1994 International Symposium on Speech, Image Processing and Neural Networks, 13-16 April 1994, Hong Kong

An Application of the Discrete Fourier Transformation in
Simulating Large Neural Networks*

Irwin K. King
king@cu.cuhk.hk

Department of Computer Science
The Chinese University of Hong Kong
Shatin, New Territories, Hong Kong

Abstract

This paper presents an application of the
discrete Fourier transform (DFT) to calcu-
late neural activities efficiently in simulating
large biologically motivated neural nets. The
experimental results demonstrate the DFT
technique is more superior in performing cal-
culation of the neural activity which reduces
the time complexity to a theoretical order
of O(nlog, n), n being the number of neural
units at each iteration. Our study also found
that although the computational speed is im-
proved drastically, there are tradeoffs involv-
ing (1) the error generated from the trans-
form, (2) initial setting up time, and (3) the
memory storage requirement when using the
DFT algorithm. More specifically, we out-
line criteria and conditions under which the
DFT method will yield optimal results in
large software neural simulations.

1 Introduction

When modeling biological neural nets, one often re-
quires to deal with large numbers of neurons to ap-
proximate real cortical tissues. One of the most fun-
damental operations is to calculate the neural unit’s
membrane potential and its firing rate according to an
update rule. For a Leaky-Integrator type neuron, this
equation is defined as

Ti::—(t+5+ho+f (1)

where 7 is a RC time constant controlling the rate at
which the neural activities rise and fall, S is the set
of inputs to the neuron, hq defines the resting poten-
tial of the neuron, and ¢ expresses the possible global
noise term.! Although Eq. 1 is expressed in the differ-
ential equation form, the simulation of the continuous

*The research described in this paper was supported
in part by a grant from the Center for Neural Engineer-
mg at USC, Los Angeles, CA (M. A. Arbib, principal
investigator).

'The noise term, £, is typically small and can be ig-
nored. However, it is often introduced to test the robust-
ness of the model.

0-7803-1865-X/94/$3.00 © 1994 IEEE

equation in digital computers needs to be discretized
into small time intervals. One of the more popular and
easily implemented methods to approximate Eq. 1 is
to use the Euler method which transforms Eq. 1 into

z(t+At) = —(At/7)z(t) + (At/T)S +
(At/T)ho + (At/T)E 2

where At controls the accuracy of the simulation; here,
smaller values of At yield better approximations than
larger ones.?

A straight forward approach to solve this summa-
tion problem will add up the connection by using a
For-Next type loop with offset indices to calculate
the result with little optimization. This method re-
sults in longer computation time since this type of cal-
culation is performed over every mask matrix location
for each position on the layer. The time complexity is
thus O(M - N) where M(= m x m) is the array size
of the layer and N(= n x n) is the array size of the
mask. Hence, in order to simulate larger and longer
neural interactions one must first seeks more efficient
and effective ways to reduce the processing time of this
crucial step.

When the summation of the input from the weighted
mask is decoupled from Eq. 1, the sub-expression is
comparable to a spatial convolution operation. Hence,
to speed up the neural simulation, one of the ways is to
employ parallel computation units that make concur-
rent calculation via hardware connections with neigh-
boring cells. Others have used optical electronic com-
ponents to implement algorithms to achieve fast par-
allel computations [6]. Nonetheless, the DFT method
is cost-effective and easy to implement. Furthermore,
its characteristics are well studies; hence, the imple-
menters have the full control of the trade-offs. Of
course, the above observations are made with the as-
sumptions that (1) the neural network has a static
connection pattern, i.e., no plasticity involved and (2)
the basic operation of the calculation is the convolu-
tion operation.

2There are a variety of interpolation methods available
for the approximation of differential equations. Some pop-
ular techniques are the Euler’s method and Runge-Kutta
method [4]. Specific numerical methods for neuronal mod-
eling are found in Mascagni [5].

ISSIPNN’94

2 Implementation

When the input size of the simulation array is n =
2% k=0,1,2, -, then there is an O(n log, n) optimal
algorithm to evaluate the DFT and its inverse by re-
cursively applying the divide-and-conquer strategy [1].
One of the earlier papers implementing the DFT in an
efficient way is found in Cooley and Tukey [3]. The ba-
sic idea behind the DFT algorithm is to transform the
DFT of length N into the sum of two DFTs, each of
length N/2. This way, there are log, N recursion steps
and N operations in each recursion which yields a to-
tal of order N log, N operations. With this discovery,
the transform is made easily implemented when the
size of the array to be transformed is of power of 2.

Once the input signal (neural layer) and the re-
sponse function (connection mask) have been Fourier
transformed, the complex multiplication between these
two layers is then performed. This multiplication in
the frequency domain is a point-wise operation which
can be completed with N multiplication and N assign-
ment operations. When the complex multiplication is
finished, this data set is then inverse transformed to
achieve the final result in the spatial domain. The in-
verse DFT is done with the same algorithm as in the
forward DFT algorithm with minor modifications in
the input since the complex conjugate is required.

3 Experimental Setup

We implemented the DFT algorithm directly from
Press [7] with minimal modifications. The program
is written in C on Unix workstations for portabil-
ity which conforms to the minimum requirement of C
without using any operating system dependent func-
tion calls.?

We take a 1-D array simulating a single column of
neural units in a layer of cells with the size correspond-
ing to 28,k = 0,1,2,---,14, in our timing evaluation
runs. Each neural cell in the data array stores a ran-
domized double float value {,0 < { < 1. Equally, the
mask is also produced by the same set up procedure
as in the case of the neural cells. For trials with array
size k < 7, the result from each run is based on the
average of 500 sub-trials for 1 trial to average out pos-
sible significant deviations due to the small execution
time on a single trial.

4 Performance Comparison

Performance comparison of these two approaches
needs to be demonstrated in the space (how much stor-
age is needed) domain and the time (how fast is the

3The program was adopted with minimum amount of
modifications on personal computers. The result of the
execution time is scalablely similar to the result obtained
from Sun workstations.

execution speed). Moreover, we will also discuss the
errors generated from the DFT approach.

4.1 Storage Requirement

The DFT method requires extra memory space to
store intermediate transformed values and the imag-
inary part even though all input data is real. Hence,
it would need at least 4M N array space to store both
the real and the imaginary values after the transform
of the neural layer and the weight mask. In the case
where the array size is not a power of 2, value padding
will take up more memory space, 2[1°82 "l _ n to be
precise. This increase is linearly scalable according to
the input size and from the time analysis in the next
section the speed up is still sizable.

4.2 Execution Time Comparison

Table 1 demonstrates the theoretical expected execu-
tion time, the speed up, and calculates the empirical
speed up for the convolution and DFT approach. For
an array size of 16384 (= 128 x 128) the speed up
calculated empirically is 1735 times faster than the
convolution method.

Figure 1 plots the result of Table 2 and Table 3
on a log;, —log, grid. Graphically, it also illustrates
the crossover point for array size greater or equal to
8. Furthermore, it shows a fairly linear function when
scaling the neural network to larger sizes using the

logq — log, grid.

The discrepancies among the theoretical and the
empirical result are found in the constant overhead
charged in the DFT algorithm. Hence, for a small size
array the time for this overhead is more evident and
noticeable than in larger arrays. From the table, the
speed up we found from the experiment was consis-
tently better for array size greater and equal to 64 (an
8 x 8 array) than the theoretical expected speed up.

4.2.1 NSL Test

We also implemented the 2-D DFT algorithm into the
Neural Simulation Language (NSL) which is a lan-
guage aimed to create an environment for biological
network level modeling [8]. The 2-D DFT algorithm
was written in addition to the direct method so the
user may choose the explicit method he desires. Table
2 demonstrates the possible speed up for the DFT algo-
rithm without the wrap-around option. The rows rep-
resent the size for a square data layer and the columns
represent the size for a square mask. The results in-
dicate that the larger the data array, the better the
speed up will be for a relatively small mask size. For
instance, if the data size is 256 x 256 and the mask is
32 x 32 (1/64 of the total data size) the speed up is al-
ready 2.06 times. The maximum speed up is achieved
when the sizes of the data array and the mask array
are equal and greater than 16. For smaller sizes, the

|

direct convolution method will be more efficient.

4.3 Error Calculations

Inevitably with most types of transforms, there will be
errors generated during the mapping process. Assum-
ing there are no errors in the input data, the algorithm
still suffers from round-off errors and truncation errors.

One other possible error in the DFT of neural net-
work layers is the wraparound error. This is not a
calculation error but an interference error introduced
with the assumption that the values in the arrays are
periodic in nature with some period P extending out-
side of the layer. In reality, the input signal often
goes forever without repetition or else contains a non-
repeating of finite length. Although this assumption
sometimes is valid in neural network simulations, this
constraint is not universally applicable in general.

Typically, in biological simulation, a layer is a fi-
nite piece of a cortical region; hence, no wraparound
is necessary. To avoid this error, Brigham [2] showed
when P > M + N — 1 the individual periods of the
convolution will not overlap hence will not produce in-
terference from the wraparound. The buffer zone of
zero-padded values at the end of the data array will
make the interference to be zero. Since the new pe-
riod is greater than the sum of either array, the length
of the extended array sequence must be increased to
accommodate this change.

In neural network simulation, the size of the connec-
tion mask (response function) is almost always smaller
than the size of the neural layer (data set). Therefore,
the zero padding routine is a must procedure to set
the mask array size equal to the layer size before ap-
plying the DFT routine for convolution to avoid data
corruption.

4.4 Error Defined

The total error for each trial is measured as

Total Error = Z |z — zo] (3)

for each array entry where z;, the desired valued, is
computed via the direct convolution method, and z,,
the output, calculated from performing the Fourier
transforms. The average relative cell error for each
single trial is calculated as

%Zilzi—xol - Zi |.1),'—I,,| (4)
% > il 32 |l

Depending on the type of applications, the average
relative cell error is typically in the range of 1 x 10~
which is often better than the interpolation error in-
troduced when calculating the discretized version of
the partial differential equation. For example, when
using the Euler’s method for approximation of the dif-
ferential equation shown in Eq. 2, the error typically

AverageError =

497

varies proportional to At, the step size. Depending on
the simulation task at hand, this value usually is in
the range between 1 x 10~% to 1 x 10~2 which is much
larger when compared to the error generated by the
trigonometry function.

Lastly, in neural simulation, the DFT convolution is
taken at every simulation step which means that the
error is also accumulative temporally as well as in each
discrete time step. This relative error in successive ap-
plication of the DFT transformation for convolution is
additive. Therefore, a simulation with many iterations
will have larger errors when compared with an equal
size simulation with fewer steps. Nevertheless, one ba-
sic characteristic in neural networks is its robustness
to small fluctuations and noises from the environment.
This resilience to minute errors should accommodate
transformational errors.

5 Discussions

Often, the mask size in a typical neural network simu-
lation is smaller than the neural layer being processed.
Perhaps it seems to be a wasteful overhead to assemble
an array of size equaling the neural layer with padded
zeros, tests, however, have revealed that the time spent
in this overhead is still far shorter than the direct con-
volution method with smaller array size. Furthermore,
extra zero padding procedure due to the wraparound
error also seems to be memory wasteful and time con-
suming. However, the computation time taken should
not be a major concern since in all cases that we have
test even when the array size is doubled for the DFT
algorithm compared with the direct convolution algo-
rithm, the DFT algorithm still comes out ahead for
size > 16.

6 Conclusion

The result of this study demonstrates the feasibility
of using the DFT method to calculate neuronal activ-
ity in simulation software for speed up in the order of
O(N/logy N). While there are some overhead using
the DFT technique involved in setting up the initial
data input for processing, e.g., the zero padding, the
speed up is evident already even for small array size
(> 8). From this study, the advantage for using DFT
in calculating neural activities in neural networks is
so overwhelming that drawbacks on extra space con-
sumption, transformation errors, and pre-processing
procedures are diminished in the face of the speed
gained. Hence, if the execution speed in the neural
simulation is the prime directive then the DFT method
offers an efficient approach that often outweighs draw-
backs from other requirements with the following rules:

e Rule 1 — Empirically, if the area size of one of
the array is more than 1/64 of the other then it
is advisable to use the DFT method when minor
errors are unimportant in the simulation.

e Rule 2 — To optimize the calculation in the trans-
form, the DFT algorithm requires the sum of the
size from the layer and the mask minus 1 should
be a number in the power of 2. Under this condi-
tion, the algorithm ensures that the wrap around
error will be nullified.

With the wrap-around option activated, the optimal
criteria is changed. In this case, the maximum size of
either the data layer or the mask layer must be in the
power of two for the algorithm to take advantage of the
situation. A user should know when to use the wrap-
around option for the DFT method to be effective.
Cases where symmetrical masks are present or when
the actual data area is less than the array size are two
scenarios that the wrap around option could be used
without much ill effects.

References

[1] Allfred V. Aho, John E. Hopcroft, and Jeffrey D.
Ullman. The design and analysis of computer algo-
rithms. Addison-Wesley, Reading, Massachusetts,
1974.

E. Oran Brigham. The fast fourier transform.
In Alan V. Oppenheim, editor, Signal Processing.
Prentice Hall, Englewood Cliffs, NJ, 1974.

J. W. Cooley and J. W. Tukey. An algorithm for
the machine calculation of complex fourier series.
Mathematics of Computation, 19:297-301, 1965.

Germund Dahlquist and Ake Bjorck. Numeri-
cal methods. In George Forsythe, editor, Au-
tomatic Computation. Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1974.

Michael V. Mascagni. Numerical methods for
neuronal modeling. In Christof Koch and Idan
Segev, editors, Methods in neuronal modeling :
from synapses to networks, pages 439-484. MIT
Press, Cambridge, Mass., 1989.

Mark E. Nelson, Wojtek Furmanski, and James M.
Bower. Simulating neurons and networks on par-
allel computers. In Christof Koch and Idan Segev,
editors, Methods in neuronal modeling : from
synapses to networks, pages 397-437. MIT Press,
Cambridge, Mass., 1989.

William H. Press, Brian P. Flannery, Saul A.
Teukolsky, and William T. Vetterling. Numer:-
cal Recipes in C: The Art of Scientific Computing.
Cambridge University Press, NY, 1988.

Alfredo Weitzenfeld. Nsl - neural simulation lan-
guage version 2.1. Technical report, University of
Southern California, 1991.

(2

=

[6

]

{7

498

Array Size NZ | Nlogg N | Theoretical | Empirical
2 4 2 2.00 0.30

4 16 8 2.00 0.50

8 64 24 2.67 1.14

16 256 64 4.00 2.70

32 1024 160 6.40 5.92

64 4096 384 10.67 12.14
128 16384 896 18.29 23.91
256 65536 2048 32.00 41.00
512 262144 4608 56.89 76.21
1024 1048576 10240 102.40 163.75
2048 4194304 22528 186.18 289.01
4096 16777216 49152 341.33 571.05
8192 67108864 106496 630.15 948.28
16384 | 268435456 229376 1170.29 1735.29

Table 1: Theoretical and Empirical Result compared.

2 4 8 16 32 64 128 256
2 | 0.50
4] 030 | 0.18
8 [011 | 0.05 | 0.20
16 | 0.03 | 0.07 | 0.19 [0.68
32 | 0.03] 007 [0.17 | 0.61 | 2.49
64 | 003 | 0.06 [0.16 | 0.60 [2.29 | 9.23
i28 | 002 | 0.05 | 0.15 | 056 | 2.18 | 8.69 | 36.12
256 | 0.02 | 0.05 | 0.14 [0.52 | 2.06 | 8.35 6.77 | 26.11

Table 2: Two dimensional Speed-Up Table (without
wraparound option)

Computation Speed-Up
100
100 Theoretical
107
] N
§ 1
E] '
2 108
: .
100
o . Empirical
:
102
10
P 4 6 8 10 12 1a
Array Size = 2%

Figure 1: Computation Time Chart.

FFT Errors

0 2 4 6 8 10 12 14

Array Size = 2%

Figure 2: DFT Errors.

