CSC2100-Data Structures

Final Remarks

Department of Computer Science and Engineering The Chinese University of Hong Kong, Shatin, New Territories

Interesting Topics

- More Graph Algorithms
- Dynamic Programming
 - 1, 2, 5, 10}, how to give a change using the fewest number of coins?

Final Examination Information

- When: Monday, December 9, 2013
- *Time*: 3:30 pm 5:30 pm
- *Where*: Multi-purpose Hall, Pommerenke Student Centre
 - Close-book, One page of notes
 - No calculator
 - Extra paper will be provided
 - Short answers

Final Examination Information

- When: Tuesday, May 3, 2005
- *Time*: 9:30 am 11:30 am
- Where: University Gymnasium
 - Close-book, Close-note Test
 - No calculator
 - Extra paper will be provided
 - Short answers

Final Examination Information

- When: Monday, December 9, 2013
- *Time*: 3:30 pm 5:30 pm
- Where: Multi-purpose Hall, Pommerenke Student Centreum
 - Closed-book Test
 - One page of notes
 - No calculator
 - Extra paper will be provided
 - Short answers

Final Examination

- Everything from the 1st class
- Emphasis on
 - Graphs
 - Searching
 - Hashing
 - Sorting

Lower bound Upper bound

Exact bound

Big-O notation

Common orders Mathematical Analysis

Abstract Data Type

• How fast can we operate using a particular data structure and algorithm?

 How much memory space does a particular data structure and algorithm take?

 Basic data structures found in many programs.

 How can we combine these data structures?

• Tree is a very efficient data structure to store information.

 Variations on the tree can be used in different algorithms.

 Hashing is a way to transform objects in one domain into another domain.

• It is efficient to locate an object, but can t keep the ordering.

- Heap is a priority list which is most efficient when a priority is needed.
- It has a relative ordering, but not an exact one.

CSC2100B - I. King

- Sorting is a very important topic.
- Make sure you know the differences of the algorithms well.
- Stability issues.
- Invariant in the Quick Sort.

Course Summary

- Introduction
- Analysis
- Lists, Stacks, and Queues
- Trees
- Hashing
- Heaps
- Sorting Algorithms
- Graph Algorithms

Examination Questions

- Define the big-O, omega, and small-o function and show how they work.
- Program Analysis
- Heaps

operations, e.g., insertion, deletion, etc. can be performed on these numbers.

- Hashing
 - Given a list of numbers, show how the processing of different collision policies affect the outcome.

Examination Questions

- Sorting
 - Define what is an inversion.
 - Given a sequence of unordered numbers, show and illustrate the sorting process for a particular sorting algorithm.
- Graph Theory
 - Given a graph, show how to obtain (1) topological sort,
 (2) minimum cost spanning tree, (3) shortest path, and
 (4) maximum flow using the tables or figures shown in the class.

Others

- All grades are final before the final examination (with the exception of the last homework assignment).
- The extra credit problem is due on the deadline.
- Welcome to drop by my or TA's office for discussion.

Education's purpose is to replace an empty mind with <u>an open one</u>.

Malcolm S. Forbes