
CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

CSCI2100B Data Structures
Sorting

Irwin King

king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king

Department of Computer Science & Engineering
The Chinese University of Hong Kong

mailto:king@cse.cuhk.edu.hk
mailto:king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king
http://www.cse.cuhk.edu.hk/~king

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Introduction

• Sorting is simply the ordering of your data in a
consistent manner, e.g., cards, telephone name list,
student name list, etc.

• Each element is usually part of a collection of data called
a record.

• Each record contains a key, which is the value to be
sorted, and the remainder of the record consists of
satellite data.

• Assumptions made here:

• Integers

• Use internal memory

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Introduction

• There are several easy algorithms to sort in O(n2), such
as insertion sort.

• There is an algorithm, Shellsort, that is very simple to
code, runs in o(n2), and is efficient in practice.

• There are slightly more complicated O(n log n) sorting
algorithms.

• Any general-purpose sorting algorithm requires Ω(n log
n) comparisons.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Introduction

• Internal vs. External Sorting Methods

• Different Sorting Methods

• Bubble Sort

• Insertion Sort

• Selection

• Quick Sort

• Heap Sort

• Shell Sort

• Merge Sort

• Radix Sort

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Introduction

• Types of Sorting

• Single-pass

• Multiple-pass

• Operations in Sorting

• Permutation

• Inversion (Swap)

• Comparison

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Permutation

• A permutation of a finite set S is an ordered sequence of
all the elements of S, with each element appearing
exactly once.

• For example, if S = {a, b, c}, there are 6 permutations of
S:

• abc, acb, bac, bca, cab, cba.

• There are n! permutations of a set of n elements.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

K-Permutation

• A k-permutation of S is an ordered sequence of k
elements of S, with no element appearing more than
once in the sequence. (Thus, an ordinary permutation is
just an n-permutation of an n-set.)

• The twelve 2-permutations of the set {a, b, c, d} are

• ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Inversion

• An inversion in an array of numbers is any ordered pair
(i, j) having the property that i < j but a[i] > a[j].

• For example, the input list 34, 8, 64, 51, 32, 21 has nine
inversions, namely (34,8), (34,32), (34,21), (64,51),
(64,32), (64,21), (51,32), (51,21) and (32,21).

• Notice that this is exactly the number of swaps that
needed to be (implicitly) performed by insertion sort.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Preliminaries

• Internal Sort--Each algorithm will be passed an array
containing the elements and an integer containing the
number of elements.

• Validity--We will assume that N, the number of elements
passed to our sorting routines, has already been checked
and is legal.

• Ordering--We require the existence of the “<“ and “>”
operators, which can be used to place a consistent
ordering on the input.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Bubble Sort

• It is done by scanning the list from one-end to the other,
and whenever a pair of adjacent keys is found to be out
of order, then those entries are swapped.

• In this pass, the largest key in the list will have bubbled to
the end, but the earlier keys may still be out of order.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Bubble Sort

• The bubble sort is probably the easiest algorithm to
implement but the most time consuming of all the
algorithm, other than pure random permutation.

• The basic idea underlying the bubble sort is to pass
through the file sequentially several times.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• Original 34 8 64 51 32 21 Number of Exchange

• ---

• After p = 1 8 34 21 64 51 32 4

• After p = 2 8 21 34 32 64 51 3

• After p = 3 8 21 32 34 51 64 2

• After p = 4 8 21 32 34 51 64 0

• After p = 5 8 21 32 34 51 64 0

• After p = 6 8 21 32 34 51 64 0

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Bubble Sort

• Each pass consists of comparing each element in the file
with its successor (x[i] with x[i+1]) and

• interchanging the two elements if they are not in proper
order.

• After each pass, the largest element x[n-i] is in its proper
position within the sorted array.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Bubble Sort Algorithm

• for i:= 1 to n-1 do

• 	
 for j:= n downto i+1 do

• 	
 	
 if A[j].key < A[j-1].key then

• 	
 	
 	
 swap(A[j],A[j-1])

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

An Improved Version in C
• bubble(x,n)

• int x[], n;

• {

• 	
 int hold, j, pass;

• 	
 int switched = TRUE;

• 	
 for (pass = 0; pass < n - 1 && switched == TRUE; pass++) {

• 	
 	
 switched = FALSE;

• 	
 	
 for (j = 0; j < n-pass-1; j++)

• 	
 	
 	
 if (x[j] > x[j+1]) {

• 	
 	
 	
 	
 switched = TRUE;

• 	
 	
 	
 	
 hold = x[j];

• 	
 	
 	
 	
 x[j] = x[j+1];

• 	
 	
 	
 	
 x[j+1] = hold;

• }	
 }	
 	
 }

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Bubble Sort

• Analysis of the bubble sort shows that there are n-1
passes and n-1 comparisons on each pass without the
improvements.

• Thus the total number of comparisons is (n-1) * (n-1) =
n2 - 2n + 1, which is O(n2).

• With the first improvement the sorting will be (n-1) +
(n-2) + ... + 1 = n (n+1)/2 which is also O(n2).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Bubble Sort

• The number of interchanges depends on the original
order of the file.

• However, the number of interchanges cannot be greater
than the number of comparisons.

• It is likely that it is the number of interchanges rather
than the number of comparisons that takes up the most
time in the program's execution.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Bubble Sort

• Advantage

• It requires little additional space (one additional record to
hold the temporary value for interchanging and several
simple integer variables)

• It is O(n) in the case that the file is completely sorted (or
almost completely sorted since only one pass of n-1
comparisons (and no interchanges) is necessary to establish
that a sorted file is sorted.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Insertion Sort

• One of the simplest sorting algorithms. It consists of n-1
passes.

• For pass p=2 through n, insertion sort ensures that the
elements in positions 1 through p are in sorted order.

• Insertion sort makes use of the fact that elements in
positions 1 through p-1 are already known to be in
sorted order.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Insertion Example

• Original 34 8 64 51 32 21 Positions Moved

• ---

• After p = 1 34 8 64 51 32 21 0

• After p = 2 8 34 64 51 32 21 1

• After p = 3 8 34 64 51 32 21 0

• After p = 4 8 34 51 64 32 21 1

• After p = 5 8 32 34 51 64 21 3

• After p = 6 8 21 32 34 51 64 4

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Insertion Sort

• insertsort(x,n)

• int x[], n;

• {	
 int i, k, y;

• 	
 for (k=1; k<n; k++) {

• 	
 	
 y=x[k];

• /* move down 1 position all elements greater than y */

• 	
 	
 for (i = k-1; i>=0 && y < x[i]; i--)

• 	
 	
 	
 x[i+1] = x[i];

• 	
 	
 /* insert y at proper position */

• 	
 	
 x[i+1] = y;

• 	
 }

• }

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Insertion Sort

• Initially x[0] may be thought of as a sorted file of one
element.

• After each repetition of the loop, the elements x[0]
through x[k] are in order.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Insertion Sort Complexity

• What is the time complexity of the insertion sort
algorithm when the input is sorted, in reverse order, in
random order?

• The simple insertion sort may be viewed as a general
selection sort in which the priority queue is
implemented as an ordered array.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Insertion Sort Complexity

• Only the preprocessing phase of inserting the elements
into the priority queue is necessary.

• Once the elements have been inserted, they are already
sorted, so that no selection is necessary.

• If the initial file is sorted, only one comparison is made
on each pass, so that the sort is O(n).

• If the file is initially sorted in the reverse order, the sort
is O(n2), since the total number of comparisons is (n-1)
+ (n-2) + ... + 2 + 1 = (n-1) n/2 which is O(n2).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Insertion Sort Complexity

• The simple insertion sort is still usually better than the
bubble sort.

• The close the file is to sorted order, the more efficient the
simple insertion sort becomes.

• The average number of comparisons in the simple
insertion sort (by considering all possible permutations
of the input array) is also O(n2).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Insertion Sort Complexity

• The space requirements for the sort consist of only one
temporary variable, y.

• Insertion sort makes O(n2) comparisons of keys and
O(n2) movements of entries. It makes n2 / 4 + O(n)
comparisons of keys and movements of entries when
sorting a list of length n in random order.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Insertion Sort Complexity

• Improvement: using a binary search. This reduces the
total number of comparisons from O(n2) to O(n log n).

• However, the moving operation still requires O(n2) time.
So the binary search does not significantly improves the
overall time requirement.

• Another improvement is to use the list insertion. This
reduces the time required for insertion but not the time
required for searching for the proper position.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

A Lower Bound for Simple Sorting

• The average number of inversions in an array of n
distinct numbers is n (n - 1)/4.

• For any list, L, of numbers, consider Lr, the list in reverse
order.

• Consider any pair of two numbers in the list (x,y), with y > x.

• In exactly one of L and Lr this ordered pair represents an
inversion.

• The total number of these pairs is a list L and its reverse Lr is
n (n-1)/2.

• On average, it is half of the above.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

A Lower Bound for Simple Sorting Algorithms

• Any algorithm that sorts by exchanging adjacent
elements requires Ω(n2) time on average.

• The average number of inversions is initially n (n-1)/4 =
Ω(n2).

• Each swap removes only one inversion, so Ω(n2) swaps are
required.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Selection Sort

• It is also called Straight Selection or Push-Down Sort.

• A selection sort is one in which successive elements are
selected in order and placed into their proper sorted
positions.

• The elements of the input may have to be preprocessed
to make the ordered selection possible.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Selection Sort

• Original 34 8 64 51 32 21 Positions Moved

• --

• After p = 1 34 8 64 51 32 21 1

• After p = 2 8 34 64 51 32 21 4

• After p = 3 8 21 64 51 32 34 2

• After p = 4 8 21 32 51 64 34 2

• After p = 5 8 21 32 34 64 51 1

• After p = 6 8 21 32 34 51 64 0

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Selection Sort

• As the first stage, one scans the list to find the entry that
comes last in the order.

• This entry is then interchanged with an entry in the last
position.

• Now, one could repeat the process on the shorter list
obtained by omitting the last entry.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Comparison

• 	
 	
 	
 Selection	
 	
 Insertion (average)

• Assignments

• of entries	
 3.0n + O(1)	
 0.25n2 + O(n)

• Comparisons

• of keys 	
 0.5n2 + O(n)	
 0.25n2 + O(n)

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Straight Selection Sort

• selectsort(x,n)

• int x[], n;

• {	
 int i, indx, j, large;

• 	
 for (i=n-1; i>0; i--) {

• 	
 	
 /* place the largest number of x[0] through */

• 	
 	
 /* x[i] into large and its index into indx */

• 	
 	
 large = x[0];	
indx = 0;

• 	
 	
 for (j=1; j <= i; j++)

• 	
 	
 	
 if (x[j] > large) {

• 	
 	
 	
 	
 large = x[j];	
 indx = j;}

• 	
 	
 x[indx] = x[i];

• 	
 	
 x[i] = large;}}

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Selection Sort Analysis

• The algorithm consists entirely of a selection phase in
which the largest of the remaining elements, large, is
repeatedly placed in its proper position, i, at the end of
the array.

• To do so, large is interchanged with the element x[i].

• The initial n-element priority queue is reduced by one
element after each selection.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Selection Sort Analysis

• Analysis of the straight selection sort is straightforward.

• The first pass makes n-1 comparisons, the second pass
makes n-2, and so on.

• Therefore there is a total of (n-1) + (n-2) + ... + 1 =
(n-1) n / 2 comparisons, which is O(n2).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Selection Sort Analysis

• The number of interchanges is always n-1 (unless a test
is added to prevent the interchanging of an element with
itself).

• There is little additional storage required (except to hold
a few temporary variables).

• The sort may be categorized as O(n2), although it is
faster than the bubble sort.

• There is no improvement if the input file is completely
sorted or unsorted, since the testing proceeds to
completion without regard to the makeup of the file.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Shell Sort

• It is also called Diminishing Increment Sort.

• Selection sort moves the entries very efficiently but
does many redundant comparisons.

• In its best case, insertion sort does the minimum
number of comparisons, but is inefficient in moving
entries only one place at a time.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Shell Sort

• If we were to modify the comparison method so that it
first compares keys far apart, then it could sort the
entries far apart.

• Afterward, the entries closer together would be sorted,
and finally the increment between keys being compared
would be reduced to 1, to ensure that the list is
completely in order.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• Original 81 94 11 96 12 35 17 95 28 58 41 75 15

• --

• After 5-sort 35 17 11 28 12 41 75 15 96 58 81 94 95

• After 3-sort 28 12 11 35 15 41 58 17 94 75 81 96 95

• After 1-sort 11 12 15 17 28 35 41 58 75 81 94 95 96

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Shell Sort Algorithm
• shellsort(x,n,incrmnts, numinc)

• int x[], n, incrmnts[], numinc;

• {	
 int incr, j, k, span, y;

• 	
 for (incr = 0; incr < numinc; incr++) {

• 	
 	
 /* span is the size of the increment */

• 	
 	
 span = incrmnts[incr];

• 	
 	
 for (j = span; j < n; j++) {

• 	
 	
 	
 /* Insert element x[j] into its proper */

• 	
 	
 	
 /* position within its subfile */

• 	
 	
 	
 y = x[j];

• 	
 	
 	
 for (k = j-span; k >= 0 && y < x[k]; k-= span)

• 	
 	
 	
 	
 x[k+span] = x[k];	
 x[k+span] = y;

• 	
 	
 	
 }}}

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Shell Sort Analysis

• Since the first increment used by the Shell sort is large,
the individual subfiles are quite small, so that the simple
insertion sorts on those subfiles are fairly fast. Each sort
of a subfile causes the entire file to be more nearly
sorted.

• Although successive passes of the Shell sort use smaller
increments and therefore deal with larger subfiles, those
subfiles are almost sorted due to the actions of previous
passes.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis

• Thus, the insertion sorts on those subfiles are also quite
efficient.

• If a file is partially sorted using an increment k and is
subsequently partially sorted using an increment j, the
file remains partially sorted on the increment k.

• Hence, subsequent partial sorts do not disturb earlier
ones.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis

• One requirement that is intuitively clear is that the
elements of incrmnts should be relatively prime (that is,
have no common divisors other than 1).

• This guarantees that successive iterations intermingle
subfiles so that the entire file is indeed almost sorted
when span equals 1 on the last iteration.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis

• The analysis of the Shell sort is difficult at best.

• The empirical studies have been made of Shell Sort,
when n is large, is in the range of n1.25 to 1.6n1.25.

• It has been shown that the order of the Shell sort can be
approximated by O(n (log n)2) if an appropriate
sequence of increments is used.

• For other series of increments, the running time can be
proven to be O(n1.5).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis

• Empirical data indicates that the running time is of the
form a * nb, where a is between 1.1 and 1.7 and b is
approximately 1.26, or of the form c * n (log n)2 - d * n *
log n, where c is approximately 0.3 and d is between 1.2
and 1.75.

• In general the Shell sort is recommended for moderately
sized files of several hundred elements.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis

• Knuth recommends choosing increments as follows:

• Define a function h recursively so that h(1) = 1 and h(i+1) =
3 * h(i) + 1.

• Let x be the smallest integer such that h(x) ≥ n, and set
numinc, the number of increments, to x-2 and incrmnts[i] to
h(numinc -i +1) for i from 1 to numinc.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Heapsort

• Priority queues can be used to sort in O(n log n) time.

• The algorithm based on this idea is known as heapsort
and gives the best Big-Oh running time we have seen so
far.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Basic Idea

• Build a binary heap of n elements. This stage takes O(n)
time.

• We then perform n delete_min operations.

• The elements leave the heap smallest first, in sorted
order.

• By recording these elements in a second array and then
copying the array back, we sort n elements.

• Since each delete_min takes O(log n) time, the total
running time is O(n log n).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Cleaver Modification

• The main problem with this algorithm is that it uses an
extra array. Thus, the memory requirement is doubled.

• Use the last cell

• A clever way to avoid using a second array makes use of the
fact that after each delete_min, the heap shrinks by 1.

• Thus the cell that was last in the heap can be used to store
the element that was just deleted.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Merge Sort

• Mergesort is an excellent method for external sorting,
that is, for problems in which the data are kept on disks
or magnetic tapes, not in high-speed memory.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Merge Sort

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Merge Sort

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Merge Sort

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Merge Sort

• This algorithm is a classic divide-and-conquer strategy.

• The problem is divided into smaller problems and solved
recursively.

• The conquering phase consists of patching together the
answers.

• Divide-and-conquer is a very powerful use of recursion
that we will see many times.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Merge Sort Analysis

• Comparison of keys is done at only one place in the
complete mergesort procedure.

• This place is within the main loop of the merge
procedure.

• After each comparison, one of the two nodes is sent to
the output list.

• Hence the number of comparisons certainly cannot
exceed the number of nodes being merged.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis

• It is clear from the tree that the total lengths of the lists
on each level is precisely n, the total number of entries.

• In other words, every entry is treated in precisely one
merge on each level.

• Hence the total number of comparisons done on each
level cannot exceed n.

• The number of levels, excluding the leaves (for which no
merges are done), is log n rounded up to the next
smallest integer.

• The number of comparisons of keys done by mergesort
on a list of n entries, therefore, is no more than n log n
rounded upward.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis

T (1) = 1
T (n) = 2T(n / 2) + n
T (n)
n

=
T(n/ 2)
n/ 2

+1

T (n / 2)
n / 2

=
T(n/ 4)
n/ 4

+1

T (n / 4)
n / 4

=
T(n /8)
n / 8

+1

 M
T (2)

2
=
T(1)

1
+1

T (n)
n

=
T(1)

1
+ log n

T (n) = nlog n + n =O(nlog n)

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

QuickSort

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quicksort

• Divide-and-conquer process for sorting a typical
subarray A[p . . r]

• Divide:	
The array A[p . . r] is partitioned (rearranged)
into two nonempty subarrays A[p . . q] and A[q + 1 . . r]
such that each element of A[p . . q] is less than or equal
to each element of A[q + 1 . . r].

• The index q is computed as part of this partitioning
procedure.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quicksort

• Conquer:	
 The two subarrays A[p . . q] and A[q + 1 . . r]
are sorted by recursive calls to quicksort.

• Combine:	
 Since the subarrays are sorted in place, no
work is needed to combine them: the entire array A[p . .
r] is now sorted.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 m n

[26 5 37 1 61 11 59 15 48 19 1 10
[11 5 19 1 15] 26 [59 61 48 37] 1 5
[1 5] 11 [19 15] 26 [59 61 48 37] 1 2
1 5 11 [19 15] 26 [59 61 48 37] 4 5
1 5 11 15 19 26 [59 61 48 37] 7 10
1 5 11 15 19 26 [48 37] 59 [61] 7 8
1 5 11 15 19 26 37 48 59 [61] 10 10
1 5 11 15 19 26 37 48 59 61

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quicksort Algorithm

• QUICKSORT(A,p,r)

• 1 if p < r

• 2 then q PARTITION(A,p,r)

• 3 QUICKSORT(A,p,q)

• 4 QUICKSORT(A,q + 1,r)

• To sort an entire array A, the initial call is
QUICKSORT(A, 1, length[A]).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Partition Algorithm

• partition(x,lb,ub,pj)

• int x[], lb, ub, *pj;

• {	
 int a, down, temp, up;

• 	
 a = x[lb]; up = ub; down = lb;

• 	
 while (down < up) {

• 	
 	
 while (x[down] <= a && down < ub)

• 	
 	
 	
 down++;

• 	
 	
 while (x[up] > a)	
 up--;

• 	
 	
 if (down < up) {

• 	
 	
 	
 temp = x[down];	
 x[down] = x[up];

• 	
 	
 	
 x[up] = temp;}}

• 	
 x[lb] = x[up]; x[up] = a; *pj = up;}

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Partition Operation

• Goal

• Loop Invariant

<p p >=p

low Pivot location high

<p

low Last small i

?>=pp

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Partition Operation

• Case 1- new element is <p

• Case 2- New element is >= p

<p

Last small i

?

<p

Last small i

?

<p

swap

>=pp

p >=p

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick Sort Analysis

• The number of comparisons of keys that will have been
made in the call to partition is n-1, since every entry in
the list is compared to the pivot, except for the pivot
entry itself.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis

• Let us denote by C(n) the average number of
comparisons done by quicksort on a list of length n and
by C(n,p) the average number of comparisons on a list of
length n where the pivot for the first partition turns out
to be p.

• The remaining work is then C(p-1) and C(n-p)
comparisons for the sublists.

• So for n ≥ 2, we have

• C(n,p) = (n-1) + C(p-1) + C(n-p).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis

• The average time is then

• C(n) = (n-1) + 2/n (C(0) + C(1) + … + C(n-1)).

• For a list of length n-1, we have

• C(n-1) = (n-2) + 2/n -1 (C(0) + C(1) + ... + C(n-2)).

• Multiplying the first expression by n, the second by n-1,
and subtracting, we obtain

• nC(n)-(n-1) C(n-1) = n(n-1)-(n-1)(n-2)+2C(n-1),

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis

• which can be rearranged as

• C(n)-2/(n+1) = C(n-1)-2/n + 2/(n+1)

• C(n)-2/(n+1) = (C(n-1)-2)/n + 2/(n+1)

• = (C(n-2)-2)/(n-1) + 2/(n+1) + 2/n

• = (C(n-3)-2)/(n-2) + 2/(n+1) + 2/n + 2/(n-1)

• = (C(2)-2)/3 + 2/(n+1) + 2/n + 2/(n -1) + ... + 2/4

• = (C(1)-2)/2 + 2/(n +1) + 2/n + 2/(n-1) + ... + 2/4 + 2/3...

• = -1 + 2(1/(n+1) + 1/n + 1/(n-1) + ...+ 1/4 + 1/3).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Harmonic Numbers

• H(n) = 1 + 1/2 + ... + 1/n

• Evaluating the above Harmonic number we find that

• This shows that

• H(n) = 1 + 1/2 + ...+ 1/n = log n + O(1).

• Substitute this back to the original equation and we
obtain

• (C(n)-2)/(n+1) = 2 log n + O(1).

1
x
dx = log(n + 1

2
) − log 1

2
≈ log n + 0.71

2

n+ 1
2∫

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Harmonic Numbers

• The final step is to solve this equation for C(n), noting
that, when we multiply O(1) by n+1, we obtain an
expression that is O(n).

• In its average case, quicksort performs

• C(n) = 2n log n + O(n)

• comparisons of keys in sorting a list of n entries.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Observations on Quick Sort-
Choice of Pivot

• We can choose any entry we wish and swap it with the
first entry before beginning the loop that partitions the
list.

• Often, the first entry is a poor choice since if the list is
already sorted, then the first key will have no others less
than it, and so one of the sublists will be empty.

• Hence, it might be better to select an entry near the
center of the list in hope that the entry will partition the
keys so that about half come on each side of the pivot.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Bucket/Radix/Postman Sort
• In some special cases, the sorting can be performed in

linear time.

• The idea is to consider the key one character at a time
and to divide the items, not into two sublists, but into as
many sublists as there are possibilities for the given
character from the key.

• If our keys, for example, are words or other alphabetic
strings, then we divide the list into 26 sublists at each
stage.

• That is, we set up a table of 26 lists and distribute the
items into the lists according to one of the characters in
the key.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Radix Sort Analysis

• The time used by radix sort is proportional to nk, where
n is the number of items being sorted and k is the
number of characters in a key.

• The time for all our other sorting methods depends on
n but not directly on the length of a key.

• The best time was that of mergesort, which was n log n
+ O(n).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis

• The relative performance of the methods will therefore
relate in some ways to the relative sizes of nk and n log
n.

• If the keys are long but there are relatively few of them,
then k is large and n relatively small, and other methods
(such as mergesort) will outperform radix sort.

• But if k is small and there are a large number of keys,
then radix sort will be faster than any other method we
have studied.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Other Sorting Issues-Sorting
Large Structures

• Problem: When sorting large structures sometimes it is
impractical to store all the information of a record in an
array since it is expensive and swapping of large records
are inefficient.

• If this is the case, a practical solution is to have the input
array contain pointers to the structures.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Sorting Large Structures

• We sort by comparing the keys the pointers point to,
swapping pointers when necessary.

• All the data movement is essentially the same as if we were
sorting integers.

• This is known as indirect sorting.

• We can use this technique for most of the data
structures we have described.

• This is sometimes called sorting by address.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Stability

• A sorting function is called stable if, whenever two items
have equal keys, then on completion of the sorting
function the two items will be in the same order in the
list as before sorting.

• Stability is important if a list has already been sorted by
one key and is now being sorted by another key, and it is
desired to keep as much of the original ordering as the
new one allows.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Stability

• An algorithm is stable if for all records i and j such that
k[i] equals k[j], if r[i] precedes r[j] in the original file, r[i]
precedes r[j] in the sorted file.

• That is a stable sort keeps records with the same key in
the same relative order that they were in before the
sort.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• Given (a,1), (b,2), (c,3), (a,4), (a,5), (b,6), (c,7).

• The output of (a,1), (a,4), (a,5), (b,2), (b,6), (c,3), (c,7) is
stable.

• Insertion sort (before equal element): (a,5), (a,4), (a,1), (b,
6), (b,2), (c,7), (c,3) is unstable.

