. SMIL is
often applied to various online video personalization systems [17][18][30].
Through similar mechanisms, we can then easily define an individual SMIL
presentation, which customizes contents from the source video. The resulting
SMIL presentation can be returned back to the user through a streaming protocol

on the Internet [32]. We will detail the SMIL technology in Section 2.4.

1.3 Video Matching

Instead of getting information from each video using video description and video
summary, ADVISE also enables the matching of similarity between two videos.
There are numerous solutions worked out by different researchers [1][24][26].
However, this problem is still challenging since it is difficult to extract video
features that represent the content for matching, and there are many possible

algorithms to match the temporal ordering of video features.

Mohan suggests an efficient video matching method [26]. He first extracts
the DC coefficients of frames from MPEG videos. These DC coefficients of
frames are used to formulate a sequence of feature vectors called fingerprints, in
order to represent the video actions in the corresponding video sequence. Then,
he applies sequential matching to find out similar fingerprints for videos in the

database.

Instead of using general sequential matching, Adjeroh et al. [1] design a
different scheme for matching video sequences. He models the video matching
problem as a pattern matching problem. Various video features can be extracted
from a video sequence, and are formulated into a video string (vString), which is a
sequence of symbols, to represent the video sequence. He proposes a new
approach of measuring string edit distance specialized for vString, so that such

resulting distance is used to represent the similarity between video sequences.



Shearer et al. [38] suggest focusing more on the similarity of video frame
images. He expresses the image similarity as the graph isomorphism detection
problem. The graph is encoded according to the relationships between video
objects over time [53]. He then designs a decision tree algorithm to detect the
isomorphic sub-graphs between two video sequences. Thus, the videos are

similar if their graphs are isomorphic.

Lienhart’s method [24] pays more attention to the structure of videos,
comparing with the above approaches. He suggests that video should be
examined in different levels, where these levels are frame, shot, scene and video.
A recursively approach is applied over those levels of temporal resolution, so that

reordered sequences can be detected through a re-sequencing measure proposed.

By regarding Rui’s video structure [35] as a hierarchical tree structure, we
can apply our own structural matching algorithm to measure the video similarity.
We propose two tree matching algorithms [27], they are the non-ordered tree
matching algorithm and the ordered tree matching algorithm. They are different
because the ordered tree matching algorithm is constrained by the temporal
ordering but the non-ordered tree matching algorithm is not. Therefore, the
ordered tree matching algorithm can be applied for matching video with
similarities in both structure and video features, while the non-ordered tree
matching algorithm can be applied for matching video with similar video features

only.

1.4 Contributions

Our research work makes the following contributions:

1.  We have proposed the whole framework of a video browsing and
retrieval system called ADVISE, Advanced Digital Video Information
Segmentation Engine [28].

2. We have proposed the automated generation of an image-based video

description in ADVISE. The video description is called Video



Table-of-Contents (V-ToC). It provides users a convenient way to
estimate the video contents at once. The video description in XML

format is transformed into a web-based format using XSL.

3. We have proposed the summarization of video in ADVISE. It
generates a video summary containing the most important parts of the
source video. With the video summary, a user can know more about
the video contents than browsing the video description. A user input
model is used to tailor video summary with contents according to user’s
preferences. Video summary are delivered in a SMIL presentation, so
that it can be generated efficiently and the user can easily access it

through the Internet.

4. We have proposed two video tree matching algorithms [27] in
ADVISE. They measure the similarity between videos. The first
algorithm is the non-ordered tree matching algorithm, and the second
one is the ordered tree matching algorithm. These similarity measures

enable users to search videos with similar contents efficiently.

1.5 Outline of Thesis

In Chapter 2, we describe several technologies related to our research work.
First, we describe the video pre-processing in digital video libraries. Also, we
review the video structuring techniques carried out on top of the video
segmentation results. Besides, we discuss the XML and SMIL technologies,

which are used in our proposed system.

In Chapter 3, we describe the design of the proposed system, ADVISE [28].
It provides a set of services, which assists users in browsing and retrieval of
videos over the Internet. We detail the application interface of each component

in ADVISE and describe the relations between those components.

In Chapter 4, we detail the construction of the Video Table-of-Contents

(V-ToC). We illustrate the extraction of video features and we use these



features in the structuring process of the video. This structuring process results
in the V-ToC of a video, which is formatted into a XML structure, and is
presented in a web-based format using XSL. At the end of this chapter, we

carry out experiments to evaluate the video structuring results.

In Chapter 5, we discuss our video summarization algorithm. We illustrate
how to select contents into the video summary by considering user’s inputs.
Also, we talk about the presentation of the resulting video summary in a SMIL

format. At the end of chapter, we evaluate our video summarization.

In Chapter 6, we describe the algorithms for matching the video similarity.
We detail first the two proposed video tree matching algorithms [27] and make
comparison between them. Besides, a set of experiments is designed to

demonstrate the results of our video matching algorithms.

Finally, we conclude this thesis in Chapter 7.



Chapter 2

Literature Review

In this chapter, we discuss several technologies related to our research work.

In Section 2.1, we describe how digital video libraries process videos before
they are ready for retrieval. We take the VISION project [22] and the
INFORMEDIA Project [9][15][44][45] as examples, so that we know how they
currently work without a better structuring of videos. We expect that the
structuring techniques in the following section can further assist the retrieval of

video in digital video libraries.

In Section 2.2, we have a review on building video structures. It includes
various video segmentation and structuring techniques. Since our video
description, V-ToC, is constructed based on the video structure, so these

techniques greatly affect the quality of the V-ToC.

In Section 2.3, we give an overview of XML technologies that are used in
our work. It includes the introduction of XML syntax, DTD, and XSL. These
technologies help us in storing and presenting the V-ToC properly.

In Section 2.4, we briefly introduce the SMIL technologies. SMIL is a
markup language designed for performing multimedia presentations. More and
more video personalization applications use SMIL presentations to deliver their
customized videos. The major reason is the easy generation of SMIL. We
present the common model of those applications in this section. In our research,

we apply SMIL on the presentation of our video summary.
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2.1 Video Retrieval in Digital Video

Libraries

Digital Video Library is a comprehensive system, which integrates a variety of
video analyzing techniques, including speech recognition, face recognition, and
video caption extraction, to provide content-based indexing and retrieval of video
to users [15][22]. To enable these services, raw videos will undergo two key
pre-processing steps. The first step is the video features extraction and the
second step is the video segmentation. In the following paragraphs, we will
discuss these steps in two well-defined digital video libraries, the VISION project
proposed by Li et al. [22] and the INFORMEDIA Digital Video Library project at
Carnegie Mellon University [9][15][44][45].

2.1.1 The VISION Project

In the VISION project, three different video features are extracted. The first one
is to construct the color distributions for video images through a histogram-based
image analysis. Although it tries to have a rough matching of the objects
appearing on video, this approach provides a very good balance between an
efficient extraction and acceptable image similarity metrics [22]. The second
feature is the video captions. Captions are extracted from video frames and
divided into tokens (words). These tokens are reduced to their word stems, and
stop words are removed. So, they become the keywords to represent the video.
The third feature extracted is the audio energy level from the audio track of the

raw video.

By using those features extracted, VISION carries out segmentation of the
videos. With the color histograms, VISION identifies shots by dividing the
video at the sharp histogram changes. The resulting video shots are examined
for possible merging of related shots into scenes using the extracted audio energy
level and the keywords. If there are people talking at the shot transitions, it

results in a high audio energy level. VISION expects shots with high audio
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energy level at the transition can be merged for presenting a series of related
topics. With the caption keywords, VISION evaluates the contents relevancy for
shots by counting the number of same keywords appearing in them. The shots
relevant in textual contents are further merged to video scenes as the final

segmentation result.

2.1.2 The INFORMEDIA Project

The INFORMEDIA project employs a more complex video features extraction
model. The video features extraction can be classified into three categories, the
audio analysis, the image analysis, and the natural-language processing [15][45].
For the audio analysis, in addition to extracting the audio energy level similar to
VISION, INFORMEDIA generates the full transcript, which is more informative,
by automatically using speech recognition techniques. In the image analysis,
INFORMEDIA also extract color histograms and caption text from video frames.
In addition, it detects two more video features. First, human faces appearing on
video are detected as one video feature. Second, video motions are extracted as
another video feature. INFORMEDIA uses the camera motion approach, which
tracks changes of individual regions in frames, and creates a vector representation
of motions. In the natural-language processing, INFORMEDIA investigates the
content relevancy based on the transcript results from the speech recognition and
the caption text extraction. Similar to VISION, INFORMEDIA performs
keywords stemming to produce a textual description for video. Probabilistic
matching is also applied on those keywords to return an ordered ranking on video

content relevancy.

INFORMEDIA proposes three video segmentation approaches using
different video features extracted. The first approach is a simple color histogram
difference measure, which is equivalent to the shots detection in VISION. It is
efficient to give an initial segmentation. The second approach improves the first
approach by considering both image features and audio features. In addition to
the audio energy level used in the scene formation of VISION, the speech

recognition result is used to determine the contents changes, and consequently, the
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approach becomes content-based and more reliable. The third approach is to
consider the camera motions such as zooming, panning, and forward camera
motions. This method can demonstrate the image flow, but it does not promise a

content-based segmentation.

2.1.3 Discussion

We now discuss the video segmentation process of both the above projects

and compare with our proposed system, ADVISE.

Both VISION and INFORMEDIA projects use simple histogram-based video
shots detection as the basic video structure. However, they discover that using
the histogram approach is not sufficient for a content-based segmentation.
Therefore, other than the image-based feature, they employ also textual and audio
features of video in their segmentation process. They do not give much concern
on the structure of the video. Both of the projects use the shot-based structure.
It is only a sequential segmentation according to the different video features
collected. As a result, they cannot give any information about the organization

of the video contents.

In our ADVISE system, we focus on the structure of videos. We generate
the video structure using the histogram-based approach, without the assistant of
textual and audio features. We expect that a hierarchical video structure, which
we will discuss in Section 2.2, can provide a more organized image-based analysis
mechanism for the video contents. Thus, compared with the above projects,
ADVISE can efficiently generate the video structure with only the
histogram-based method. Besides, it can give a good organization while
integrating with other types of video features. Therefore, the video structure can
enhance the video indexing and retrieval of the digital video libraries in the latter

stages.

We summarize the difference of video segmentation between VISION,

INFORMEDIA and ADVISE in Table 2.1.
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Table 2.1

Comparison between VISION, INFORMEDIA and ADVISE

VISION

INFORMEDIA

ADVISE

Color histogram,

Color histogram,
caption text, human

Feature . . ] )
Us;ld caption text and audio | faces, audio energy Color histogram
energy level level and speech in
video
A video structure
Structure . .
. Shot-based structure Shot-based structure | with 4 levels of video
of Video
components
. Structure
*  Multi-modal for | *  Multi-modal for gene‘rated
) . . . efficiently
Pros using various using various
) ) J Show the
video features video features ..
organization of
contents
*  Moderate *  More complex
complex for for using too
us'ing 4 features many features e Use only the
. Give no o Give no )
Cons . . . . color histogram
information information feature
about the about the
contents contents
organization organization

In the following section, we discuss about the video structure employed in

ADVISE.

2.2 Video Structuring

According Rui’s definition, a video can be decomposed into a well-defined

structure consisting of five levels [35].

1.

camera.

shot.

content, and the temporally adjacent ones.

It is the building block of a video.

concept or story of a video.

14

Video shot is an unbroken sequence of frames recorded from a single

Key frame is the frame, which can represent the salient content of a

Video scene is defined as a collection of shots related to the video

It depicts and conveys the




4. Video group is an intermediate entity between the physical shots and the
video scenes. The shots in a video group are visually similar and
temporally close to each other.

5. Video is at the root level and it contains all the components defined

above.

The hierarchy of these video components is demonstrated in Figure 2.1. We
can transform the hierarchy into a structured format as shown in Figure 2.2. This
structure can be regarded as a specialized tree whose tree depth equals to four.
In the following sections, we review the video segmentation and structuring

techniques using the video components defined.

Time

v

‘ Video }—b
s o .

Grqupj B Group 6

I W
Video Groups pz.: - . I
N NN
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Group 5

‘ Video Shots }—P
|

Figure 2.1 Hierarchy of Video Components
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Figure 2.2 Video Tree Structure
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2.2.1 Video Segmentation

The first step to structure a video is the segmentation process. There are various
kinds of video segmentations. However, most of them try to segments the video
at certain points of discontinuity. Hanjalic et al. [15] illustrate the general idea of
video segmentation as shown in Figure 2.3. Two video frames are selected from
the sequence and used as input. In the segmentation, required features are first
extracted from the input frames. Then, a metric is used to quantify the feature
variation from the two selected frames. The resulting discontinuity value is the
magnitude of the variation. Hence, we can say that there is a discontinuous point
while the discontinuity value is greater than certain threshold values or functions

in the detector.

Input Video
Time Sequence

ofVle"l;l;lj Video Segmentation Process
. Detector
Flame £, N Co%the If discontinuity
Feature ' . s ' value is greater
Extraction 3:::22:’:1 elg1 than a threshold,
" a shot boundary
| Frame f, L 0CCUrS

Video Frames

Figure 2.3 Illustration of Video Segmentation Process

The major difference between various video segmentations is the extraction
of different features. Most of the video segmentation methods can be
categorized into image-based, audio-based and text-based. Some other methods
are always the mixtures of those categories. A simple audio-based method
segments a video according the sharp changes in audio energy level [22][45],
while a simple text-based segments a video by the detection of updates of caption
text [23]. For the image-based segmentation, most of the methods attempt to
detect the discontinuity of camera shots in the video. Different image-based
features are used for shot boundary detection [6][7][13][15][51]. Among those
features, we find that intensity level of pixels [5][6][15][51], color histograms
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[6][7][13][15], and motion vectors [4][6][15] are the most efficient.

Our research work focuses mainly on the approach based on color
histograms. It is because the histograms approach [42], which collects the global
color information in each frame, is considerably accurate on passing object
motions in video shots. The intensity level and motion vectors approaches are

always over sensitive to that case.

2.2.2 Color histogram Extraction

For each input video frame, we build up a color histogram. A color histogram
can be collected using various color models, RGB, YIQ, CMY, HSV, etc. A
color model is divides into a number of bins, where each bin contains a range of
color values. Then those bins collects the color pixels on frame with have color
values fall into the same range. As a result, each value in the histogram is the
number of collected pixel in a bin. Here we give an example of color histogram

using a 64-bin RGB model and the corresponding video frame image on Figure

24.
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Figure 2.4 An Example Color Histogram

Once color histogram is constructed for each frame, we can use different
distance functions [13] to obtain the value of discontinuity value described in
Section 2.2.1. The simplest distance function is the sum of absolute differences

of corresponding bins for both histograms. Then we can determine the shot
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boundary using a threshold. A shot boundary occurs in between two video
frames if the discontinuity value is greater than the threshold value; otherwise, no
shot boundary occurs. After the shot boundary detection, a video is divided into

shots, which consist of a sequence of similar frames.

2.2.3 Further Structuring

In order to provide an effective grouped analysis, some researchers suggest
reducing the number of video fragments by grouping similar shots into a video
group [2][15][21][24][29][35][52]. A cluster-based approach [35][52] can be
applied on the video group formation. With the resulting video groups, we can
go through some higher level analysis of the video contents [15][29]. First, we
can know the organization of video materials along the video sequence. Besides,
we can figure out which group of materials is rather important according to the
number of member shots and shots’ durations. Therefore, in the video group

level, we start to explore more characteristics of the video contents.

Rui [35] further defines the video scene level by composing of content
related groups. He points out that the video group formation, which takes only
the visual content into account, leads to the lost of the temporal factor. The
resulting video groups are discontinuous in time sequence; however, it always
happens that adjacent video shots are related in the video contents, although they
do not belong to the same video group. Therefore, Rui applies a time
constrained clustering technique to further collect the video groups into video
scenes. These resulting scenes are continuous in time sequence, and should be
more understandable than the video groups. We illustrate the relation between

video groups and video scenes in Figure 2.5.

The use of video groups and video scenes are important in video analysis.
It is because there is no exact method to understand the contents in a video.
However, with video groups and video scenes, we can be easier to examine the
video contents according to the video structure. The video groups and video

scenes provide the organization of video shots. It is directly related to how the
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video contents, which are shown in video shots, are linked up together. Thus, it
is more effective to understand a video from scene to scene instead of from shot to

shot.

In our ADVISE system, we extend the use of Rui’s video structure in two
ways. First, we apply the video structure on building an image-based video
description. The video description can clearly illustrate the organization of the
video using a set of well-arranged video key frames. It enables users to
understand to the video contents immediately. Second, we apply video matching
technique on the video structure. We measure the similarity of video features
appeared on the video along the video structure. It results in a structural

matching for the videos. We will discuss these techniques in the later Chapters.

Group B

| Group A | | Group D
Scene X Scene Y
(Collects contents in the same story) (Starts at a new story)

Figure 2.5 Illustration of Video Groups and Video Scenes

2.3 XML Technologies

Extensible Markup Language (XML) [46] is a standard adopted by the World
Wide Web Consortium (W3C) in 1998. 1t is a restricted form of the standard
generalized markup language. The design of XML makes documents flexible,
easily accessible, and independent of platform. These features bring XML in

advanced to our document description languages, and thus, lead to the widely uses
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of XML in various kinds of applications. XML gradually becomes the standard

for exchange and representation of data and information.

In our research work, we apply XML on the storage of the V-ToC. XML is
used because it can provide a flexible nested hierarchical structure, which is well
suitable for the V-ToC structure described in Section 2.2. Also, XML can be
transformed easily into a web-based format using XSL, and hence, the V-ToC

structure is accessible on the Internet.

2.3.1 XML Syntax

XML [46] represents data in a plain-text format. A pair of markup tags is used to
encapsulate a piece of data, which is then called an XML element. Other than
textual data, XML elements can contain other elements, such that we can build up
a nested hierarchical structure. XML also allows us to associate attributes with
an element. These attributes act like the properties for the data element.

Example 2.1 illustrates the basic syntax of XML.

Example 2.1 Refer to Figure 2.6, we use XML to represent details of a book.
The pair of tags <book> and </book> encapsulates other elements like, <title>,
<year>, etc. These elements build up a hierarchy as shown in Figure 2.7.

Attribute unit with value cm defines a property for the <height> element.

<book id="7">
<title>ASP, ADO, and XML complete</title>
<year>2001</year>
<subjects>
<topic>Internet programming</topic>
<topic>Web sites design</topic>
</subjects>
<descriptions>
<pages>1012</pages>
<height unit="cm">23</height>
</descriptions>
</book>

Figure 2.6  An Example of XML Document
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title year subjects description
topic topic pages height

Figure 2.7 Tree Hierarchy of the Example XML Document

2.3.2 Document Type Definition, DTD

To construct a new structure using XML, we always need a DTD to maintain the
consistency of the structure [49]. We define all the elements, attributes and
relative association of elements inside a DTD, which serves as a grammar book to
check for any exception in the XML document. Here we define the DTD for the

above example XML document at Figure 2.8.

<!ELEMENT book (title, year, subjects, description)>

<!ATTLIST book id CDATA #REQUIRED>
<!ELEMENT title (#CDATA)>
<!ELEMENT year (#CDATA)>
<!ELEMENT subjects (topic+)>

<!ELEMEMT topics (#CDATA)>
<!ELEMENT description (pages, height)>

<!ELEMENT pages (#CDATA)>

<!ELEMENT height (#CDATA)>

<!ATTLIST height unit CDATA #REQUIRED>

Figure 2.8 DTD for the Example XML Document

2.3.3 Extensible Stylesheet Language, XSL

Since XML does not provide any presentable interface by itself, then XSL [47]
plays an important role in transforming XML documents to a neat presentation.
XSL provides filtering and sorting functions such that we can select and well
order data into the output presentation. HTML is a common output format while

we use XSL transformation. Thus, the XML data can be presented using a

21



web-based interface. Here we give an example XSL transformation and its

output at Figure 2.9 and Figure 2.10 respectively.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
<xsl:template match="/">
<html><body>
<xsl:for-each select="book" order-by="number (@id) ">
<hr/>Title: <xsl:value-of select="title"/><br/>
Year: <xsl:value-of select="year"/><br/>
Pages: <xsl:value-of select="pages"/><br/><hr/>
</xsl:for-each>
</body></html>
</xsl:template>
</xsl:stylesheet>

Figure 2.9 XSL for the Example XML Document

Title: A5, ADO, and XL complete
Tear: 2001
Pages: 1012

Figure 2.10 Web-based Output Presentation for the Example

2.4 SMIL Technology

Synchronized Multimedia Integration Language (SMIL), which is first announced
on 1998, is another standard recommended by W3C [48]. It is designed for
performing synchronized multimedia presentation on the Internet. We can use
SMIL to specify the temporal behavior of the presentation, design the layout on
the screen, and associate media objects with hyperlinks. SMIL documents are
actually in XML format with well-defined DTD, such that SMIL browsers can
interpret the tags and make proper layouts or operations. This mechanism is
similar to opening HTML on common web browsers. There are several SMIL
browsers available on the Internet, e.g., GRINS [31] and RealPlayer [32] [33].
RealPlayer allows SMIL presentation to load streamed media clips through the
Real Time Streaming Protocol (RTSP), so that the playback always keep

synchronized according to the timeline [32].
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24.1 SMIL Syntax

Since SMIL [48] is in form of a specific and well-defined XML, it uses markup
tag pairs to define media objects in the presentation. We demonstrate the use of

SMIL in Example 2.2.

Example 2.2 Figure 2.11 shows the source of a sample SMIL presentation.
The presentation consists of two video clips, 1.rm and 2 .rn, which are streamed
from different hosts using the RTSP protocol. We use clip-begin and clip-end
attributes at the video element to define the relative position at the source videos.
For example, we have taken the video segment from the 0-th second to the 8-th
second from 1.rm. Besides, we can define the layout of the presentation using
layout, root-layout and region tags. We can play the SMIL with a
RealPlayer [33] as shown in Figure 2.12.

<?xml version="1.0"?>
<smil xmlns="http://www.w3.0rg/2000/SMIL20/CR/Language">
<head>
<layout type="text/smil-basic-layout">
<root-layout width="550" height="300"/>
<region id="rl"/>
</layout>
</head>
<body>
<seq>
<video src="rtsp://hostl/l.rm" clip-begin="0s" clip-end="8s" region="rl"/>
<video src="rtsp://host2/2.rm" clip-begin="5s" clip-end="15s" region="rl"/>
</seqg>
</body>
</smil>

Figure 2.11 An Example for SMIL Source

2.4.2 Model of SMIL Applications

SMIL is often applied to online video personalization systems [17][18][30]. Two
main reasons make SMIL favorable. First, SMIL benefits from the XML
plain-text property. Web server can receive selections of preferred video clips
from users through a web interface, and instantly generate the corresponding
SMIL presentation with server-side scripting languages such as PERL, PHP, ASP,
etc. The selected video clips are wrapped by SMIL and played according to
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users’ preference [17]. This model is demonstrated in Figure 2.13. The second
reason is the network and client adaptability of SMIL [18]. It can dynamically
configure the most appropriate media object for streaming, which depends on
client display capabilities and connection speed. It would be convenient and safe
for the SMIL browser on the client side to handle these limitations, instead of

including additional considerations while generating the SMIL presentation.

{3) RealOne Player File

Tvbnews30 - TVE oEf 0:lE | o)

Figure 2.12  An Example for SMIL Presentation
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Figure 2.13  Model for Video Personalization Systems using SMIL
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Chapter 3

Overview of ADVISE

In this chapter, we are going to describe the design of the ADVISE system [28].
ADVISE is a web-based video browsing and retrieval system. It provides a set
of services to help users in understanding the video contents and the retrieve

similar videos efficiently.

In Section 3.1, we first discuss the objectives for the design of ADVISE.
There are four major objectives that ADVISE can achieve. We aim at enhancing

the browsing and retrieval of video on the Internet through these objectives.

In Section 3.2, we describe the detail system architecture of ADVISE.
There are three major modules in ADVISE. They are the video processing

module, the web-based video retrieval module, and the video streaming server.

The web-based video retrieval module is, in fact, the interface for Internet
users to access the video browsing and retrieval services provided by ADVISE.
These services are V-ToC presentation, generation of SMIL video summary, and
the query of similar videos. We briefly describe how they perform in Section
3.2.2. However the detail mechanism under these services will be discussed in

later chapters.

We demonstrate the ADVISE system using the application interface that we
have implemented. A set of screenshots is shown to illustrate how the ADVISE

system works.
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In Section 3.3, we summarize the major parts of this chapter.

3.1 Objectives

As we have mentioned in Chapter 1, there are not enough information provided
for users to select a piece of video that they want from the abundant video sources
in the Internet repositories. Therefore, it is an urgent need to design a system

which provides a better management of those videos on the Internet.

In this thesis, the system we designed for the above purpose is called
ADVISE. There are four major objectives for the design of ADVISE:

1. to provide a efficient way to describe the video contents;

2.  to save the time for browsing the whole video to know the contents;

3. to search videos with similarity in certain video features; and

4. to provide services through the Internet.

According to these objectives, ADVISE is designed to provide a set of

services on the Internet. These services enable users to have a better

understanding of the video contents and an efficient retrieval of the videos.

3.2 System Architecture

The system architecture of ADVISE is shown in Figure 3.1, it consists of a video
preprocessing module, a web-based video retrieval module, and a video streaming

server. We discuss these three modules in the following sections.

3.2.1 Video Preprocessing Module

The video preprocessing module is used for generating a structure of Video
Table-of-Contents (V-ToC) for a new input video and performing the similarity

matching of the new video with other videos in the database.
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Figure 3.1 System Architecture of ADVISE

This video preprocessing module is an offline module operated by the
administrator of the ADVISE system. We have implemented it using Visual C++
with DirectX. The interface is shown in Figure 3.2. We can input different
types of raw videos into this module, for example, AVI, MPEG, Quick Time
Movie, and Windows Media Video (WMYV), which is provided by DirectX. The
administrator preprocesses any new video source and prepares the video

information for user to retrieve through the Internet.

There are two steps in this module; V-ToC construction and video matching.

Step 1: V-ToC Construction

We first structure the input video into a four level video tree structure called
V-ToC. It extracts video features from the video as the ground information in
video segmentation. Videos are segmented into four types of video components,
video shots, video groups, video scenes and the video itself. We organize these
video components hierarchically into a tree-like structure. Since this tree
structure can show the organization of the video contents, so it acts as the

table-of-contents for a video.
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We can select several video segmentation options on the setting panel of this
preprocessing module as shown in Figure 3.3.  We can select whether to use an
adaptive threshold instead of a fixed threshold, as well as the weighted regional
histograms instead of a global color histogram for each video frame. Once the
V-ToC structure is generated, we can save it into an XML format as shown in
Figure 3.4. The XML V-ToC is then ready for presentation in the web-based
video retrieval module in the later section. The detail mechanism of the V-ToC

construction will be described in Chapter 4.

e Gk o= Meee T ek
0D o & L Sl

Comral bur Playlng biaviz
Megle| Oeck | Play | oot Lo [Paysa| goep |

Festom ol |
the mawvie:

‘Viice lndarmatian
T Iy
Frame; My o

Figure 3.2 The Implementation of the Video Preprocessing Module

Step 2:  Video Matching

Other than V-ToC generation, we proceed the video matching on this
preprocessing module. We compare videos based their corresponding V-ToCs.
Occurrences of video features in both videos are the key factors to determine the
similarity between them. Since the V-ToCs are in the form of a specialized tree
structure, we employ two tree matching algorithms to measure the similarity

between them. The two matching algorithms are (i) the non-ordered tree
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matching algorithm and (ii) the ordered tree matching algorithm. These
algorithms are different because the ordered tree matching algorithm concerns on
the temporal ordering of video features while the non-ordered tree matching
algorithm does not. As a result, the ordered approach can show the result of
similarity in video structure while the non-ordered approach can show the result
of similarity in video contents. Therefore, both results are useful references for a
user to look for a similar video that he may want. We will discuss these video

matching algorithms in detail in Chapter 6.
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Figure 3.3 Setting Panel for the Video Preprocessing Module
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Figure 3.4 Save V-ToC Structure into XML
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As it is shown on the setting panel in Figure 3.3, we can perform both the
non-ordered video tree matching and the ordered video tree matching algorithms
to get the similarity scores. The ADVISE administrator measures the similarity
score between the new input video with other videos stored in the video database.
The resulting scores are recorded and saved in a database. These scores are
prepared for users to query for similar videos, through the web-based video

retrieval module in the next section.

3.2.2 Web-based Video Retrieval Module

The web-based video retrieval module is in fact the interface for users to access

the services provided ADVISE.

On the server side, all the contents of this module are prepared in a
web-based format. A web server, which is capable to execute PHP scripts, is
used to transmit our contents to the user. The PHP scripts will be used in some

of the services below.

At the client side, a user is suggested to use the media browser of RealOne
Player [33] to browse the contents of ADVISE. It is convenient for the user to

retrieval video at the same time using the player.

There are three web services provided by ADVISE. They are the V-ToC
presentation, the generation of SMIL video summary, and the query of similar

videos.

Service 1:  V-ToC Presentation

As we mentioned in the step 1 of Section 3.2.1, an XML V-ToC is generated for
each input video. We can further present it in a web-based format using XSL as
shown in Figure 3.5. This presentation is an image-based description for the

video.
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A user can know the contents for a list of video at once, by having a quick
look on the V-ToCs. Then, he can easily select his interested pieces efficiently as
they know the video contents. It saves a lot of time from downloading and

browsing the video one by one.
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Figure 3.5 A List of V-ToCs

Service 2:  Generation of SMIL Video Summary

Once a piece of video is selected according to the V-ToC, the user may want to
extract only the important contents from the video for browsing. Then, ADVISE

enables the user to generate a video summary, which is customized for his needs.

We employ a user input model to customize a video summary. A set of
video features is defined, so that we calculate the score for each video segment
according the ratings provided by the user. Then, we use a clustering method to
adjust the video segments selection in order to generate a smooth summary of
video. We present the video summary back to the user with a SMIL format, and
thus a user can easily retrieve the summary through the Internet. The details of

video summarization will be discussed in Chapter 5.

31



The user input panel to adjust the weights of features and other settings is
shown in Figure 3.6. Once the summarization settings are received on the web
server, a PHP script is invoked to interpret the request and generate the

corresponding SMIL presentation.

We can further include some more details of each video segment by using the
V-ToC. Since the XML and SMIL are both in plain text format, we can apply the
PHP script, which consists of an XML parser, to transform the information in
V-ToC structure into the SMIL presentation. Then the resulting SMIL is divided
into three regions. In the first region, those selected video shots form a video
sequence. The second region contains a text stream, which is aligned with the
video sequence to show the scene, group and shot numbers of the playing video
segment. In the third region, the corresponding key frame for the video segment
is shown. The user is then able to play his customized SMIL video summary

through the Internet with the RealOne player as shown in Figure 3.7.

Video Story Line
L2348 a nem:u 13

o Information Pansl
[! l||| 11 ‘

poman Faces (3300
Video Table-of-Contents. g
r T - Maln voice AL=10)
| Eceng 0
Group_0 F
(130}

- g

m Famals Veice 9
o

Wohuenn Laeed (120}

1 hat_0 ot i sec

| Scena 1
S 1 U CiptonTet | _aith
B Time Coastraint
| = 1o e
jo 1 T .
&] How Playing @ wer GhMyubary (oo ] B II e |rn|
sabemit

Figure 3.6 User Input Panel for Video Summarization
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Service 3. Querving Similar Videos

A user can also query for similar videos in ADVISE. We use a PHP script to

retrieve the stored video matching results described in the step 2 of Section 3.2.1.

We enable user to use the video name as the query. He can also select
matching either the color histogram feature or the shot style feature. A number
of similar videos are listed in descending order of the similarity score. We hide
those results with similarity score lower than 30%. It is because those results are

not likely to be similar to the querying video.

After searching the similar videos, a user can browse the V-ToC in order to
see whether the resulting video is the one that he looks for. The web-based video

matching interface is demonstrated in Figure 3.8.
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3.2.3 Video Streaming Server

The third module in ADVISE is the video streaming server. It is responsible for

delivering videos on the Internet.

We use a Real System Server [33] as the streaming server in ADVISE.
Figure 3.9 shows the interface for the server configurations. A streaming
protocol, RTSP, is used in this server, such that videos can be sent in streams.
Then, we can start playing the video immediately before the full video is
downloaded. With the help of the streaming service, we can also select to play
some specific video segments from a video, which resides on the server, using a
SMIL presentation. This mechanism is used in delivering our SMIL video

summary to the users.

As we have mentioned in Section 3.2.1, ADVISE accepts different video
formats, some of them may not be compatible with RTSP. Therefore, we need to
convert all the source videos into RealMedia such that they can be streamed using
RTSP [33]. We use the RealProducer provided by the Real Networks [34] to
convert the videos. The resulting RealMedia videos are then stored in the video

database before they are retrieved by the users of ADVISE.

RealSystem Administrator

The RealServer Monitor shows activity on one or more RealServers, making Server
management easy. It shaws how the Server is being used, who is using it, when it is most
used, and which files are the most requested.
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Figure 3.9 RealSystem Administator Page
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3.3 Summary

We have described the overall architecture of the ADVISE system. There are
three major modules in ADVISE. The first one is the video processing module,
the second one is the web-based video retrieval module, and the third one is the

video streaming server.

The web-based video retrieval module is, in fact, the interface for Internet
users to access the ADVISE system. It provides three services to the users.
They are the V-ToC presentation, the generation of SMIL video summary, and the

query of similar videos.

We have briefly described how those services perform in Section 3.2.2.
However the detail mechanism of these services will be discussed in later chapters.
Therefore, we will discuss the construction of V-ToC in Chapter 4, the video

summarization in Chapter 5, and the video matching in Chapter 6.
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Chapter 4
Construction of Video

Table-of-Contents (V-ToC)

In this chapter, we describe our approach on the construction of V-ToC, which is
an image-based video description mentioned in Chapter 1. We organize the
construction process into two major parts. The first one is about the video
structuring and the second one is about the structure storage and presentation.

Figure 4.1 stretches the workflow of the V-ToC construction.

In Section 4.1, we structure a video into a 4-level tree structure as described
in Section 2.2. A color histogram approach with the additional regions setting
[15] is used in the feature extraction step. Then, in the video shot boundaries
detection and video groups formation, we employ an entropic threshold function
[51], in order to make our approach adaptive. Next, we figure out the video
scenes formation step, which concerns on the temporal factor from the video

sequence. These are the steps to build up the V-ToC structure.

XML is used to store the V-ToC structure. In Section 4.2, we define a set of
XML elements to document the structure in a nested hierarchy. Also, we define
a DTD to maintain the consistency of the XML structure. To make a
presentation of the XML structure, we use XSL to transform it into a web-based
format. The web-based presentation is designed to provide users a concise and

neat description of the video.
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In the Section 4.3, we detail the experiment of the generated video structure

and evaluate the results.

Construction of V-ToC

Video Structuring Process

Video Video Shot Video Video
Features :D Boundaries :D Groups :D Scenes
Extraction Detection Formation Formation

< =

Video Structure Presentation

Storage of Web-based
the Structure :D Presentation
in XML using XSL

Figure 4.1 Workflow for V-ToC construction

4.1 Video Structuring

4.1.1 Terms and Definitions

Before we start to discuss the algorithm for video structuring, we define several
key concepts as follows. We extend Rui’s definition, which is introduced in

Section 2.2, in a mathematical format.

Definition 4.1 The structure of a V-ToC is defined as a 4-level tree structure,
which is shown in Figure 2.2. It consists of the video level, the video scene level,

the video group level, and the video shot level.

Definition 4.2 A video is defined as a sequence of frame images. It is

represented by V =(f,, f5,+*, f,), where f; is the i-th indexed frame of the video
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and n is the number of total frames in the video, V.

Definition 4.3 A video shot boundary occurs when the frame-to-frame
distance, z(f.,f..,), between two consecutive video frames, f, and fy,, is greater
than a certain threshold, T.  We use the frame index, x+1, to locate the video shot

boundary.

Definition 4.4 To compare the similarity between two video frames, f. and f,,

we define the frame-to-frame distance as z( o fy). This distance is the

difference of the quantified video features between two video frames. This is

symmetrical between any two video frames.

Definition 4.5 At the video shot level, a video shot, s, is defined as a video
sub-sequence, which has video shot boundaries occur at the beginning and the

end only. A shot can be written as s=(f,, fi,1, firar» fir;), or in term of an
ordered pair s=[f,, f,,;], where 1<i<(i+j)<n and i,j>1. Weillustrate the

properties of a video shot in Equation (4.1).

vx,ye(i,i+1,i+2,-4-,i+j)Z(fx’ f1) <T
and (4.1)
Z(fi—l’f[) >T and Z(fi+j’fi+j+1) >T

Definition 4.6 We define a key frame be the first frame in the video shot.

For the shot, s;, we denote its corresponding key frame as k;.

Definition 4.7 A video group is defined as a set of video shots. It can be

written as g =1{s, 5, >S5, >} where 1<ay,a,,a;,---<m, and m is the number of

a 3

video shots in the video. There are two properties for the member shots.
i) The frame-to-frame distance between the key frames of any two member
shots is not greater than the threshold, Tieyfame- It is formulated in

Equation (4.2).

vi,je{al,az,a_;,“.}z(ki’kj) < Tkeyframe (42)

ii) The time separation between any two member shots on the video
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sequence is not greater than the threshold, Tiempora, for this temporal

factor. It is formulated in Equation (4.3).

vaie{az,a3,...} if Sa,. = [f:v‘ ’fJ’i ] 5 saH = [fo ’f:v,,l ]
X =Y <1,

temporal

(4.3)

Definition 4.8 A video scene is defined as a set of video groups. It can be

written as c¢=1{g, g, &}, where 1<b,,b,,b,,---< p, and p is the number of

video groups in the video. Those video groups in a scene are mutually exclusive
and they can be combined together to form a continuous video shot sequence, that
IS ¢=(8;,,5,,1,5,,2,""»8;,;), Where ] is the total number of members shots in all
groups. Besides, no subset of a scene can form another continuous shot

sequence.

By using the above definitions, we detail the formation of V-ToC structure in
the following sections. The first step is the extraction of regional color
histograms as the video feature. Based on the extracted color feature, we carry
out video shot boundary detection algorithm in the second step. Then, the third

and forth steps are formations of video groups and video scenes respectively.

4.1.2 Regional Color Histograms

There are two major settings for our color histograms. The first one is the use of
Hue-Saturation-Value (HSV) color model, and the second one the division of

video frames into several regions.

Instead of a RGB color model, we use a HSV model for our color histograms.
These two color models can be graphically presented as shown in Figure 4.2. A
HSV model is more suitable for building color histograms of video frames
[15][35]. Itis because a RGB model is always too sensitive to the color changes
due to light intensity, while in a HSV model, we can easily avoid this problem by
detecting the color value which varies along the V-axis. We find that it is rather
essential in shot boundary detection, since there are always instabilities of lighting

effect in videos, for example, flash light, and sunshine.
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In our setting, we use a 64-bin color histogram. It consists of a 2
dimensional color space for H and S values. The H values are divided into 16
intervals and the S values are divided into 4 intervals. It results into 64 different
ranges of color value. If we further divide the color space into more bins, for
example 256 or 512 bins, it will be too sensitive to color changes. Therefore 64

color bins is an appropriate configuration.
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Figure 4.2 RGB and HSV Color Models

Since the traditional color histogram method can only detect the global color
changes between video frames, we improve it by using regional color histograms.
By using histograms for regions, we are able to catch a more localized color
distribution in a video frame. As a result, we can avoid missing the boundary
between two frames having different objects but with the same combinations on
them. Besides, we can see that the major object is always shot at the center
region of the camera, while the regions around are the background. When there
is a rapid change in background color between two consecutive video frames, it
causes great difference in color histograms of those frames. Then, a shot
boundary detection algorithm will wrongly expect that a shot boundary occurs
between the two frames. If we divide the video frame into several weighted
regions, we can avoid the false detection by focusing mainly on the most

important part located at the center.
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Though there are benefits to localize the color histograms, we cannot create
too many regions on the video frames. It is because a huge computation time is
needed to calculate the difference between frames with many regional color
histograms. It demands large memory storage for all the histograms. Other
than these problems, we find that adding regions increases the sensitivity to
objects across regions. That means objects shifting from region to region can
causes great differences in regional color histograms, and it leads to the false
detection of shot boundary. Figure 4.3 demonstrates those problems for a region

color histogram to tackle.

We also summarize the pros and cons of the above settings in Table 4.1.

Global Color Histogram Approach Approach with Too Much Regions
Same Color Combination Objects Moving Across Regions

o ,°
L !

Missed Detection for Video Shot Boundary False Detection

Background Changes

False Detection

Figure 4.3 Problems for Global Approaches and Regional Approaches

In our configuration, we divide a video frame to five regions as shown in
Figure 4.4. They include a rectangular region at the center and 4 corner regions.
We also build the color histogram for the whole video frame, which we number it
as region 6. It is because we want to avoid the false detection caused by objects
moving across regions. The color histogram for the whole video frame is the
global histogram, which help us to keep a balance between a global approach and

a regional approach as we mentioned above.
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Table 4.1

Summary of Color Histogram Settings

Pros

Cons

Use of HSV Model |

Can detect color
changes caused by
lighting effects

Require additional
transformation

Use of Regional
Histograms

Can detect certain local
color changes

Can be set insensitive
to background changes

Increase the
computations and
memory usage
Sensitive to objects
across regions

As a result, we collect six histograms for each video frame.

When we

calculate the total difference between two video frames, a weight can be applied

to each regional color histogram. We expect that the global histogram should be

the most weighted, the one for center region should be the second important, and

the corner regions are the least important.

4.2.

Our current setting is listed in Table

Table 4.2  Our Current Setting for Weight of Regional Color Histograms

Region Weight
1. Center 0.2
2. Left Upper 0.1
3. Left Lower 0.1
4. Right Upper 0.1
5. Right Lower 0.1
6. Global 0.4

In order to calculate the frame-to-frame distance defined in Definition 4.4,

we now use the color histograms as the quantified video feature.

For two video

frames, f, and f,, we calculate the frame-to-frame distance, z(f..f,), using a simple

absolute distance of their color histograms as in Equation (4.4).
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20.f,)= X |Hist, )~ Hist, )
" (4.4)
wfof )= Dlaltof,)xw)

V histograms , i
Hist, ;(j) denotes the j-th color bin in the histogram for region i in frame f..
zi(fwf,) 1s the difference in region i between two frames. w; is the weight of a

region.

By using Equation (4.4), we can find out all the frame-to-frame distances,
z(fufx+1), between any two consecutive video frames, f; and f.+;. According to
Definition 4.3, these results are used to determine the occurrences of video shot

boundaries.

Figure 4.4 Five Regions in a Video Frame

4.1.3 Video Shot Boundaries Detection

Once we gather all the frame-to-frame distances between consecutive video
frames, we need a threshold, 7, to determine whether a video shot boundary
occurs as defined in Definition 4.3. Since the choice of threshold can greatly
affect the result of video shot boundaries detection, we need to adjust the value
using adaptive approach according to each video. We employ the algorithm
suggested by Yu [51], which uses entropies to adjust the threshold. It is an

efficient algorithm to calculate an adaptive threshold.
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The first step is building the statistics for the calculated frame-to-frame
distances. Let the largest frame-to-frame distance, max(z(ff:+;)), among n
video frames to be z,,. We divide the range of values from 0 to z,, into g
intervals. The size of each interval is z,, divided by g. Then for each interval,
we can count the number of the frame-to-frame distances which values fall into
the range. The counted number, count;, for an interval, i, is calculate as in

Equation (4.5).

n-1
count, = z&wm—‘ —ij , 1<i<gq
x=1 Z max /q

d(a—i)=1, whena=i
where
O(a—1i)=0, otherwise

(4.5)

The second step is the calculation of probability distributions and entropies.
If we pick a threshold value, ¢, in between 1 and ¢, we can divide those ¢ intervals
into two classes at #, one for the video shot boundaries and the other for the
non-boundaries.  These two classes have their corresponding probability
distributions for the frame-to-frame distances. By assuming the threshold value
to be ¢, the probabilities for the non-boundaries, P,(i,t), and the boundaries, Py(i,?),
at interval i are calculated using Equation (4.6). Also, the entropies for the
non-boundaries, H,,(t) and boundaries, Hy(?), and the sum of those entropies, H(?),

are then calculated according to Equation (4.7).

count,

P (i,t)=— ,1<i<t
Zcount/
J=1 '
count ; (4'6)
P(i,t)=———— . t+1<i<q
Zcountj
j=t+l
t
i=1
4.7)

H,(6) == Y P.()log P.()

i=t+1

H(t)=H, () + H (1)
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After we have calculated all the entropies, H(?), for each value of ¢ in
between 1 and g, we can find an optimal threshold, #,,,, at which H(?) is the largest.
It is formulated in Equation (4.8). The optimal threshold, #,,,, is in fact the most
informative point to divide the intervals into two classes. Figure 4.5 illustrates,

in a graphical format, the approach to find an optimal threshold, .

H(t,,)= [:l}}za’.{q{H (1)} (4.8)
A
Non-boundaries
5 At topt,
H(topt) is maximum
Video shot

boundaries

distances in each interval

The number of frame-to-frame

_____

q intervals of frame-to-frame distance values

Figure 4.5 Finding the Optimal Threshold

Finally, we can calculate the required adaptive threshold, 7, which equals #,,,

times the size of an interval, as shown in Equation (4.9).
T=t,, x—% (4.9)

We can then determine the video shot boundaries using the resulting adaptive

threshold value as shown Equation (4.10).

>T = Shot boundary occurs

2(fof 1) { (4.10)

<T = Notashot boundary
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After finding all the video shot boundaries, we can divide the whole video
sequence into a number of video shots. @ We can use the -calculated
frame-to-frame distances and the adaptive threshold to formulate the video shots
according to Definition 4.5. We also illustrate the shots formation in Example
4.1. We regard the set of resulting video shots as the video shot level of the
V-ToC. Figure 4.6 shows the formation of the video shot level for V-ToC.

Example 4.1 Given a video, V =(f, f>>"**» fis00), having 1500 frames. By

using the above calculations, we found that the following frame-to-frame

distances are greater than the adaptive threshold, T.
2(fo105 S210)>T 5 2(fs715 Ss78) > T 5 2(fr2055 Fr1206) > T 5 Z2(fraass SFrase) > T

As a result, we can conclude that the video shot boundaries are located right

after frames f>10, f577, f1205 and f144s. Then we divide the video sequence at those

frames, such that the video shots, s; to ss, are represented as follows.

8= [f1>f210]a52 = [f211>f677]a53 :[.f6783f1295]5s4 :[f129(wf1445]ass :[f14463f15(10]

According to Definition 4.6, we take the first frame of each video shot to be
the key frame of the shot. A key frame represents the video shot in the video

groups and video scenes formation. We detail those formations in the following

sections.

(Video Shot Level of V-ToC) Video Shot 1 Video Shot 2 Video Shot 3

\
/

Frame 676
Frame 677

- N )
= - -
~ ~ o~
o ) )
£ € £
& I ®
o o [
w [ C

(Key Frame
of Shot)
Detected Shot

Boundary
Detected Shot

Boundary

Figure 4.6 Formation of Video Shot Level for V-ToC
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4.1.4 Video Groups Formation

After dividing a video into video shots, our next step is collecting similar shots
into video groups. A video group is defined in Definition 4.7. There are two
problems to be solved in the video groups’ formation. The first one is the
finding the threshold, Tieyame, to test the feature similarities between key frames
of member shots. The second problem is finding the threshold, Tiemporas, t0

control the time separation between member shots.

For the first problem, we can directly use the threshold, 7, which obtained in
the video shot boundaries detection, as Tieyfiame. It 1s shown in Equation (4.11).
Since T can determine similar video frames in a sequence, we use the same value
for Tieyfiame, such that we can find similar key frames from different video shots.
There are other methods to find the inter-shot dissimilarity in [15], we can use
them to find out a more accurate value for Tieppame. However, it is more
convenient to use the value of T because most of those methods involved a lot of

computations, which may not really worth doing.

Tkeyfmme =T. (4 1 1)

For the second problem, we are going to find the value of Tempora, Which can
avoid grouping shots separated far apart. Rui suggests that video shots separated
far apart are not likely to be related in the video contents [35]. Figure 4.7 is an
example for this case. Therefore we need to choose the value of Timporas

carefully.

Assume there are m video shots in the video, and then Tjepporas 18 calculated
by the average length of video shots, s;, times a predefined constant factor, K.
Equation (4.12) shows the calculation of Tiempora.  According to the result of Rui,
a video shot, which is ten times the average shot length apart from other video
shot, is probably not related [35]. As a result, in our current setting, K is equal to

10.
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Z length(s,)
i=l x K

m (4.12)

Si = [f;:&fy]
where
length(s;)=y—x

T,

temporal =

Should Not Be Combined Together
Group A ¢ — S RE oL TR LomPned Togeel Group B

— | f. ” 7 N

_lﬂ A _1:_‘ 5

Commercial Lengthy TV Programme Commercial

Figure 4.7 Temporal Factor for Video Groups Formation

Once we have set the thresholds, we can use an efficient algorithm to group

the video shots.

Since it is not efficient to ensure the first property of a video group in
Definition 4.7, we modify this property in order to fit into our algorithm.
Instead of finding the frame-to-frame distances between all key frames in the
video group, we calculate only two of them. The first one is the distance
between the key frame, k., of a video shot, sy, and the key frame, k,, of the first
member shot, s,, in the group. The second one is the distance between £, and the
key frame, k., of the last member shot, s., in the group. Finally, we take the
average of the two distances to be the shot-to-group distance, z,(). We formulate
these calculations in Equation (4.13). In our algorithm, we assign a video shot to

the video group by comparing the shot-to-group distance with the threshold,

T, keyframe-

Given a video shot, s, and a video group, g; = (8,8, 75,8, ) 1
z(k k) +z(k, k) (4.13)
2

shot-to-group distance, z,,(5,.8; ) =
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The video groups formation algorithm is summarized in Algorithm 4.1.
Each video shot from the input shot sequence is examined in turn. By finding
the smallest shot-to-group distance, we can take an existing group which is the
most similar to the current shot. In order to fulfill the two properties of a video
group, we assign the current shot to the group when (i) the shot-to-group distance
is smaller than Tjeame, and (i) the time separation between the current shot and
the last member of the group is smaller than Tiempora.  Otherwise, we need to

create a new video group for the current shot.

Input: A sequence of m video shots, (S“SZg'ysm).

Output: Aset of p video groups, (?z(gpgégn,gp),where g is thei-th

video group.

1. Add a group g to G, and assign s to g .

2. for each 5, in (sz,s3,---,sm)

3. for each g, in G,

4, Calculate the shot-to-group distance, Zz,(s,g;).

5. end for

6. Find Zg(%,ga)zqg?ﬁkﬁ%,gﬂ), among all the existing groups.

7. Test:
1) 2,050, 80) < Thorprame
ii) W“‘Vﬁjkwmmlr where w is the index of first frame in s,
and v 1is the index of last frame in the last member shot of
8a -

8. if i) and ii),

9. then assign s, to g,.

10. else add a group g, to G, and assign s, to g, .

11. end if

12. end for

Algorithm 4.1  Video Groups Formation

By using the above algorithm, we can formulate a set of video groups, which
collect similar video shots. We can then know the number of times that a video

shot repeats and the number of different shot groups appeared on the video.

Figure 4.8 demonstrate the formation the video group level in V-ToC using

an example.
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Figure 4.8 Formation of Video Group Level of V-ToC

4.1.5 Video Scenes Formation

Based on the video groups prepared, we can construct video scenes in this step.
According to Definition 4.8, we combine a set of adjacent video groups into a
continuous video shot sequence. Since member shots of those video groups are
appearing in turns, it is reasonable that they are quite related in video contents
[29][35]. As a result, we can combine them into a scene which extracts a
complete segment of the video story. Example 4.2 is a common example to

illustrate this idea.

Example 4.2 In an interview video as shown in Figure 4.9, there are shots
taken on the interviewer and interviewee at different view angles. Then video
groups, which contain those different kinds of shots, always appear across each
other throughout the interview. Therefore, we can expect that if we combine

those concurrent video groups to a video scene, the resulting segment of video will
have its own substantive content.

Group B

Group C

Figure 4.9 An Interview Video
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There are two steps to form video scenes. First we need to sort video
groups according to the temporal order of their first member, which is the most
preceding video shot in the group. Second, we compare the time slots for the

first and the last member in the group with the time slot for each scene.

After the groups are sorted, there are only three cases we need to handle in
the second step. (1) We assign a group to a scene if it is overlapped with the
time interval of the scene. (2) If a group includes the first member within the
scene time and the last member outside the scene time, we also assign the group to
the scene. However, in this case, we need to expand the time interval of the
scene to cover this group. (3) If a group is not overlapped with any scene, we
create a new scene for the group. The examples for these three cases are shown
in Figure 4.10.  All video scenes are formed after every video group is examined

in turns.

We summarize this algorithm in Algorithm 4.2.

Input: A sequenceof p videogroups, (?z(gpgz;u,gp),where g, 'sare

ordered by the temporal sequence of their first member shots.

Output: A set of r video scenes, (jZ(C“CZy'ycr), where ¢; is the j-th
video scene.

1. Add a scene ¢ to C, and assign g, to ¢, such that ¢, can also

represented by a sequence of member shots of g.

2 Set the number of scenes, r=1

3. for each g;=(s,,~,s,) in G

4, if w<y<x<z, //case(2)

5. then

6 i) assign g, to ¢, =(s,,"",S,)

7 ii)  update ¢, to (s,,":",S,) .

8. else

9. if w<y<x<z, //case(3)

10. then

11. i) add a new scene ¢,,, to C, and assign g, to ¢, .
12. ii) ¢, can be represented by (s,,~,s,) .
13. iii) r=r+l

14. else //case(l): w<y<x<z

15. i) assign g; to ¢, =(s,,"*",S,)

le. end if

17. end if
18. end for

Algorithm 4.2 Video Scenes Formation
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Figure 4.10 Different Cases of Video Scene Formation

>

(Assign g, to B and extend Bto s)

.\\\}

(Create Scene C and assign g, to C)

After the video scenes formation, we need to build up the tree structure as
defined in Definition 4.2. We have extracted all the required components under
the video scene level for V-ToC. According to those sets of video scenes, video
groups and video shots, we can organize the video components into nodes of the
tree structure as shown in Figure 4.11. Finally, at the video level, there is only
one single node, which collects all video scenes as child nodes, represents the

whole video.
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Figure 4.11 Formation of the Whole V-ToC Structure

4.2 Storage and Presentation

Once the V-ToC structure is built, we store it in an XML format. We use XML
for V-ToC storage because of four major benefits. First, we can build up an
organized and compact data structure for using the nested hierarchy of XML [46].
It will be efficient to identify each video component by the corresponding XML
element defined. Second, with the plain-text property of XML, we are able to
modify any items, reorganize the structure, or query the stored information
comfortably. Third, by the extensibility of XML, we can be flexible to include
additional information in the video structure. Defining a new set of elements can
extend the video tree structure, and carry other video features, including caption
text from video caption extraction, transcript from speech recognition, or the
presence of face detection. For the fourth major benefit, due to the growing
importance of XML as a standard data exchange protocol on the Internet, we can
widely spread the V-ToC structure to other multimedia applications with the XML

format.

We design an XML data structure in the following to store the V-ToC. A
DTD is defined to maintain the consistency of the V-ToC data structure. Besides,
we detail the presentation of the V-ToC structure on a web-based format using

XSL transformation.
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4.2.1

Definition of XML Video Structure

We define seven XML elements to store the 4-level tree structure of V-ToC.

Those elements are in the following.

a

<advise> is used to encapsulate all elements for V-ToC structure, such
that it is convenient for exchanging data structure between our XML
applications.

<video> is the root level component of the V-ToC structure. It
contains multiple scenes. It has two attributes, length and src.
length states the video duration and src point to the file location of
the video source.

<scene> represents a video scene component in the V-ToC structure.
It contains video groups. An attribute, id, is associated with <scene>,
and represents the scene number.

<group> 1s a video group in the V-ToC structure. It consists of
multiple video shots. Similar to scene, it contains an attribute, id,
which is the group number.

<shot> is a video shot in the V-ToC structure. It also has an attribute,
id, to represent the shot number. It can carry different video
information, including the time and the key frame.

<keyframe> is an element to store the key frame for the corresponding
video shot. The attribute, img, points to the location of the stored key
frame image. The attribute, id, is used to represent the video frame
index.

<time> contains an attribute, value, which is used to record the
beginning time, in seconds, of a shot in the video sequence. This
value is a positive integer. For example, a value, 11, means that the
shot starts at 11 seconds in the video sequence. The time value is
important because most video browsing applications use time to locate
a video shot instead of video frame index. The value is calculated by

Equation (4.14).
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value = video frame index x video frame rate

(4.14)

We use these elements to construct a nested XML hierarchy for the V-ToC
structure. We use the elements <video>, <scene>, <group> and <shot> to
represent the four level of video components, and organize into a tree-like
structure as shown in Figure 2.2. Also, we associate each <shot> with the
<keyframe> and <time> eclements, so that more video features and other

information about a video shot can be included in the XML V-ToC. The

associations between the above elements are summarized in Table 4.3.

Table 4.3 Associations between XML elements for V-ToC

XML Elements Child Nodes Attributes
<advise> .. </advise> video -
<video> .. </video> scene length, src
<scene> .. </scene> group id
<group> .. </group> shot id
<shot> .. </shot> time, keyframe id
<keyframe/> - img, id
<time/> - value

In order to maintain the consistency, we define a DTD [49] for the V-ToC
We define the DTD with all those elements, their relations and
The DTD we employed is defined in Figure 4.12. An

structure.
associated attributes.
example XML V-ToC structure according to the defined DTD is shown in Figure
4.13.

4.2.2 V-ToC Presentation Using XSL

In this section, we transform the XML into a web-based presentation by using the
XSL transformation [10][47]. Although the data structure of the V-ToC is
well-defined, it does not place any limitations to the design of the web-based
interface to present the V-ToC. Therefore, apart from simply showing the V-ToC
structure, we aim at providing users for the best way to understand the video

contents at once.
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<?xml version="1.0"?>
<!ELEMENT advise (video+)>
<!ELEMENT video (scene+)>
<!ATTLIST video length CDATA #REQUIRED>
<!ATTLIST video src CDATA #REQUIRED>
<!ELEMENT scene (groupt)>
<!ATTLIST scene id CDATA #REQUIRED>
<!ELEMENT group (shot+)>
<!ATTLIST group id CDATA #REQUIRED>
<!ELEMENT shot (keyframe+, time+)>
<!ATTLIST shot id CDATA #REQUIRED>
<!ELEMENT keyframe EMPTY>
<!ATTLIST keyframe img CDATA #REQUIRED>
<!ATTLIST keyframe id CDATA #REQUIRED>
<!ELEMENT time EMPTY>
<!ATTLIST time value CDATA #REQUIRED>

Figure 4.12 DTD for XML V-ToC Structure

<?xml version="1.0"?>
<!DOCTYPE advise SYSTEM "./toc.dtd">
<advise>
<video length="25" src="rstp://localhost/videol.rm">
<scene id="1">
<group id="1">
<shot id="1">
<keyframe img="./sh 1.jpg" id="1"/>
<time value="0"/>
</shot>
<shot id="3">
<keyframe img="./sh 3.jpg" id="359"/>
<time value="11"/>
</shot>
</group>
<group id="2">
<shot id="2">
<keyframe img="./sh 2.jpg" id="217"/>
<time value="7"/>
</shot>
</group>
</scene>
<scene id="2">
<group id="3">
<shot id="4">
<keyframe img="./sh 4.jpg" id="611"/>
<time value="20"/>
</shot>
</group>
</scene>
</video>
</advise>

Figure 4.13 XML V-ToC Structure
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We make use of the XSL filtering and sorting techniques alternatively to
extract the required XML data from the V-ToC. A simplified segment of the
XSL is quoted in Figure 4.14. In this XSL segment, we order the video shot
components according to the attribute id in each shot. Then, in an HTML table
row, we print out the scene id, the group id, and the shot id. After that, we
show the key frame image using an HTML image tag with the source location
stored at the keyframe img attribute. Besides, we print the corresponding time

instance recorded at the value attribute of the element time.

<xsl:for-each select="advise/video/scene/group/shot"

order-by="../@id">

<tr class="nfont">
<th><xsl:value-of select="../../@id"/></th>
<th><xsl:value-of select="../@id"/></th>

<th><xsl:value-of select="@id"/></th>
<th align="left">
<img width="55" height="45">
<xsl:attribute name="src">
<xsl:value-of select="keyframe/@img"/>
</xsl:attribute>
</img> at <xsl:value-of select="time/Qvalue"/> sec
</th>
</tr>
</xsl:for-each>

Figure 4.14 XSL Segment for Transforming XML V-ToC Structure

A sample web-based presentation of the V-ToC structure is shown in

Figure 4.15. There are four major features in our design.

The first one is the clear display of the basic video information. It consists
of the video source location and the length of video duration. A user can easily

identify which video that the V-ToC is describing.

Secondly, we provide a sequential video story line, which is actually the set
of video shots sorted according to the temporal ordering. We find that user can

follow the video story along the shots sequence.

Third, we allow user to fold or unfold any video component inside the V-ToC
region. We put our video components on HTML layers and use JavaScript to

enable the control of the showing and hiding functions. By folding and
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unfolding video components, a user can have a better understanding of the
contents organization. They can also customize the outlook of the V-ToC

structure, such that key contents are shown while those less important sections are

hidden.

The last major feature is the enlargement of key frame images. Since it
allocates a very large area if we use images of their original sizes, we need to
minimize the size of those images on the V-ToC. However, the smaller images
may not be enough to provide a clear view for a user to see the detail of the
contents. Therefore, we enable a user to enlarge each key frame image by a
simple mouse click, when he wants to view it in detail. We use JavaScript to
catch to mouse click and resize the selected image on the display. We also
recover the resized image, such that it would never stay allocating the space on

the page.

With the design of these features, we make the web-based presentation of the
V-ToC concise and convenient to users. They can easily understand the contents

of the video in a short time using this image-based video description, V-ToC.

4.3 Evaluation of Video Structure

In this section, we evaluate the V-ToC structure generated. Since a more
accurate video structure can better describe the video content to the users, an
experiment is carried out to evaluate the accuracy of the video segmentation
process in our system. We have taken four commercials as a simple test set for
our system. The number of shots, groups and scenes in the set of videos are first
examined by human. We then use these results to compare different
segmentation approaches. = We then perform video segmentation on the
experimental video set with four segmentation approaches. The results are

compared with the human judgments and shown in Table 4.4.

58



Sequential Video Story Line

Yideo Story Line I

Basic Video Information

3 4 5 ] 7 8
F = m A source: hitp: /fpc9007 5/ advise/iMact 20CMSfiMac CM.wemy_length: 30 sec
.

-

3wt St i - [ a0 =)
" . = E
et s QD A Deewth Girewtn e - D W P
R st e / =] G liem
Viden Stary Line
2 ] 5 T ] % TR 12 13 ‘-
- o R
B Py o RAER L
& ] 3

Viden Table gi-Co
e

Co._hisp://pCODOT S advise/IMacta ZOCM M CM vy lorigth: 30

.'!wniui Enlarging Images

Folding/Unfolding Video Components

Figure 4.15 Web-based Presentation of V-ToC using XSL

In the first approach, video segmentation is based on single color histogram
on each frame and a fixed threshold to determine the video shot boundaries.
This is the most basic approach, which detects only the global color changes
between video frames with one color histogram for each of them. It is
convenient to set a common threshold value for video shots detection. However,
through this approach, we find that the results are not quite accurate because there
are always misdetections of video shots. Especially for video 2, the number of
detected video shots is 2 times of the result judged by human. However, for
video 3, the number of over detected video shots is much smaller. That means,
the predefined threshold is suitable for certain videos but it causes a great error

rate for other videos.

In the second approach, we try to improve the first approach by using an
adaptive threshold for video shots detection. As we described in Section 4.1.3,
the adaptive threshold is calculated using entropies. The results of this approach
are more accurate then the first approach. It is because most of the misdetections

are removed by using an appropriate threshold value for each video. The over
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detection problem is reduced greatly, particularly for video 2 and video 4. It is
because the adaptive threshold is effectively adjusted according to each video

such that it can classify the video shot boundaries and non-boundaries.

Both the first and the second approach use single color histogram for each
video frame. In the third approach, weight regional color histograms are used
stead. This approach attempts to catch the local color differences between video
frames. The segmentation result of this approach is similar to that of the first
approach. However, we find that this approach can refine the segmentation
results by overcoming the deficiency of applying global color differences. There
are decreases in number of detected video shots for video 1 and 2 while increases
for video 3 and 4. It shows that this approach can overcome the over detection
problem for video 1 and 2 and the misdetection problem for video 3 and 4. We

have illustrated these problems for using global color histogram in Figure 4.3

The fourth approach is the implementation of our system. We employ the
weighted regional color histograms and the adaptive threshold in our system.
Comparing with the previous approaches, we find that the results of our system
are the closest to the human judgments. In fact, the video segmentation process
of our system is improved over the other approaches and it is the most accurate
one among them. As this approach combines both the second approach and the
third approach, it takes those advantages from regional color histograms and the
adaptive threshold. Although the result for detecting video shots is just similar
to that of the second approach, the video groups and video scenes formation are

improved with the help of regional color histograms.

Finally, we compare our results with the segmentation of the INFORMEDIA
project [9][15][44][45]. We found that INFORMEDIA give better results in
video shot detection. Therefore, we should further improve the video shot
detection in ADVISE. Although the INFORMEDIA is superior to ADVISE in
video shot detection, it does not give any further information about the
organization of those shots. So, we can also conclude that using the shot-based

structure only in INFORMEDIA is the deficiency compared with ADVISE.
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Table 4.4 Comparing Video Segmentation Results with the Human Judgments

H Video | Frames ‘ Shots ‘ Group ‘ Scene H

Human Judgments Video 1 874 12 4 3
Video2 | 1571 15 8 2
Video 3 901 18 5 2
Video 4 894 14 5 2
First Approach Video 1 874 19 7 5
- using single color histogram| Video2 | 1571 29 12 3
- with fixed threshold Video 3 901 21 8 4
Video 4 894 25 10 5
Accuracy 0.594 0.591 0.542
Second Approach Video 1 874 16 6 4
- using single color histogram| Video 2 1571 16 9 3
- with adaptive threshold Video 3 901 21 8 3
Video 4 894 13 6 3
Accuracy 0.858 0.753 0.688
Third Approach Video 1 874 18 6 4
- using weighted regional Video 2 1571 19 11 3
color histograms Video 3 901 25 10 3
- with fixed threshold Video 4 894 27 12 5
Accuracy 0.634 0.578 0.621
ADVISE Video 1 874 16 5 4
- using weighted regional Video 2 | 1571 16 8 3
color histograms Video 3 901 19 7 2
- with adaptive threshold Video 4 894 17 7 3
Accuracy 0.812 0.807 0.771
INFORMEDIA Video 1 874 12 - -
- using a shot-based structure| Video2 | 1571 15 - -
only Video 3 901 17 - -
Video 4 894 14 - -
Accuracy 0.985 - -
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Chapter 5

Video Summarization

In this chapter, we present an algorithm to automate the video summarization.
Based on the V-ToC tree structure generated in Chapter 4, we can retrieve video

features and then select video segments into a video summary.

We expect the video summary can provide users more video information than
the V-ToC we discussed in Chapter 4. Since the V-ToC describes the video
contents using the video key frame images, a user is still not able to know exactly
all the contents because a video delivers information also in form of audio and
text apart from image. Therefore, a video summary, which is a shortened form
of the source video, can give the user all types of information, and hence, he can

know the video contents exactly.

There are two major objectives for a video summary. First, we want to
browse only the major contents of the whole video from the summary. Second,
we want to shorten the duration of the summary in order to browse it efficiently.

According to these two objectives, our video summary is designed as follows.

A video summary is combined by a set of video segments, which contain the
important video features of the source video. These important features are in
fact the most valuable contents of the video. The summary with more
important features is better in quality, as it collects the major video contents.
However, our first problem is the different users’ preferences about the
importance of video features. We find that each user may have different

opinions on whether a video feature is valuable in a video. As a result, the
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quality of a video summary really depends on each user’s preferences. Besides
the quality of a video summary, the duration depends also on the need of each
user. Since a longer video summary contains more video contents while a
shorter one can be browsed efficiently, then a user needs to make a decision on
either getting more information or spending less time on the summary.
Therefore our second problem is to customize the video summary according the

time constraint provided by the user.

We propose a statistical approach to select the contents for the video
summary. In our system, we accept user’s input about their preferences on the
set of video features that we provided. We can then calculate a score for each
video segment based on the user’s preferences, such that if the score is high, the
video segment contains more preferred video features; otherwise, it contains less
preferred video features. Under a user defined time constraint, we can only
select those segments with higher scores into our video summary, such that the
summary contains more preferred video features. The generated video summary
is therefore able to fit into user’s appetite. Since there may be too many
discontinuous and short segments selected into the video summary, it is difficult
for a user to browse it comfortably. Hence, we refine the selection of segment
with a clustering method, in order to reduce the discontinuity and make the video

summary smoother for browsing.

We detail the video summarization algorithm in the following sections. In
Section 5.1, we first define the key terms used in our video summarization
algorithm. Then in Section 5.2, we describe those video features provided for
user to select. In Section 5.3, we detail the video summarization algorithm based
on the provided video features. Moreover, in Section 5.4, we describe the
presentation of video summarization result using SMIL presentation. Finally in
Section 5.5, we evaluate our video summarization algorithms using a set of

experiments.
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5.1 Terms and Definitions

In this section, we define a set of key terms for the video summarization algorithm

as follows.

Definition 5.1 An extracted video segment, e, is defined as a subsequence of

the source video, V =(f, f>,>-,f,). The segment is formulated in Equation

(5.1).

(fxafwl"”’fy)
o= ’ , 1<x<y<n 5.1
{ o f)] Y 1)
Definition 5.2 The score of an extracted video segment, score(e), is defined

as the summation of the weights, w;, for the video features, feature;, existing in the

segment. It is shown in Equation (5.2).

score(e) = Z O(feature;)x w,

Vfeature;
O(feature;) =1, when feature; existsin e (5.2)
where !
o( featurej) =0, otherwise
Definition 5.3 A video summary, V', is defined as a subset of the source

video, V. It consists of a set of extracted video segments, e;. As shown in

Equation (5.3) .

VeV
V':{elaeza'”’en} (53)
whereanye, ,i=1,---,n

Definition 5.4 The duration of video summary, d(V'), is defined as the

summation of all the member video segment lengths. It is shown in Equation

(5.4).
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dir'y= ilength(ei)

5.4
h ei :[f‘x’fy] ( )
cre
length(e, )=y —x
Definition 5.5 The time constraint, Ty, of a video summary is defined as

the maximum video summary duration in seconds. It should not be smaller than
by the video summary duration dividing the video frame rate. We use the time

constraint to limit the summary duration as shown in Equation (5.5).

)

video frame rate

S Ttime (55)

Definition 5.6 The score for the video summary is defined as the mean score

of the member video segments. We illustrate the calculation using Equation

(5.6).

g(score(el.) x length(e,)) (5.6)

div")

score(V') =

5.2 Video Features Used for

Summarization

Before we start our video summarization algorithm, we need to extract a set of
features from the video in order to calculate the score for each video segment.
Different video features, which appear on the video sequence, can be used in our
video summarization algorithm. With more video features employed in our
algorithm, a user can have a more flexible selection of his interested video
segments. The resulting video summary can then be customized for the user
more accurately. In our system, we employ five video features. They are:
human face detection, male voice recognition, female voice recognition, volume

level, and caption text detection. These features bring us most important
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information about the video content. We describe the extractions of these video

features in the following paragraphs.

Human face detection is used to locate the presences of human face in video
segments. We use this video feature because human faces are always important
to the video contents [44], especially for interview videos and news broadcasts.
Human faces, which appear at the middle of the screen and occupy large areas, are
more important to the video. In our algorithm, we detect the human face which
appeared on the video manually. We locate the video segments with human
faces, which cover at least half of the area for the center region (refer to the five

regions defined in Section 4.1.2).

Apart from the human face, we extract the human voice feature in our
summarization. We use the application created by a group of undergraduate
student to classify human voice in video [14]. Since human voice gives a special
waveform pattern and falls into certain frequency range, it can always be
recognized from the audio channel of a video. We can then use a voice
classification method, which considers parameters like voice level, pitch and
frequency, to determine the male and female voice. By using this classification
method, we can extract video segments with male voice or video segments with

female voice.

The volume level measures the loudness of video segments in decibel, dB.
This level is calculated by the amplitude of the sound wave in a video segment.
A higher volume level means a loud sound, while a lower one means a quiet
sound or even silence. As quiet sounds and silence are like to appear at the
video shot boundaries, so they can almost give no information about the video
contents. Thus, we can use the average volume level to cut off the video
segments with quiet sounds or silence. In our algorithm, since normal human
conversation ranged from about 40dB to 60dB, we extract video segments with

volume level higher than 35dB.

Caption text on videos provides a lot of important information for the video

contents. For example, the video script on screen shows the audio contents
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directly. We can apply caption text localization methods to index the captions in
the video sequence [23][36]. In our algorithm, we use the application created by
our fellow student, who implemented the algorithm suggested by Sato et al. [36].

It extracts all the video segments with caption text on them.

We can extract the video segments for each video feature as shown in Figure
5.1. Based on those video features defined, we apply our video summarization

algorithm to generate the video summary.

Human Faces #—m—m®#%——————————— —_—a—————
Male Voice @ BpB—BH ——————————— —.——————
B— Feature Exists
Female Voice @ [———— -+ ——- —a — ——  Feature Not Exist
Volume > 35dB R -———— — ——
Caption Text —_——— .- ——————— —a -
-

f,

80 f1 00 f

300 f

500 f5000 f5300 f6000

Video Frames Sequence

Figure 5.1 Video Features for Summarization

5.3 Video Summarization Algorithm

Since we notice that the quality of summarization depends on the interest of the
target user, therefore, it is almost impossible to design a single approach, which
can fit into every user’s appetite. As a result, we need to accept inputs from the
user, such that it is easier to determine which kinds of contents are more valuable

to the user. Inputs from the user are summarized in Table 5.1.

Table 5.1 User Inputs for Video Summarization

Input Variable name Range of value
Weight for human faces Wyace From 1 to 10
Weight for male voice Winale From 1 to 10
Weight for female voice Weemale From 1 to 10
Weight for volume level Woolume From 1 to 10
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Weight for caption text Weaption From 1 to 10

Time constraint for video summary Tiime Any integer in sec.

Clustering control constant K Any integer

There are four steps to summarize a video. The first step is the reordering
of the extracted video segments in order to avoid overlapping. The second step
is calculation the score for each video segment. Then, the third step is the
selection of video segments according to both the scores and the time constraint.
Finally, the fourth step is the refinement of the selections using a clustering

technique.

5.3.1 Combining Extracted Video Segments

In the first step, we generate a single set of non-overlapping video segments.
Since we have five sets of extracted video segments, we cannot combine them
together directly because of the partially overlapping regions as shown in Figure

5.1.  Therefore, for each member segment, [f,,f,], in all the five sets, we need

to sort the frames, f; and f,+,, at the boundaries. We can then create a single set
of video segments, e;’s, as shown in Equation (5.7). We also illustrate the
formation of the new set of video segments in

Example 5.1.

Given a set of sorted video frames {faI , fa2 s S b

¢ =[f,>f,, 1], wherel<i<n-1 (5.7)

Example 5.1 Given the sets of extracted video segments for different video

features as shown in Figure 5.1.

Human faces: [ /15 foo ][ 50005 f5200 ]
Male voice: (/15 S99] L5005 f5290 ]
Female voice: [ /100> S99 15[ /53005 f5090]
Volume >35dB: [ f;, f50015[ /50005 f5209]

Caption text: /15 S20 150 f3005 490 15[ fs3005 50991
We can sort the indexing frames and remove those duplicated, in order to get the
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following set.
{fi ’ f‘SO’ inO’ f‘300’ f‘SOO > f‘SOOO’ f‘5300’ f6000}

The resulting set of extracted video segments is formulated as follows.

e =[f1, frol:€, =[fs05 fools€5 =[f1005 S200 1> €4 =[f3005 S190]5
es =[f500 S 1999 ]-€6 =[f3000> S52991>€7 =[f53005 S5090 ]

5.3.2 Scoring the Extracted Video Segments

After formulating a set of extracted video segments, we calculate the score for
each of the member segments in the second step. The calculation of the score for
each segment is defined in Definition 5.2. We can illustrate the scores

calculation in Example 5.2.

Example 5.2 Given the combined set of extracted video segments,

{e,e,,05,e,,65,¢5,e,}, which are formulated in Example 5.1. Assume the user

input weights are given, and then we can calculate the score for each segment, e,
as follows. The scores can be represented in a graphical format as shown in

Figure 5.2.

>

Given Wface =10 > Winate = 8 > ermale =2 s Wyolume = 3 > Wcaption =1

score(e;) =0( featureface) XW oo + o(feature, ;) x W, +O( featurefema,e) XW fomale
+ O(feature,,,,,, )XW ace T o( featurempm) XW,
=Ix10+1x8+0x2+1x3+1x1
-2

aption

score(e,) =21
score(e;) =5
score(e,) =6
and
score(es) =0

score(eg) =21

score(e;) =3
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Figure 5.2 Scoring the Extracted Video Segments

5.3.3 Selecting Extracted Video Segments

In the third step, we select the extracted video segments into the summary
according to the scores. Since there is time constraint, 7j,., defined in
Definition 5.5, only a limited number of segments are selected. We first sort the
extracted video segments in descending order of the calculated score. Then, we
pick up the segments from the highest score one into the video summary, V.
Until the duration of the summary, d(V’) divided the video frame rate, reaches the
time constraint, we stop picking more video segments. The selection process is

summarized in Algorithm 5.1.

Input: Given a set of extracted video segments, {e,e,, -,e,}, the
scores for the segments, and the video frame rate.

Output: A set of segments selected into the video summary, V'

1. Sort the segments in descending order of their scores.

{eal’eaZ’”"ean}

such that score(e,, ) = score(e,,) = -+ = score(e,,)

2. for each i in 1,2,---,n

3. if d(V')+ framerate <T,,,
4. then Add e, to V'

5. else break

6. end if

7. end for

Algorithm 5.1 Selection of Extracted Video Segments
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Example 5.3 Given the time constraint, Ty., we try to make selection of
extracted video segments according to the segments and the scores that we

calculated in Example 5.2. The selection result is shown in Figure 5.3.

Given T,

time

=15sec, framerate =30 fps

score(e,) = score(e,) 2 score(eg) > score(e,) > score(ey) = score(e, ) = score(es)

therefore,
V'={e. e, e}
and
d(V")=78+18+298=394
=dlV")<T,,, x framerate
T, % framerate =15x30 =450
0w A
-.qc-; ” O Selected Segment
E 217
(o)
o)
)]
o)
S & €, €
S 6] P
— 57 :
L 3 E e :
o o o i
E 0 > > ~—P
n fs fao Froo 300 f500 fs000 f5300 fe000

Video Frames Sequence

Figure 5.3 Selecting Extracted Video Segments

5.3.4 Refining the Selection Result

In the last step for the video summarization algorithm, we refine the selection
result above, in order to generate a smoother video summary. Since we find that
the selected video segments are always short and disjointed, then the resulting
summary cannot be browsed smoothly as shown in Figure 5.4. As a result, we
propose this refinement process to solve the above problem. Based on the time
sequence of the selected segments, we collect adjacent segments together using
the clustering technique. Thus, we can pick a cluster of segments, which is long
enough and continuous, instead of those disjointed short segments in order to

make the video summary smoother.
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Figure 5.4 Problem for Disjointed Video Segments

We apply the K-mean clustering technique [19] in the refinement process.
The number of resulting clusters is set by the clustering control constant, K,
defined by the user. The clustering process classifies the selected segments into
K clusters along the video frames sequence. Then the number of disjointed

segments in the video summary is limited by the K clusters.

We model our refinement process into the K-mean clustering algorithm in
Algorithm 5.2. For a selected video segments, e;, and a mean point, my, the
distance between, dist(e,my), is defined as in Equation (5.8). Then we can
calculate the mean point, my, for a cluster, u;, using Equation (5.9). An example

for K-mean clustering is shown in Figure 5.5.

Givene, =[f., f,1.m = [,

. 5.8
dist(e;,m; ) = m1n(|x - z|, |y - z|) (5-8)
m = f,
xX+y
2 (5.9)
where z = Ve =[fy.,fy lin uy : , ke 1,2’. . ',K
number of members in
Cluster u, Cluster u,
I I O Selected
Segment
ea1 eaz ea3 e ea5 eas
a4
I - -

VideoFramesSequence

Figure 5.5 Result of K-mean Clustering
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Input: Given a set of selected video segments, {e,e,, ,e,}
Output: K segment clusters, {u,U,, Uy}

1. Make an initial guess of the means, my,m,,---,my, for clusters

U,Uy, Uy respectively.
2. while changes in my,m,, -, My

3. i) Assign each ¢ in {e,e,,":",e,} to the nearest cluster.

4. ii) Calculate the new mean points using Equation (5.9).
5. end while

Algorithm 5.2 K-mean Clustering for Selection Refinement

Now, we finalize our selection by picking clusters into the video summary.
Once we find out the clusters, we connect all the member segments into a whole
block of video frames sequence as shown in Figure 5.6. The block is so called
a clustered video segment. Then we calculate the score for each clustered
segment as the summation of the member scores times the corresponding

segment length. It is shown in Equation (5.10).

Givenaclusteru =[f,, f,],

score(u) = Y score(e;)x length(e;) (5.10)
Veeu
Cluster u,
I |
Cluster
Score € €22 €23 €ay Video
J Frames

Figure 5.6 Transforming Selected Segments into a Clustered Segment

Since the disjointed spaces between the selected segments are now included,
we need to remove certain clustered segments in order to satisfy the time
constraint, 7;y,.. Similar to the approach mentioned in Section 5.3.3, we first sort
the clustered segments in descending order of their scores. Then, we select the

clustered segments into the video summary, V', from one with the highest score,
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until the time constraint is reached. The duration can be checked by Equation

(5.11). The selection of clustered segments is illustrated in Figure 5.7.

diV" = Zlength(ui)

(5.11)
such thatd(V') < T,

ime

Selected
o Cluster

Video
! Frames

Cluster Scores
—>

_‘C

NC
1
|
|
|
bC

Figure 5.7 Selecting Clustered Segments in Video Summary

By using the refinement process, we pick clustered segments into the video
summary instead of short and disjointed segments selected in Section 5.3.3. Asa
result, the video summary becomes a sequence of clustered segments as shown in
Equation (5.12). It will be smooth enough to provide the user the major video
contents that he wants. The quality for the video summary can be measured by

the score defined in Equation (5.13), which is modified from Definition 5.6.

Given selected clusters, u;,u,, -, u,,,

V'=(u,uy,u, (.12
iscore(ui)
score(V') ==L (5.13)
awv')

5.4 Video Summary in SMIL

In order to demonstrate the video summary, we transform our resulting set of
clustered segments into SMIL format. As we have mentioned in Section 2.4, we
can specify the temporal behavior of video clips in a SMIL presentation.
Therefore, in our video summary, we make the required clustered segments in
form of video clip objects for SMIL, and order them into a video sequence. In

Example 5.4, we demonstrate the transformation into SMIL.
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Example 5.4 Given a video summary, V’=(u;usu3), where the clustered

segments are as follows.

u; =[ 15005 f2100] 4 = [ Fa2005 Fasoo 1> =[f51005 f250]

In Table 5.2, we transform the clustered segments into the time sequences of video

according to the video frame rate. Given frame rate equals 30 fps.

Table 5.2 Clustered Segments in Form of Time

Clustered Time in Seconds

Segments Begin End
Ui 50 70
up 140 150
us 270 275

Each clustered segments is written as a video clip object in SMIL. For example,
u; is shown in Figure 5.8. All the clustered segments are organized in a
sequential order in SMIL as shown in Figure 5.9. In Figure 5.10, we play the
resulting SMIL video summary.

<video id="ul" src="rtsp://hostl/1l.rm"
clip-begin="50s" clip-end="70s" region="video"
fill="freeze"/>

Figure 5.8 A Clustered Segment in SMIL

<?xml version="1.0"?>
<smil xmlns="http://www.w3.0rg/2000/SMIL20/CR/Language">
<head>
<layout type="text/smil-basic-layout">
<root-layout width="362" height="298" background-color="black"/>
<region id="video" left="5" top="5" width="352" height="288"
fit="fill"/>
</layout>
</head>
<body>
<seq>
<video id="ul" src="rtsp://host/data.rm" clip-begin="50s"
clip-end="70s" region="video" fill="freeze"/>
<video id="u2" src="rtsp://host/data.rm" clip-begin="140s"
clip-end="150s" region="video" fill="freeze"/>
<video id="u3" src="rtsp://host/data.rm" clip-begin="270s"
clip-end="275s" region="video" fill="freeze"/>
</seqg>
</body>
</smil>

Figure 5.9 An Example Source for SMIL
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&) Media Browser - Clip Source for RealPlayer: /t htmi?sre=file://D:/ADYISE_DEMO/datal /di (=) "_k_-]

) X)) "! Location |hﬂp #12700 1:641 44emplate htmlZsre=file D /ADVISE_DEMO | (&) @
SMIL source: %
({J) RealOne Player Fls Yiew » @ - O X )
<Pxml version="1.0"?»
<smil xmins="http://www.w3.0rg/2000/SMIL20/CR/Langt
<head>
<layout type="text/smil_basic layout™»
<rootlayout width="362" height="298" background
<region id="video" left="5" top="5" width="352" he
</layout=
</head>
<body>
<seq>
<video id="u1" sre="data.rm" clip-begin="50s"
clip-end="70s" region="video" fil="freeze"/>
<video id="uz2" src="data. ip-hegin="140s"
clip-end="150s" region="video" fill="freeze"/>
<video id="u3" src="data.rm" clip-begin="270s"
clip-end="275s" region="video" fill="freeze"/>

CUTOO0N - TVE 451Kbps 026j 035 | ) |~

</seq> -
</body> ( ; @@ W——— () ———
</smil> ot =

Figure 5.10 SMIL Video Summary

5.5 Evaluations

In this section, we design two experiments to evaluate our video summary. First
we evaluate the quality of the video summary by the percentage of each feature

extracted. Second, we evaluate the performance of the refinement process.

5.5.1 Experiment 1: Percentages of Features

Extracted

As we have mentioned that the video summarization result depends greatly on the
user’s preferences, there is no standard method to evaluate the results. However,
we can use several extreme cases of the user’s inputs, such that we can easily

determine whether the summarization algorithm works.

For different sets of user inputs, we set up our experiments as follows. We
apply the inputs on a set of videos with duration around 200 seconds. If we set
the time constraint, 7}, to be 60 seconds and all the weights for video features
are the same, we would expect that our video summary includes around 30% of
each feature from the source video. However, when we try to increase the

weight for a specific feature, we would expect that a higher percentage of that
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feature can be extracted from the source video. The percentage extracted for a
feature, P, can be calculated using Equation (5.14). We also calculate the
percentage of the extracted feature in a video summary, Pgmmar, as shown in
Equation (5.15).

duration containing that feature in video summary

P, (feature) =

(5.14)

total duration containing that feature in the source video

duration containing that feature in video summary
(feature) =

(5.15)

P .
summary total duration of the video summary

We present six cases in this experiment. They are: Case (1) Same Weight
for Each Feature, Case (2) Human Face Favoring, Case (3) Male Voice
Favoring, Case (4) Female Voice Favoring, Case (5) Volume Level Favoring,

and Case (6) Caption Text Favoring. The inputs are tabulated in Table 5.3.

Table 5.3 Inputs for Experiment 1

Whace | Wmale | Weemale | Wyolume | Weaption | Tiime K
Case (1) 5 5 5 5 5 60 10
Case (2) 10 1 1 1 1 60 10
Case (3) 1 10 1 1 1 60 10
Case (4) 1 1 10 1 1 60 10
Case (5) 1 1 1 10 1 60 10
Case (6) 1 1 1 1 10 60 10

The average values for all the results are tabulated in Table 5.4. According
to the results, we find that the percentages, Py and Pgummary, vary with the input
weights. A higher weight for the feature results in higher percentages of that
feature in the source video and the video summary. Therefore, we can conclude

that our video summary can be successfully customized to fit the user’s interest.
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Table 5.4 Average Values for All Results in Experiment 1

Human | Male | Female | Volume | Caption
Face voice voice level text
Case (1) :
Proar 0.45 0.28 0.30 0.29 0.64
Poummary 0.77 0.25 0.62 0.45 0.14
Case (2)
Pioal 0.50 0.20 0.34 0.06 0.23
Pummary 0.96 0.19 0.78 0.10 0.06
Case (3)
Proar 0.41 0.84 0.08 0.07 0.46
Psummary 0.76 0.80 0.17 0.11 0.11
Case (4) :
Proal 0.35 0.15 0.46 0.30 0.26
Pummary 0.61 0.18 0.97 0.47 0.06
Case (5) :
Proar 0.13 0.03 0.43 0.64 0.30
Psummary 0.22 0.03 0.90 0.97 0.07
Case (6) :
Proal 0.43 0.32 0.22 0.15 0.89
Poummary 0.83 0.31 0.52 0.26 0.22

5.5.2 Experiment 2: Evaluation of the
Refinement Process

In this experiment, we evaluate the effect of the refinement process in making a
smoother video summary. Since clustered segments are selected instead of all
the short and disjoint segments with highest scores, we sacrifice the quality of the
video summary in certain extent. Therefore in this experiment, we examine the

effect on the score of the video summary while increasing the number of clusters.

Figure 5.11 shows the results for three videos. According the graphs, we
find that the score of video summary for using clustered segments (after
refinement) approaches the score of video summary for using short and disjoint
segments (before refinement), as the number of clusters increases. There are
penalty in scores while we are reducing the number of number of clusters wanted

for refinement.
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However, from the above results, we can also find that the penalty decreases

zero until certain value for number of clusters. In Table 5.5, we can see that the

number of fragments in video summary, at which there are no penalty, is greatly
reduced after the refinement process; hence, the resulting summary is more

continuous and smoother.

Score
14

W—o—o—o—o—o—o—o—o—o 12

—&— After Refinement

| W‘—H—O—H—H—O—O

—&— After Refinement

4t —— Before Refinement 4 Before Refinement
21 Clustering 2r Clustering
Control Control
0 * Constant, K 0 ! Constant, K
4 6 8 10 12 14 16 18 20 22 4 6 8 10 12 14 16 18 20
(a) Video 1 (b) Video 2
Score
12
10 ';
s b
6
—&— After Refinement
4t
—— Before Refinement
2r Clustering
Control
0 Constant, K
0 5 10 15 20 25 30 35

(c) Video 3

Figure 5.11

Results in Graphs for Experiment 2

Table 5.5 Results for Experiment 2

Before Refinement After Refinement
Video 1 21 13 (at K=12)
Video 2 21 10 (at K=11)
Video 3 30 18 (at K=18)
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Chapter 6

Video Matching Using V-ToC

In this chapter, we describe our video matching algorithms for finding similar
videos. Based on the V-ToC tree structure generated in Chapter 4, we can apply

a tree matching algorithm to measure the similarity between two V-ToC trees.

We propose two tree matching algorithms in this chapter [27]. The first
algorithm is the non-ordered tree matching algorithm, and the second one is the
ordered-tree matching algorithm. Our tree matching algorithms are different a
general tree matching algorithm because the V-ToC tree we generated is well
structured and with tree depth always equal to four. We need to measure the
similarity according the four levels of video components. In both of our
algorithms, the matching processes start from the top of the tree and proceeds to
the next sub-level in an orderly manner, i.e., scene to scene, group to group, and
shots to shots. Similarity measure is calculated at each corresponding level
between the two video trees. There is a major different between the two
algorithms. The non-ordered tree matching algorithm does not consider the
temporal ordering of video features, while the ordered tree matching algorithm
considers the features ordering as a key factor to determine the similarity between

videos.

We detail the two video tree matching algorithms in the following sections.
In Section 6.1, we first define several key terms for video tree matching. Then in
Section 6.2, we talk about the video features used for video matching. In Section

6.4 and 6.4, we introduce the non-ordered tree matching algorithm and the
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ordered tree matching algorithm respectively. Finally, we evaluate our video tree

matching algorithms with a set of experiments in Section 6.5.

6.1 Terms and Definitions

In this section, we define several key terms for the video tree matching algorithms.
Since our video matching algorithm is applied on top the V-ToC tree structure,
those definitions in Section 4.1.1 also hold. Apart from those definitions, we

define a new set of concepts in the following.

Definition 6.1 The feature similarity between two video tree node, node, and
nodey, is defined as sim (nodex,node y). This is a normalized score ranged from 0

to 1, where 0 means dissimilar and 1 means similar. The input nodes must be at

the same tree level.

Definition 6.2 A child similarity matrix, ChildSim, of two video tree node,
nodey and node,, is the table, which stores all the feature similarities between
child nodes of nodey and child nodes of node,. The value for i-th column and j-th
row in the matrix is ChildSim(ij). It is defined in Equation (6.1). Besides, we

give an example child similarity matrix at Example 6.1.

Given node, = (child ,,,child ,,---) and node, = (child,, ,child,, ,---):

ChildSim(i, j) = Sim(child childbj) for all child ,; in node,, child,; in node, 6.1

Example 6.1 Given two  video  groups g =(s,,55.5.5,) and
2, =(55.59,5,0). If we have the following feature similarities, then we can

tabulate the values into a child similarity matrix, as shown in Figure 6.1.

(

sim(s3,s5)= 0.8, sim(s3,s9)= 04, sim(s3,s10 ) =0.4,
(
(
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Figure 6.1 Child Similarity Matrix

Definition 6.3 The video similarity between, video, and video,, is defined as

sim(videox,video y). We apply a video tree matching algorithm, which make use

of the child similarity matrix to generate a one-to-one mapping of the most similar
child nodes, such that a similarity score can be propagated from the feature

similarities of the child nodes.

6.2 Video Features Used for Matching

There are two video features that are used in our video matching algorithms.

The first one is the color histogram and the second one is the shot style.

The color histogram feature is useful for matching the global color content of
frames in the video. As we have described in Section 4.1.2, we make use of the
histogram difference between two frames to determine the visual similarity. If
the difference is small, the frames are similar; otherwise, these frames are
different. In our algorithm, since a video shot is a sequence of frames with
similar content, the key frame is used a representative in the matching process.
Then the frame-to-frame distance of the key frames in two video shots is used to

calculate the similarity between two video shots.

The shot style feature is composed of the camera motion and the length of
the shot. The camera motion [4] consists of zooming, horizontal movements,
vertical movements, and still which means that there is no camera motion. In a

shot, there could be many camera motion segments. For examples, a shot of a
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person may consist of zooming in and zooming out camera segments. In our
algorithm, we use the first camera motion segments to represent the camera
motion for the shot. The length of the shot is the summation of all the camera
motion segment durations in the shot. The camera movement and the length of
the shot can reflect the pace of the video. For example, if a shot is short and the
camera moves in different directions, we would expect that the video has a fast
pace. The pace of video can help us to determine the type of video since we

know that action videos are faster and artistic videos are typically slower.

6.3 Non-ordered Tree Matching
Algorithm

In the non-ordered tree matching, video features are matched without any
constraint of the temporal sequence. In other words, this method is able to match

video features in any order, as shown in Figure 6.2.

Shot 1

Shot 1 Shot 2

VideoA 4 — — Similar — — — Video B

Figure 6.2 Matching Video Using a Non-ordered Approach

The algorithm examines the structural V-ToC trees of two videos in a
top-down manner, i.e., from the video level to the video shot level. However the

scoring of similarity of the video is propagated from bottom-up.
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At the video level, the video scene level and the video group level

Before we get down to the video shot level, there are three steps to work out
the feature similarities for each level. First, the algorithm needs to retrieve the
feature similarities of all child nodes by traversing down the tree. For example,
when we need to find the similarities between two videos, we need to know how
similar their scenes are. In the second step, we tabulate all the feature
similarities of the child nodes in a child similarity matrix defined in Definition 6.2.
Then in the third step, we calculate the feature similarity of the current level with
a scoring function called MaxSum(), and propagate the resulting score up to the

parent level.

The MaxSum() function is used to sum up the similarities of the best match
of the child nodes and then return the normalized value of the sum. We use the
feature similarities at Example 6.1 to show an example of the best match in
Figure 6.3. Figure 6.4 demonstrates the matching in tree format. To calculate
the sum, we can add up the maximum score at each column. However, in most
of the cases, the number of scenes, groups and shots in videos are not the same.
Then, the tabulated matrix of child feature similarities is not in square shape, and
there is one to multiple mappings. For example, the third row in Figure 6.3, 5,9
from g, matches both sg and 5,5 of g, Then, the sum calculated is different if we
take the summation of row maximum instead of column maximum. Therefore,
in our algorithm, we want to set the feature similarity to respect to the dimension
with a smaller value, such that we would not penalize matching of video segments
to its full version. We explain this penalty in Figure 6.5. Hence, when the
number of rows is smaller than the number of columns, the feature similarity is
calculated by dividing the row maximum sum with the number of rows; otherwise,
the similarity is calculated by dividing column maximum sum with the number of
columns. Equation (6.2) shows the calculation of the feature similarity between
nodey and node,. Let the number of child nodes for node, and the number of
child nodes for node, be u and v respectively. Then, the number of columns and

the number of rows in the child similarity matrix are also # and v respectively.
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Z vr(1)1<ax (ChildSim(i, j))
= = , ifugv
sim(node,,node , ) = MaxSum(ChildSim) = u (6.2)
Zg&ax (ChildSim(i, j))
/-1 , ifv<u
v
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Max. Value of a Row

Figure 6.3 The Best Matched Nodes in ChildSim

{— Matching— » Best Matched Nodes

In Temporal Ordering In Temporal Ordering

Figure 6.4 Non-ordered Tree Matching

Example 6.2 Given two  video  groups g =(s,,55.5,5,) and
2, =(55.59,5,). We get the feature similarities of child nodes as shown in Figure

6.3. Since the number of rows is fewer than the number of columns, therefore we
select the best matched nodes according to the rows. The feature similarity for

g; and g, is calculated as follows.

0.9+08+1.0

sim(g,g,)=———— =09
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0.1

0.111.0

/ Max. Value of a Row

Other Max. Value of a Column

Score of Row Max. Sum = (0.9+1.0+1.0)/3 = 0.97 Penalized
Score of Column Max. Sum = (0.3+0.9+1.0+1.0)/4 = 0.80

Figure 6.5 Penalty of Matching Video Segments

At the video shot level

The algorithm calculates the feature similarities based on the shot feature,

which is the color histogram and the shot style.

The color histogram similarity is calculated using the key frames of shots.
We use the frame-to-frame distance of color histogram defined in Equation (4.4).
The result, which is the difference of the color histograms, is normalized. Then
the color histogram similarity, ColorSim(sy,s,), between video shots s, with key
frame k. and s, with key frame £k, is defined in Equation (6.3). We apply a
simple normalizing function, normalize(), to normalize the frame-to-frame
distance. As a result, the resulting color histogram similarity is a value ranged

from 0 to 1.

ColorSim(s,,s,) =1—normalize(z(kk,)) (6.3)
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The shot style feature similarity is set to be the ratio of lengths of video shots
when the representative camera motions are the same. For example, the camera
motions of two shots, s, and s,, are the same, and length of s, is smaller than that
of s,, then the shot style feature similarity is equal to length of s, divided by length
of s,, as shown in Equation (6.4). The length of a video shot is mentioned in

Equation (4.12).

length
Length(s) e longth(s. ) < length(s,)
StyleSim(s.,s., ) = length(s, ) (6.4)
X0y length(s,,) herui )
length(sx) Py otherwise

After calculating both feature similarities, the algorithm then propagates the

shot level feature similarity to the upper level.

6.4 Ordered Tree Matching Algorithms

The ordered tree matching algorithm is different from the non-ordered matching
in the previous section because it considers the temporal ordering of the shot
features. It allows only matching of feature similarities with temporal constraint.
Therefore, the condition on Figure 6.2 is not considered as very similar any more.
The score of similarities propagated up is the summation of feature similarities for

the best-ordered child nodes matching.

An ordered tree matching is significant because it can capture the difference
in video similarity due to the changes of features ordering. The reordering of
features can form a different tree structure. The non-ordered algorithm cannot
detect these kinds of structural differences. An ordered matching algorithm is
designed to tighten the similarity measurement by the temporal sequences

constraints, so that we give more concern on the video structure.

In this algorithm, we traverse the V-ToC tree in the same manner as in the

non-ordered tree matching algorithm.
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At the video level, the video scene level and the video group level

At each tree level, we use a MaxOrderedSum() function instead of the
MaxSum() function in the non-ordered matching. The MaxOrderedSum()
function considers the ordering while finding out the sum of feature similarities
for the best matched child nodes. Figure 6.6 shows an example best ordered and
matched child nodes on the child similarity matrix used in Example 6.1. The
selected set matches a sequence of video shots from both videos. Figure 6.7

demonstrates this matching function in a tree format.

9,

ss [0.5109]0.1]0.2

g, s, |08]04]104]0.0

s,,| 0.1]06]09|1.0

Best matched child nodes

Figure 6.6 The Best Ordered and Matched Nodes in ChildSim

4 — Matching—» Best Ordered and
Matched Nodes Are
Filled with the Same
Color
Temporal Order Temporal Order

Figure 6.7 Ordered Tree Matching

We use the dynamic programming technique to make the calculations more
efficient [37]. There are four steps for our algorithm to find out the feature
similarity of the current level. In the first step, we initialize a matrix D with all
values equal to zero. Then in the second step, we fill up the matrix according to

Equation (6.5), such that we look for a maximum sum of the similarity scores
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along the child nodes sequence. Let ChildSim contains # columns and v rows.
The third step is getting the maximum sum at D(u+/,v+1) once D is filled.
Finally, the feature similarity is calculated by the normalized sum as shown in
Equation (6.6). Now, we use the data from Example 6.1 to show the feature

similarity calculation in Example 6.3.

D@ +1,j+1)=max(D(i, j)+ ChildSim (i, j), D(i, j + 1)) (6.5)
sim(node ,node , ) = MaxOrdered Sum (ChildSim ) = max( sum , sum ) (6.6)
’ u v
Example 6.3 For the data from Example 6.1, we need to initialize a 5 by 4

matrix, D, with each value equals to zero. We fill in the values in D, according
to Equation (6.5). The resulting D is shown in Figure 6.8. Then, we can get the
maximum sum at D(5,4) = 2.3. The feature similarity between g; and g, is

calculated by:

sim(g,,g2,) = max(%,é) =0.77

9,

Sol 0 |08]09]1.3]|1.3

9,

S 0 [0.1]14]1.8]23

Figure 6.8 An Example for Dynamic Programming
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At the video shot level

We extract the two video features using the same techniques as mentioned in
the non-ordered tree matching algorithm, Section 6.3. We propagate the

calculated feature similarities to the upper levels until we get the final result.

We implement the whole ordered tree matching algorithm using a recursive
function. The algorithm is summarized in Algorithm 6.1. We start the
matching process at the root level by OrderedMatching(video,,video,) . It
traverses all the tree nodes along each tree level to propagate the feature

similarities up recursively. We use Figure 6.9 to illustrate to this recursive

process.

Input: Given two tree nodes, node, =(child,  child,, -, child,) and
node,, =(child,,,child,, ,---,child,,) .

Output: Score of feature similarity (ColorSimor StyleSim )

1. function OrderedMatching(node,, nodey)

2. if current node level is video shot level
3. then
4. return either ColorSimor StyleSim as feature similarity
5. else //at upper levels
6. i) Initialize D with elements equal to zero.
7. ii) Fill in D for each i€l,---,u and jel,---,v with:
D(i+1,j+1)=max(D(, j) + OrderedMat ching (child ,;, child ,; ), D(i, j + 1))
5. 1ii) return maX(D(u+1,v+1)’D(u+1,v+1))
u %
9. end if

10. end function

Algorithm 6.1 Recursive Dynamic Programming for Ordered Tree Matching
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Figure 6.9 An Example for Recursive Dynamic Programming

6.5 Evaluation of Video Matching

In this section, the proposed tree matching algorithms will be evaluated by
comparing the results of a small set of videos with the human's ranking results;
one example is in Figure 6.10. Some information of the videos is shown in Table
6.1. The human's ranking results of the videos are shown in Table 6.2 and Table
6.3. There are 5 videos matching with each others using the proposed

algorithms.

Figure 6.10 Matching Video Features
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Table 6.1 Video Tree Structure Information
Videos Number of shots | Number of Groups | Number of scenes
Video 1 12 4 3
Video 2 14 5 2
Video 3 16 6 3
Video 4 18 6 2
Video 5 27 9 6

Table 6.2 Human’s Ranking for Color Histogram Feature

Ranking of | Most Similar Least Similar
Videos 1 2 3 4
Video 1 Video 2 Video 3 Video 4 Video 5
Video 2 Video 1 Video 4 Video 3 Video 5
Video 3 Video 1 Video 2 Video 4 Video 5
Video 4 Video 2 Video 1 Video 3 Video 5
Video 5 Video 2 Video 1 Video 3 Video 4

Table 6.3 Human’s Ranking for Shot Style Feature

Ranking of | Most Similar Least Similar
Videos 1 2 3 4
Video 1 Video 2 Video 3 Video 4 Video 5
Video 2 Video 1 Video 3 Video 4 Video 5
Video 3 Video 1 Video 2 Video 4 Video 5
Video 4 Video 2 Video 1 Video 3 Video 5
Video 5 Video 2 Video 3 Video 1 Video 4

6.5.1 Applying Non-ordered Tree Matching

According to the feature similarity scores calculated by the non-ordered tree
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matching algorithm, we rank the similarities between each video and the others.
For example, when we match video 1 with the other 4 videos, if we find that video
2 have the highest similarity score, video 2 is the most similar one to video 1.
The ranking results from non-ordered tree matching are shown on Table 6.4 and

Table 6.5.

For color histogram features, we can compare Table 6.2 and Table 6.4. We
find that the results are quite similar. The last column in Table 6.4 is the same as
the last column in Table 6.2. That means the non-ordered algorithm can
successfully find out the least similar video according to each source video.
Also, the rows for video 3 and video 4 in Table 6.4 are the same as their
corresponding rows in Table 6.2. So, our algorithm can determine exactly the
same similarities with the human judgments for these two videos. Since there
are only few interchanges in the resulting orders, our algorithm can measure the

similarity for the color histogram feature quite accurately.

For shot style feature, we compare Table 6.3 and Table 6.5. The results in
both tables are again quite similar. Our algorithm can find out all the least
similar videos for the shot style feature. Moreover, the rows for video 3 and
video 5 in both result tables are the same. Although there are again some
interchanges in other rows, our algorithm is quite accurate in finding the similarity

for the shot style feature.

Table 6.4 Ranking Results for Non-ordered Tree Matching for Color Histogram

Feature
Ranking of | Most Similar Least Similar
. 2 3
Videos 1 4
Video 1 Video 3 Video 2 Video 4 Video 5
Video 2 Video 4 Video 1 Video 3 Video 5
Video 3 Video 1 Video 2 Video 4 Video 5
Video 4 Video 2 Video 1 Video 3 Video 5
Video 5 Video 3 Video 2 Video 1 Video 4
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Table 6.5 Ranking Results for Non-ordered Tree Matching for Shot Style

Feature
Ranking of | Most Similar Least Similar
. 2 3
Videos 1 4
Video 1 Video 3 Video 2 Video 4 Video 5
Video 2 Video 4 Video 3 Video 1 Video 5
Video 3 Video 1 Video 2 Video 4 Video 5
Video 4 Video 2 Video 3 Video 1 Video 5
Video 5 Video 2 Video 3 Video 1 Video 4

6.5.2 Applying Ordered Tree Matching

Similar to the ranking in non-ordered tree matching, we rank the videos according
to the result of the ordered tree matching. The ranks are shown in Table 6.6 and

Table 6.7.

We compare the results in Table 6.2 and Table 6.6 for color histogram feature.
In these two tables, the results in the least similar columns are the same. Thus,
the ordered algorithm can find out the least similar video according each source
video. Also, refer to Table 6.6, the algorithm can identify three most similar
videos in column 1 and the row for video 5 is the same as the corresponding row
in Table 6.2. Therefore, our algorithm is able to give similar result as the human

judgment for color histogram feature.

For the shot style feature, we look up the results in Table 6.3 and Table 6.7.
Our algorithm can find out that video 5 is the least similar to video 1, video 2 and
video 4. Also, for video 4 and video 5, the video 2 is most similar candidate
among the video set. These results in Table 6.7 are the same in Table 6.3. The
result for shot style feature is less accurate because it is quite difficult for human
to remember and judge the ordered similarity for video shot motions. Therefore,
our computed results cannot well satisfy the human judgment for shot style

feature.
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Table 6.6 Ranking Results of Ordered Tree Matching for Color Histogram

Feature
Ranking of | Most Similar Least Similar
. 2 3
Videos 1 4
Video 1 Video 3 Video 2 Video 4 Video 5
Video 2 Video 4 Video 5 Video 1 Video 3
Video 3 Video 1 Video 4 Video 2 Video 5
Video 4 Video 2 Video 3 Video 1 Video 5
Video 5 Video 2 Video 1 Video 3 Video 4

Table 6.7 Ranking Results of Ordered Tree Matching for Shot Style Feature

Least Similar

Ranking of | Most Similar
. 2 3
Videos 1 4
Video 1 Video 3 Video 4 Video 2 Video 5
Video 2 Video 4 Video 5 Video 3 Video 1
Video 3 Video 4 Video 1 Video 2 Video 5
Video 4 Video 2 Video 3 Video 1 Video 5
Video 5 Video 2 Video 4 Video 3 Video 1
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Chapter 7

Conclusion

Video over Internet is getting more popular now than ever before, due to the rapid
growth of the Internet bandwidth and the growing use of video in education,
entertainment, and information sharing. Among the vast video sources, it is
difficult for users to search for their desired pieces. We address two problems
about video retrieval. First, we do not know the contents of video before we
download and browse it. Second, it is difficult to find videos with similar video
contents. In our research, we have designed the web-based video retrieval
system called ADVISE, Advanced Digital Video Information Segmentation

Engine, to solve the above problems.

For the first problem mentioned above, we find that it is always more
efficient for a user to search for his desired videos if some descriptions are
provided. A meaningful video description can help us to know the contents at
once, so that we do not need to waste the time on downloading a huge video clip,
which in fact, we are not interested. As a result, video descriptions can enhance
efficient browsing and retrieval of video contents. Textual description extracted
from video caption text is a commonly used solution; however, text may not
always well describe the video as the contents are delivered by combining visual,
audio, and textual information. @ ADVISE proposes two kinds of video
descriptions to solve the problem. It generates the video table-of-contents,
V-ToC, and the video summary for user to know the video contents in a short

period of time.
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The V-ToC is an image-based video description. It describes the video
contents to the users on the Internet. We propose the automated generation of
the V-ToC structure. A color histogram based approach has been employed in
our system. We have improved a general color histogram based method using
regional color histograms and the adaptive threshold. The resulting structure is
in form of a four levels tree structure. We have designed an XML structure to
store the V-ToC. A DTD is defined in order to maintain the consistence of XML.
The XML V-ToC is further presented on a web-based interface using the XSL
transformation. In addition, we have performed an experiment to evaluate the

V-ToC structure generated

The video summary collects the essential features of a video. It is used to
provide more video information then the V-ToC. We proposed the video
summarization algorithm, which accepts user’s inputs. The user can set the
weights for video features, and the time constraint he wanted. Therefore, the
resulting video summary would be suitable for the need of the user. We
proposed a clustering approach to refine the selection of video segments into the
video summary. It can increase the smoothness of the summary by reducing the
number of fragments. We have designed two experiments to evaluate the video
summarization algorithm. The first one has evaluated the flexibility for
customizing the video content. We have found that the algorithm can generate
video summary according the user’s inputs. In the second experiment, we
evaluate the effect of the refining process. We have found that the refinement
process reduces the score of the video summary in some extents; however, it helps

greatly on improving the smoothness of the summary.

In the second problem, we focus on finding similar videos contents. There
are various video matching algorithms developed, but seldom of them consider
the structure of video. We find that using different algorithms and different
video features can result in a different matching. Since we have built up the
V-ToC structure in a tree format, therefore, we proposed two tree matching

algorithms in our ADVISE system to match the video contents.
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We have proposed two tree matching algorithms. The first one is the
non-ordered tree matching algorithm and the second one is the ordered tree
matching algorithm. The major difference between them is the concern on
temporal ordering of the video features. The ordered matching algorithm
considers the temporal ordering while the non-ordered one not. We applied two
video features on video matching. They are the color histogram feature and the
shot style feature. We have evaluated the video matching algorithms using a set
of experiment. We found that the video matching algorithms are able to

determine the video similarity.

To demonstrate all the proposed works, we have implemented ADVISE into
a practical system. We have constructed the backend video processing engine to
generate the V-ToC and to perform video matching. Then, we have built the
web-based video retrieval system, which organizes the V-ToC, provides an
interface for video summarization, and also is used for querying the video

matching results.
Finally, we summarize our contributions.

* The ADVISE system, which enhanced video browsing and retrieval

system on the Internet, has been proposed.

*  The generation and presentation of the image-based video description,
V-ToC, have been proposed. The V-ToC structure has been evaluated

using a set of experiments.

* The automated summarization of video into SMIL format has been
proposed. Experiments have been performed to evaluate the video

summarization results.

e Two video tree matching algorithms for measuring the similarity
between videos have been proposed. The results have been evaluated

by a set of experiments.
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We find the proposed ADVISE system brings us convenience in searching
videos. The V-ToC, video summary, and video matching work well in ADVISE

to assist the video browsing and retrieval for users on the Internet.

There are three major directions that we can further enhance our research
work. First, we need to improve the accuracy of the V-ToC construction process.
We can employ more video features other than color histograms to assists the
video shot detections and groupings. A better construction of V-ToC can also
improve the video matching results. Second, we can further research on the
video summarization algorithm in order to provide a more optimized content
selection. A constraint satisfaction problem is one possible way to model the
video summarization. As a result, we can optimize summarization process using
constraint satisfaction programming. Third, we can further extend the data
management techniques for our XML V-ToC. We can make use of the XML
hierarchical structure to design some video information searching schemes.
Then the extracted video features can be well-organized into an XML-based
database system. The querying of video features will be made more efficient.
Our ADVISE system can be extended by further research on these three

directions.
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