Solutions for Assignment 1

CSCI2100B

October 16, 2013

1 Written Assignment

Exercise 1.1

(6) $\sum_{i=1}^{n} i a^{i}$ Solution: According to the summation formula of geometric progression, $T = \sum_{i=1}^{n} a^i = \frac{a^{n+1}-a}{a-1}.$ Let $S = \sum_{i=1}^n ia^i aS = \sum_{i=1}^n ia(i+1) = \sum_{i=1}^n (i-1)a^i + na^{n+1}$. $(a-1)S = na^{n+1} - T \Rightarrow S = \frac{1}{a-1}(na^{n+1} - \frac{a^{n+1}-a}{a-1}).$ (8) $\sum_{i=0}^{n} i^2$ Solution:

$$
i^3 - (i-1)^3 = 3i^2 - 3i + 1
$$

\n
$$
\Rightarrow n^3 = \sum_{i=1}^n (i^3 - (i-1)^3) = \sum_{i=1}^n (3i^2 - 3i + 1)
$$

\n
$$
= 3 \sum_{i=1}^n i^2 - 3 \frac{n(n+1)}{2} + n
$$

\n
$$
\Rightarrow \sum_{i=0}^n i^2 = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}
$$

(12) Is $2^{n+1} = O(2^n)$? **Solution:** Yes. $2^{n+1} = 2 \cdot 2^n = O(2^n)$ (13) Is $2^{2n} = O(2^n)$? **Solution:** No. $2^{2n} = O(4^n)$

Exercise 1.2

(3) If $GCD(a, b) = p$ and $GCD(c, d) = q$, is $GCD(ac, bd) = pq$ true for all the a, b, c, d? Either prove it or give a counterexample. **Solution:** Counterexample: $a = 5$, $b = 4$, $c = 4$, $d = 5$.

Exercise 1.3

(1) $T(n) = aT(n-1) + bn, T(1) = 1$

Solution: First consider the problem of solving $T(n) = aT(n-1) + b$. An intuitive approach is to let $S(n) = T(n) + k$ and then replace $T(n)$ with $S(n)$ in the original formula to make it $S(n) = aS(n - 1).$

Here the problem changes to $T(n) = aT(n-1) + bn$. We now let $S(n) = T(n) + pn + q$. After replacing $T(n)$ with $S(n)$, we obtain $S(n)-pn-q = a(S(n-1)-p(n-1)-q) + bn$, which leads to $S(n) = aS(n-1) + (p - ap + b)n + (q + ap - aq)$. Thus we let $p - ap + b = q - ap - aq = 0$, we can get $S(n) = aS(n-1)$. After calculation, $p = \frac{b}{a-1}$ and $q = \frac{ab}{(a-1)^2}$. Since we know $S(1)$ according to $T(1)$ and we have $S(n) = aS(n-1)$, we can solve $S(n)$ easily. Finally, we use $S(n) = T(n) + pn + q$ to get $T(n)$. One thing you should take care is that when $a = 1$, $T(n) = T(n-1) + bn$. Then $T(n) =$ $T(1) + 2b + 3b + \ldots + nb = 1 + \frac{(n+2)(n-1)}{2}b.$ (5) Solve $x_n = x_{n-1} - \frac{1}{4}x_{n-2}$, with $x_0 = 1, x_1 = 1/2$. **Solution:** First solve the quadratic formula $t^2 - t + \frac{1}{4} = 0$. The solutions are $t_1 = t_2 = \frac{1}{2}$. Thus the solution is of the form $x_n = a(\frac{1}{2})^n$. To satisfy the initial conditions, we can obtain $a = 1$. Thus, $x_n = (\frac{1}{2})^n$.

Exercise 1.4

(5) Prove $2lq(n!) > n lqn$ by using Induction, where n is a positive integer greater than 2. **Solution:** Let $P(n)$ be $lg(n!) > nlgn$, where *n* is a positive integer. For $n = 1$, $L.H.S = 2lg(1!) > lg(1) = R.H.S.$ P(1) is true. Assume P(k) is true, i.e. $2lg(k!) > klgk$, where k is a positive integer For $n = k + 1$, L.H.S $= 2lg((k+1)!)$ $= 2(lg(k!) + lg(k+1))$ $>$ $klgk + 2lg(k + 1)$ (by assumption) $>$ $(k-1)lg(k+1) + 2lg(k+1)$ $(\frac{1}{k})^k \Rightarrow k^k > (k+1)^{k-1}$ for $k \ge 2$) $= (k+1)lg(k+1)$ $=$ R.H.S

 $P(k+1)$ is also true.

Therefore, by M.I., $P(n)$ is true for all positive integer n. (6) The number generated by the formula $n^2 + n + 17$ is prime for $n \ge 0$, where *n* is an integer. Either prove it or disprove it by counterexample. **Solution:** No. Let $n = 17$. Then $n^2 + n + 17 = 17 \times (17 + 1 + 1) = 17 \times 19$

Exercise 1.6

(1) for i = 1 to n; for $j = 1$ to n ; $x := x + 1;$

Solution: $f(n) = n^2$, $g(n) = n^2$.

(3) for $i = 1$ to n; for $j = i$ to n ; for $k = 1$ to j; $x := x + 1;$

Solution: $f(n) = \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=1}^{j} 1 = \sum_{i=1}^{n} \sum_{j=i}^{n} j = \frac{1}{2} \sum_{i=1}^{n} (n+i)(n-i+1) = \frac{1}{2} \sum_{i=1}^{n} (n(n+i))$ 1) + i - i²) = $\frac{n(n+1)(2n+1)}{6}$, g(n) = n³.

(5) for
$$
i = 1
$$
 to n;
for $j = i$ to n;
for $k = 1$ to 1000;
 $x := x + 1$;

Solution: $f(n) = \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=1}^{1000} 1 = 1000 \sum_{i=1}^{n} \sum_{j=i}^{n} 1 = 1000 \sum_{i=1}^{n} (n-i+1) = 1000 \sum_{i=1}^{n} i =$ $500n(n+1), g(n) = n^2.$

Exercise 1.8

(3) What is the running time of this algorithm with the following assumptions? What is its big-O notation?

Solution: First assignment consumes 1 unit. Setting up for-next loop consumes 2.3 units. For each loop, there are one \ast , one $+$, and one assignment. Thus, $(1.75 + 1.25 + 1 + 1.5) \ast (n + 1) =$ $5.5n + 5.5$ units will be consumed. In total, the running time is $5.5n + 8.8$ units, which is $O(n)$ in big-O notation.

Exercise 1.9

(2) Calculate the time and space complexity for $n = 10, 20, 30, 50, 70$, and 100 for each algorithm.

Solution: Just pay attention to different ranges.

(4) Come up with a strategy that you would use to minimize the time and space complexity individually?

Solution: $t(n) = min\{t_A(n), t_B(n)\}, s(n) = min\{s_A(n), s_B(n)\}.$ Thus,

 $t(n) =$ $\sqrt{ }$ J \mathcal{L} n if $1 \leq n < 50$ n^2 if $50 \le n < 70$ n^3 if $70 \le n \le 100$ $s(n) =$ $\sqrt{ }$ J \mathcal{L} n if $1 \leq n < 20$ 1.5*n* if $20 \le n < 50$ 0.5*n* if $50 \le n \le 100$

2 Programming Assignment

Exercise 1.17

Analysis: The function isPrime() is responsible for checking the input n is a prime. In the main function, the program uses array P to store all 50 smallest primes. Pay attention to the first for-loop in the main function. The sample code is shown below.

```
#include <stdio.h>
int P[100];
int isPrime(int n) {
    int k;
        if (n \leq 1) return 0;
        for (k=2; k*k<=n; ++k)
                 if (n/k == 0) return 0;
        return 1;
}
int main() {
        int n, i, k;
        scanf("%d", &n);
        int m = 0;
```

```
for (i=2; m<50; ++i) {
                if (isPrime(i)) P[m++] = i;}
        for (i=0; i<n; ++i) {
                scanf("%d", &k);
                printf("%d\n", P[k-1]);
        }
        return 0;
}
```
Exercise 1.20

Analysis: All you need to care is how to read input. This problem tests your ability of dealing with strings. The sample code is shown below.

```
#include <stdio.h>
#include <stdlib.h>
int main()
{
        char str[30];
        int T, i, j;
        scanf("%d\nu", &T);for (i = 0; i < T; i++) {
                scanf("%s", str);
                for (j = 0; j < strlen(str); j++) {
                        if (str[j] < '0' || str[j] > '9') putchar(str[j]);
                }
                putchar('\n\in);
        }
        return 0;
}
```