
CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

CSCI2100B Data Structures
Hashing

Irwin King

king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king

Department of Computer Science & Engineering
The Chinese University of Hong Kong

mailto:king@cse.cuhk.edu.hk
mailto:king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king
http://www.cse.cuhk.edu.hk/~king

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Introduction

• Hashing is a technique used for performing insertions,
deletions and finds in constant average time.

• Tree operations that require any ordering information
among the elements are not supported efficiently.

• See several methods of implementing the hash table.

• Compare these methods analytically.

• Show numerous applications of hashing.

• Compare hash tables with binary search trees.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Rectangular Arrays

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Row- and Column-Major Ordering

• How does one index an entry in an array?

• Entry [i,j] goes to position ni+j for row-major ordering
and i+jm for column-major ordering when the rows are
numbered from 0 to m-1 and the columns from 0 to n-1
and entry [0,0] is at position 0.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Row- and Column-Major Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Implementation Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

More Implementation Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

3D Array Implementation

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

3-D Array Implementation

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Problem

• In some applications the full use of the whole array is
seldom.

• This leads to sparse array or matrix representation.

• For example, population count in a 2-D grid map.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

An Access Table

• One method to eliminate the multiplications needed in
calculating the index to an entry is to use an access table.

• The array will contain the values 0, n, 2 n, 3 n, ..., (m-1) n.

• Then for all references to the rectangular array, the index for
[i,j] is calculated by taking the entry in position i of the auxiliary
table, adding j, and going to the resulting position.

• Again we see a trade-off between space used and execution
speed.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Tables: A New Abstract Data Type

• Functions: a function is defined in terms of two sets and a
correspondence from elements of the first set to
elements of the second.

• If f is a function from a set A to a set B, then f assigns to
each element of A a unique elements of B.

• The set A is called the domain of f, and the set B is called
the codomain of f. The subset of B containing just those
element that occur as values of f is called the range of f.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• For a table, we call the domain the index set, and we
call the codomain the base type or value type.

• For example, to index into the cell [2,3] the offset value
may be 13 if the matrix size is [10,10].

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

An Abstract Data Type

• A table with index set I and base type T is a function
from I into T together with the following operations.

• Table access: Evaluate the function at any index in I.

• Table assignment: Modify the function by changing its value at
a specified index in I to the new value specified in the
assignment.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

An Abstract Data Type

• Insertion: Adjoin a new element x to the index set I and
define a corresponding value of the function at x.

• Deletion: Delete an element x from the index set I and
restrict the function to the resulting smaller domain.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Why Hash Table?

• Often, array indices are not natural identifiers for items that are
to be stored, accessed, and retrieved.

• For example, let’s try to store the list in an array.

beef bellpepper blackpepper dillweed

onion potato olive salt

cumin carrot mushroom tomatopaste

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Problem

• While it is true that STORE and RETRIEVE are O(1)
operations for arrays, that is only so if the indices are
known and the value in the target of a STORE can be
discarded.

• Without a complete set in hand it cannot be known that
potato has index 10 in the sorted list of items.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Solution

• Use item as a KEY--Because an index integer is not
known on the entry of one of the items, it would be
helpful if the item itself could be used as a key to index
the cell where it will be stored.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Solution

• A solution would be to convert the keys (the list
items, here) into unique integers and use them as
array indices.

• A function that does so is called a hash function.

• The conversion process is called hashing

• The storage structure is called a hash table or scatter-
storage.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example Solution

• We may sum up the ASCII value from each character in the
key, e.g., a = 1, b=2, …, z = 26, so beef = 2+5+5+6=18.

Item HF1(Item) Item HF1(Item)

beef 18 carrot 75

onion 67 salt 52

cumin 60 blackpepper 105

dillweed 74 olive 63

bellpepper 107 tomatopaste 145

potato 87 mushroom 122

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Introduction to Hashing

• Hashing is a technique used for performing insertions, deletions
and finds in constant average time.

• Tree operations that require any ordering information among
the elements are not supported efficiently.

• See several methods of implementing the hash table.

• Compare these methods analytically.

• Show numerous applications of hashing.

• Compare hash tables with binary search trees.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

General Idea

• Hash table data structure is merely an array of some
fixed size, containing the keys.

• A key is a string with an associated value (for
instance, salary information).

• Each key is mapped into some number in the range 0
to H_SIZE - 1 and placed in the appropriate cell.

f : key →value

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

General Idea

• The mapping is called a hash function, which
ideally should be simple to compute and should
ensure that any two distinct keys get different cells.

• This is difficult to achieve in reality since there are a
finite number of cells and a virtually inexhaustible
supply of keys.

• We seek a hash function that distributes the keys
evenly among the cells.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Issues

• Choosing the hashing function

• How to make sure that one has selected a good function for the
application

• Collision handling

• How to handle conflict when two keys have the same location

• Deletion handling

• How to deal with the table when items are being removed

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Hash Tables

• We can continue to exploit table lookup even in
situations where the key is no longer an index that can
be used directly as in array indexing.

• What we can do is to set up a one-to-one
correspondence between the keys by which we wish to
retrieve information and indices that we can use to
access an array.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Hash Tables

• The idea of a hash table is to allow many of the
different possible keys that might occur to be mapped to
the same location in an array under the action of the
index function.

• Others have called scatter-storage or key-
transformation.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Hash Function

• A hash function that takes a key and maps it to some
index in the array.

• Often, two records may want to go to the same location.

• Therefore, a collision may occur and a collision
procedure must be devised to handle this.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Choosing a Hash Function

• The two principal criteria in selecting a hash function are
that

• it should be easy and quick to compute and that

• it should achieve an even distribution of the keys that
actually occur across the range of indices.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Hash Function

• If the input keys are integers, then simply returning key
mod H_SIZE is generally a reasonable strategy.

• For example, student ID mod 10000 would be a
reasonable strategy.

• It is usually a good idea to ensure that the table size is
prime.

• When the input keys are random integers, then this
function is simple to compute and also distributes the
keys evenly.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

A Simple Hash Function

INDEX

hash(char *key, unsigned int H_SIZE)

{

unsigned int hash_val = 0;

/*1*/ while(*key != '\0')

/*2*/ hash_val += *key++;

/*3*/ return(hash_val % H_SIZE);

}

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Another Hash Function

INDEX

hash(char *key, unsigned int H_SIZE)

{

return ((key[0] + 27*key[1] + 729*key[2]) %
H_SIZE);

}

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• Assuming key has at least two characters plus the NULL
terminator.

• 27 represents the number of letters in the English alphabet,
plus the blank.

• 729 is 272.

• This function only examines the first three characters, but if
these are random, and the table size is 10,007, as before, then
we would expect a reasonably equitable distribution.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quick Analysis

• Unfortunately, English is not random.

• Although there are 26.26.26 = 17,576 possible
combinations of three characters (ignoring blanks), a
check of a reasonably large on-line dictionary reveals
that the number of different combinations is actually
only 2,851.

• Even if none of these combinations collide, only 28%
of the table can actually be hashed to.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

A Good Hash Function

INDEX

hash(char *key, unsigned int H_SIZE)

{

unsigned int hash_val = O;

/*1*/ while(*key != '\0')

/*2*/ hash_val = (hash_val << 5) + *key++;

/*3*/ return(hash_val % H_SIZE);

}

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• This hash function involves all characters in the key .

• It computes

• The code computes a polynomial function (of 32) by use
of Horner's rule.

• For instance, another way of computing hk = k1 + 27 k2 +

272 k3 is by the formula hk = ((k3) * 27 + k2) * 27 + k1.

• Horner's rule extends this to an nth degree polynomial.

Key[Key _ Size − i]⋅ 32i
i= 0

Key_ Size−1∑

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• It is common to not use all the characters.

• The length and properties of the keys would influence
the choice.

• The hash function might include a couple of characters
from each field.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Truncation

• Ignore part of the key, and use the remaining part directly as the
index (considering non-numeric fields as their numerical codes).

• Example: If the keys are eight-digit integers and the hash table
has 1000 locations, then the first, second, and fifth digits from
the right make the hash function, so that 62538194 maps to
394.

• Truncation is a very fast method, but it often fails to distribute
the keys evenly through the table.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Folding

• Partition the key into several parts and combine the
parts in a convenient way (often using addition or
multiplication) to obtain the index.

• For example, 62538194 maps to 625+381+94 = 1100, which
is then truncated to 100.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Modular Arithmetic

• Convert the key to an integer (using the preceding
devices as desired), divide by the size of the index range,
and take the reminder as the result.

• For example, ‘abcd’ = 64+65+66+67 mod 100 = 62.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Collision Resolution

• Open Hashing (Separate Chaining)

• Closed Hashing (Open Addressing)

• Linear probing

• Quadratic probing

• Double hashing

• Rehashing

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Open Hashing

• The first strategy, commonly known as either open
hashing, or separate chaining, is to keep a list
of all elements that hash to the same value.

• We assume for this section that the keys are the first
10 perfect squares and that the hashing function is
simply hash(x) = x mod 10. (The table size is not
prime, but is used here for simplicity.)

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Open Hashing Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Find in Open Hashing

• Find

• We use the hash function to determine which list to
traverse.

• We then traverse this list in the normal manner, returning the
position where the item is found.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Insert in Open Hashing

• Insert

• we traverse down the appropriate list to check whether
the element is already in place.

• If the element turns out to be new, it is inserted either
at the front of the list or at the end of the list.

• Sometimes new elements are inserted at the front of
the list, since it is convenient and also because frequently
it happens that recently inserted elements are the most
likely to be accessed in the near future.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Deletion in Open Hashing

• Deletion

• The deletion routine is a straightforward implementation of
deletion in a linked list.

• First perform a FIND operation and then perform a delete
operation of an item in a linked list.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Advantages of Linked Storage

• Considerable space may be saved.

• It allows simple and efficient collision handling.

• It is no longer necessary that the size of the hash
table exceed the number of records.

• Deletion becomes a quick and easy task in a chained
hash table.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Disadvantage of Linked Storage

• All the links require space.

• If the records are small this space usage is large when
compared with the records.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Closed Hashing (Open Addressing)

• Open hashing has the disadvantage of requiring
pointers.

• This tends to slow the algorithm:

• The time required to allocate new cells.

• It requires the implementation of a second data
structure.

• In a closed hashing system, if a collision occurs,
alternate cells are tried until an empty cell is
found.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Closed Hashing

• For example, cells h0(x), h1(x), h2(x), . . . are tried in
succession where hi(x) = (hash(x) + f(i)) mod
H_SIZE, with f(0) = 0.

• The function, f, is the collision resolution
strategy.

• Because all the data goes inside the table, a bigger
table is needed for closed hashing than for open
hashing.

• Generally, the load factor should be below l = 0.5
for closed hashing.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Insertion Operation Outline

• An array must be declared that will hold the hash table.

• Initializing all locations in the array to show that they are
empty.

• To insert a record into the hash table, the hash function
for the key is first calculated.

• If the corresponding location is empty, then the record
can be inserted, or else

• if the keys are equal, then insertion of the new record
would not be allowed. In this case, it becomes necessary
to resolve the collision.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Find Operation Outline

• To retrieve the record with a given key is entirely similar.
The hash function for the key is computed.

• If the desired record is in the corresponding location, then
the retrieval has succeeded;

• otherwise,

• while the location is nonempty and not all locations have
been examined, follow the same steps used for collision
resolution.

• If an empty position is found, or h0 have been considered,
then no record with the given key is in the table, and the
search in unsuccessful.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Linear Probing

• The simplest method to resolve a collision is to start with
the hash address (the location where the collision
occurred) and do a sequential search for the desired
key or an empty location.

• The problem with the above method is that the data
become clustered:

• Records start to appear in long strings of adjacent
positions with gaps between the strings.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Problems

• The time to search for an empty cell may be long.

• The problem of primary clustering is essentially one
of instability.

• If a few keys happen randomly to be near each other, then
it becomes more and more likely that other keys will join
in the cluster.

• Furthermore, the distribution will become progressively
more unbalanced.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis

• It can be shown that the expected number of probes
using linear probing is roughly

• Insertions and unsuccessful searches

• Successful searched

• λ, of a hash table is the ratio of the number of
elements in the hash table to the table size.

1
2
(1+1/(1− λ)2)

1
2
(1+1/(1− λ))

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis
• We assume a very large table and that each probe is

independent of the previous probes.

• The expected number of probes in an unsuccessful search.

• The number of probes for a successful search = the
number of probes required when the particular element
was inserted.

• When an element is inserted, it is done as a result of an
unsuccessful search.

• We can use the cost of an unsuccessful search to
compute the average cost of a successful search.

• Since the fraction of empty cells is 1 - λ, the number of
cells we expect to probe is 1/(1- λ).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Probes vs. Load Factor

• Dashed curves--
linear probing

• Solid curves-
random collision
resolution

• S-successful

• U-unsuccessful

• I-insert

• What it is saying is
that the linear probing
is not a very good
method to handle
collision.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• If λ = 0.75, then the formula above indicates that 8.5 probes are
expected for an insertion in linear probing.

• If λ = 0.9, then 50 probes are expected.

• This compares with 4 and 10 probes for the respective load
factors if clustering were not a problem.

• We see from these formulas that linear probing can be a bad
idea if the table is expected to be more than half full.

• If λ = 0.5, however, only 2.5 probes for insertion and only 1.5
probes are required for a successful search.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Quadratic Probing

• Quadratic probing avoid the primary clustering problem of
linear probing.

• If there is a collision at hash address H, the method call
quadratic probing looks in the table at locations h+1,
h+4, h+9, …, that is, at locations h + i2 (mod hashsize) for
i=1, 2,

• This reduces clustering, but it is not obvious that it will
probe all locations in the table, and in fact it does not.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Observation

• Theorem-- If quadratic probing is used and the table size
is prime, then a new element can always be inserted if
the table is at least half empty. (see book for more
details)

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• If the table is even one more than half full, the insertion could
fail (although this is extremely unlikely).

• It is also crucial that the table size be prime.

• If the table size is not prime, the number of alternate locations
can be severely reduced.

• Standard deletion cannot be performed in a closed hash table,
because the cell might have caused a collision to go past it.

• Closed hash tables require lazy deletion.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

About Lazy Deletion

• Deletion in a hash table is not an easy task. One
method to delete an entry is to invent another
special key, to be placed in any deleted position.

• This special key would indicate that this position is
free to receive an insertion when desired but that is
should not be used to terminate the search for
some other item in the table.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Key-Dependent Increments

• Rather than having the increment depend on the number
of probes already made, we can let it be some simple
function of the key itself.

• For example, we could truncate the key to a single
character and use its code as the increment.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Random Probing

• Use a pseudorandom number generator to obtain the
increment.

• The generator used should be one that always generates
the same sequence provided it starts with the same
seed.

• This method is excellent in avoiding clustering, but is
likely to be slower than the others.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Double Hashing

• For double hashing, one popular choice is f(i) = i * h2(x).

• We apply a second hash function to x and probe at a
distance h2(x), 2 h2(x), . . ., and so on.

• A poor choice of h2(x) would be disastrous.

• The function must never evaluate to zero.

• Make sure all cells can be probed.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Double Hashing

• For instance, the obvious choice h2(x) = x mod 9
would not help if 99 were inserted into the input
in the previous examples.

• A function such as h2(x) = R - (x mod R), with R a
prime smaller than H_SIZE, will work well.

• One may continue to perform triple hashing, and
so on.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

h2(x) = R - (x mod
R), R = 7

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Rehashing

• When the table gets too full, the running time for the
operations will deteriorate, specially when there are too
many removals intermixed with insertions.

• Solution

• Build another table that is about twice as big (with
associated new hash function).

• Scan down the entire original hash table, computing the
new hash value for each element and inserting it in the
new table.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• Table size = 7

• Insert 13, 15, 24, and 6.

• h(x) = x mod 7.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Closed Hash Table, Insert 23

• After 23 is inserted, the
resulting table will be over
70% full.

• A new table is created with
size = 17 since this is the
first prime that is twice as
large as the old table size.

• The new hash function is
then h(x) = x mod 17.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

After Rehashing
The old table is scanned, and
elements 6, 15, 23, 24, and 13 are
inserted into the new table.

• The running time is O(n).

• It is expensive.

• It should not be done so
frequently.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Extendible Hashing

• What happens when the amount of data is too large to fit in
main memory and must be stored on the disk?

• How can we minimize the disk access?

• Suppose that our data consists of several 6 bit integers.

• The root of the tree contains 4 pointers determined by the
leading two bits of the data.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Extendible Hashing

• Each leaf has up to m = 4 elements.

• D represents the number of bits used by the root,
which is sometimes known as the directory.

• The number of entries in the directory is thus 2D dl
(the number of leading bits that all the elements of
some leaf l have in common.

• dl will depend on the particular leave.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example, insert 100100
This will go into the third
leaf and cause a split.

Now, the leaves are now
determined by the first 3 bits.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example, insert 000000

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• It is possible that several directory splits will be
required if the elements in a leaf agree in more than
D+1 leading bits.

• For example, 111010, 111011, and 111100 are inserted, the directory
size must be increased to 4.

• The possibility of duplicate keys. This algorithm
does not work when there are more than m
duplicates.

• It is important for the bits to be fairly random.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Summary

• Hash tables can be used to implement the insert
and find operations in constant average time.

• It is especially important to pay attention to details
such as load factor when using hash tables.

• It is also important to choose the hash function
carefully when the key is not a short string or integer.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Summary

• For open hashing, the load factor should be close to 1.

• For closed hashing, the load factor should not exceed 0.5,
unless this is completely unavoidable.

• Using a hash table, it is not possible to find the minimum
element.

• It is not possible to search efficiently for a string unless
the exact string is known.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Summary

• Compilers use hash tables to keep track of declared
variables in source code. The data structure is known as a
symbol table.

• A hash table is useful for any graph theory problem where
the nodes have real names instead of numbers.

• A third common use of hash tables is in programs that
play games.

• Another use of hashing is in online spelling checkers.

