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Abstract

This paper uses the Maximum Entropy Principle to construct a 1-K-1 constrained sig-

moidal neural network which adaptively adjusts its gain parameters to control the transfer

function in order to maximize the entropy measure at the output for image contrast enhance-

ment. We demonstrate how the model works with the standard lena image.

1 Introduction

In recent years, information theoretic approaches have been successful in characterizing the func-

tionality of unsupervised sensory processing in neural systems, e.g., Infomax (Linsker, 1988), re-

dundancy reduction (Barlow, 1989; Atick, 1992), mutual information maximization among output

units with spatial coherence (Becker and Hinton, 1992), mutual informationmaximization between

inputs and outputs (Linsker, 1989), etc.

In the context of image processing, a transfer function similar to the Cumulative Distribution

Function (CDF) of the input image yields the maximization of the entropy at the output. This

transformation acquires a uniformed output histogram distribution which is histogram equalization

used in image enhancement (Gonzalez and Woods, 1992).

To perform histogram equalization on a set of images, one needs to calculate the CDF for

every image which is computationally intensive. An unsupervised and adaptive method which

approximates the CDF function can generalize to other on-line images quickly without recomputing

the CDF each time while maintaining maximized output entropy.

Moreover, entropy maximization of the output image achieves: (1) maximum contrast with the

maximumvariance, (2) utilization of the full dynamic range of the sensory and output circuit, and

(3) maximum information being preserved.

Motivated by the information theoretic approaches, we use the Maximum Entropy Principle

(MEP) to guide us in constructing a 1-K-1 constrained neural network. It approximates the CDF

for image contrast enhancement by adaptively modifying its parameters to obtain output entropy

maximization through a linear combination of monotonically increasing transfer functions.

2 Maximum Entropy Principle

The MEP simply maximizes the entropy measurement subject to satisfying a set of given con-

straints. Let pX and pY be the Probability Density Function (PDF) of continuous random variables

X and Y respectively with natural constraints:
R
dx pX =

R
dy pY = 1 and 0 � pX(x); pY (y) � 1.

Suppose g : X 7! Y , then pXdx = pY dy or pX = pY g
0(x; �). Here g(�) depends on a set of pa-

rameters, � = f�1; �2; � � � ; �mg, e.g., g(Y jX; �1; � � � ; �m). We will assume that X denotes the input

intensity information and Y denotes the transformed output.
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Figure 1: (a) Adaptive sigmoidal transfer function, b = �128; c = �0:05; w =

f0:5; 1:5; 2:0; 2:5g; X = f0; � � � ; 255g, (b) Adaptive sigmoidal transfer function. w = 1; c =

�0:05; b = f�40;�100;�160;�220g. (c) Adaptive sigmoidal transfer function, w = 1; b =

�128; c = f�0:1;�0:2;�0:3;�0:4g. (d) A 1-K-1 sigmoidal approximation neural network. (e)

Summation (solid line) of two monotonically increasing functions ('o' and '*').

Our goal is then to maximize the entropy, H(Y jX; �), of the output variable Y with respect to

the parameters, �, as

max
�1;���;�m

H(Y ) = max
�1;���;�m

�
�

Z
dy pY logpY

�
= max

�1;���;�m

�
�

Z
dx pX log

pX

g0(x; �)

�

= max
�1;���;�m

�
�

Z
dx pX log pX +

Z
dx pX log g0(x; �)

�

= H(X) + max
�1;���;�m

Z
dx pX logg0(x; �) (1)

Let J =
R
dx pX logg0(x; �). We may reformulate Eq. (1) as max�1;���;�m H(Y ) � max�1;���;�m J

since H(X) is independent of �.

2.1 K-piecewise Sigmoidal Approximation Network

The transfer function, g(x; �), can be modeled in general by a constrained network consists of a

linear combination of K-piecewise bounded, monotonic, and invertible logistic functions as follows,

g(x; �) =

KX
k=1

ak

1 + exp(wkx+ bk)
; with ak =

exp(�k)PK

l=1 exp(�l)
; � = fwk; �k; bk; k = 1; � � � ;Kg (2)

which ensures that ak > 0; k = 1; 2; � � � ;K with
PK

k=1 ak = 1 for the function to remain monotonic

and bounded since the summation of monotonic functions yields a monotonic function. Moreover,

these constraints make our model di�erent from the typical feedforward neural networks. By having

the linear combination of these K-piecewise monotonic functions, the network has a greater degree

of freedom to approximate various CDF functions for entropy maximization of di�erent images.

The network from Eq. (2) has a 1-K-1 architecture with a single input, K hidden neurons in

the second layer, and a single output as shown in Fig. 1 (d). Fig. 1 (e) demonstrates the linear

combination of logistic functions for K = 2.

If g(x; �) =
PK

k=1 ak=(1+exp(ck(wkx+ bk))) then ck can be viewed as a scaling function which

controls the \window" of operation that essentially de�nes the slope of the transfer function in

each of the intervals de�ned by ak as shown in Fig. 1 (c). However, it is a redundant variable

since by varying wk and bk we in essence obtain the same result; hence, we do not use ck in the



Original lena

(a)

0 50 100 150 200 250
0

50

100

150

200

250

Input Image’s Histogram

(b)

Histogram Equalized lena

(c)

0 50 100 150 200 250
0

50

100

150

200

250

Equalized Image’s Histogram

(d)

0 50 100 150 200 250
0

50

100

150

200

250

Cumulative Density Distribution (CDF)

(e)

Transformed Output Image

(f)

0 50 100 150 200 250
0

50

100

150

200

250

Transformed Output Histogram

(g)

0 100 200 300 400 500 600 700
3.8

4

4.2

4.4

4.6

4.8

5

Epoch

E
nt

ro
py

 (
N

at
)

Entropy Measure

(h)

0 50 100 150 200 250
0

50

100

150

200

250

Final Transfer Function, K = 5

X

Y

(i)

Figure 2: (a) original lena, (b) lena's histogram, (c) lena histogram equalized, (d) histogram

for equalized lena, (e) the Cumulative Distribution Function (CDF) function, (f) output image

calculated from the 1-5-1 network, (g) entropy vs. learning steps, (h) output image's histogram (i)

the transfer function formed by the 1-5-1 network, in comparison with the CDF function of (e).

equation. Both bk and wk are parameters which shift the transfer function along its input axis

but each performs the shift di�erently. More speci�cally, parameter wk controls the nonlinear shift

whereas bk is the bias which controls the linear shift of the operating range shown in Fig. 1 (a)

and (b) respectively. The ak, in turn, controls the output magnitude of each k'th unit.

With the substitution of g(�), J is written as

J =

Z
dx pX log g0(x; �) =

Z
dx pX log

�
�
X akwk exp(wkx+ bk)

(1 + exp(wkx+ bk))2

�
: (3)

We now write the maximization of J using the gradient ascend approach. With the Lebesque's

Dominated Convergence Theorem, d
d�

R
g(x; �)dx =

R
@
@�
g(x; �)dx, the di�erentiation outside of

the integral can be moved inside,2 which yields,

@J

@�
=

Z
dx pX

@

@�
log

 
�

KX
k=1

akwk exp(wkx+ bk)

(1 + exp(wkx+ bk))2

!
: (4)

To simplify equations, we let � = 1P
K

i=1

a
i
w
i
exp(w

i
x+b

i
)

(1+exp(w
i
x+b

i
))2

. From Eq. (4), we obtain

@J

@wk

=

Z
dx pX�

�
ak exp(wkx+ bk)

(1 + exp(wkx+ bk))2
�
2akwkx exp(2wkx+ 2bk)

(1 + exp(wkx+ bk))3
+

akwkx exp(wkx+ bk)

(1 + exp(wkx+ bk))2

�
;(5)

@J

@�k
=

KX
l=1

@J

@al

@al

@�k

2The key condition is to show the existence of a dominating function g
0(x; �) with a �nite integral, i.e., not wildly

behaved. It can also be seen as a special case of the Leibnitz's rule of di�erentiation.



Table 1: Initial values used in simulating the 1-5-1 network.

�w 1.0e-07 �� 1.0e-05 �b 1.0e-05 w a b

Values 0.1526 0.1526 0.3052 0.05:0.0125:0.1 0.2 -3:-1.75:-10

=

Z
dx pX

KX
l=1

�
�

wl exp(wlx+ bl)

(1 + exp(wlx+ bl)2
al(�k;l � ak)

�
; where �k;l =

�
1 k = l

0 otherwise
(6)

@J

@bk
=

Z
dx pX�

�
akwk exp(wkx+ bk)(1 � exp(wkx+ bk))

(1 + exp(wkx+ bk))3

�
: (7)

From gradient equations Eq. (5)-(7), we obtain the following adaptive updating rules:

�wk = �w�

�
ak exp(wkx+ bk)

(1 + exp(wkx+ bk))2
�

2akwkx exp(2wkx+ 2bk)

(1 + exp(wkx+ bk))3
+

akwkx exp(wkx+ bk)

(1 + exp(wkx+ bk))2

�
(8)

��k = ��

KX
l=1

�
�

wl exp(wlx+ bl)

(1 + exp(wkx+ bk))2
al(�k;l � ak)

�
; ak =

exp(�k)PK

i=1 exp(�i)
(9)

�bk = �b�

�
akwk exp(wkx+ bk)(1� exp(wkx+ bk))

(1 + exp(wkx+ bk))3

�
(10)

3 Simulation Result and Conclusion

The simulation used a 1-5-1 neural network. The iterative updates are calculated according to

Eq. (8)-(10). The initial values for the network are listed in Table 1. Using digitized grayscale

images, the continuous random variables X and Y are converted into discrete random variables

with n = 256 states (graylevels). The image we used is 128 � 128 of lena shown in Fig. 2 (a).

Its histogram, histogram equalized output, equalized histogram, and the CDF are illustrated in

Fig. 2 (b)-(e) respectively. Results are shown in Fig. 2 (f)-(i). Fig. 2 (f) is the transformed output

from the network. The quality is similar to (c) which is calculated by the standard histogram

equalization technique. The transformed output's histogram in (g) which should be similar to

(d) is more uniformly distributed than in (b). Furthermore, Fig. 2 (h) illustrates that the set of

adaptive rules does increase the entropy at the output. Fig. 2 (i) displays the �nal transformation

function formed by the 1-5-1 network. The larger diagonal slope from the bottom-left to the

top-right is similar to the one calculated for lena shown in (e).

In this paper, we have derived a set of adaptive rules and constructed a 1-K-1 constrained

network for histogram equalization in image enhancement using the Maximum Entropy Principle.

The results demonstrate the network's ability to approximate the CDF function achieving contrast

enhancement, good utilization of the dynamic range, and maximum information transfer.
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