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Introduction

• In some applications, a simple queue may not be the 
best strategy to complete jobs.

• Printer queue

• Multiprocessing queue

• Problems

• Sometimes it seems that small jobs take longer

• Important jobs can’t be done first
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Priority Queues (Heaps)

• Different from a simple queue where one 
adds an entry at the end and takes an entry 
at the front,

• A priority queue takes an entry that 
satisfies some special properties among all 
the entries and place it at the front so to 
be taken out first.
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Example

• In a job queue, there are many algorithms that 
can be implemented to accomplish tasks.

• first-come-first-serve

• shortest-job-first

• longest-job-first

• priority-first

• combination of the above
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Priority Queue

• A priority queue consists of entries, each of which 
contains a key called the priority of the entry.  

• A priority queue has only two operations other than the 
usual creation, size, full, and empty operations:

• Insert--inserts an entry.

• Delete_Min--finds, passes back, and removes the entry 
having the highest priority.

• If entries have equal priorities, then the first entry 
inserted is removed first.
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Model of a Priority Queue
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Implementation of a Priority Queue

• Several possible implementations are possible.

• Simple linked list

• A sorted contiguous list

• An unsorted list

• Binary search tree



CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Binary Heap (or just Heap)

• Heaps have two properties

• Structure property 

• Heap order property

• As with AVL trees, an operation on a heap 
can destroy one of the properties, so a 
heap operation must not terminate until all 
heap properties are in order.
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Structure Property

• A heap is a binary tree that is completely 
filled, with the possible exception of the 
bottom level, which is filled from left to 
right. 

• Such a tree is known as a complete binary 
tree.
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Example
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Observation

• A complete binary tree of height h has between 
2h and 2h+1 - 1 nodes. 2h

• This implies that the height of a complete binary 
tree is ⎣log n⎦, which is clearly O(log n).

• Because a complete binary tree is so regular, it 
can be represented in an array and no pointers 
are necessary.
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Example of an Implementation

• For any element in array position i, the left child is in position 2i, the right 
child is in the cell after the left child (2i + 1), and the parent is in position 
⎣i/2⎦. 

• Thus not only are pointers not required, but the operations required to 
traverse the tree are extremely simple. 

• Problem is the estimation of the maximum heap size is required in 
advance.
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Heap Order Property

• The property that allows operations to be 
performed quickly is the heap order property.

• For a heap, the smallest element should be at the 
root so that the operation to remove will be quick.  

• By the heap order property, the minimum element 
can always be found at the root. 

• Thus, we get the extra operation, find_min, in 
constant time, O(1).
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Heap Order Property
• Since we want to be able to find the minimum quickly, it 

makes sense that the smallest element should be at the 
root. 

• If we consider that any subtree should also be a heap, 
then any node should be smaller than all of its 
descendants.

• Applying this logic, we arrive at the heap order property.

•  In a heap, for every node X, the key in the parent of X is 
smaller than (or equal to) the key in X, with the obvious 
exception of the root (which has no parent).
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Example

• Two complete trees (only the left tree is a heap).
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Heap Operations - Insert

• We create a hole in the next available location.  

• If x can be placed in the hole without violating the 
heap order, then we do so and are done.

• Otherwise we slide the element that is in the hole's 
parent node into the hole, thus bubbling the hole up 
toward the root.

• We continue this process until x can be placed in the 
hole.

• This strategy is known as a percolate up.
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Example-Insert 14
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Example
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Observation

• The time to do the insertion could be as much 
as O(log n) if the element to be inserted is the 
new minimum and is percolated all the way to 
the root.

• It has been shown that 2.607 comparisons are 
required on average to perform an insert.

• The average insert moves an element up 1.607 
levels.
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Heap Operations - Delete

• Deletions are handled in a similar manner as 
insertions.  

• Finding the minimum is easy; the hard part is 
removing it.  

• When the root is removed, a hole is created.

• We then need to slide the smaller of the hole's 
children into the hole, thus pushing the hole 
down one level.
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Deletion

• We repeat this step until x can be placed in the 
hole.  

• Thus, our action is to place x in its correct spot 
along a path from the root containing minimum 
children.

• The rearranging will typically take less than 
O(log n).
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Example
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Example
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Example
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Other Heap 
Operations

• Finding the minimum can be performed in constant time.

• No help in finding the maximum.

• There is no ordering information.

• Decrease_Key (P,Δ)

• Increase_Key(P,Δ)

• Remove(I)

• Build_Heap
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Observation on Build_Heap

• Takes n keys and places them into an empty heap.

• We could perform n successive Inserts.

• This will take O(n) average but O(n log n) worst-
case.

• One other way is to place the n keys into the tree 
in any order.

• Then perform Percolate_Down on half of the 
nodes.
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Example-Initial, 
Percolate_Down(7)
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Example-Percolate_Down(6), 
Percolate_Down(5)
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Example-Percolate_Down(4), 
Percolate_Down(3)
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Example-Percolate_Down(2), 
Percolate_Down(1)
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Back to the k Selection Problem

First Algorithm

• We now could use what we just learned and apply it 
to find out the k-th smallest or largest element in a 
set.  

• To build a heap, it takes O(n) average and O(n log n) 
for worst case scenario.  

• To delete a heap, it take O(log n).  

• Hence, the total running time is O(n + k log n).
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More

• For small k then the running time 
dominated by the heap building operation 
and is O(n).

• For larger values of k, the running time is 
O(k log n) time.
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Second Algorithm

• We could also build a smaller heap tree of 
k elements.  

• It then compares the remaining entries 
against the heap.  If the new element is 
larger, then it replaces the root or else it is 
being discarded.

• To build a k element heap, the time will be 
O(k).  
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More

• The time to process each of the remaining 
elements is O(1), to test if the element goes 
into the heap, plus O(log k), to delete the root 
and insert the new element if this is necessary.

• Thus, the total time is O(k + (n-k) log k) = O(n 
log k).  

• This algorithm also gives a bound of n log n for 
finding the median.


