
CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

CSCI2100B Data Structures
Introduction

Irwin King

king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king

Department of Computer Science & Engineering
The Chinese University of Hong Kong

https://www.cse.cuhk.edu.hk/irwin.king/teaching/csci2100b/2013

mailto:king@cse.cuhk.edu.hk
mailto:king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king
http://www.cse.cuhk.edu.hk/~king
https://www.cse.cuhk.edu.hk/irwin.king/teaching/csci2100b/2013
https://www.cse.cuhk.edu.hk/irwin.king/teaching/csci2100b/2013

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Administration
• Assignment (20%)

• Midterms (30%)

• Written (10%)

• Programming (20%)

• Final Examination (50%)

• Mark Weiss, Data Structures and Algorithm Analysis in
C, Addison Wesley, 1997.

• Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest, Introduction to Algorithms, The MIT Press, 1990.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Some Interview Problems
• Write a function that counts the number of primes in the

range [1-N]. Write the test cases for this function.

• Write a function that inserts an integer into a linked list in
ascending order. Write the test cases for this function.

• Write the InStr function. Write the test cases for this
function.

• Write a function that will return the number of days in a
month (no using System.DateTime).

• Write a program to output all elements of a binary tree while
doing a Breadth First traversal through it.

• Write a method to combine two sorted linked lists into one
sorted form with out using temporary nodes.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• Given 10 numbers, find the maximum value in the list.

• Given 10 numbers, find the 3rd highest number in the
list.

• Given 1,000 numbers, find the 500th highest number in
the list.

• Given 1,000 numbers, find the k-th highest number in
the list.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• A k selection problem - given a set of numbers, select
the k-th highest number in the list.

• How do you perform the above task?

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Solution #1

• Read the N numbers into an array

• Sort the array in decreasing order by some simple
algorithm such as bubblesort

• Return the element in position k

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Solution #2

• Read the first k elements into an array and sort them (in
decreasing order).

• Next, each remaining element is read one by one.

• As a new element arrives, it is ignored if it is smaller than
the k-th element in the array.

• Otherwise, it is placed in its correct spot in the array,
bumping one element out of the array.

• When the algorithm ends, the element in the k-th
position is returned as the answer.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• How many different algorithms can solve the k selection
problem?

• How many different programs can solve the k selection
problem?

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes
• What is the difference between an algorithm and a

program?

• Algorithm

• a process or set of rules used for calculation or problem-
solving, esp. with a computer

• algorithm is a step by step outline or flowchart how to solve a
problem

• Program

• a series of coded instructions to control the operation of a
computer or other machine. [-concise OED '91]

• program is an implemented coding of a solution to a problem
based on the algorithm

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• Let’s come up with a data structure for storing the date

• “01/01/08” (8 bytes) as string is good

• “2001/01/08” (10 bytes) as string is better

• “20010108” (8 bytes) as string is even better

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• However, we need not use string

• We can store it using bytes and bits

• Year: 2 bytes (65K)

• Month: 4 bits (16)

• Day: 5 bits (32)

• Total: 25 bits.

• What are the algorithms to process these data
structures?

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

The GCD Problem

• Problem: Find the greatest common divisor (GCD) of two
integers, m and n.

• Note: two positive integers that have greatest common
divisor 1 are said to be relative prime to one another.

• Euclid's Algorithm:
while m is greater than zero:

 If n is greater than m, swap m and n.

 Subtract n from m.

n is the GCD

http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/

http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/
http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

The GCD Problem

• Program (in C):
int gcd(int m, int n)

/* precondition: m>0 and n>0. Let g=gcd(m,n). */

 { while(m > 0)

 { /* invariant: gcd(m,n)=g */

 if(n > m)

 { int t = m; m = n; n = t; } /* swap */

 /* m >= n > 0 */

 m -= n;

 }

 return n;

}

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

The GCD Problem
• Correctness: Why do we believe that this algorithm devised

thousands of years ago, is correct?

• Given m>0 and n>0, let g = gcd(m,n).

• (i) If m=n then m=n=gcd(m,n) and the algorithm sets m to zero and
returns n, obviously correct.

• (ii) Otherwise, suppose m>n. Then m=p×g and n=q×g where p and q are
coprime, from the definition of greatest common divisor. We claim that
gcd(m-n,n)=g. Now m-n=p×g-q×g=(p-q)g. so we must show that (p-q) and
q are coprime. If not then p-q=a×c and q=b×c for some a,b,c>1. But then
p=q+a×c=b×c+a×c=(a+b)×c and because q=b×c, p and q would not have
been coprime ... contradiction. Hence (p-q) and q are coprime, and
gcd(m-n,n)=gcd(m,n).

• (iii) If m<n, the algorithm swaps them so that m>n and that case has been
covered.

• So the algorithm is correct, provided that it terminates.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

The GCD Problem

• Termination

• At the start of each iteration of the loop, either n>m or
m≥n.

• (i) If m≥n, then m is replaced by m-n which is smaller than the
previous value of m, and still non-negative.

• (ii) If n>m, m and n are exchanged, and at the next iteration case (i)
will apply.

• So at each iteration, max(m,n) either remains unchanged (for just
one iteration) or it decreases.
This cannot go on for ever because m and n are integers (this fact
is important), and eventually a lower limit is reached, when m=0
and n=g.

• So the algorithm does terminate.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

The GCD Problem
• Testing: Having proved the algorithm to be correct, one might argue

that there is no need to test it. But there might be an error in the
proof or maybe the program has been coded wrongly.

• Good test values would include:

• special cases where m or n equals 1, or

• m, or n, or both equal small primes 2, 3, 5, ..., or

• products of two small primes such as p1×p2 and p3×p2,

• some larger values, but ones where you know the answers,

• swapped values, (x,y) and (y,x), because gcd(m,n)=gcd(n,m).

• The objective in testing is to "exercise" all paths through the code, in
different combinations.

• Debugging code be inserted to print the values of m and n at the end
of each iteration to confirm that they behave as expected.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

The GCD Problem

• Complexity

• We are interested in how much time and space (computer
memory) a computer algorithm uses; i.e. how efficient it is.

• This is called time- and space-complexity.

• Typically the complexity is a function of the values of the
inputs and we would like to know what function.

• We can also consider the best-, average-, and worst-cases.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

The GCD Problem

• Time

• The time to execute one iteration of the loop depends on
whether m>n or not, but both cases take constant time: one
test, a subtraction and 4 assignments vs. one test, a
subtraction and one assignment. So the time taken for one
iteration of the loop is bounded by a constant. The real
question then is, how many iterations take place? The answer
depends on m and n.

• If m=n, there is just one iteration; this is the best-case.
If n=1, there are m iterations; this is the worst-case
(equivalently, if m=1 there are n iterations).
The average-case time-complexity of this algorithm is difficult
to analyze.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

The GCD Problem

• Space

• The space-complexity of Euclid's algorithm is a constant, just
space for three integers: m, n, and t.

• We shall see later that this is `O(1)'.

• Exercises

• Devise a quicker version of Euclid's algorithm that does not
sit in the loop subtracting individual copies of n from m when
m>>n.

• Devise a GCD function that works for three or more
positive integers as the largest divisor shared by all of them.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Study of Algorithms I

• Machines for executing algorithms

• What is the processing speed?

• How large is the processing space (memory)?

• What is the organization of the processors?

• Languages for describing algorithms

• Language design and translation

• Syntax specification and semantics

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Study of Algorithms II

• Foundations of algorithms

• What is the minimum number of operations necessary
for any algorithm?

• What is the algorithm which performs the function?

• Analysis of Algorithms

• What is the performance profile of the algorithm?

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Study of Algorithms III

• How to devise algorithms

• How to express algorithms

• How to validate algorithms

• How to analyze algorithms

• How to test a program

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Definition

• An algorithm is a finite set of instructions which, if
followed, accomplish a particular task. In addition every
algorithm must satisfy the following criteria:

• Input

• Output

• Definiteness

• Finiteness

• Effectiveness

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Another Definition

• An algorithm is any well-defined computational
procedure that takes some value, or set of values, as
input and produces some value, or set of values, as
output.

• An algorithm is thus a sequence of computational steps
that transform the input into the output.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Definition

• We can also view an algorithm as a tool for solving a
well-specified computational problem.

• The statement of the problem specifies in general terms
the desired input/output relationship.

• The algorithm describes a specific computational
procedure for achieving that input/output relationship.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Definition

• input: there are zero or more quantities which are
externally supplied;

• output: at least one quantity is produced;

• definiteness: each instruction must be clear and
unambiguous;

• finiteness: if we trace out the instructions of an
algorithm, then for all cases the algorithm will terminate
after a finite number of steps;

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Definition

• effectiveness: every instruction must be sufficiently basic
that it can in principle be carried out by a person using
only pencil and paper.

• It is not enough that each operation be definite as in
(3), but it must also be feasible.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes on Algorithm

• An algorithm is said to be correct if, for every input
instance, it halts with the correct output.

• We say that a correct algorithm solves the given
computational problem.

• An incorrect algorithm might not halt at all on some
input instances, or it might halt with other than the
desired answer.

• Contrary to what one might expect, incorrect
algorithms can sometimes be useful, if their error rate
can be controlled.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

A Flowchart

http://www.swan.ac.uk/civeng/Research/masonry/flowch.html

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Study of Data

• Machines that hold data

• Languages for describing data manipulation

• Foundations which describe what kinds of refined data
can be produced from raw data

• Structures for representing data

• A data structure is a particular way of storing and
organizing data in a computer so that it can be used
efficiently

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Algorithmic_efficiency
http://en.wikipedia.org/wiki/Algorithmic_efficiency

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Definition
• A data structure is a set of domains D, a designated

domain d in D, a set of functions F and a set of axioms A.

• d = natno

• D = {boolean, integer, float}

• F = {ZERO, SUCC, ADD}

• A = {line 7 to 10 of the structure NATNO}

• The set of axioms describes the semantics of the
operations.

• An implementation of a data structure d is a mapping from
d to a set of other data structures e.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Chessboard Representation

• Requirements

• Location of each piece on the board

• Whose turn it is to move

• Status of the 50-move draw rule

• Whether a player is disqualified to castle

• If an en passant capture is possible

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Types of Representation

• Piece lists--16 black and white pieces

• Array-based--an 8x8 two-dimensional array

• 0x88 method

• Bitboard--use 64-bits to represent one piece

• Stream-based

• Huffman encodings

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Huffman Encodings

Empty square = 0
Pawn = 10c
Bishop = 1100c
Knight = 1101c
Rook = 1110c
Queen = 11110c
King = 11111c
where c is a bit representing the color of the piece (1 =
LIGHT, 0 = DARK).
Additional bits are needed for:
50-move rule (7 bits)
en-passant column (3 bits)
color to move (1 bit)
castling rights (4 bits).

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Notes

• Row = (int) (position / 8)

• Column = position % 8

• internal int Score;

• internal bool BlackCheck;
internal bool BlackMate;
internal bool WhiteCheck;
internal bool WhiteMate;
internal bool StaleMate;

• internal byte FiftyMove;
internal byte RepeatedMove;

• internal bool BlackCastled;
internal bool WhiteCastled;

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

A Simple Tic Tac Toe Game

http://www.java2s.com/Code/C/Data-Type/AsimpleTicTacToegame.htm

http://www.java2s.com/Code/C/Data-Type/AsimpleTicTacToegame.htm
http://www.java2s.com/Code/C/Data-Type/AsimpleTicTacToegame.htm

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Complexity of the Problem

• How many possible board layouts are there?

• How many different sequences for placing the X’s and
O’s on the board?

• How many possible games, assuming X makes the first
move every time?

• What about a 3-dimensional tic-tac-toe on a 3x3x3
board? or an n x n x n game?

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Preamble

/*
C: The Complete Reference, 4th Ed. (Paperback)
by Herbert Schildt

ISBN: 0072121246
Publisher: McGraw-Hill Osborne Media; 4 edition (April 26, 2000)
*/

#include <stdio.h>
#include <stdlib.h>

char matrix[3][3]; /* the tic tac toe matrix */

char check(void);
void init_matrix(void);
void get_player_move(void);
void get_computer_move(void);
void disp_matrix(void);

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Main
int main(void)

{
 char done;

 printf("This is the game of Tic Tac Toe.\n");
 printf("You will be playing against the computer.\n");

 done = ' ';
 init_matrix();

 do {
 disp_matrix();
 get_player_move();
 done = check(); /* see if winner */
 if(done!= ' ') break; /* winner!*/
 get_computer_move();
 done = check(); /* see if winner */
 } while(done== ' ');

 if(done=='X') printf("You won!\n");
 else printf("I won!!!!\n");
 disp_matrix(); /* show final positions */

 return 0;
}

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Matrix Initialization

/* Initialize the matrix. */
void init_matrix(void)
{
 int i, j;

 for(i=0; i<3; i++)
 for(j=0; j<3; j++) matrix[i][j] = ' ';
}

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Player’s Move

/* Get a player's move. */
void get_player_move(void)
{
 int x, y;

 printf("Enter X,Y coordinates for your move: ");
 scanf("%d%*c%d", &x, &y);

 x--; y--;

 if(matrix[x][y]!= ' '){
 printf("Invalid move, try again.\n");
 get_player_move();
 }
 else matrix[x][y] = 'X';
}

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Computer’s Move

/* Get a move from the computer. */
void get_computer_move(void)
{
 int i, j;
 for(i=0; i<3; i++){
 for(j=0; j<3; j++)
 if(matrix[i][j]==' ') break;
 if(matrix[i][j]==' ') break;
 }

 if(i*j==9) {
 printf("draw\n");
 exit(0);
 }
 else
 matrix[i][j] = 'O';
}

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Display Matrix

/* Display the matrix on the screen. */
void disp_matrix(void)
{
 int t;

 for(t=0; t<3; t++) {
 printf(" %c | %c | %c ",matrix[t][0],
 matrix[t][1], matrix [t][2]);
 if(t!=2) printf("\n---|---|---\n");
 }
 printf("\n");
}

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Check For Winner
/* See if there is a winner. */

char check(void)
{
 int i;

 for(i=0; i<3; i++) /* check rows */
 if(matrix[i][0]==matrix[i][1] &&
 matrix[i][0]==matrix[i][2]) return matrix[i][0];

 for(i=0; i<3; i++) /* check columns */
 if(matrix[0][i]==matrix[1][i] &&
 matrix[0][i]==matrix[2][i]) return matrix[0][i];

 /* test diagonals */
 if(matrix[0][0]==matrix[1][1] &&
 matrix[1][1]==matrix[2][2])
 return matrix[0][0];

 if(matrix[0][2]==matrix[1][1] &&
 matrix[1][1]==matrix[2][0])
 return matrix[0][2];

 return ' ';
}

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Chinese Checker

• What is the best way to
represent the board?

• How to check for valid
moves?

• How to generate new
moves?

http://pobox.upenn.edu/~davidtoc/images/chinesecheckers/ohio2.html

http://pobox.upenn.edu/~davidtoc/images/chinesecheckers/ohio2.html
http://pobox.upenn.edu/~davidtoc/images/chinesecheckers/ohio2.html

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Five Phases of a Program
1. Requirement

2. Design

3. Analysis

4. Coding

5. Verification

• Program proving

• Program testing

• Program debugging

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Methodology

• Top-down approach

• Bottom-up approach

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Mathematics Review

• Exponents

• Logarithms

• Series

• Modular Arithmetic

• Proofs

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Exponents

XAXB = XA+B

XA

XB
= XA�B

(XA)B = XAB

XN + XN = 2XN �= X2N

2N + 2N = 2N+1

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Logarithms

XA = B i� logX B = A

logA B =
logC B

logC A
;A, B,C > 0, A ⇥= 1

log AB = log A + log B;A, B > 0

log
A

B
= log A� log B

log(AB) = B log A

log X < X, for all X > 0
log 1 = 0
log 2 = 1

log 1, 024 = 10

All logarithms are to the base 2 unless specified otherwise.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Series
N�

i=0

2i = 2N+1 � 1

N�

i=0

Ai =
AN+1 � 1

A� 1
N�

i=0

Ai ⇥ 1
A� 1

, 0 < A < 1, N ⌅⇧

N�

i=1

i =
N(N + 1)

2
⇤ N2

2
N�

i=1

i2 =
N(N + 1)(2N + 1)

6
⇤ N3

3
N�

i=1

⇤ Nk+1

|K + 1| , k ⌃= �1

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Modular Arithmetic

• A is congruent to B modulo N, written A B (mod N), if
N divides A - B.

• This means that the remainder is the same when either
A or B is divided by N.

• 81 = 61 = 1 (mod 10).

• As with equality, if A = B (mod N), then A + C = B + C
(mod N) and AD = BD (mod N).

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Proofs

• Proofs vs. Approximate Engineering Solutions (Good
Enough Solutions)

• Types of Proofs

• Proof by Induction

• Proof by Counterexample

• Proof by Contradiction

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Proof by Induction

• There are two steps.

• Prove a base case to establish that a theorem is true
for some small value(s).

• Next an inductive hypothesis is assumed to be true
for all cases up to some limit k.

• Using this assumption, the theorem is then shown to
be true for the next value, which is typically k+1.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

• Prove that

Example

f(n) =
n�

i=1

i =
n(n + 1)

2

For f(1) = 1, it is true.
Now f(n)� f(n� 1) = (n2 + n� n2 + n)/2 = n so it is true.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Proof by Counterexample

• The statement Fk ≤ k2 is false.

• Fk is the k-th Fibonacci number.

• The easiest way to prove this is to compute F11 = 144 >
112 where the example fails.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Proof by Contradiction

• Proof by Contradiction proceeds by

• assuming that the theorem is false and

• showing that this assumption implies that some known
property is false, and

• hence the original assumption was erroneous.

CSCI2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• Proof that there is an infinite number of primes.

• Assume that the theorem is false, so that there is some
largest prime Pk.

• Let P1, P2, …, Pk be all the primes in order and consider
N = P1 P2 P3 … Pk + 1.

• Clearly, N is larger than Pk, so by assumption N is not
prime so this is a contradiction.

