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Abstract

E�cient and accurate Information Retrieval (IR) is

one of the main issues in multimedia databases. Clus-

tering can help to generate the e�cient indexing struc-

tures and provide the comparison between data types.

The Most Expressive Feature (MEF) extraction can

improve comparison accuracy between two data which

belong to a same data type since it discards redundant

features. In this paper, we introduce a Local Linear

Principal Component Analysis (LLPCA) to design an

optimal scheme for IR. The LLPCA realizes the clus-

tering and local MEF extraction at the same time.

Using these clusters and local MEFs, an IR scheme

can be divided into two steps from coarse to �ne. We

apply the scheme to a trademark retrieval system to

evaluate its performance based on the accuracy and ef-

�ciency measurements. The experimental results indi-

cate this retrieval scheme is superior the other schemes

using the original features or global MEFs extracted

by a Global Linear PCA (GLPCA).

1 Introduction

E�cient and accurate information retrieval is an es-

sential issue in multimedia databases. There is a well-

known problem in Information Retrieval (IR) which

is called \the curse of dimensionality"- more features

do not necessarily imply a better retrieval accuracy

rate as in pattern recognition [1, 2]. Although we of-

ten tend to use many features to describe an object

perfectly, there are only a few of them can express the

major aspect of the object. This leads to the selection

of suitable features for accurate retrieval.

In this paper, we discuss a Local Linear Principal

Component Analysis (LLPCA) to produce a set of lo-

cal Most Expressive Features (MEFs) for a local dis-

tribution. The LLPCA combines the two approaches,

MEF selection and clustering, together and has some

good properties for e�cient IR implementations.

Recent researches have shown that the retrieval ap-

proaches using only one or two \visually salient fea-

tures" of a large set of features sometimes has more

accurate results than using all [3]. Thus, the selec-

tion of good features is an important issue to con-

sider. The Global Linear PCA (GLPCA) representa-

tion, also known as the Karhunen-Lo�eve projection [5],

is a wildly used technique for the feature selection or

reduction. This approach projects n original features

into a subspace of s features associated with the s

largest eigenvalues of the sample scatter matrix, where

s < n. Because the s produced features capture the

major variations in the database, they can express the

data well and can approximate the samples, where the

reconstruction is very close to the original. Hence, we

call the projected features as the most expressive fea-

tures. Using MEFs has a number of advantages, for

example, it is scale-invariant, and we can capture the

essential di�erence of two data if they are compared in

the MEF space. The neural network implementations

of PCA have been introduced by Oja for subspace de-

composition [6, 7].

Despite its widespread use, the GLPCA is not suit-

able for IR problems since there are generally many

types of images in a database and di�erent type of

images perhaps need to be described with di�erent

most expressive features. For example, features for re-

trieving a landscape are probably useless for an animal

photo. To solve the problem, we use the LLPCA [8, 11]

to estimate the data types and the local MEFs of each

type in our research. This LLPCA employs an ex-

tended K-means clustering algorithm to partition a

data distribution into a number of non-overlapping

clusters and each cluster is represented not by its cen-

tral point as in clustering but by a localized linear

subspace. Using LLPCA, the two important phases,

the local MEF estimation and data clustering, are ac-

tually combined. Based on the LLPCA results, we di-

vide an information retrieval approach into two steps

from coarse to �ne: (I) Retrieve the relevant clusters

for a query according to the reconstruction distance.

(II) Project the query into the MEF space of a rele-

vant cluster. In addition, in the MEF space, retrieve

the relevant data according to the Euclidean distance.

In the next section, we will describe the LLPCA

in detail. Section 3 introduces an optimal IR scheme

based on LLPCA. We present some experiment re-

sults to evaluate the performance of the LLPCA IR

scheme by applying it to a trademark retrieval system

and comparing it to the other schemes in Section 4.

Last, we give a briey discussion and conclusion in the

section 5.
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2 Local Linear PCA

2.1 PCA and Most Expressive Feature

Extraction

In information retrieval, we can represent each data

in a database using an n-dimensional feature vec-

tor ~x, which is considered as a sample point in the

n-dimensional space. The classic technique for lin-

ear dimension selection or reduction is global linear

principal component analysis. In the GLPCA, one

performs an orthogonal transformation to the basis

of correlation eigenvectors, and projects onto the s-

dimensional subspace spanned by those eigenvectors

~p1; ~p2; � � � ; ~ps, which correspond to the largest eigen-

values �1; �2; � � � ; �s, where s < n. The s principal

components of an n-dimensional original feature vec-

tor ~x can be simply written as

~y = PT~x; (1)

where P is an n � s matrix whose i-th column is the

i-th principal eigenvector. The corresponding recon-

struction
~̂x = P~y (2)

will result in minimal reconstruction error in least

mean square sense [4]. Hence, we consider the fea-

ture vector ~y consists of a set of the most expressive

features of a data and the principal component repre-

sentation plays the role of MEF extractor [9] [10].

2.2 Local Linear PCA

Geometrically, GLPCA models the data as a hyper-

plane embedded in the feature space. If the data

components have non-linear dependencies, GLPCA

will require a larger-dimensional representation than

would be found by a non-linear technique. Kamb-

hatla [11] proposed a locally linear approach to non-

linear dimension reduction. His algorithm �rst parti-

tions the data space into disjoint regions by clustering,

and then performs local PCA about each cluster. This

clustering algorithm can be seen as an extended K-

means algorithm in which each cluster is represented

not by its central point but by a localized linear sub-

space. The algorithm employs the reconstruction error

between a vector ~x and its reconstruction in the sub-

space as distance function called reconstruction dis-

tance instead of the Euclidean distance. Fig. 1 illus-

trates the di�erence between Euclidean distance and

the reconstruction distance in a 2-dimensional space.

Suppose we want to determine which of the two re-

gions the data point ~x belongs. For Euclidean clus-

tering, the distance between the point ~x and the two

centroids ~m1 and ~m2 is compared, and the data point

assigned to the cluster whose centroid is the closest; in

this case is region 1. For clustering by the reconstruc-

tion distance, the distance from the point to the two

1-dimensional subspaces (corresponding to the prin-

cipal subspace for the two regions) is compared, and

the data point assigned to the region whose principal

subspace is closest; in this case, region 2. Thus, the

membership in regions de�ned by the reconstruction

distance can be di�erent from that de�ned by Eu-

clidean distance. This is because the reconstruction

distance does not count the distance along the lead-

ing eigen-directions. Neglecting the distance along the

leading eigenvectors is exactly what is required, since

we retain all the information in the leading directions

during the PCA projection. The extended K-means

algorithm is given as follows:

1. Initialization - Equally partition the N n-

dimensional objects in database X = f~xkg
N
k=1

into M subsets X1;X2; � � �XM . The data number

in Xi, Ni �
N
M
.

2. ReconstructionDistance Computation - Es-

timate the covariance matrices of all regions,

�i =
1

Ni

X
~x2Xi

(~x� ~mi)(~x� ~mi)
T ; (3)

where the ~mi is the mean of i-th cluster and Ni

is the data number in Xi. Using �i, calculate

the local eigenvectors, ~vi;j; j = 1; 2; � � � ; n; �i;1 �

�i;2 � � � � �i;n, of i-th cluster, where �i;j is

the eigenvalue corresponding to ~vi;j . Next,

divide the local eigenvectors into two matri-

ces, the principle component matrix Pi =

[~vi;1; ~vi;2; � � � ; ~vi;s] and minor component matrix

Wi = [~vi;s+1; ~vi;s+2; � � � ; ~vi;n].

The reconstruction error J for a feature vector

~x in Xi is the reconstruction square distance be-

tween ~x and the local MEF subspace of Xi,

J(~x; ~̂xi) = (~x� ~mi)
TWT

i Wi(~x� ~mi); (4)

where ~mi is the mean of Xi and ~̂xi is the recon-

struction of ~x calculated using Eqn.(2) and the

local MEFs of i-th cluster.

3. Repartition - Repartition the data into M re-

gions Xnew
1 ;Xnew

2 ; � � � ;Xnew
M , where

X
new
i =

�
~xjJ(~x; ~̂xi) = min

j=1;���;M
J(~x; ~̂xj)

�
: (5)

4. Iteration - Iterate steps 2 and 3 until no data in

each region can be assigned into the other regions.

After clustering, the LLPCA provides a set of clus-

ters fXig
M
i=1, which are represented by the means

f~mig
M
i=1 and local MEF subspaces. According to the

LLPCA results, we design an optimal information re-

trieval scheme in the next section.

3 Information Retrieval Using

LLPCA

3.1 Retrieval from Coarse to Fine

Our approach retrieves the relevant data correspond-

ing to a query ~xq using the following two steps from
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Figure 1: Assignment of the data point ~x to one of two

regions based on (left) Euclidean distance, and (right)

the reconstruction distance. The mean ~mi and leading

eigenvector ~vi are shown for each of two regions (i =

1; 2).

coarse scale to �ne:

1. Cluster Retrieval - Calculate the reconstruc-

tion distances between ~xq and the MEF subspace

of each cluster Xi. The relevant clusters are

ranked by ascending order according to the re-

construction distances. This step can be seen as

a coarse retrieval since each retrieved cluster is a

set of data.

2. Local Data Retrieval - Project the ~xq onto the

local MEF subspace of the retrieved cluster Xi.

The projection

~yi;q = (Pi)
T~xq; (6)

where Pi is an n� s matrix, which consists of s

principle eigenvectors and yi;q is a s-dimensional

vector. Compare the Euclidean square distance

in the local MEF subspace between yi;q and each

data in the retrieved cluster. The distance is

D(~yi;q ; ~yi;j) = (~yi;q � ~yi;j)
T (~yi;q � ~yi;j); (7)

where ~yi;j; j = 1; 2; � � � ; Ni is the local MEF sub-

space projection of j-th data ~xi;j in the i-th clus-

ter. Then, the prede�ned number of nearest data

are retrieved according to their MEF distance

from the i-th cluster. This can be seen as a �ne

retrieval step.

3.2 Information Retrieval Scheme

Suppose we need to retrieve Z most relevant data of

a query ~xi in the database X = f~xkg
N
k=1 which has

been partition intoM clusters X1;X2; � � � ;XM and the

Z data perhaps are not in one cluster, it is impor-

tant to design an optimal searching scheme by which

only a few of clusters are visited instead of the whole

database. The previous section indicates the dissimi-

lar degree between a query ~xq and the j-th data ~xi;j
in the i-th cluster depends on two distances, the re-

construction distance J(~xi;q; x̂i;q) and the local MEF

distance D(~yi;q ; ~yi;j). Using the two distances, the

combined dissimilarity function of ~xq and ~xi;j can be

written as,

E(~xq; ~xi;j) = J(~xq; ~̂xi;q) +D(~yi;q ; ~yi;j); (8)

where x̂i;q is the reconstruction of ~xq using the local

MEFs of the i-th cluster, ~yi;q and ~yi;j are the projec-

tions of ~xq and ~xi;j in the local MEF subspace of the

i-th cluster.

Let us consider a database which has two clusters,

X1 and X2. The reconstruction distances between the

query ~xq and the two clusters are J1 and J2 and the

combined dissimilarity degrees between ~xq and a data

~x1;a in X1 and a data ~x2;b in X2 are,

E1 = J(~xq; ~̂x1;q) +D(~y1;q ; ~y1;a)

and

E2 = J(~xq; ~̂x2;q) +D(~y2;q ; ~y2;b)

From the two equations, if

E1 � J(~xq; ~̂x2;q); (9)

then E1 � E2. Hence, no data in cluster X2 need to

be visited if X1 contains Z data and each of them sat-

is�es Eqn. (9). This principle leads to an optimal re-

trieval algorithm as follows for retrieving Z data from

a database, which has been partitioned into M clus-

ters:

Step 1 Initialize the retrieved data set S = �. Sort

theM clusters according to Ji which is the recon-

struction distance between ~xq and the local MEF

subspace of the i-th cluster, fXig
M
i=1; J1 � J2 �

� � � � JM . Set the �rst cluster to be the current

cluster.

Step 2 Project ~xq onto the local MEF subspace cor-

responding to the current cluster to calculate the

combined dissimilarity between ~xq and each data

in the current cluster.

Step 3 A data will be put into the retrieved data set

S if (1) S = � or (2) the dissimilarity between the

data and ~xq is less than the dissimilarity between

a member of S and ~xq. A member will be remove

from S if (1) the dissimilarity between it and ~xq
is the biggest in S and (2) the member number

of S is greater than Z.

Step 4 The algorithm stops if (1) the biggest dissim-

ilarity between a member in S and ~xq is less than

the reconstruction distance between ~xq and the

local MEF subspace of the next cluster, and (2)

the member number is equal to Z. Otherwise, set

the next cluster to current and repeat Step 2 to

4.

We evaluated the performance of the above algo-

rithm based on precision and e�ciency in the next

section.

4 Experiments

4.1 Objective Criteria for Evaluation

In the experiments, we use an \arti�cial" trademark

database to evaluate the performance of the proposed
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Trademark

Type �1 (%) �2 (%) �3 (%) Sum (%)

1 41.0294 32.1054 9.0856 82.2205

2 46.0647 24.6077 11.6204 82.2927

3 50.6555 26.4410 6.8883 83.9847

4 50.0704 28.9488 10.3310 89.3502

5 62.8324 27.6023 3.4915 93.9262

6 47.5377 27.1639 8.8805 83.5821

7 50.1863 26.9498 7.4070 84.5431

8 46.6594 22.6826 13.3207 82.6628

Global 28.7323 17.7803 9.8884 56.4010

Table 1: The percentage of the largest three eigen-

values of the total 121 eigenvalues, which are gained

through PCA for each type of trademarks and all

trademarks. The last column shows the sum percent-

ages of the largest three eigenvalues.

LLCPA scheme. The \arti�cial" trademark database

consists of 8 di�erent types of trademark. All data

in a type are generated from a \seed" trademark

using di�erent geometric distortion transformations.

The distortions include Pinch, Twirl, Ripple, Hori-

zontal Extension and Vertical Extension with 2 dif-

ferent degrees in each distortion as Fig. 3. Each dis-

torted trademark then was rotated, scaled and noised

to generate more data so that each type contains 39

trademarks and the whole database contains 312 data.

This kind of objective evaluation criteria also has been

used by Kim [3]. Based on the \arti�cial" trademark

database , we compared the performance between the

IR schemes using the original features, global MEFs

and local MEFs. Here, the original features of a trade-

mark are 121 Zernike magnitude moments [12]. To

represent the distribution property of the features, we

respectively do PCA for each of the 8 types of trade-

marks and for all trademarks in the database. Ta-

ble 1 shows the percentage of the largest three eigen-

values of the total 121 eigenvalues. The last column

shows the total percentages of the largest three eigen-

values and the last row shows the results of the global

PCA for all data. These PCA results indicate that

although the Zernike magnitude moments are wildly

used features for shape description, they are highly

correlated and can be reduced to a low dimensional

feature space. Furthermore, we �nd the single type of

data has greater percentages of the largest three eigen-

values than the whole database. This indicates that it

is possible to use local PCA for gaining more e�ective

feature reduction than global PCA. Next, we evaluate

the retrieval schemes using the trademark database

based on retrieval precision and computational e�-

ciency.

In IR systems, precision is often de�ned as:

Precision =
Number of target images retrieved

Number of images retrieved
:

(10)

In our experiments, we simply set the goal number of

trademarks retrieved equals to the number of data in

Figure 3: Distortions including Pinch: (a) and (b);

Twirl: (c) and (d), Ripple: (e) and (f); Horizontal

Extension: (g) and (h); and Vertical Extension: (i)

and (j).

Trademark

Type Precision NVD SCA

1 23.31% 312 37752

2 28.21% 312 37752

3 23.08% 312 37752

4 27.97% 312 37752

5 27.04% 312 37752

6 27.27% 312 37752

7 26.81% 312 37752

8 27.74% 312 37752

Total

Average 26.43% 312 37752

Table 2: The results of the IR scheme using the orig-

inal 121 features and Euclidean distance.

each type, 39, for statistical convenience. We evalu-

ate the computational e�ciency of a retrieval method

based on the two aspects: average number of visited

data and average square calculation amount in each

searching.

We use a set of total testing 88 queries for each ex-

periment. This set consists of 8 sub-sets of 11 data

form each data type. Each sub-set of query data in-

cludes a \seed" and 10 di�erent distorted data. The

88 queries are shown in Fig. 2.

4.2 Comparisons

We compare the results using three di�erent retrieval

schemes: (1) the LLPCA scheme using 3 local MEFs

and 8 clusters, (2) the scheme using 121 original fea-

tures and (3) the scheme using 3 global MEFs, where

the (1), LLPCA scheme, uses the combination of re-

construction and local MEF distance, and the (2) and

(3) schemes use the Euclidean distance as their sim-

ilarity measures. Table 2 - Table 4 show their aver-

age retrieval precision percentage, Number of Visited

Data (NVD) and Square Computation Amount (SCA)

for each type of data and the total averages using the

88 testing queries.
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Figure 2: 88 queries from 8 types of trademarks for performance evaluation.

Trademark

Type Precision NVD SCA

1 22.38% 312 936

2 28.61% 312 936

3 22.14% 312 936

4 26.57% 312 936

5 26.57% 312 936

6 28.21% 312 936

7 26.11% 312 936

8 27.04% 312 936

Total

Average 25.20% 312 936

Table 3: The results of the IR scheme using the 3

global MEFs and Euclidean distance.

Trademark

Type Precision NVD SCA

1 66.90% 146.6364 439.9091

2 96.97% 69.0909 207.2727

3 62.00% 281.5455 844.6364

4 81.59% 135.4545 406.3636

5 82.05% 252.2727 756.8182

6 89.28% 91.0000 273.0000

7 83.45% 178.7273 536.1818

8 73.66% 218.0000 654.0000

Total

Average 79.49 % 171.5909 514.7727

Table 4: The results of the IR scheme based on the

LLPCA. The database are partitioned into 8 clusters

and each cluster use 3 local MEFs.
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Figure 4: (a) Precision and (b) number of visited data

using di�erent number of clusters.

4.3 Number of Clusters and MEFs

Since the choice of the number of clusters and MEFs

is very subjective, we evaluate the results using di�er-

ent number of clusters and local MEFs here. Fig. 4(a)

and Fig. 4(b) show the precision percentage and num-

ber of visited data using di�erent number of clusters.

Fig. 5(a) and Fig. 5(b) show the precision and number

of visited Data using di�erent number of local MEFs.

5 Discussion and Conclusion

In this paper, we presented a new content-based re-

trieval approach using local MEFs extracted by the

LLPCA. The approach separates an IR scheme into

two sub-retrievals from coarse to �ne and shows two

advantages: (1) generate an optimized order for visit-

ing the fewest number of data in each searching and

(2) increase the retrieval precision through local fea-

ture selection. The experiments show our approach

is superior than the others using original features or
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Figure 5: (a) Precision and (b) number of visited data

using di�erent number of local MEFs.

global MEFs (see Table 5 for summary).

Since the features to describe an object sometimes

are highly correlated especially when the number of

features is large, it is important to select a set of MEFs

to capture the major characteristics of an object and

ignore the minor details. The MEFs usually are dif-

ferent to describe di�erent data type. Hence, some lo-

cal analysis approaches are necessary to estimate the

most expressive features. We use LLPCA in our re-

search. Although the LLPCA approach shows some

excellent performance in our experiments, there still

exist some limitations. The main problem is the pa-

rameter selection: Unsuitable choices of the number of

local MEFs or clusters will decrease the performance

of the LLPCA retrieval approach.

The choice of number of local MEFs mainly depends

on the data distributions in feature space. We need to

ensure the condition that the MEFs need occupy the

very large eigenvalues by comparison to the minor fea-

tures. This means the approach will not be suitable

if the distribution shape of each data type is nearly

hyper-spherical. Also if the features are described us-

ing di�erent scales, we need to apply some dimension-

scaling techniques before using the LLPCA approach.

Hence, some supervising methods will be considered

in our future research.

The choice of number of clusters is an old but still

unsolved problem in practice although there have been

some criteria for �nding the \natural" clusters in the-

ory. However, a type of Hierarchical Local Linear PCA

algorithms [13] shows some promise to avoid the prob-

lem. The Hierarchical Local Linear PCA uses a se-

quential binary partition algorithm, which divides the

database into 2M subsets. A similar clustering method

has been used by King [15] to generate a binary tree

indexing structure for information retrieval, although

[15] did not use the local MEFs as the representation

of a cluster. Moreover, Lau and King indicated in [14]

that the binary clustering method is fairly stable espe-

cially when the number of natural clusters in the input

distribution is quite large. In our future research, we

plan to use the Hierarchical Local Linear PCA to gen-

erate e�cient tree structures for information retrieval.

Measures LMEFs GMEFs OFs

Precision highest lowest middle

NVD least most most

SCA least middle most

Table 5: Comparison of the performance using three

types of features, the Local MEFs (LMEFs), the

schemes using Global MEFs (GMFEs) and Original

Features (OFs) for trademark retrieval from the test-

ing database.
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