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Introduction

• General Tree

• Definition

• Binary Search Tree

• File systems in operating systems.

• Used to evaluate arithmetic expressions.

• Show how to use trees to support searching and other 
operations in O(log n) average time.
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Introduction

• AVL Trees

• It is a tree that has a balance condition so that the search of 
the tree is bounded.

• B-Trees

• This is a general m-ary tree for searching.
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Preliminaries

• A tree is a collection of nodes.

• The collection can be empty, which is sometimes 
denoted as A. 

• Otherwise, a tree consists of a distinguished node r, 
called the root, and zero or more (sub)trees T1, T2, . . . , 
Tk, each of whose roots are connected by a directed 
edge to r.

• The root of each subtree is said to be a child of r, and r 
is the parent of each subtree root.
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Example
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Example
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Definition

• The root is A. Node F has A as a parent and K, L, and M 
as children. 

• Each node may have an arbitrary number of children, 
possibly zero. 

• Nodes with no children are known as leaves; the leaves 
in the tree above are B, C, H, I, P, Q, K, L, M, and N. 

• Nodes with the same parent are siblings; thus K, L, and M 
are all siblings.

• Grandparent and grandchild relations can be defined in a 
similar manner.
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Path Definition

• A path from node n1 to nk is defined as a sequence of 
nodes n1, n2, . . . , nk such that ni is the parent of ni+1 for 1 
≤ i < k. 

• The length of this path is the number of edges on the 
path, namely k -1. 

• There is a path of length zero from every node to itself. 

• Notice that in a tree there is exactly one path from the 
root to each node.
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Depth Definition

• For any node ni, the depth of ni is the length of the 
unique path from the root to ni. Thus, the root is at 
depth 0.

• The height of ni is the longest path from ni to a leaf.   
Thus all leaves are at height 0.

• The height of a tree is equal to the height of the root. 

• The depth of a tree is equal to the depth of the deepest 
leaf; this is always equal to the height of the tree.
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Example

•   E is at depth 1 and height 2.

•   F is at depth 1 and height 1.

•   The height of the tree is 3.
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Notes

• If there is a path from n1 to n2, 

• then n1 is an ancestor of n2 

• and n2 is a descendant of n1. 

• If n1 ≠ n2, 

• then n1 is a proper ancestor of n2 

• and n2 is a proper descendant of n1.
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Implementation of Trees

• One way to implement a tree would be to have in each 
node, besides its data, a pointer to each child of the 
node.

• What if the node have many children?

• How do you declare it in advance? 

• The solution is simple: Keep the children of each node in 
a linked list of tree nodes.
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Example
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Another Example
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Notes

• Arrows that point downward are first_child pointers. 

• Arrows that go left to right are next_sibling pointers. 

• Null pointers are not drawn, because there are too 
many.

• Node E has both a pointer to a sibling (F) and a pointer 
to a child (I), while some nodes have neither.
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Tree Traversal

• File directory in OSs

•
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Tree Traversal

• Suppose we would like to list the names of all of the files 
in the directory.

• Our output format will be that files that are depth d will 
have their names indented by d tabs.

• How to perform such a task?
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Intended Output

• /usr

• mark

• book

• chr1.c

• chr2.c

• chr3.c

• course

• cop3530

• fall88

• syl.r
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Traversal Definition

• General Definition: to traverse a data structure is to 
process, however you like, every node in the data 
structure exactly once .

• Note:  You may ``pass through'' a node as many times as 
you like but you must only process the node once.
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Traversal Strategy

• This traversal strategy is known as a preorder traversal. 

• In a preorder traversal, work at a node is performed 
before (pre) its children are processed.

• What is the time complexity?

• The total amount of work is constant per node.

• If there are n file names to be output, then the running time 
is O(n).
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Standard Traversal Orders

• Assuming that the left subtree is L, the right subtree is 
R, and the vertex is V, there are 6 ways (permutations) to 
organize the order to visit these three nodes in a binary 
tree (a tree with at most two children).

• They are:

• VLR, LVR, LRV, VRL, RVL, RLV

• However, not all combinations listed are useful.
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Traversal Orders

• The 3 main traversal orders for a binary tree are:

• VLR, LVR, LRV

• VLR is called the preorder.

• LVR is called the inorder.

• LRV is called the postorder.
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Traversal Examples
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Binary Tree

• A binary tree is a tree in which no node can have more 
than two children.

• Property--The depth of an average binary tree is 
considerably smaller than n. 

• The average depth is O(h/2), and that for a special type 
of binary tree, namely the binary search tree, the average 
value of the depth is O(log n).
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Example-Generic Binary Tree
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Degenerated Binary Tree

• The depth can be as large as n-1.
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Implementation

• Because a binary tree has at most two children, we can 
keep direct pointers to them.

• The declaration of tree nodes is similar in structure to 
that for doubly linked lists, in that a node is a structure 
consisting of the key information plus two pointers (left 
and right) to other nodes.
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Structure of a Tree Node

typedef struct tree_node *tree_ptr;

struct tree_node

{

element_type element;

tree_ptr left;

tree_ptr right;

};
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Tree Node Implementation
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Example
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Expression Trees
• Expression tree for (a + b * c) + ((d * e + f ) * g)
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Expression Tree

• The leaves of an expression tree are operands, such as 
constants or variable names, and the other nodes 
contain operators. 

• This particular tree happens to be binary, because all of 
the operations are binary.

• It is possible for nodes to have more than two children.
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Notes

• It is possible for a node to have only one child, e.g., unary 
minus operator. 

• We can evaluate an expression tree, T, by applying the 
operator at the root to the values obtained by 
recursively evaluating the left and right subtrees. 

• The left subtree evaluates to a + (b * c) and the right 
subtree evaluates to ((d *e) + f )*g.
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Postorder Traversal

• An alternate traversal strategy is to recursively print out 
the left subtree, the right subtree, and then the operator. 

• If we apply this strategy to our tree above, the output is 
a b c * + d e * f + g * +.

• This is the postfix representation of the expression.
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Preorder Traversal

• A third traversal strategy is to print out the operator 
first and then recursively print out the left and right 
subtrees. 

• The resulting expression is + + a * b c * + * d e f g.

• This is the less useful prefix notation and the traversal 
strategy is a preorder traversal.
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Binary Search Trees

• An important application of binary trees is their use in 
searching. 

• Let us assume that each node in the tree is assigned a 
unique integer key value.

• The property that makes a binary tree into a binary 
search tree is that for every node, X, in the tree, the 
values of all the keys in the left subtree are smaller than 
the key value in X, 

• and the values of all the keys in the right subtree are 
larger than the key value in X.
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Example

• Note that this implies that all the elements in the tree 
can be ordered in some consistent manner.

The tree on the left is a binary search tree, but the tree on the 
right is not.  The tree on the right has a node with key 7 in the 

left subtree of a node with key 6 (which happens to be the root).
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Typical Operations

• Make_null

• Find

• Find_min and find_max

• Insert

• Delete
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Find

• This operation generally requires returning a pointer to 
the node in tree T that has key x, or NULL if there is no 
such node. 

• The structure of the tree makes this simple.

• If T is empty, then we can just return NULL. 

• Otherwise, if the key stored at T is x, we can return T. 

• Otherwise, we make a recursive call on a subtree of T, 
either left or right, depending on the relationship of x to 
the key stored in T.
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Find_min and Find_max

• These routines return the position of the smallest and 
largest elements in the tree, respectively. 

• Although returning the exact values of these elements 
might seem more reasonable, this would be inconsistent 
with the find operation. 

• To perform a find_min, start at the root and go left as 
long as there is a left child.

• The stopping point is the smallest element.

• The find_max routine is the same, except that branching 
is to the right child.
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Insert

• To insert x into tree T, proceed down the tree as you 
would with a find. 

• If x is found, do nothing (or "update" something). 

• Otherwise, insert x at the last spot on the path 
traversed. 

• Duplicates can be handled by keeping an extra field in 
the node record indicating the frequency of occurrence. 
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Insertion Example

• To insert 5, we traverse 
the tree as though a find 
were occurring. 

• At the node with key 4, 
we need to go right, but 
there is no subtree, so 5 
is not in the tree, and 
this is the correct spot.
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Deletion

• Deletion is a bit tricky since we need to consider several 
possibilities.

• If the node is a leaf, it can be deleted immediately. 

• If the node has one child, the node can be deleted after 
its parent adjusts a pointer to bypass the node (we will 
draw the pointer directions explicitly for clarity). 
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Deletions Example

• We are trying to 
delete node 4.

• Notice that the 
deleted node is now 
unreferenced and can 
be disposed of only if a 
pointer to it has been 
saved.
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Deletion

• The complicated case deals with a node with two 
children. 

• The general strategy is to replace the key of this node 
with the smallest key of the right subtree (which is easily 
found) and recursively delete that node (which is now 
empty).

• Because the smallest node in the right subtree cannot 
have a left child, the second delete is an easy one.
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Example

• This shows an initial tree 
and the result of a 
deletion of node 2. 

• The node to be deleted 
is the left child of the 
root; the key value is 2. 

• It is replaced with the 
smallest key in its right 
subtree (3), and then 
that node is deleted as 
before.
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Average-Case Analysis

• Intuitively, all operations, except make_null, should take 
O(log n) time. 

• Indeed, the running time of all the operations, except 
make_null, is O(d), where d is the depth of the node 
containing the accessed key.

• We prove in this section that the average depth over all 
nodes in a tree is O(log n) on the assumption that all 
trees are equally likely.
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Analysis

• Let D(n) be the internal path length for some tree T of n 
nodes.

• Internal path length is the sum of the depths of all nodes 
in a tree and D(1) = 0. 

• An n-node tree consists of an i-node left subtree and an 
(n - i - 1)-node right subtree, plus a root at depth zero 
for 0 ≤ i < n. 

• D(i) is the internal path length of the left subtree with 
respect to its root.

•  We obtain D(N) = D(i) + D(N-i-1) + N - 1

N-1 nodes 
that are one 
level deeper 

from the root.
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Analysis

• If all subtree sizes are equally likely, which is true for 
binary search trees (since the subtree size depends only 
on the relative rank of the first element inserted into the 
tree), but not binary trees, then the average value of 
both D(i) and D(n - i -1) is 

•                   	
 	
 . 

• This yields

1
n

D( j)
j=0

n−1∑

D(n) = 2
n

D( j)
j= 0

n −1∑[ ] + n −1
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Example

• This recurrence gets an 
average value of D(n) = O(n 
log n). 

• Thus, the expected depth of 
any node is O(log n). 

• As an example, the 
randomly generated 500-
node tree shown has nodes 
at expected depth 9.98.
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Unbalanced Binary Tree

• Our deletion routine favors 
the left subtree so after 
many insertion and deletion 
operations we may end up 
with an unbalanced binary 
tree as shown here.
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Observation

• Balancing of a binary search tree will be important to 
ensure that the tree does not degenerate into an 
unbalanced tree.

• This is a more difficult problem 

• since balancing a tree often requires the structure of the tree 
be changed.
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AVL Trees

• An AVL (Adelson-Velskii and Landis) tree is a binary 
search tree with a balance condition.  

• An AVL tree is identical to a binary search tree, except 
that for every node in the tree, the height of the left and 
right subtrees can differ by at most 1.

• With an AVL tree, all the tree operations can be 
performed in O(log n) time, except insertion.
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Example

•   A bad binary tree. 

•   Requiring balance at the root is not enough.
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Example
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Example
• Smallest AVL tree of height 9.

• Notice that the construction of the smallest AVL tree of 
height n is to use two smallest AVL sub-trees that are of 
n-1 and n-2 height.
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Height of AVL Tree

• The height of an empty tree is defined to be -1

•  Height information is kept for each node (in the node 
structure). 

• The height of an AVL tree is at most roughly 1.44 log(n + 
2) - .328, but in practice it is about log(n + 1) + 0.25 
(although this has not been proven).
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Observations

• All the tree operations can be performed in O(log n) 
time, except possibly insertion.

• Insertion and deletion operations need to update the 
balancing information.

• It is sometimes difficult since that inserting a node could 
violate the AVL tree property.

• If this is the case, then the property has to be restored 
before the insertion step is considered over. 

• The property can be achieved through a rotation.



CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Single Rotation
• A rotation involves only a few pointer changes, and 

changes the structure of the tree while preserving the 
search tree property.
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Notes

• The rotation does not have to be done at the root of a 
tree; it can be done at any node in the tree.

• This works from the bottom and upwards.
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Example
•  AVL property destroyed by insertion of 6 1/2, then fixed 

by a rotation
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Sequential Insertion Example
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Example
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Example
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Example
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Double Rotation

• There is a case where the rotation does not fix the tree.

• Suppose we insert keys 8 through 15 in reverse order. 

• Inserting 15 is easy, since it does not destroy the balance 
property, but inserting 14 causes a height imbalance at 
node 7.
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Example
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Double Rotation

• The problem is that the height imbalance was caused by 
a node inserted into the tree containing the middle 
elements at the same time as the other trees had 
identical heights. 

• The case is easy to check for, and the solution is called a 
double rotation, which is similar to a single rotation but 
involves four subtrees instead of three. 
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Example- (Right-left) double rotation

• The tree on the left is converted to the tree on the 
right. 

• By the way, the effect is the same as rotating between k1 
and k2 and then between k2 and k3.
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Example-(Left-right) double rotation
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Example
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Example-Insert 13, Double Rotation
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Example-Insert 12, Single Rotation
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Example-Insert 11, Single Rotation
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Example-Insert 81/2, Double Rotation
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Notes

• To insert a new node with key x into an AVL tree T, we 
recursively insert x into the appropriate subtree of T (let 
us call this Tlr). 

• If the height of Tlr does not change, then we are done. 

• Otherwise, if a height imbalance appears in T, we do the 
appropriate single or double rotation depending on x 
and the keys in T and Tlr.

• Update the heights, and you are done.
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Question

• What if the tree is not a binary tree?

• Can we still use the non-binary tree to perform search?
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B-Trees
• A B-tree of order m is a tree with the following structural 

properties:

• The root is either a leaf or has between 2 and m children.

• The nonleaf nodes store up to m-1 keys.

• All nonleaf nodes (except the root) have between ⎡m/2⎤ and 

m children.

• All leaves are at the same depth and have ⎡l/2⎤ and l 

elements.

• All data is stored at the leaves. Contained in each interior node 
are pointers P1, P2, . . . , Pm to the children, and values K1, 
K2, . . . , Km-1, representing the smallest key found in the 
subtrees P2, P3, . . . , Pm respectively.
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B-Trees

• For every node, all the keys in subtree P1 are smaller 
than the keys in subtree P2, and so on. 

• The leaves contain all the actual data

• keys themselves

• pointers to records containing the keys
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Example
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Example (B-tree of order 4)
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Notes

• A B-tree of order 4 is also known as a 2-3-4 tree.

• A B-tree of order 3 is also known as a 2-3 tree.
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Example of a 2-3 Tree
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Example - Insert 18
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Example - Insert 1
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Notes

• Placing 1 into the node will give it a fourth element, 
which is not allowed.

• It can be solved by making two nodes of two keys each 
and adjusting the information in the parent.

• However, this does not work all the time.

• For example, let’s insert 19.
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Example
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Example
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Notes

• The solution is to split the full node into two nodes with 
two children.

• We should continue to split the node upwards to the 
root until

• Either get to the root node

• Or find a node with only two children.
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Example - Insert 28
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Example - Final Configuration
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Notes

• The depth of a B-tree is at most                .

• At each node on the path, we perform O(log m) work 
to determine which branch to take.

• An Insert or Remove could require O(m) work to fix up 
all the information at the node.

• The worst-case for Insert and Remove is O(m logm n) = 
O((m/ logm) log n). 

• What is the best m?  3 or 4

• B-trees are used extensively in database systems.

log m / 2⎡ ⎤
n⎡ ⎤
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Summary

• Uses of trees in operating systems, compiler design, and 
searching. 

• Expression trees are a small example of a more general 
structure known as a parse tree, which is a central data 
structure in compiler design.

• Search trees are of great importance in algorithm 
design. They support almost all the useful operations, and 
the logarithmic average cost is very small. 
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Summary

• AVL trees work by insisting that all nodes' left and right 
subtrees differ in heights by at most one. 

• This ensures that the tree cannot get too deep. 

• The operations that do not change the tree, as insertion 
does, can all use the standard binary search tree code.

• Operations that change the tree must restore the tree. 

• We showed how to restore the tree after insertions in 
O(log n) time.
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Summary

• B-trees are balanced m-way trees that are well suited for 
disks.

• In practice, all the balanced tree schemes is worst than 
the simple binary search tree, but this is acceptable.


