Social Recommendation

Irwin King with Hao Ma

ATT Labs Research & Department of Computer Science and Engineering The Chinese University of Hong Kong

> king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king

©2012 Irwin King. All rights reserved.

Information and more Information!

Real Life Examples

Customers Who Bought This Item Also Bought

Real Life Examples

Today's Recommendations For You

Here's a daily sample of items recommended for you. Click here to see all recommendations.

Invincible v ~ Michael Jackson

In Search of Sunrise, Vol. 7: Asia v ~ DJ Tiesto (53) \$15.99

Fallen
~ Evanescence

Social Recommendation, Irwin King @ Bay Area Search Group Meetup, February 22, 2012

Page 1 of 25

Real Life Examples

YAHOO! MOVIES

My Movies: gabe_ma Edit Profile

Recommendations For You

Receive Recommendations by Email

Movies in Theaters: 94089

Burn After Reading (R) Showtimes & Tickets | Add to My Lists

Yahoo! Users: B- 4794 ratings The Critics: B 14 reviews

😢 Don't Recommend Again 😳 Seen It? Rate It!

Fight Club (R) Showtimes & Tickets | Add to My Lists

Yahoo! Users: B+ 52392 ratings The Critics: B 12 reviews

🕴 Don't Recommend Again 😳 Seen It? Rate It!

😢 Don't Recommend Again 🙄 Seen It? Rate It!

Pride and Glory (R) Showtimes & Tickets | Add to My Lists

Yahoo! Users: A- 59 ratings The Critics: C+ 6 reviews

😢 Don't Recommend Again 🙄 Seen It? Rate It!

Lakeview Terrace (PG-13) Showtimes & Tickets | Add to My Lists

Yahoo! Users: B 3229 ratings The Critics: C 12 reviews

🙁 Don't Recommend Again 😒 Seen It? Rate It!

The Duchess (PG-13) Showtimes & Tickets | Add to My Lists

Yahoo! Users: B+ 953 ratings The Critics: B- 10 reviews

😢 Don't Recommend Again 🙄 Seen It? Rate It!

See All Recommendations

On The Menu

- Introduction
- Basic Techniques
 - Collaborative filtering
 - Matrix factorization
- Different Models
 - Social graph
 - Social ensemble
 - Social distrust
 - Website recommendation

Basic Approaches

- Content-based Filtering
 - Recommend items based on key-words
 - More appropriate for information retrieval
- Collaborative Filtering (CF)
 - Look at users with similar rating styles
 - Look at similar items for each item

Underling assumption: personal tastes are correlated--Active users will prefer those items which the similar users prefer!

Framework

• The tasks

- Find the unknown rating!
- Which item(s) should be recommended?

User-User Similarity

ltems

ltems

Items

ltems

ltems

- Predict the ratings of active users based on the ratings of similar users found in the user-item matrix
 - Pearson correlation coefficient

$$w(a,i) = \frac{\sum_{j} (r_{aj} - \bar{r}_a)(r_{ij} - \bar{r}_i)}{\sqrt{\sum_{j} (r_{aj} - \bar{r}_a)^2 \sum_{j} (r_{ij} - \bar{r}_i)^2}} \quad j \in I(a) \cap I(i)$$

• Cosine measure

Nearest Neighbor Approaches

[Sarwar, 00a]

Figure 1: Three main parts of a Recommender System.

- Identify highly similar users to the active one
 - All with a measure greater than a threshold
 - Best K ones
- Prediction $r_{aj} = \bar{r}_a + \frac{\sum_i w(a,i)(r_{ij} \bar{r}_i)}{\sum_i w(a,i)}$

Collaborative Filtering

- Memory-based Method (Simple)
 - User-based Method [Xue et al., SIGIR '05]
 - Item-based [Deshpande et al., TOIS '04]
- Model-based (Robust)
 - Clustering Methods [Hkors et al, CIMCA '99]
 - Bayesian Methods [Chien et al., IWAIS '99]
 - Aspect Method [Hofmann, SIFIR '03]
 - Matrix Factorization [Sarwar et al., WWW '01]

Collaborative Filtering

- Memory-based (Neighborhood-based)
 - User-based
 - Item-based
- Model-based
 - Clustering Methods
 - Bayesian Methods
 - Matrix Factorization
 - etc.

Collaborative Filtering

- Memory-based (Neighborhood-based)
 - User-based
 - Item-based
- Model-based
 - Clustering Methods
 - Bayesian Methods
 - Matrix Factorization
 - etc...

	i_1	i2	i3	i4	is	i ₆	i,	i ₈		i_1	i_2	i3	i4	is	i ₆	i,	
<i>u</i> ₁	5	2		3		4			u_1	5	2	2.5	3	4.8	4	2.2	
u2	4	3			5				u_2	4	3	2.4	2.9	5	4.1	2.6	
u3	4		2				2	4	u_3	4	1.7	2	3.2	3.9	3.0	2	
u4									244	4.8	2.1	2.7	2.6	4.7	3.8	2.4	
u _s	5	1	2		4	3			u ₅	5	1	2	3.4	4	3	1.5	
u ₆	4	3		2	4		3	5	246	4	3	2.9	2	4	3.4	3	

 $U = \begin{bmatrix} 1.55 \ 1.22 \ 0.37 \ 0.81 \ 0.62 \ -0.01 \\ 0.36 \ 0.91 \ 1.21 \ 0.39 \ 1.10 \ 0.25 \\ 0.59 \ 0.20 \ 0.14 \ 0.83 \ 0.27 \ 1.51 \\ 0.39 \ 1.33 \ -0.43 \ 0.70 \ -0.90 \ 0.68 \\ 1.05 \ 0.11 \ 0.17 \ 1.18 \ 1.81 \ 0.40 \end{bmatrix} V = \begin{bmatrix} 1.00 \ -0.05 \ -0.24 \ 0.26 \ 1.28 \ 0.54 \ -0.31 \ 0.52 \\ 0.19 \ -0.86 \ -0.72 \ 0.05 \ 0.68 \ 0.02 \ -0.61 \ 0.70 \\ 0.49 \ 0.09 \ -0.05 \ -0.62 \ 0.12 \ 0.08 \ 0.02 \ 1.60 \\ -0.40 \ 0.70 \ 0.27 \ -0.27 \ 0.99 \ 0.44 \ 0.39 \ 0.74 \\ 1.49 \ -1.00 \ 0.06 \ 0.05 \ 0.23 \ 0.01 \ -0.36 \ 0.80 \end{bmatrix}$

- Matrix Factorization in Collaborative Filtering
 - To fit the product of two (low rank) matrices to the observed rating matrix
 - To find two latent user and item feature matrices
 - To use the fitted matrix to predict the unobserved ratings

- Optimization Problem
 - Given a $m \times n$ rating matrix R, to find two matrices $U \in \mathbb{R}^{l \times m}$ and $V \in \mathbb{R}^{l \times n}$,

$$R \approx U^T V,$$

where $l < \min(m, n)$, is the number of factors

- Models
 - SVD-like Algorithm
 - Regularized Matrix Factorization (RMF)
 - Probabilistic Matrix Factorization (PMF)
 - Non-negative Matrix Factorization (NMF)

SVD-like Algorithm

• Minimizing

$$\frac{1}{2}||R - U^T V||_F^2,$$

• For collaborative filtering

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_i^T V_j)^2$$

where I_{ij} is the indicator function that is equal to 1 if user u_i rated item v_j and equal to 0 otherwise.

Regularized Matrix Factorization

 Minimize the loss based on the observed ratings with regularization terms to avoid over-fitting problem

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_i^T V_j)^2 + \underbrace{\frac{\lambda_1}{2} ||U||_F^2 + \frac{\lambda_2}{2} ||V||_F^2}_{\mathsf{Regularization terms}}$$

where $\lambda_1, \lambda_2 > 0$.

• The problem can be solved by simple gradient descent algorithm.

26

Social Recommendation Using Probabilistic Matrix Factorization

[Ma et al., CIKM2008]

Challenges

• Data sparsity problem

YAHOO! MOVIES

My Movies: gabe_ma Edit Profile

Challenges

My Movie Ratings

The Pursuit of Happyness (PG-13, 1 hr. 57 min.) Buy DVD | Add to My Lists

Yahoo! Users: B+ 38992 ratings The Critics: B- 13 reviews

🖸 My Rating: A+

🖸 My Rating: A

My Blueberry Nights (PG-13, 1 hr. 30 min.) Buy DVD | Add to My Lists Yahoo! Users: B- 756 ratings The Critics: B- 7 reviews

The Lord of the Rings: The Fellowship of the Ring Buy DVD | Add to My Lists

Yahoo! Users: A- 110957 ratings The Critics: A 15 reviews

Shrek 2 (PG, 1 hr. 32 min.) Buy DVD | Add to My Lists

Yahoo! Users: B+ 150368 ratings The Critics: B 15 reviews

🕄 My Rating: B

Social Recommendation, Irwin King @ Bay Area Search Group Meetup, February 22, 2012

29

Finding Nemo (G, 1 hr. 40 min.) Buy DVD | Add to My Lists

Yahoo! Users:	B+	137394 ratings
The Critics:	A-	14 reviews

😳 My Rating: A

Challenges

Traditional recommender systems ignore the social connections between users

Recommendations from friends

Problem Definition

Social Trust Graph

	v_1	v_2	v_3	v_4	v_5	v_6
<i>u</i> ₁		5	2		3	
<i>u</i> ₂	4			3		4
<i>u</i> ₃			2			2
<i>u</i> ₄	5			3		
<i>u</i> ₅		5	5			3

User-Item Rating Matrix

User-Item Matrix Factorization

R. Salakhutdinov and A. Mnih (NIPS'08)

SoRec

SoRec

$$\begin{split} \mathcal{L}(R,C,U,V,Z) &= \\ \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T}V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T}Z_{k}))^{2} \\ &+ \frac{\lambda_{U}}{2} \|U\|_{F}^{2} + \frac{\lambda_{V}}{2} \|V\|_{F}^{2} + \frac{\lambda_{Z}}{2} \|Z\|_{F}^{2}, \end{split}$$

SoRec

$$\frac{\partial \mathcal{L}}{\partial U_i} = \sum_{j=1}^n I_{ij}^R g'(U_i^T V_j) (g(U_i^T V_j) - r_{ij}) V_j + \lambda_C \sum_{j=1}^m I_{ik}^C g'(U_i^T Z_k) (g(U_i^T Z_k) - c_{ik}^*) Z_k + \lambda_U U_i, \frac{\partial \mathcal{L}}{\partial V_j} = \sum_{i=1}^m I_{ij}^R g'(U_i^T V_j) (g(U_i^T V_j) - r_{ij}) U_i + \lambda_V V_j, \frac{\partial \mathcal{L}}{\partial Z_k} = \lambda_C \sum_{i=1}^m I_{ik}^C g'(U_i^T Z_k) (g(U_i^T Z_k) - c_{ik}^*) U_i + \lambda_Z Z_k,$$

Disadvantages of SoRec

• Lack of interpretability

 Does not reflect the realworld recommendation process

SoRec

Learning to Recommend with Social Trust Ensemble

[Ma et al., SIGIR2009]

Ist Motivation

• Users have their own characteristics, and they have different tastes on different items, such as movies, books, music, articles, food, etc.

2nd Motivation

• Users can be easily influenced by the friends they trust, and prefer their friends' recommendations.

Motivations

 Users have their own characteristics, and they have different tastes on different items, such as movies, books, music, articles, food, etc.

• Users can be easily influenced by the friends they trust, and prefer their friends' recommendations.

 One user's final decision is the balance between his/her own taste and his/her trusted friends' favors.

User-Item Matrix Factorization

[R. Salakhutdinov, et al., NIPS2008]

Recommendations by Trusted Friends

$$\widehat{R}_{ik} = \frac{\sum_{j \in \mathcal{T}(i)} R_{jk} S_{ij}}{|\mathcal{T}(i)|}$$

$$\widehat{R}_{ik} = \sum_{j \in \mathcal{T}(i)} R_{jk} S_{ij}$$

$$p(R|S, U, V, \sigma_R^2) = \prod_{i=1}^m \prod_{j=1}^n \left[\mathcal{N}\left(R_{ik} (g(\sum_{k \in \mathcal{T}(i)} S_{ik} U_k^T V_j), \sigma_S^2) \right)^{I_{ij}^R} \right]^{I_{ij}^R}$$

Recommendation with Social Trust Ensemble

Recommendation with Social Trust Ensemble

$$\mathcal{L}(R, S, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(\alpha U_{i}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j}))^{2} + \frac{\lambda_{U}}{2} \|U\|_{F}^{2} + \frac{\lambda_{V}}{2} \|V\|_{F}^{2},$$
(15)

 $+\lambda_U U_i,$

Recommend with Social Distrust

[Ma et al., RecSys2009]

Trust vs. Social

- Trust-aware
 - Trust network: unilateral relations
 - Trust relations can be treated as "similar" relations
 - Few datasets available on the Web

- Social-based
 - Social friend network: mutual relations
 - Friends are very diverse, and may have different tastes
 - Lots of Web sites have social network implementation

Distrust

- Users' distrust relations can be interpreted as the "dissimilar" relations
 - On the web, user U_i distrusts user U_d indicates that user U_i disagrees with most of the opinions issued by user U_d .
 - What to do if a user distrusts many people?
 - What to do if many people distrust a user?

Distrust

$$\max_{U} \frac{1}{2} \sum_{i=1}^{m} \sum_{d \in \mathcal{D}^{+}(i)} S_{id}^{\mathcal{D}} \| U_{i} - U_{d} \|_{F}^{2}$$

$$\min_{U,V} \mathcal{L}_{\mathcal{D}}(R, S^{\mathcal{D}}, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_{i}^{T} V_{j}))^{2} \\ + \frac{\beta}{2} \sum_{i=1}^{m} \sum_{d \in \mathcal{D}^{+}(i)} (-S_{id}^{\mathcal{D}} ||U_{i} - U_{d}||_{F}^{2}) \\ + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2}.$$

Trust

- Users' trust relations can be interpreted as the "similar" relations
 - On the web, user U_i trusts user U_t indicates that user U_i agrees with most of the opinions issued by user U_t .

Trust

$$\min_{U} \frac{1}{2} \sum_{i=1}^{m} \sum_{t \in \mathcal{T}^+(i)} S_{it}^{\mathcal{T}} \| U_i - U_t \|_F^2$$

$$\min_{U,V} \mathcal{L}_{\mathcal{T}}(R, S^{\mathcal{T}}, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_{i}^{T} V_{j}))^{2} + \frac{\alpha}{2} \sum_{i=1}^{m} \sum_{t \in \mathcal{T}^{+}(i)} (S_{it}^{\mathcal{T}} ||U_{i} - U_{t}||_{F}^{2}) + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2}.$$

Web Site Recommendation

[Ma et al., SIGIR 2011]

Traditional Search Paradigm

bing	sigir		Hi Irwin, Bing just got better with your Facebook friends. Disable - Learn More		
Web	Web News Images Morev				
RELATED SEARCHES	ALL RESULTS	1-10 of 255,000 results · Advanced	Bing Rewards		
Special Inspector	Welcome to SIGIR Home		Earn Rewards with Bing		
General for Iraq Reconstruction SIGIR Reports SIGIR Poster	An Iraqi fisherman pushes his boat off-shore t Report. www.sigir.mil	to depart on his daily fishing trip. View the	Join Bing Rewards for free and earn 250 credits.		
SIGIR List		on Information Retrieval Home Page			
SIGIR 2011		SIGIR addresses issues ranging from theory to			
SIGIR 10 SIGIR 2010	user demands in the application of computers www.sigir.org	to the acquisition, organization			
Registration					
SIGIR 2009 Proceedings	home [ACM SIGIR 2010] ACM-SIGIR 2010 was held at UniMail, Genev 2010. Thanks to all the participants!!! The sto				
SEARCH HISTORY	www.sigir2010.org				
Search more to see your history	Welcome to The 34th Annual ACM S Important Dates. 17 Jan 2011 : Abstracts for research paper submissions due; 28 Jan 2011	full research papers due; 24 Jan 2011 : Full			
See all	sigir2011.org				
Clear all · Turn off	About SIGIR				
MADDOWDVDATE	About SIGIR The Office of the Special Inspe	ctor General for Irag Reconstruction			
NARROW BY DATE	(SIGIR) is the successor to the Coalition Prov				
All results Past 24 hours	www.sigir.mil/about/index.html				
Past week	SIGIR 2009 Archive SIGIR'09				
Past month	The SIGIR 2009 conference ran July 19-23, 2 Sheraton Boston Hotel and Northeastern Univ sigir2009.org				

Social Recommendation, Irwin King @ Bay Area Search Group Meetup, February 22, 2012

52

"Search" to "Discovery"

NEW delivers innovative extended service plans, also known as extended warranties, and customizable ifecycle solutions for the entire consumer ownership experience

w.newcorp.com	
reers	Consumer
ntact Us	Manufacturer
out Us	Wireless
vice Plan FAQs	Customer Care
ow more results from	www.newcorp.com

07.15.2011, Les Hinton, Chief Executive Officer of Dow Jones & Company and Publisher ... View All News

NEW Corp :: Careers

Be Part of Something NEW. Founded in 1983, NEW has built a world-class organization dedicated to providing innovative and comprehensive customer care solutions and delivering wcorp.com/index.php/careers

Challenges in Web Site Recommendation

• Infeasible to ask Web users to explicitly rate Web site

 Not all the traditional methods can be directly applied to the Web site recommendation task

• Can only take advantages of implicit user behavior data

Motivations

• A Web user's preference can be represented by how frequently a user visits each site

 Higher visiting frequency on a site means heavy information needs while lower frequency indicates less interests

 User-query issuing frequency data can be used to refine a user's preference

Using Clicks as Ratings

ID	Query	URL
358	facebook	http://www.facebook.com
358	rww	http://www.readwriteweb.com
3968	iphone4	http://www.apple.com
3968	ipad	http://www.apple.com
	•••	•••

			V	Veb si	tes						Qu	eries		
		v_1	v_2	V_3	v_4	v_5	v_6			Z_1	Z_2	Z_3	Z_4	Z_5
S	u_1		68	1		15			<i>u</i> ₁	12		5	6	
users	u_2	42			13		24	users	<i>u</i> ₂		23		5	1
Web 1	<i>u</i> ₃		72	12		11	2	Web u	<i>u</i> ₃		14		35	18
\mathbb{N}	u_4	15			33			M	u_4	25		11	4	
	u_5		85	45			63		<i>u</i> ₅		12	5		24

Probabilistic Factor Model

- 1. Generate $u_{ik} \sim \text{Gamma}(\alpha_k, \beta_k), \forall k$.
- 2. Generate $v_{jk} \sim \text{Gamma}(\alpha_k, \beta_k), \forall k$.
- 3. Generate y_{ij} occurrences of item or event j from user i with outcome $y_{ij} = \sum_{k=1}^{d} u_{ik} v_{jk}$.
- 4. Generate $f_{ij} \sim \text{Poisson}(y_{ij})$.

$$p(U|\boldsymbol{\alpha},\boldsymbol{\beta}) = \prod_{i=1}^{m} \prod_{k=1}^{d} \frac{u_{ik}^{\alpha_k - 1} \exp(-u_{ik}/\beta_k)}{\beta_k^{\alpha_k} \Gamma(\alpha_k)}$$

$$p(V|\boldsymbol{\alpha},\boldsymbol{\beta}) = \prod_{j=1}^{n} \prod_{k=1}^{d} \frac{v_{jk}^{\alpha_k - 1} \exp(-v_{jk}/\beta_k)}{\beta_k^{\alpha_k} \Gamma(\alpha_k)}$$

$$p(F|Y) = \prod_{i=1}^{m} \prod_{j=1}^{n} \frac{y_{ij}^{f_{ij}} \exp(-y_{ij})}{f_{ij}!}$$

$$p(U, V | F, \boldsymbol{\alpha}, \boldsymbol{\beta}) \propto p(F | Y) p(U | \boldsymbol{\alpha}, \boldsymbol{\beta}) p(V | \boldsymbol{\alpha}, \boldsymbol{\beta})$$
$$\mathcal{L}(U, V; F) = \sum_{i=1}^{m} \sum_{k=1}^{d} ((\alpha_{k} - 1) \ln(u_{ik}/\beta_{k}) - u_{ik}/\beta_{k})$$
$$+ \sum_{j=1}^{n} \sum_{k=1}^{d} ((\alpha_{k} - 1) \ln(v_{jk}/\beta_{k}) - v_{jk}/\beta_{k})$$
$$+ \sum_{i=1}^{m} \sum_{j=1}^{n} (f_{ij} \ln y_{ij} - y_{ij}) + \text{const.}$$

Probabilistic Factor Model

$$\mathcal{L}(U,V;F) = \sum_{i=1}^{m} \sum_{k=1}^{d} ((\alpha_{k}-1)\ln(u_{ik}/\beta_{k}) - u_{ik}/\beta_{k}) + \sum_{j=1}^{n} \sum_{k=1}^{d} ((\alpha_{k}-1)\ln(v_{jk}/\beta_{k}) - v_{jk}/\beta_{k}) + \sum_{i=1}^{m} \sum_{j=1}^{n} (f_{ij}\ln y_{ij} - y_{ij}) + \text{const.}$$

$$u_{ik} \leftarrow u_{ik} \frac{\sum_{j=1}^{n} (f_{ij} v_{jk} / y_{ij}) + (\alpha_k - 1) / u_{ik}}{\sum_{j=1}^{n} v_{jk} + 1 / \beta_k}$$
$$v_{jk} \leftarrow v_{jk} \frac{\sum_{i=1}^{m} (f_{ij} u_{ik} / y_{ij}) + (\alpha_k - 1) / v_{jk}}{\sum_{i=1}^{m} u_{ik} + 1 / \beta_k}$$

Collective Probabilistic Factor Model

Dataset

- Anonymous logs of Web sites visited by users who opted-in to provide data through browser toolbar
- URLs of all the Web sites are truncated to the site level
- After pruning one month data, we have 165,403 users, 265,367 URLs and 442,598 queries
- User-site frequency matrix has 2,612,016 entries, while in user-query frequency matrix has 833,581 entries

Table 2: Statistics of User-Site and User-Query Frequency Matrices

Statistics	User-Site Frequency	User-Query Frequency				
Min. Num.	4	10				
Max. Num.	9,969	4,693				
Avg. Num.	20.33	23.05				

Performance Comparison

20	Table	3: Periorina	ance Comp	barison (Dimensio	manty -	= 10)	8	
Training Data	Metrics	UserMean	SiteMean	SVD	PMF	NMF	GaP	PFM	CPFM
	NMAE	2.246	1.094	0.488	0.476	0.465	0.440	0.432	0.427
90%	Improve	80.98%	60.96%	12.50%	10.29%	8.17%	2.95%	0.452	0.427
90%	NRMSE	3.522	2.171	0.581	0.570	0.554	0.532	0.529	0.520
	Improve	85.24%	76.05%	10.50%	8.77%	6.14%	2.26%		
80%	NMAE	2.252	1.096	0.490	0.478	0.468	0.441	0 494	0.428
	Improve	80.99%	60.95%	12.65%	10.46%	8.55%	2.95%	0.434	0.440
	NRMSE	3.714	2.159	0.584	0.571	0.560	0.533	0.530	0.520
	Improve	86.00%	75.91%	10.96%	8.93%	7.14%	2.44%	0.000	0.020

Table 3: Performance Comparison (Dimensionality = 10)

Table 4: Performance Comparison (Dimensionality = 20)

Training Data	Metrics	UserMean	SiteMean	SVD	PMF	NMF	GaP	PFM	CPFM
	NMAE	2.246	1.094	0.469	0.460	0.449	0.426	0.413	0.409
90%	Improve	81.79%	62.61%	12.79%	11.09%	8.91%	3.99%	0.415	0.409
9070	NRMSE	3.522	2.171	0.568	0.556	0.542	0.521	0.503	0.496
	Improve	85.92%	77.15%	12.68%	10.79%	8.49%	4.80%	0.000	
80%	NMAE	2.252	1.096	0.470	0.462	0.451	0.427	0.415	0.410
	Improve	81.79%	62.59%	12.77%	11.26%	9.09%	3.98%	0.415	
	NRMSE	3.714	2.159	0.570	0.558	0.545	0.522	0.504	0.498
	Improve	86.59%	76.93%	12.63%	10.75%	8.62%	4.60%	0.504	0.498

Impact of Parameters

Figure 7: Impact of Parameter β_k in PFM

Impact of Parameters

Figure 8: Impact of Parameter θ in CPFM

Concluding Remarks

- Social recommendation extends traditional models and techniques by using social graphs, ensembles, distrust relationships, clicks, etc.
- Fusing of social behavior information, e.g., social relationships, personal preferences, media consumption patters, temporal dynamics, location information, etc. provides better models for social recommendations

Acknowledgments

- Ritesh Agrawal
- David Grangier
- Jean-Francois Paiement
- Remi Zajac

- Shouyuan Chen (Ph.D.)
- Baichuan Li (Ph.D.)
- Zhenjiang Lin (Ph.D.)
- Guang Ling (Ph.D.)
- Hao Ma (Microsoft)
- Haiqin Yang (Postdoc)
- Connie Yuen (Ph.D.)
- Xin Xin (Postdoc)
- Chao Zhou (Ph.D.)

On-Going Research

Machine Learning

- Smooth Optimization for Effective Multiple Kernel Learning (AAAI'10)
- Simple and Efficient Multiple Kernel Learning By Group Lasso (ICML'10)
- Online Learning for Group Lasso (ICML'10)
- Heavy-Tailed Symmetric Stochastic Neighbor Embedding (NIPS'09)
- Adaptive Regularization for Transductive Support Vector Machine (NIPS'09)
- Direct Zero-norm Optimization for Feature Selection (ICDM'08)
- Semi-supervised Learning from General Unlabeled Data (ICDM'08)
- Learning with Consistency between Inductive Functions and Kernels (NIPS'08)
- An Extended Level Method for Efficient Multiple Kernel Learning (NIPS'08)
- Semi-supervised Text Categorization by Active Search (CIKM'08)
- Transductive Support Vector Machine (NIPS'07)
- Global and local learning (ICML'04, JMLR'04)

On-Going Research

Web Intelligence/Information Retrieval

- Learning to Suggest Questions in Online Forums (AAAI'II)
- Diversifying Query Suggestion Results (AAAI'10)
- A Generalized Co-HITS Algorithm and Its Application to Bipartite Graphs (KDD'09)
- Entropy-biased Models for Query Representation on the Click Graph (SIGIR'09)
- Effective Latent Space Graph-based Re-ranking Model with Global Consistency (VSDM'09)
- Formal Models for Expert Finding on DBLP Bibliography Data (ICDM'08)
- Learning Latent Semantic Relations from Query Logs for Query Suggestion (CIKM'08)
- RATE: a Review of Reviewers in a Manuscript Review Process (WI'08)
- MatchSim: link-based web page similarity measurements (WI'07)
- Diffusion rank: Ranking web pages based on heat diffusion equations (SIGIR'07)
- Web text classification (WWW'07)

On-Going Research

Recommender Systems/Collaborative Filtering

- Probabilistic Factor Models for Web Site Recommendation (SIGIR'II)
- Recommender Systems with Social Regularization (WSDM'II)
- UserRec: A User Recommendation Framework in Social Tagging Systems (AAAI'10)
- Learning to Recommend with Social Trust Ensemble (SIRIR'09)
- Semi-Nonnegative Matrix Factorization with Global Statistical Consistency in Collaborative Filtering (CIKM'09)
- Recommender system: accurate recommendation based on sparse matrix (SIGIR'07)
- SoRec: Social Recommendation Using Probabilistic Matrix Factorization (CIKM'08)

Human Computation

- A Survey of Human Computation Systems (SCA'09)
- Mathematical Modeling of Social Games (SIAG'09)
- An Analytical Study of Puzzle Selection Strategies for the ESP Game (WI'08)
- An Analytical Approach to Optimizing The Utility of ESP Games (WI'08)

Social Recommendation, Irwin King @ Bay Area Search Group Meetup, February 22, 2012

King • Baeza-Yates (Eds.)

Irwin King Ricardo Baeza-Yates (Eds.)

King · Baeza-Yates (Eds.) Weaving Services and People on the World Wide Web

Ever since its inception, the Web has changed the landscape of human experiences on how we interact with one another and data through service infrastructures via various computing devices. This interweaving environment is now becoming ever more embedded into devices and systems that integrate seamlessly on how we live, both in our working or leisure time.

For this volume, King and Baeza-Yates selected some pioneering and cutting-edge research work that is pointing to the future of the Web. Based on the Workshop Track of the 17th International World Wide Web Conference (WWW2008) in Beijing, they selected the top contributions and asked the authors to resubmit their work with a minimum of one third of additional material from their original workshop manuscripts to be considered for this volume. After a second-round of reviews and selection, 16 contributions were finally accepted.

The work within this volume represents the tip of an iceberg of the many exciting advancements on the WWW. It covers topics like semantic web services, location-based and mobile applications, personalized and context-dependent user interfaces, social networks, and folksonomies. The presentations aim at researchers in academia and industry by showcasing latest research findings. Overall they deliver an excellent picture of the current state-of-the-art, and will also serve as the basis for ongoing research discussions and point to new directions.

> springer.com

Weaving Services and People on the World Wide Web

Weaving Services and People on the World Wide Web

Description Springer

G VeriGuide

- Similarity text detection system
- Developed at CUHK
- Promote and uphold academic honesty, integrity, and quality
- Support English, Traditional and Simplified Chinese
- Handle .doc, .txt, .pdf, .html, etc. file formats
- Generate detailed originality report including readability

Q & A

