
CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

CSCI2100B Data Structures
Trees

Irwin King

king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king

Department of Computer Science & Engineering
The Chinese University of Hong Kong

mailto:king@cse.cuhk.edu.hk
mailto:king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king
http://www.cse.cuhk.edu.hk/~king

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Introduction

• General Tree

• Definition

• Binary Search Tree

• File systems in operating systems.

• Used to evaluate arithmetic expressions.

• Show how to use trees to support searching and other
operations in O(log n) average time.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Introduction

• AVL Trees

• It is a tree that has a balance condition so that the search of
the tree is bounded.

• B-Trees

• This is a general m-ary tree for searching.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Preliminaries

• A tree is a collection of nodes.

• The collection can be empty, which is sometimes
denoted as A.

• Otherwise, a tree consists of a distinguished node r,
called the root, and zero or more (sub)trees T1, T2, . . . ,
Tk, each of whose roots are connected by a directed
edge to r.

• The root of each subtree is said to be a child of r, and r
is the parent of each subtree root.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Definition

• The root is A. Node F has A as a parent and K, L, and M
as children.

• Each node may have an arbitrary number of children,
possibly zero.

• Nodes with no children are known as leaves; the leaves
in the tree above are B, C, H, I, P, Q, K, L, M, and N.

• Nodes with the same parent are siblings; thus K, L, and M
are all siblings.

• Grandparent and grandchild relations can be defined in a
similar manner.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Path Definition

• A path from node n1 to nk is defined as a sequence of
nodes n1, n2, . . . , nk such that ni is the parent of ni+1 for 1
≤ i < k.

• The length of this path is the number of edges on the
path, namely k -1.

• There is a path of length zero from every node to itself.

• Notice that in a tree there is exactly one path from the
root to each node.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Depth Definition

• For any node ni, the depth of ni is the length of the
unique path from the root to ni. Thus, the root is at
depth 0.

• The height of ni is the longest path from ni to a leaf.
Thus all leaves are at height 0.

• The height of a tree is equal to the height of the root.

• The depth of a tree is equal to the depth of the deepest
leaf; this is always equal to the height of the tree.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• E is at depth 1 and height 2.

• F is at depth 1 and height 1.

• The height of the tree is 3.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• If there is a path from n1 to n2,

• then n1 is an ancestor of n2

• and n2 is a descendant of n1.

• If n1 ≠ n2,

• then n1 is a proper ancestor of n2

• and n2 is a proper descendant of n1.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Implementation of Trees

• One way to implement a tree would be to have in each
node, besides its data, a pointer to each child of the
node.

• What if the node have many children?

• How do you declare it in advance?

• The solution is simple: Keep the children of each node in
a linked list of tree nodes.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Another Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• Arrows that point downward are first_child pointers.

• Arrows that go left to right are next_sibling pointers.

• Null pointers are not drawn, because there are too
many.

• Node E has both a pointer to a sibling (F) and a pointer
to a child (I), while some nodes have neither.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Tree Traversal

• File directory in OSs

•

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Tree Traversal

• Suppose we would like to list the names of all of the files
in the directory.

• Our output format will be that files that are depth d will
have their names indented by d tabs.

• How to perform such a task?

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Intended Output

• /usr

• mark

• book

• chr1.c

• chr2.c

• chr3.c

• course

• cop3530

• fall88

• syl.r

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Traversal Definition

• General Definition: to traverse a data structure is to
process, however you like, every node in the data
structure exactly once .

• Note: You may ``pass through'' a node as many times as
you like but you must only process the node once.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Traversal Strategy

• This traversal strategy is known as a preorder traversal.

• In a preorder traversal, work at a node is performed
before (pre) its children are processed.

• What is the time complexity?

• The total amount of work is constant per node.

• If there are n file names to be output, then the running time
is O(n).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Standard Traversal Orders

• Assuming that the left subtree is L, the right subtree is
R, and the vertex is V, there are 6 ways (permutations) to
organize the order to visit these three nodes in a binary
tree (a tree with at most two children).

• They are:

• VLR, LVR, LRV, VRL, RVL, RLV

• However, not all combinations listed are useful.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Traversal Orders

• The 3 main traversal orders for a binary tree are:

• VLR, LVR, LRV

• VLR is called the preorder.

• LVR is called the inorder.

• LRV is called the postorder.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Traversal Examples

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Binary Tree

• A binary tree is a tree in which no node can have more
than two children.

• Property--The depth of an average binary tree is
considerably smaller than n.

• The average depth is O(h/2), and that for a special type
of binary tree, namely the binary search tree, the average
value of the depth is O(log n).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example-Generic Binary Tree

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Degenerated Binary Tree

• The depth can be as large as n-1.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Implementation

• Because a binary tree has at most two children, we can
keep direct pointers to them.

• The declaration of tree nodes is similar in structure to
that for doubly linked lists, in that a node is a structure
consisting of the key information plus two pointers (left
and right) to other nodes.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Structure of a Tree Node

typedef struct tree_node *tree_ptr;

struct tree_node

{

element_type element;

tree_ptr left;

tree_ptr right;

};

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Tree Node Implementation

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Expression Trees
• Expression tree for (a + b * c) + ((d * e + f) * g)

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Expression Tree

• The leaves of an expression tree are operands, such as
constants or variable names, and the other nodes
contain operators.

• This particular tree happens to be binary, because all of
the operations are binary.

• It is possible for nodes to have more than two children.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• It is possible for a node to have only one child, e.g., unary
minus operator.

• We can evaluate an expression tree, T, by applying the
operator at the root to the values obtained by
recursively evaluating the left and right subtrees.

• The left subtree evaluates to a + (b * c) and the right
subtree evaluates to ((d *e) + f)*g.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Postorder Traversal

• An alternate traversal strategy is to recursively print out
the left subtree, the right subtree, and then the operator.

• If we apply this strategy to our tree above, the output is
a b c * + d e * f + g * +.

• This is the postfix representation of the expression.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Preorder Traversal

• A third traversal strategy is to print out the operator
first and then recursively print out the left and right
subtrees.

• The resulting expression is + + a * b c * + * d e f g.

• This is the less useful prefix notation and the traversal
strategy is a preorder traversal.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Binary Search Trees

• An important application of binary trees is their use in
searching.

• Let us assume that each node in the tree is assigned a
unique integer key value.

• The property that makes a binary tree into a binary
search tree is that for every node, X, in the tree, the
values of all the keys in the left subtree are smaller than
the key value in X,

• and the values of all the keys in the right subtree are
larger than the key value in X.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• Note that this implies that all the elements in the tree
can be ordered in some consistent manner.

The tree on the left is a binary search tree, but the tree on the
right is not. The tree on the right has a node with key 7 in the

left subtree of a node with key 6 (which happens to be the root).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Typical Operations

• Make_null

• Find

• Find_min and find_max

• Insert

• Delete

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Find

• This operation generally requires returning a pointer to
the node in tree T that has key x, or NULL if there is no
such node.

• The structure of the tree makes this simple.

• If T is empty, then we can just return NULL.

• Otherwise, if the key stored at T is x, we can return T.

• Otherwise, we make a recursive call on a subtree of T,
either left or right, depending on the relationship of x to
the key stored in T.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Find_min and Find_max

• These routines return the position of the smallest and
largest elements in the tree, respectively.

• Although returning the exact values of these elements
might seem more reasonable, this would be inconsistent
with the find operation.

• To perform a find_min, start at the root and go left as
long as there is a left child.

• The stopping point is the smallest element.

• The find_max routine is the same, except that branching
is to the right child.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Insert

• To insert x into tree T, proceed down the tree as you
would with a find.

• If x is found, do nothing (or "update" something).

• Otherwise, insert x at the last spot on the path
traversed.

• Duplicates can be handled by keeping an extra field in
the node record indicating the frequency of occurrence.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Insertion Example

• To insert 5, we traverse
the tree as though a find
were occurring.

• At the node with key 4,
we need to go right, but
there is no subtree, so 5
is not in the tree, and
this is the correct spot.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Deletion

• Deletion is a bit tricky since we need to consider several
possibilities.

• If the node is a leaf, it can be deleted immediately.

• If the node has one child, the node can be deleted after
its parent adjusts a pointer to bypass the node (we will
draw the pointer directions explicitly for clarity).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Deletions Example

• We are trying to
delete node 4.

• Notice that the
deleted node is now
unreferenced and can
be disposed of only if a
pointer to it has been
saved.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Deletion

• The complicated case deals with a node with two
children.

• The general strategy is to replace the key of this node
with the smallest key of the right subtree (which is easily
found) and recursively delete that node (which is now
empty).

• Because the smallest node in the right subtree cannot
have a left child, the second delete is an easy one.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• This shows an initial tree
and the result of a
deletion of node 2.

• The node to be deleted
is the left child of the
root; the key value is 2.

• It is replaced with the
smallest key in its right
subtree (3), and then
that node is deleted as
before.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Average-Case Analysis

• Intuitively, all operations, except make_null, should take
O(log n) time.

• Indeed, the running time of all the operations, except
make_null, is O(d), where d is the depth of the node
containing the accessed key.

• We prove in this section that the average depth over all
nodes in a tree is O(log n) on the assumption that all
trees are equally likely.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis

• Let D(n) be the internal path length for some tree T of n
nodes.

• Internal path length is the sum of the depths of all nodes
in a tree and D(1) = 0.

• An n-node tree consists of an i-node left subtree and an
(n - i - 1)-node right subtree, plus a root at depth zero
for 0 ≤ i < n.

• D(i) is the internal path length of the left subtree with
respect to its root.

• We obtain D(N) = D(i) + D(N-i-1) + N - 1

N-1 nodes
that are one
level deeper

from the root.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Analysis

• If all subtree sizes are equally likely, which is true for
binary search trees (since the subtree size depends only
on the relative rank of the first element inserted into the
tree), but not binary trees, then the average value of
both D(i) and D(n - i -1) is

• 	
 	
 .

• This yields

1
n

D(j)
j=0

n−1∑

D(n) = 2
n

D(j)
j= 0

n −1∑[] + n −1

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• This recurrence gets an
average value of D(n) = O(n
log n).

• Thus, the expected depth of
any node is O(log n).

• As an example, the
randomly generated 500-
node tree shown has nodes
at expected depth 9.98.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Unbalanced Binary Tree

• Our deletion routine favors
the left subtree so after
many insertion and deletion
operations we may end up
with an unbalanced binary
tree as shown here.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Observation

• Balancing of a binary search tree will be important to
ensure that the tree does not degenerate into an
unbalanced tree.

• This is a more difficult problem

• since balancing a tree often requires the structure of the tree
be changed.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

AVL Trees

• An AVL (Adelson-Velskii and Landis) tree is a binary
search tree with a balance condition.

• An AVL tree is identical to a binary search tree, except
that for every node in the tree, the height of the left and
right subtrees can differ by at most 1.

• With an AVL tree, all the tree operations can be
performed in O(log n) time, except insertion.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• A bad binary tree.

• Requiring balance at the root is not enough.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example
• Smallest AVL tree of height 9.

• Notice that the construction of the smallest AVL tree of
height n is to use two smallest AVL sub-trees that are of
n-1 and n-2 height.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Height of AVL Tree

• The height of an empty tree is defined to be -1

• Height information is kept for each node (in the node
structure).

• The height of an AVL tree is at most roughly 1.44 log(n +
2) - .328, but in practice it is about log(n + 1) + 0.25
(although this has not been proven).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Observations

• All the tree operations can be performed in O(log n)
time, except possibly insertion.

• Insertion and deletion operations need to update the
balancing information.

• It is sometimes difficult since that inserting a node could
violate the AVL tree property.

• If this is the case, then the property has to be restored
before the insertion step is considered over.

• The property can be achieved through a rotation.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Single Rotation
• A rotation involves only a few pointer changes, and

changes the structure of the tree while preserving the
search tree property.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• The rotation does not have to be done at the root of a
tree; it can be done at any node in the tree.

• This works from the bottom and upwards.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example
• AVL property destroyed by insertion of 6 1/2, then fixed

by a rotation

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Sequential Insertion Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Double Rotation

• There is a case where the rotation does not fix the tree.

• Suppose we insert keys 8 through 15 in reverse order.

• Inserting 15 is easy, since it does not destroy the balance
property, but inserting 14 causes a height imbalance at
node 7.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Double Rotation

• The problem is that the height imbalance was caused by
a node inserted into the tree containing the middle
elements at the same time as the other trees had
identical heights.

• The case is easy to check for, and the solution is called a
double rotation, which is similar to a single rotation but
involves four subtrees instead of three.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example- (Right-left) double rotation

• The tree on the left is converted to the tree on the
right.

• By the way, the effect is the same as rotating between k1
and k2 and then between k2 and k3.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example-(Left-right) double rotation

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example-Insert 13, Double Rotation

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example-Insert 12, Single Rotation

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example-Insert 11, Single Rotation

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example-Insert 81/2, Double Rotation

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• To insert a new node with key x into an AVL tree T, we
recursively insert x into the appropriate subtree of T (let
us call this Tlr).

• If the height of Tlr does not change, then we are done.

• Otherwise, if a height imbalance appears in T, we do the
appropriate single or double rotation depending on x
and the keys in T and Tlr.

• Update the heights, and you are done.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Question

• What if the tree is not a binary tree?

• Can we still use the non-binary tree to perform search?

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

B-Trees
• A B-tree of order m is a tree with the following structural

properties:

• The root is either a leaf or has between 2 and m children.

• The nonleaf nodes store up to m-1 keys.

• All nonleaf nodes (except the root) have between ⎡m/2⎤ and

m children.

• All leaves are at the same depth and have ⎡l/2⎤ and l

elements.

• All data is stored at the leaves. Contained in each interior node
are pointers P1, P2, . . . , Pm to the children, and values K1,
K2, . . . , Km-1, representing the smallest key found in the
subtrees P2, P3, . . . , Pm respectively.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

B-Trees

• For every node, all the keys in subtree P1 are smaller
than the keys in subtree P2, and so on.

• The leaves contain all the actual data

• keys themselves

• pointers to records containing the keys

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example (B-tree of order 4)

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• A B-tree of order 4 is also known as a 2-3-4 tree.

• A B-tree of order 3 is also known as a 2-3 tree.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example of a 2-3 Tree

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example - Insert 18

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example - Insert 1

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• Placing 1 into the node will give it a fourth element,
which is not allowed.

• It can be solved by making two nodes of two keys each
and adjusting the information in the parent.

• However, this does not work all the time.

• For example, let’s insert 19.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• The solution is to split the full node into two nodes with
two children.

• We should continue to split the node upwards to the
root until

• Either get to the root node

• Or find a node with only two children.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example - Insert 28

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example - Final Configuration

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• The depth of a B-tree is at most .

• At each node on the path, we perform O(log m) work
to determine which branch to take.

• An Insert or Remove could require O(m) work to fix up
all the information at the node.

• The worst-case for Insert and Remove is O(m logm n) =
O((m/ logm) log n).

• What is the best m? 3 or 4

• B-trees are used extensively in database systems.

log m / 2⎡ ⎤
n⎡ ⎤

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Summary

• Uses of trees in operating systems, compiler design, and
searching.

• Expression trees are a small example of a more general
structure known as a parse tree, which is a central data
structure in compiler design.

• Search trees are of great importance in algorithm
design. They support almost all the useful operations, and
the logarithmic average cost is very small.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Summary

• AVL trees work by insisting that all nodes' left and right
subtrees differ in heights by at most one.

• This ensures that the tree cannot get too deep.

• The operations that do not change the tree, as insertion
does, can all use the standard binary search tree code.

• Operations that change the tree must restore the tree.

• We showed how to restore the tree after insertions in
O(log n) time.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Summary

• B-trees are balanced m-way trees that are well suited for
disks.

• In practice, all the balanced tree schemes is worst than
the simple binary search tree, but this is acceptable.

