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Supervised Self-taught Learning:
Actively Transferring Knowledge from Unlabeled Data

Kaizhu Huang, Zenglin Xu, Irwin King, Michael R. Lyu, and Colin Campbell

Abstract—We consider the task of Self-taught Learning and unlabeled images. In contrast, STL might improve the
(STL) from unlabeled data. In contrast to semi-supervised classification performance by utilizing a huge corpus of
learning, which requires unlabeled data to have the same set of unlabeled images of different insects. These samples look

class labels as labeled data, STL can transfer knowledge from inalv irrel t but b ilv obtained [181. Th
different types of unlabeled data. STL uses a three-step strategy: S€€MiNgly irrelevant but can be easily obtained [18]. The

(1) learning high-level representations from unlabeled data only, Motivation for STL is that this huge corpus of randomly
(2) re-constructing the labeled data via such representations and chosen images may contain basic visual patterns, such as
(3) building a classifier over the re-constructed labeled data. edges and colors which might be similar to those in images
However, the high-level representations which are exclusively of interest. Another example would be that handwritten
determined by the unlabeled data, may be inappropriate or even . . ) . .
misleading for the latter classifier training process. In this paper, d|g|t§ from other languages may.h-elp In th_e recognition of
we propose a novel Supervised Self-taught Learning (SSTL) English characters, since these digits contain strokes that are
framework that successfully integrates the three isolated steps similar to those in the English characters, although they have
of STL into a single optimization problem. Benefiting from the  different labels. Studies by Raina [18] have demonstrated
interaction between the classifier optimization and the process that STL could be promising for the types of tasks mentioned

of choosing high-level representations, the proposed model is b d indeed i lassificati .
able to select those discriminative representations which are above and can indeed Improve classimcaton accuracy In

more appropriate for classification. One important feature of ~SOMe cases. _ o _
our novel framework is that the final optimization can be The learning procedure in STL can be divided into three

iteratively solved with convergence guaranteed. We evaluate separate stages. In the first stage, the h|gh level representa-
our novel framework on various data sets. The experimental tions (or basig, such as edges in the images or strokes in
results show that the proposed SSTL can outperform STL and . ’ .
traditional supervised learning methods in certain instances. handw”_tten characters, are 'ea"‘e‘?' fer _ava'lable unlabeled
data which are not from the same distribution class as labeled
. INTRODUCTION objects. In the second stage, STL represents the labeled data

ELF-TAUGHT LEARNING (STL) utilizes information @S @ linear combination of these high level features or basis
rom unlabeled data and it has been a subject of a@btained from the first stage. Coefficients from the basis are

tive interest recently [18], [12]. The use of unlabeled datieN treated as input features for the next stage. In the third
has been actively considered within the context of semstage, we exploit traditional sgperwsed learning algorithms,
supervised learning (SSL) [3], [24], [26]. However, SSL hasUch as Support Vector Machines (SVM) [23], [21], to learn
the usual requirement that the unlabeled data shares the sghfiCision function based on these coefficients. _
distribution as the labeled data. In particular, the unlabeled ON€ Problem with the framework described above is that
data should contain the same implicit set of labels as those B first stage is pursued in an ad hoc manner. Specifically,
the labeled data. Unfortunately, unlabeled data which sharB¢ l€amed high-level features in this step is determined by

the same label distribution as the limited labeled data md{)€ uniabeled data only and this data could be very different
be difficult to obtain. Instead, a huge amount of seeminglgfom the labeled data. The learned representation might be

irrelevant unlabeled data could be available and might g&Suitable or even misleading for classifying the labeled data
relevant to the learning task of interest. Self-taught learnin§ the following two stages. To illustrate this shortcoming, we
has been proposed to deal with this learning scenario. consider another example involving the classification of the
As an example we consider the automated classificatid}f© digits “1” and *7”. Suppose that we have a huge number
of images of rare insects in the natural world. In this tasiof O'E‘he”r unlabeled uppercase English characters “I", "M”,
the number of labeled training samples may be limited arf?d “N" Obviously, the vertical strokes dominates the other
it may be difficult obtaining unlabeled images of the samétrokes and no explicit horizontal stokes occur in these three

insects. Both supervised learning and SSL potentially fafinaracters. Hence, the feature of the horizontal stroke may
to solve this problem due to the limited amount of labeledOt €ven appear in the final high-level features learned from
the unlabeled data. However, to separate “1” and “7”, the
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(a) Patterns learned by STL (b) Patterns learned by our proposed framework

Fig. 1. High-level visual features extracted by STL and SSTL when classifying digits “1” and “7” with capital letters “I”, “M”, “N” as unlabeled samples.
(a) and (b) presents the patterns learned by STL and SSTL respectively. In (a), STL fail to extract the discriminative features, i.e., horizontal stroke patterns.
In (b), SSTL manages to learn many horizontal stroke patterns.

from the unlabeled data undsupervisionoffered by the x' € R™ (i = 1,2,...,1) describes an input feature vector,
labeled training data. We attempt to learn from unlabeleand ' € {1,2,...,q} is the category label fox®. In
data with the target input-output mapping in mind ratheaddition, assume that. (m > [) unlabeled data samples
than to achieve this in an ad hoc manner. Specificalfx*t!, x*2, ... x!*™} are also available. The basic task of
the optimization is not performed in separate stages &TL and SSTL can be described as seeking a hypothesis
in the original formulation of self-taught learning. InsteadR™ — {1,2,...q} that can predict the labegle {1,2,...q}
the three stages of basis learning, coefficient optimizatiofgr the future input data sampte € R™ by appropriately
and the classifier construction are integrated into a singéxploiting both the labeled data and unlabeled data not drawn
optimization task. Thus the representations, the coefficienfspm the same distribution.
and the classifier are optimized simultaneously. By inter- Remarks. The above problem is very different from the
acting classifier optimization with choosing the high-leveBSL. SSL requires that the unlabeled data should be sampled
representations, the proposed model is able to select thdsem the same distribution of the labeled data. However,
discriminant features or representations, which are mobkere we relax this requirement and the unlabeled samples
appropriate for classification. Figure 1(b) demonstrates thd not satisfy this constraint. Thus these unlabeled samples
high-level basis obtained by our SSTL framework in thenight share labels different from those of the labeled data.
“1” and “7” classification problem. As observed, the mosfThe problem is also very different from Transfer Learning
discriminative features, the horizontal strokes, are indeddL)[22], [4], [19] in that the latter framework requires the
extracted. auxiliary data to be already labeled.

To our knowledge,.this. is the first_study that performs 1. SELF-TAUGHT LEARNING BY SPARSE CODING
the Self-taught Learning in a supervised way. The under- ,
lying knowledge embedded in the unlabeled data can beSTI__ solves the above task in three separate stages. We
transferred to the classification task actively and efficientif!€Scribe these three stages below:
In addition, one important feature of our framework isa. Stage I: Learning Representations

that the final optimization can be solved iteratively with a In the first stage, high-level representations are learned

convergence guarantee. Moreover, we show that the propo§ﬁ§|ﬂ the unlabeled data. For instance, edges could be learned
d]scrlmlngtlvg fr.amework can even be .formulated |nto_ From images or strokes could be learned from alternative
single optimization problem for the multi-class tasks. Wlﬂ’h ndwritten characters even if our purpose is to classify
thes_e tW.O advarjtages, the propo_sed_framework can be eagﬁfglish handwritten digits. These high-level representations
applied in pracpce on many applications. __can be learned by using sparse coding (SC). SC is a powerful
In the following, we first present the task_and nOtat'orfechnique that has received much interest recently. It can
used throughout the paper. We then briefly review Self-taugfgt, ., o, over-complete basis from data. We refer interested

Learning algorithm. We then present our novel Supervise[%aders to [20], [15], [12], [16]. The formulation is as
Self-taught Learning framework. In Section V, we provide 3ollows:

series of experiments to verify the proposed framework. In

Section VI, we di i ised b d il 2.
ection VI, we discuss some issues raised by our study. min Z Ixt — agz)bj||g +ﬁHa(Z)Hv
II. PROBLEM FORMALISM ' i:l+12 {:1
st [bli<ti=1,....p.

We consider a labeled training data sdd = _ o
{(x4yY), (x2,92),...,(x',y")}, consisting of labeled sam- b = {bi,bs,...,b,} is called a set obasis with each
ples drawn i.id. from a particular distributio§. Here basisb; as ann-dimensional vectorag.z) is the activation
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coefficient associated with the bagdis for the samplex’.  next section, we propose the Supervised Self-taught Learning
Hencea” (i =1 +1,1+2,...,14+ m) is a set of activa- framework that successfully integrates the above three stages
tion coefficients for the unlabeled sampté with respect into one optimization problem. In the new framework, the
to all the basisb. We denotea as a matrix defined as high-level representation optimization is supervised by the
(at+D) al+2)  al+m))y, classifier learning. The derived representations would be
The above optimization problem tries to represent ththose discriminative patterns that will greatly benefit the
unlabeled data in terms &f. In more details, the first term in classification performance.
the_ optimization function describes the reconstruct_ion €ITOfy,  SUPERVISEDSELF-TAUGHT LEARNING FRAMEWORK
while the second term with the;-norm forces the activation . . .
vector to be sparse. It is noted that the above optimization In this sec_tlon, we present our novel Superwseq Self-
resembles Principal Component Analysis (PCA) [6] if thé2udht Learning framework. For the purpose of clarity, we
second term is omitted. However, SC enjoys several advaW—St describe the framework in the binary s_ettlng. we t_h_en
tages over PCA. First, PCA can only generate a Iimiteeresent an extension the framework to multi-class classifica-

number of basis components (fewer thgnwhile SC could tion.

generate a large number of basis components whose numBerTwo-class Model

might be far larger than. Second, PCA only results in linear  The pinary SSTL model is formulated as the following

feature extraction, while SC can deliver non-linear represegptimization problem:

tations as imposed by the;-norm. With such advantages, Lt v .

SC outperforms PCA in many cases and is actively adopted. i Oy 112 () A\ } 2

to learn over-complete representations from data [20], [15]. o ; I ;aﬂ sllz + Bl + ;gl +lwlz

B. Stage II: Feature Construction from the Basis s.t. [bjl3<1,i=1,....p,
In the second stage, STL tries to represent the labeled y*(w - a®) 4 c)>1—ep,er>20k=1,...,1.
data Wl.th respect to the basgis This stage is formulated as |, ihe aboveb;,j = 1...,p representg basis extracted
follows: from the unlabeled data under the supervision of the labeled
. L . r (D) 1o @) data.ay) is the weight or the coefficient for the data point
min SOIx =D anbyll5+ Bllay’| - x’ with respect to the basis;. {w,c} defines the classifier
=1 j=1 boundary.

In this stage, the features or the activation coefficients The optimization not only minimizes the reconstruction
for the labeled data are learned over the basiswhich €rror among both the labeled data and unlabeled data given
are obtained from the first stage. Similarly, the second terly Y. 7" ||x* — - a§-”bj||%, but also minimizes the error
enforces sparsity in the coefficient vector. Zﬁzl g; caused by the classifier on the labeled dataAn
norm and anl,-norm is exploited as the regularization terms
for a andw, respectively. One could also use the-norm
In the third stage, an SVM or other classifier can béor w. The basisb and the classifie{w, ¢} are optimized
exploited to learn the decision functidn= w - a, + ¢ (az,  simultaneously. This is very different from the original self-
where w is the coefficient vector of the future sampi® taught framework using sparse coding, where the high-level
from the features constructed in Stage Il. This is describegdatures, determined exclusively by the unlabeled data, might
in the following: be misleading and detract from classification performance.
In similar fashion to the original sparse coding scheme,
the above optimization problem is not convex. However,

C. Stage lll: Learning a Classifier from Features

l
min Y g +9|wl3, it is convex ina (while holding {b, w,c,c} fixed) and
e i=1 also convex in{b,w,c,e} (while holding a fixed). In the
st yk(w'a(Lk) +o)>1—¢p, following, we show how to solve the optimization problem

iteratively in two steps.

) L ) B. Optimization Method
Clearly, this optimization problem is the standdrgtnorm

) ) We propose the following iterative algorithm to perform
Support Vector Machine, except that the input features are trﬂ%ee optFi)miEation. Whei. w g - are fixed gi]t is easy topverify

coefficients obtained in the second stage. In real applicatioqﬁ(let the optimization problem of finding is reduced to the
Li-norm SVM [25] can also be adopted. following two sub-problems.

As observed from the above optimization, STL eXtraCtFroblem I(a):
the high-level representations from the unlabeled data only. '
However, these high-level representations may be inappropri-
ate or even misleading for the latter classifier constructiorlﬁh
The discriminative information, that proves critical for clas-

sification performance, may be discarded in this stage. In the'For binary problems, we modify the class labels{ak,+1}.

e >0k=1,....1.

p
I = >~ ai"b,l3 4 Blla®, i =141, .1+ m.
Jj=1
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Problem I(b): The multi-category SSTL model is defined as follows:

I+m P

p
min [ = 3 a) by 5+ Blalli = 1. win 3 =3 a7, 3 + a1}
J=1 i= j=
S. t. i(w-al® c)>1—¢;,6,2>0. L. i
vl atia = oA e wl M)
Problem I(a) describes the optimization over unlabeled i=10=1 o=1
data, while I(b) presents the optimization over the labeled s.t b’ <1,i=1,....p,
data points. Problem I(a) is equivalent to a regularized least IO(WTa(k) +c)>e—cf,
squares problem. I(b) is similar except that it has a linear f>0k=1,....1.

constraint. Both problems can be solved by many methods,

for example, feature-sign search algorithm [12], the interidn the abovee” represents g-dimensional slack vector for
point method [14] or a generic convex programming solvethek-th labeled data sample. Each element’ofi.e.,e% (1 <
(CVX)2. o < q) represents the hinge loss incurred by the classifier

Similarly, whena is fixed, the optimization problem of {Wo,¢,} with respect tax*. £* > 0 means each element of
finding b, w, ¢, ¢ is altered to the following two sub prob- ¢* is not less than Oe is a vector with all the elements set

lems. to one. Other variables are similarly defined to those in the
Problem li(a): binary case.
l
55%% 7|\W|\§+)\Z€ka Input: L?Egled data{(x;,y;)}'_,; unlabeled data
,C =1 {(xi, vi) i=141
s t. vF(w - a®) o O)>1—eper>0k=1,...,1. Step 1. Initializea(o).; set_A to a small positive value;
set the number of iterations= 1.
Problem 1i(b): Step 2. Computéw ), ¢y, £(1), b}
z a. Calculate{w ), cq),e1)} by solving Problem
+m p
. } ll(a).
. i (D1, 12
e Z It = Za-j bz , b. Calculateb, by solving Problem li(b).
i=1 j=1
12 - )
st [bjllz<1=12..p. Step 3. Comput({agg brm,

Problem li(a) and li(b) are typical quadratic programming a. Calculate{agii}éiﬁl by solving Problem I(a).
problems. More specifically, 1l(a) is the standakd-norm b. Calculate{a(;‘;)}ﬁzl by solving Problem I(b).
SVM optimization problem. llI(b) is a Quadratically Con-
strained Quadratic Programming problem (QCQP) [1], [13],  step 4. Ift < Tyax (e.9.,Twax = 100)
[2]. They can be_ solved either t_)y the SMO algorithm [17 and||f((a, b, w,e) — f_1)(a,b,w,e)|| > A, then
or the dual algorithm proposed in [12]. t —t+1; go to Step 2; otherwise stop.

Since the value of the optimization objectiyéa, b, w, &) Output: The classifie{w, c} < {w), ()]
will be decreased after solving each problem, solving t €Algorthm 1: Supervised Selffaught Leaming Via
above two problems alternatively will guarantee a CONVer-gnarse Coding
gence to a fixed point. As a summary, we present the
optimization algorithm in Algorithm 1.

In the following we will focus on interpreting the above
multi-class model. First, in binary classification, each la-
beled sample is used only once. However, in multi-class

In this section we provide details for a one-against-othedassification, each labeled sample will be usedimes,
strategy to extend SSTL to multi-class tasks. since there arg classifiers. Hence the hinge loss for each

Before we present the problem definition for the multilabeled sample is not a scale variable anymore. Instead, it is
class model, we define some notations in the following. Let g-dimensional vector. Second, the key point of multi-class
I, be a diagonal matrix with the elementat (0,0) and all ~ classification using Sparse Coding is to derive a common set
the other diagonal elements beind. Assume tha{w,,c,} ~ Of basis components for all the classifiers involved. This
is the decision function associated with the¢h class { < requires that the single optimization task be formulated;for
o < g, i.e., there arg classes) . We further defin@ = classifiers. Our model successfully achieves this goal. Finally,
(W1, Wa,...,w,) andc = (cg,...,cq)T. as observed from the above model, the optimization can still

be optimized in two steps. Moreover, each step is easily

2The matlab source codes of the CVX package can be downloaded froerified to b_e _Convex as well. Henc_e It can be_ solved u_smg
http:/Amww.stanford.edu/ boyd/cvx/. a method similar to that presented in the previous section.

C. Multi-class Model

1275



V. EXPERIMENTS performance than purely supervised learning, e.gaarse

In this section, we evaluate our proposed Supervised Seff- on-courseandgrain vs. wheatwhen the training size is
taught Learning algorithm on various datasets. Specificall§du@! to4. Because web documents are usually of both high-
we evaluate the SSTL framework on web text categorizatigi™ension and of high sparsity, without supervision from the
tasks. We adopt four subsets of text documents for iHabeled data, it is very likely that STL extracts non-important
evaluation from three benchmark text collections, namel/ €Ven noisy basis components from the unlabeled data.
WebKB 3 Reuter21578 4 and Ohsumed. The selected his explains why STL sometimes degrades performance.
data setscoursevs. non-course which are obtained from In comparison, our proposed SSTL successfully avoids this
the WebKB corpus, contain course web pages and noRroblem. SSTL attempts to detect the most discriminative
course web pages from several universities. Hater- patterns as the basis by supervising the self-taught learning

ial vs. virus data and thenalevs. femaledata are extracted P'OC€SS via the labeled data. As clearly seen in Table II,

from the Ohsumed database that is a set of references L IS consistently better than or equivalent to STL and

from MEDLINE, the on-line medical information database,SVM in all the four data sets. The difference between SSTL

consisting of titles and/or abstracts from medical journal@nd the other two algorithms is more distinct in duairsevs.
The grain vs. wheatdata set is from the Reute2d578 Text non-coursedata set: the accuracy of SSTL is almost double

Categorization Collection, which is a collection of documentihat O_f SVM, and is also significantly higher than STL. The
that appeared on Reuters newswirel i87. The description experimental results clearly demonstrate the advantages of
of the four selected data sets can be found in Table I OUr Proposed learning framework.

VI. DISCUSSION

TABLE |
DESCRIPTIONS FOR THE WEB TEXT DOCUMENTS DATA We now discuss some issues raised by this project in this
section. First, the Self-taught Learning framework is very
Corpus || Labeled Data | # Documents different from other current learning paradigms. The core
WebKB coursevs. hon-course| 1051 idea of STL is to boost classification performance when the
Ohsumed| bacterial vs. virus 581 labeled data is limited by appropriately transferring knowl-
malevs. female 871 edge from seemingly irrelevant unlabeled data. This is very
Reuters grain vs. wheat 865 different from the semi-supervised learning algorithms in that

SSL requires the unlabeled data to follow the same distrib-

We conducted two sets of experiments. In the first set uftion as the labeled data. It is also different from Transfer
. P : (I)_eaning algorithms in that TL only transfers knowledge from
experiments, we randomly seledtlabeled documents from

._labeled data. Our proposed Supervised Self-taught Learning
. Ql%orithm is still positioned within the self-taught learning
documents as the test set. In the second set of experiménts

.~ paradigm, but it focuses on transferring the knowledge from
labeled documents are randomly selected to form the tralnlrEJ 9 9 9

set. In order to generate the unlabeled data for self-taqutlabeled data in a supervised or discriminative way. In other

learning algorithms, we first select the keywords from the ords, SSTL proposes to extract “useful” information from
. g alg ' ) yw uplabeled data which could improve classification perfor-
given training data and then mine the Internet to get a set

unlabeled web pages using the keywords as the query ter Sance. This is very different from the original Self-taught

Here Google is used as the search engine and we select earning algorithm in that STL transfers knowledge from

UNfabeled data in an unstructured fashion.
top 1000 returned web pages as the unlabeled data for eaCHSecond, it is standard to combine discriminative learning

dataset. We then represent each document by a vector of te

. . . é[Borithms with generative or unsupervised learning meth-
frequency. We sele&00 most informative features according ods [11], [8], [7], [10], [9], [5]. Our proposed SSTL is also

to their c_orrelatlon to the text categories. Note that_, dL_Je t otivated by this idea. However, these methods are still
both the inaccuracy of query keywords and the ambiguity g

) . ) supervised learning algorithms because they perform such
f[he searching engines, the returned We.b pages C()_nta!n m?]%rid learning only for the labeled data. In contrast, our
irrelevant documents. SSL cannot be directly applied in thi roposed algorithm tries to learn discriminative information

task. The parameters are selected based on cross validat Din unlabeled data. This is the major difference between
:ngglfr;';ﬁ: reasr?c:tsteit[?ntherg\é:ﬁgrz overruns using the o, algorithm and these hybrid methods. In addition, we be-
'9 9 proce iy lieve the hybrid techniques specially designed for supervised
The experimental results are I'S.ted n Table Il. As observq arning could also be applied in the SSTL framework. More
fr.o.m the presented results, .STL mdeeld Increases the rec ecifically, we notice that the discriminative sparse coding
nition accuracies of supervised I_e_arnlng in some datase gorithm proposed in [7] might be used to further improve
:g. male VS femalewhen thSeTtLra:jnmg S'Zte tls equalhtt) the classification accuracy. We leave this topic as future work.
OWEVET, In many cases, emonstrates much WorS€rpirg, we only focus on studying the Supervised Self-
3hittp:/www,cs.cmu. eduwebkb/ taught Learning framework by applying the sparse coding
“http://www.daviddlewis.com/resources/testcollections/ algorithm. Obviously, there are a lot of other algorithms
Sftp://medir.ohsu.edu/pub/ohsumed that could be applied to this new learning framework. It is
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TABLE Il

COMPARISONS ON WEB TEXT CATEGORIZATION TASKSSTL PERFORMS WORSE THANSVM DUE TO INAPPROPRIATE HIGHLEVEL

REPRESENTATIONSSSTLPRESENTS THE BEST RESULTS CONSISTENTLY BY INCORPORATING KNOWLEDGE SELECTIVELY AND DISCRIMINATIVELY

Training Size= 4

Training Size= 10

Data Set SVM | STL | SSTL || SVM | STL | SSTL
coursevs. non-course|| 39.48 | 34.39 | 78.19 || 45.18 | 87.48 | 91.21
bacterial vs. virus 61.82 | 53.42 | 62.49 || 73.14 | 72.79 | 73.14
malevs. female 52.49 | 64.70 | 65.52 || 63.41 | 53.66 | 68.25
grain vs. wheat 57.63 | 51.93 | 61.52 || 65.39 | 67.02 | 69.38

interesting to investigate how other existing algorithma ca [6]
be adapted to the SSTL framework.

Finally, although we have successfully integrated the threg]
isolated optimization problems of STL into a single optimiza-
tion task, it introduces several extra parameters in order t&!
balance the reconstruction errors in the unlabeled data and
the optimization values contributed by the classifier learning.
Currently, these parameters are tuned manually or by crodg
validation. It is preferable to devise a more efficient algorithm

to speed up the parameter selection process. We leave thig

task as an open problem.

VIl. CONCLUSION (L1

In this paper, we have presented a study on a Supéjr?]
vised Self-taught Learning framework, which can transfer
knowledge from unlabeled data actively. This framework sud13]

cessfully integrates the three-step optimization into a sing|g,

optimization problem. By integrating classifier optimization
with choosing the high-level representations, the proposed

model is able to select those discriminant features or rep-

resentations, which are more appropriate for classification.
Hence this may benefit the classification performance greatlj6]
To our knowledge, this is the first work that performs Self-
taught Learning in a supervised way. We have demonstratad)
that the novel framework reduces to solving four sub opti-

mization problems iteratively, each of them being conve !

Moreover, the final optimization can be iteratively solved
with convergence guaranteed. Extensive evaluations on web

data have shown that our proposed algorithm can impro

the classification performance against the original Self-taught

Learning algorithm and a purely supervised learning algo
rithm when the amount of labeled data is limited.
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