
A Novel Point-based Pose Estimation Algorithm

Siu-hang Or
shor@cse.cuhk.edu.hk

Kin-hong Wong
khwong@cse.cuhk.edu.hk

Irwin King
king@cse.cuhk.edu.hk

The Chinese University of Hong Kong
Computer Science and Engineering Department

Shatin, N.T., Hong Kong

Abstract

Pose estimation and motion tracking from image se-
quences is useful in many robotic applications. We propose
a real time algorithm which performs these two tasks using
an iterative two-stage process: (1) depth prediction and (2)
pose calculation. An analytical expression for determining
the convergence is also obtained. The algorithm was tested
successfully on synthetic and real image sequences.

1. Introduction

Determining the motion information from an image
sequence is useful in various applications such as pho-
togrammetry, passive navigation, industry inspection, and
computer-human interface. The Kalman filter method [8, 3]
provides an optimal least square estimate to the motion in-
formation. However, it has difficulties in handling the oc-
clusion problem nicely. Moreover, the Kalman filter method
has the numerical instability problem which requires special
treatment [5]. In this paper, we propose a new algorithm
for pose/motion estimation which provides a least square
estimate to the motion recovery problem and is not based on
the Kalman filter methodology. The framework is general
enough to be able to incorporate more robust techniques to
increase its stability. Also an extension, which taking the ad-
vantage of the model-based nature of our algorithm, to solve
the occlusion problem is currently under development.

Consider a camera with its focal plane’s origin placing at
(0; 0; f), as in Fig. 1, where f is the focal length of the cam-
era. Given a set of 3D points fPig where i = 1; 2; : : : ; N
which is being transformed (rotation followed by transla-
tion) to yield another set of points fP 0

ig; i = 1; 2; : : : ; N
(P0

i is unknown in our problem). The projection of the trans-

X

Y

Z

f

P’

P

Q’

q

Figure 1. Relationship between original,
transformed and projected points

formed point set on the image plane is fQ0
i : (xQ0

i
; yQ0

i
); i =

1; 2; : : : ; Ng.1 Assuming the coordinates of the set of
transformed points are fP0

i : (xP 0

i
; yP 0

i
; zP 0

i
)tg, they are

related to the image points by a perspective projection

xQ0

i
= f �

x
P 0

i

z
P 0

i

, yQ0

i
= f �

y
P 0

i

z
P 0

i

. In this arrangement, any

point in the image would give an inverse projection ray with
�̂i = (x2

Q0

i

+ y

2
Q0

i

+ f

2)�
1
2 (xQ0

i
; xQ0

i
; f)t as the direction

vector on this ray. The actual coordinates of this point in the
3D space can be written as P0

i = di�̂i, where di(a scalar) is
the depth of the actual feature point from the perspectivity
center.

Given fQ0
ig and a three dimensional model Pi =

(xPi ; yPi ; zPi)
t; i = 1; 2; : : : ; N , we seek R, T and

1We used bolded font for a 3D vector in the camera coordinate space
and normal font for a 2D vector on the image plane.



fdig; i = 1; 2; : : : ; N such that

emin(R;T; fdig) = min
X

kdi�̂i � (RPi + T)k
2 (1)

where e is a measurement function of the current fit of the
rotation matrix R and translation T. And di corresponds
to the depth value which determines where in the 3D space
should the actual point be located along the projection ray.

2 Pose estimation algorithm

To solve the above minimization problem, least square
minimization methods can be applied to the whole parameter
space to find the minimum of the measurement function
e. However as the number of parameters increases, the
computational effort required to find the minimum increases
rapidly due to the non-linear nature of the problem. With the
observation that the actual feature points must reside on the
projection rays, we propose that the minimization process
should be broken down into a two-stage process: the first
stage estimates the positions of all feature points in the 3D
space. The estimated positions will then be passed to the
second stage - a least square fitting of two 3D point sets,
which can be efficiently solved by various established non-
iterative methods such as the singular value decomposition
method [1, 4]. The above procedure is repeated until the
values of R, and T converge. The algorithm is as follows:

Algorithm 1 Model-based Pose Estimation
. Input

fPig; i = 1; 2; : : : ;N : 3D description of the original ob-
ject(model),
fQ0

i : (xQ0

i

; yQ0

i

)g; i = 1;2; : : : ;N : transformed feature
point coordinates on the image plane.
. Procedure

1 while (change in R or T not less than some threshold val-
ues)

2 Estimate fdig; i = 1; 2; : : : ;N in Eq.(1). fdig is estimated
by jPi � �̂ij where �̂i is the unit vector along the projection
ray formed by image point Q0

i and the origin.
3 Perform a least square fitting to Eq. (1) to estimate R, and

T by the singular value decomposition method [4].
4 UpdatePi byPi RPi +T.

end while
As seen in Fig. 1, the estimated position of the feature point
in the 3D space is only the perpendicular projection of the
model point on the projection ray. After each iteration, we
will get a better estimation and the model will be trans-
formed closer to the projection rays by the updating step in
our algorithm. According to Eq. (1), this corresponds to a
reduction in the objective function value at each iteration.
Eventually our algorithm will converge to the solution in
which the sum of the squares of the perpendicular distances
between the model and the actual locations is a minimum or
zero.

3 Convergence analysis

The analysis of the convergence condition of a particu-
lar algorithm is usually neglected in most pose estimation
literatures. In this paper, we will try to estimate the ef-
fect of different motion parameters on the recovered values.
Assume a model point P is being transformed to another
location P0 by a rigid body transform, the perpendicular
projection of P onto �̂ is q (see Fig. 1.), therefore

q = P0(1 �
PP0 �P0

kP0k2
):

The second term on the right hand side of the equation, which
is the difference between the estimated position and the true
one, can be treated as an error term " = PP0�P0

kP0k2
. This error

term can affect the recovered transformation parameters in
the second stage of our algorithm. For a large value of "
(say " = 0:5, which corresponds to shifting the point along
the projection ray by a significant amount), the estimated
transformation would align the object farther away from the
originalpositionsuch that our algorithmwill not converge to
the correct result in the subsequent iterations. Substituting
P0 by RP + T in the error term, we have

" =
RP �RP+RP �T+ T � (T� P)�P �RP

RP �RP+ 2RP �T+ T �T
: (2)

For the correct convergence of our algorithm, the above
equation suggests that the difference between T and P

should be small. In order to find the relationship between
" and input Euler angles, we plot the resulting " against the
variation of one of the angles while others are kept fixed.
The resulting plots are shown in Fig. 2. It is found that the
error increases rapidly after one of the input angles exceeds
20 degrees.

4 Synthetic and real data experiment

Experiment using synthetic data - To test the validity of
our approach, a randomly generated point set of 8 points
inside a unit cube is used. First the point set is trans-
formed(rotate and translate) and projected on an image
plane. Then our algorithm is applied to recover the trans-
formation parameters. We vary one of the parameters, say
pitch angle, while keeping the other parameters at zero.
The resultant plots of recovered Euler angles against corre-
sponding input ones are shown in Fig. 3. This experiment
confirms the result estimated by Eq. (2) and Fig. 2. That is
our algorithm becomes unreliable after one or more of the
input angles exceed 20 degrees. Hence we conclude that
the convergence requirement under different values of R, T
and P can be estimated by Eq. (2).

2



Plot of Error vs. Variation of Euler Angles

0%

25%

50%

75%

100%

125%

150%

1 21 41 61 81

Euler Angle(Degrees)

E
rr

o
r Roll

Pitch
Yaw

Figure 2. Plot of error vs. variation of Euler
Angles

Recovered Angles vs. Input Angles

0

20

40

60

80

100

1 21 41 61 81

Input angle

R
e
c
o

v
e
re

d
 a

n
g

le
s

Roll
Pitch
Yaw
Input

Figure 3. Plot of estimated Euler angles vs.
input angles

Experiment using real data - We also use our algorithm to
track the movement of a person’s head in front of a camera.
The implementation is done on an SGI Indy workstation.
Some preliminary results are shown in Fig. 4. During ini-
tialisation, as shown in Fig. 4a, the user first selects the
invariant features, such as mouth corners, eyebrows, etc. as
the points to be tracked. The animated face to be controlled
is shown on the left of the display at the same time. The
feature points are then tracked automatically by the normal-
ized correlation method to give coordinates in successive
frames. Our algorithm can thus estimate the motion of the
human head and the results are used to control a computer
generated human face[2].2 A shot made at the middle of the
run is shown in Fig. 4b. It can be seen that the head of the
user made some rotation about the X-axis and Y-axis to give
a pose of looking up, and the pose can be reproduced by the
animated face accordingly. The pose information generated
by the whole sequence is recorded and plotted in Fig. 4c and
Fig. 4d. In Fig. 4c, the plots of Roll(rotation about Z-axis),
Pitch(rotation about X-axis) and Yaw(rotation about Y-axis)
are shown for the whole run. In Fig. 4d, the estimations
for the translation are plotted. Since the computation cost is
rather low, our algorithm is capable of running in real time
in the above test.

5 Conclusion

A real time pose estimation algorithm is developed using
a two-stage iterative method. A convergence analysis is
performed and the algorithm has been tested by synthetic as
well as real data with satisfactory results.

References

[1] K.S.Arun and T.S.Huang and S.D.Blostein. Least-square fit-
ting of two 3-d point sets. IEEE Trans. Pattern Anal. Machine
Intell., 9(5):698–700, Sept. 1987.

[2] K. Waters. A muscle model for animating three-dimensional
facial expression. Comput. Graphics, 21(4):17–24, 1987.

[3] T.J.Broida. Recursive 3-d motion estimation from a monocular
image sequence. IEEE Trans. Aerospace Electronic Systems,
26(4):639–655, July 1990.

[4] Shinji Umeyama. Least-square estimation of transformation
parameters between two point pattern. IEEE Trans. Pattern
Anal. Machine Intell., 13(4):376–380, Apr. 1991.

[5] Z. Zhang and O. Faugeras. 3D Dynamic Scene Analysis.
Springer-Verlag, 1992.

[6] A.Azarbayejani and A. Pentland. Recursive estimation of
motion, structure, and focal length. IEEE Trans. Pattern Anal.
Machine Intell., 17(6):562–575, June 1995.

2The codes for the computer synthesizedhuman face is a public domain
implementation by Keith Waters.

3



Figure 4. Sample run of the head tracking ap-
plication. a) initialisation,

Figure 4. b) rotation of the head,

Fig. 4c Plot of estimated rotation during a sample run

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 21 41 61 81 10
1

time (frame)

A
n

g
le

s 
(r

ad
.)

Roll
Yaw
Pitch

Fig. 4d Plot of estimated translation in a sample run

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1 21 41 61 81 10
1

time (frame)

tr
an

sl
at

io
n

X
Y
Z

4


