
An e�cient iterative pose estimation algorithm

S.H. Or1 W.S. Luk2 K.H. Wong1 I. King1

shor@cse.cuhk.edu.hk Wai-Shing.Luk@cs.kuleuven.ac.be khwong@cse.cuhk.edu.hk king@cse.cuhk.edu.hk

1Department of Computer Science & Engineering

The Chinese University of Hong Kong

2Departement Computerwetenschappen, Katholieke Universiteit Leuven

Abstract. We propose a novel model-based algorithm which �nds the

3D pose of an object from an image by breaking down the estimation

process into two linear processing stages, namely the depth recovery and

the pose calculation. The depth recovery stage determines the new po-

sitions of the model point set in 3D space whereas the pose calculation

step is a least-square estimation of the transformation parameters be-

tween the point set formed from the previous stage and the model set.

The estimates are iteratively re�ned until converged. The advantage of

using our algorithm is that the computational cost is much reduced. We
test our algorithm by applying it to both synthetic as well as real time

head tracking problem with satisfactory results.

index : Pose Estimation, Real time vision, Human-computer Interface.

1 Introduction

Determining the pose (position and orientation) of a moving object from an
image sequence is useful in applications such as photogrammetry, passive navi-
gation, industry inspection and human-computer interfaces, etc. In this paper,
we are interested in the model-based pose estimation algorithm. A number of
work have been done by previous researchers [13, 7, 4, 3]. Some of them are opti-
cal ow based[4], which require massive computation power and are not suitable
for real time applications. Others use nonlinear iterative methods such as New-
ton's method, which is sensitive to the initial guess supplied. Our interest is in
developing an e�cient algorithm which is suitable for real time applications on
human motion anaylsis. This area is characterized by the rapid motion of the
object concerned and high probability of occlusion/re-appearance of part of the
object in the subsequent frames.

2 Problem formulation

We take the assumption of the pin-hole camera model with full perspective
projection as shown in Fig. 1. f is the focal length of the camera and the focal
plane of the camera is placed at distance f from the camera origin. The problem
of pose estimation can be described as follows. Given a 3D point set fPig; i 2
1; 2; : : :; N where Pi = (XPi

; YPi
; ZPi

)t; i 2 1; 2; : : : ; N are the coordinates of the

model points at a reference instant. Assuming a rigid transformation is being
applied to this point set, yielding a new set which then projected onto an image
plane, producing fQig = (XQi

; YQi
) 2 1; 2; : : : ; N , we seek R, T and fdig; i 2

1; 2; : : : ; N such that

e2(R;T; fdig) = min
�X

kdi�̂i � (RPi +T)k2
�

(1)

e2 is a measurement function of the current �t of rotation R, translation T,
and fdig. di corresponds to the depth which determines where in 3D space should

the actual point be located along the projection ray. �̂i = (X2

Q0

i

+ Y 2

Q0

i

+ f2)�
1

2 (XQ0

i
; YQ0

i
; f)

is the unit vector on this ray.

X

Y

Z

f

P’

P

Q

PP’

Q’

image plane

O

Fig. 2. CPU time per iteration for Extended Kalman Filter, Gauss-
Newton & PRA

0

2000

4000

6000

8000

10000

12000

7 10 15 20 25 30

No. of points

T
im

e(
m

s) Gauss-Newton
EKF
PRA

Fig.1 Relationship between original Fig.2 CPU time per iteration for Extended

point and projected point Kalman Filter, Gauss-Newton and PRA

In the formulation above, least square minimization methods can be applied
to the N +6 parameter space to �nd the minimum of the measurement function
e2 where N is the number of feature points of the object. This approach is
adopted by [9, 5]. Since the original 3D coordinates are being transformed by
a perspective projection, the objective function is thus nonlinear. To solve for
the solution, iterative methods are required which is usually a time consuming
process. In addition, the computational e�ort needed increases rapidly as the
number of points increases.

3 Our Algorithm

Recently there are some work which focus on using the projection rays as a guide
and perform the pose estimation in 3D space [8]. However, the approach used the
iterative point matching method, which demands for much computational e�ort.
This will not suit the requirement of a real time computer-human interface, which
is what we are interested in. Inspired by the inverse projection ray approach, we
propose that the minimization process be broken down into two stages: The �rst

stage will estimate the position of all the feature points in the 3D space, i.e.
fdig. The estimated point set will be passed to the second stage, which is a least
square �tting of the model set and estimated point set. The above procedure is
repeated until the result converges. By dividing the estimation process into two
stages, the size of the solution space in each stage is much reduced and the cost
in locating the solution decreased signi�cantly. The resulting algorithm is very
e�cient. Our algorithm basically works in the following way:

1. Assume the object has no motion, determine fdig, i 2 1; 2 : : : ; N and T;
2. Assume fdig, i 2 1; 2; : : : ; N are determined, estimate R and T.
3. Update the state of the solution and iterate until the values of R and T less

than some thresholds.

Note that we estimate both fdig and T in the �rst stage. The point of recovering
T earlier is to make our algorithmmore robust since leaving T to be determined
in later stage will easily lead to a result of stucking in the local minimum as
indicated in some of our experiments. In the second stage, we will minimize the
following objective function

e2(R;T) =
X
kQ0

i � (RPi + T)k2 (2)

where Q0

i is the estimated transformed point set in the previous estimation stage,
Pi is the original(model) point. Various e�cient algorithms [2, 6, 11] are available
for the �tting of two point sets. We choose the singular value decomposition
method[6, 11] due to its robustness in noise handling and that only a 3 � 3
matrix decomposition procedure is needed.

3.1 Complete algorithm

The complete algorithm is as follows:

1. Minimize the function below to estimate fdig, i 2 1; 2; : : : ; N :X
kdi�̂i � (Pi + T)k2

The resulting fdig, i 2 1; 2; : : : ; N and T is given by:

di = �̂i
t(Pi +T) (3)

T = �

NX
i=1

Ai

!
�1

NX
i=1

AiPi

!
(4)

where Ai is a 3 by 3 matrix given by

Ai = I � �̂i�̂
t
i

Please refer to appendix for the derivation of the above formula.
2. Using the estimated fdig i 2 1; 2; : : :; N in the previous stage, apply the

SVD method to determine the rigid transformation R and T.

3. Update Pi i 2 1; 2; : : : ; N by Pi RPi + T.

Note that Ai's are not needed to be stored explicitly. Firstly, each Ai depends
only on �̂i, which is �xed before the execution of our algorithm. Therefore the
value of (

P
Ai)

�1 in Eq. (4) can be pre-computed before the iterations, which
avoids the expensive inverting operation of a matrix. Moreover, the matrix vec-
tor product AiPi can be computed e�ciently using the formula Pi � �̂i(�̂

t
iPi).

We also noticed the algorithm by DeMenthon and Davies [3] which requires rela-
tively economic arithmetic operations. However, our argument for the e�ciency
is still valid by the following reasons. Firstly, in the approach used by DeMenthon
and Davies, the algorithm requires an approximate pose estimate from the previ-
ous stage, which would inevitably contribute to the computational requirement.
Moreover, their method does not guarantee the orthonormality of the resulting
rotation matrix. Whereas our algorithm used the singular value decomposition,
which provides an orthonormal result, hence improves the accuracy and thus
justi�es the increase in computation.

4 Performance comparison

We have compared the performance of two established approaches with our al-
gorithm. The main interest here is the computational e�ciency since the main
concern during the motion tracking application would probably be the timing re-
quirement as well as accuracy and stability. We chose Gauss-Newton method(By
Lowe[7]) and Extended Kalman Filter(By Broida et al. [10] and Azarbayejani
et al.[1]) method due to their robustness and computational e�ciency. Lowe's
approach, the Extended Kalman �lter as well as our algorithmwere implemented
in C.

All the simulations are performed on a SUN Ultra 1/170 workstation. The
same data set was used which involved both translation and rotation of two to
four planes in 3D space (10 points per plane are used). The motion trajectory
consists of increasing values in both rotation and translation for 100 frames.
Monte Carlo simulationwas applied to the data and Gaussian random noise with
zero mean and standard deviation of one unit is added to the coordinates of each
feature point. The plots of average time per frame used by various approaches are
shown in Fig. 2. In the plot, our algorithm is represented using the title \PRA"
which stands for \Projection Ray Attraction". The time unit in our experiments

is milliseconds. The computational advantage of our approach is clear from the
�gure. It can be seen that the time required by Lowe's approach increases linearly
with the number of points whereas our approach remains roughly the same. The
main reason is that Gauss-Newton method requires the solution of a (N + 6)�
(N +6) matrix, where N is the number of feature points measured. This matrix
inverse operation is surely computationally the most demanding step. The long
computation time of that of Extended Kalman �lter stems from the fact that it
has to solve for a 2N � 2N matrix.

5 Synthetic Data Experiment

The performance of our algorithm under noisy environment is investigated. Two
sets of experiments are being performed. We �rst describe the setup since they
are common for both experiments. A number of points are randomly generated
in the 3D space such that they will project on an image plane of size 2 by 2.
These model points are then transformed as follows: a rotation about the axis
(1; 1; 1) by 6� followed by a translation of (5:0; 3:0; 6:0). The transformed points
are then projected on the image plane. The image coordinates are then digitized
to a screen resolution of 512� 512. The process of digitization introduces noise
in this case. 100 random scenes are generated according to this setup and the
digitized coordinates are used together with the original generated 3D model to
determine the pose.

The errors shown in the following are all relative errors. We used quaternion
to represent the rotation such that all the estimated results are in vector form.
The relative error of a vector is de�ned by the Euclidean norm of the di�erence
between the estimated and the true vector divided by the Euclidean norm of the
true vector. The �rst set of experiments tests the performance of the algorithm
under di�erent number of points in the scene. The results are shown in Fig. 3a.
From the plot, it is observed that the estimated rotation is relatively stable with
respect to the variation of the number of points whereas the translation has
the greatest improvement from 8 to 12 points. In addition, the digitization only
introduces a small e�ect on the estimated results, as can be seen in the range of
errors it is only within 3 percents.

Another set of experiments simulates the measurement noise by introducing
an o�set value to both digitized x and y coordinates. These o�set values are
normal distributed with variance of k pixels where k is the parameter to be
varied in the experiments. 16 points are used in this set of experiments. Fig. 3b
shows the results and our algorithm again is quite stable under the situation of
increasing noise.

6 Real image testing

Pose tracking involves continuous monitoring of the pose of an object from the
input image sequence. Our algorithm can be easily adapted for continuous track-
ing by performing estimation between successive image frames. We test our al-
gorithm by applying it to track the head of a person in an image sequence. Our
implementation is done on an SGI Indy workstation with MIPS R4400 proces-
sor. To verify the correctness of the recovered pose informaton, we reproduce

the same motion on the workstation at the same time. Though it is di�cult in
this case to estimate the performance �gure of the algorithm, an overall estimate
of the usefulness of the algorithm can be obtained. We used the structure from
motion approach to obtain the data set for the face to be tracked, following
the algorithm by Szeliski [9]. In our experiment, only twelve points are used.
All points are selected on the criteria that they can be tracked unambiguously

throughout the sequence so as to increase the accuracy of the recovered pose. We
use four points for the head boundary including ears, four points for the mouth,
and four points for each of the eyebrows.

Before tracking, the user has to initialize the tracker. The selected feature
points should be the same as those taken in the calibration stage. These selected
feature points are then tracked by the normalized correlation method to give
coordinates in successive frames. It is inevitable that error in selecting feature
exists due to disagreement in the location of the feature selected and that in
the calibration stage. However, according to our experience, this discrepancy is
minor in that our algorithm can still maintain the tracking over a long period,
say over 100 frames. The tracking information(rotation and translation) will be
used to control a synthetic head model1. Results are shown in Fig. 4.

7 Discussion

In the experiments on head tracking, we found that our algorithm can e�ectively
recover the motion information from the images. The main advantage of our
algorithm is that it is computationally e�cient. In addition, by performing the
�tting of the model set in 3D object space and not on the image plane, a larger
range of convergence is achieved which enables our algorithm to be more stable
with respect to di�erent initial guesses. However, our algorithm also has the
following drawbacks. Firstly, due to the fact that our algorithm is formulated
under the situation of two frames only, thus the error in the estimation will
accumulate in the subsequent frames and may lead to failure after a large number
of frames. Moreover, in the current formulation, the problem of occlusion is not
being handled.

For the �rst problem, one solution is to bootstrap the algorithm itself after a
number of frames. This is possible since our algorithm has quite a large range of
convergence (approximately 40 degrees for the rotation angles from our exper-
iments). Another solution is to cross-check the pose estimaton result with two
or more frames earlier so as to minimize the error itself. The second problem
demands a further enhancement of our algorithm to handle the occlusion prob-
lem, which is not that di�cult due to the model based nature of our algorithm.
We are currently working in this direction because the task of human motion
tracking including head tracking is a primary goal of our project. An exciting
application of head tracking is the usage of very low bit rate transmission in
video conferencing.

8 Conclusion

An e�cient pose estimation algorithm is presented. By breaking down the pose
estimation process into two separate linear stages, the computation requirement

1 The synthetic character is a public domain implementation of the facial animation

work by Keith Waters[12]

is signi�cantly reduced. Tests on synthetic data as well as real world head track-
ing have demonstrated the e�ectiveness of our algorithm.

Appendix: Derivation of Initial Guess

We want to minimize the function below to establish the initial guess:

� =

NX
i=1

kdi�̂i � (Pi + T)k2

Applying partial di�erentiation to � with respect to di and T respectively and
setting them equal to zero, we have

@�

@di
= 0) di = �̂i

t(Pi +T)

@�

@T
= 0) T =

1

N

X
i

(di�̂i �Pi)

T =
1

N

X
([�̂i�̂i

t]Pi � Pi) +
1

N

X
i

([�̂i�̂i
t]T)

) (NI�
X

�̂i�̂i
t)T =

X
i

(�̂i�̂i
t � I)Pi

Writing Ai as I� �̂i�̂i
t, we have

T = �(
NX
i=1

Ai)
�1(

NX
i=1

AiPi)

References

1. A.Azarbayejani and A. Pentland. Recursive estimation of motion, structure, and

focal length. IEEE Trans. Pattern Anal. Machine Intell., 17(6):562{575, June
1995.

2. B.K.P.Horn. Closed-form solution of absolute orientation using unit quaternions.

J. Opt. Soc. Amer., 4:629{642, April 1987.

3. D.F.Dementhon and L. S. Davis. Model-based object pose in 25 lines of code. Intl.
Journal of Comput. Vision, 15:123{141, 1995.

4. H.Li, P.Roivainen, and R.Forchheimer. 3-d motion estimation in model-based fa-

cial image coding. IEEE Trans. Pattern Anal. Machine Intell., 15(6):545{555,

June 1993.

5. J.Weng, N.Ahuja, and T.S.Huang. Optimal motion and structure estimation.
IEEE Trans. Pattern Anal. Machine Intell., 15(9):864{884, September 1993.

6. K.S.Arun, T.S.Huang, and S.D.Blostein. Least-square �tting of two 3-d point sets.

IEEE Trans. Pattern Anal. Machine Intell., 9(5):698{700, September 1987.

Fig. 3a Plot of error dependency on the
number of points

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

6 8 10 12 14 16 18 20 22 24 26 28 30

No. of points

err
or(

%)

error in R
error in T

Fig. 3b Plot of error in estimation vs
measurement noise

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10
error in measurement(pixel)

err
or(

%)

error in R
error in T

Fig. 3. Left) Plot of error dependencey on the number of points, right) Plot of error

in estimation vs. measurement noise

Fig. 4. Sample run of the head tracking application. Left) initialisation, Right) Rota-

tion of the head and reconstructed pose.

7. D. G. Lowe. Fitting parameterized three dimensional models to images. IEEE

Trans. Pattern Anal. Machine Intell., 13(5):441{450, May 1991.

8. P.Wunsch and G.Hirzinger. Registration of cad-models to images by iterative

inverse perspective matching. Proc. ICPR 96, pages 78{83, November 1996.

9. R.Szeliski and Sing Bing Kang. Recovering 3d shape and motion from image

streams using non-linear least squares. Cambridge Research Laboratory Techni-

cal Report, March 1993.

10. T.J.Broida. Recursive 3-d motion estimation from a monocular image sequence.
IEEE Trans. Aerospace Electronic Systems, 26(4):639{655, July 1990.

11. Shinji Umeyama. Least-square estimation of transformation parameters between

two point pattern. IEEE Trans. Pattern Anal. Machine Intell., 13(4):376{380,
April 1991.

12. K. Waters. A muscle model for animating three-dimensional facial expression.

Comput. Graphics, 21(4):17{24, 1987.

13. Z. Zhang and O. Faugeras. 3D Dynamic Scene Analysis. Springer-Verlag, 1992.

This article was processed using the LATEX macro package with LLNCS style

