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Abstract
We consider the problem of selecting a subset
of m most informative features where m is the
number of required features. This feature selec-
tion problem is essentially a combinatorial op-
timization problem, and is usually solved by an
approximation. Conventional feature selection
methods address the computational challenge in
two steps: (a) ranking all the features by certain
scores that are usually computed independently
from the number of specified featuresm, and (b)
selecting the top m ranked features. One major
shortcoming of these approaches is that if a fea-
ture f is chosen when the number of specified
features is m, it will always be chosen when the
number of specified features is larger thanm. We
refer to this property as the “monotonic” property
of feature selection. In this work, we argue that
it is important to develop efficient algorithms for
non-monotonic feature selection. To this end, we
develop an algorithm for non-monotonic feature
selection that approximates the related combina-
torial optimization problem by a Multiple Ker-
nel Learning (MKL) problem. We also present a
strategy that derives a discrete solution from the
approximate solution of MKL, and show the per-
formance guarantee for the derived discrete so-
lution when compared to the global optimal so-
lution for the related combinatorial optimization
problem. An empirical study with a number of
benchmark data sets indicates the promising per-
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formance of the proposed framework compared
with several state-of-the-art approaches for fea-
ture selection.

1. Introduction
Feature selection is an important task in machine learn-
ing and has been studied extensively. It is often used to
reduce the computational cost or save storage space for
problems with high dimensional data for problems with ei-
ther high dimensionality or limited computational power.
It has also been used for data visualization. Feature se-
lection has found applications in a number of real-world
problems, such as natural language processing, computer
vision, bioinformatics, and sensor networks.

One of the important issues in feature selection is to set the
number of required features. It is important to note that
determining the number of selected features is a model se-
lection problem, and is beyond the scope of this study. In
this work, we assume that an external oracle decides the
number of selected features. It should also be noted that
the number of required features usually depends on the ob-
jective of the task, and there is no single number of features
that are optimal for all tasks.

Given the number of required features, denoted by m, the
goal of feature selection is to choose a subset ofm features,
denoted by S, that maximizes a generalized performance
criterion Q. It is cast into the following combinatorial op-
timization problem:

S∗ = argmaxQ(S) s. t. |S| = m. (1)

A number of performance criteria have been proposed for
feature selection, including mutual information (Koller &



Sahami, 1996), maximum margin (Weston et al., 2000;
Guyon et al., 2002), kernel alignment (Cristianini et al.,
2001; Neumann et al., 2005), and the Hilbert Schmidt in-
dependence criterion (Song et al., 2007), etc. Among them,
themaximum-margin-basedcriterion is probably one of the
most widely used criteria for feature selection due to its
outstanding performance.

The computational challenge in solving the optimization
problem in (1) arises from its combinatorial nature, i.e.,
a binary selection of features that maximizes the perfor-
mance criterion Q given the number of required features.
A number of feature selection algorithms have been pro-
posed to approximately solve (1). Most of them first com-
pute a weight/score w for each feature, and then select fea-
tures with the largest weights. For instance, a common ap-
proach is to first learn an SVMmodel, and selectm features
with the largest absolute weights. This idea was justified in
(Vapnik, 1998) by sensitivity analysis and was also utilized
for feature selection. A similar idea was used in SVM-
Recursive Feature Elimination (SVM-RFE) (Guyon et al.,
2002) where features with smallest weights were removed
iteratively. In (Fung & Mangasarian, 2000; Ng, 2004), L1-
norm of weights was suggested to replaceL2-norm for fea-
ture selection when learning an SVM model. Another fea-
ture selection model related to L1-norm is lasso (Tibshi-
rani, 1996), which selects features by constraining the L1-
norm of weights. By varyingL1-norm of weights, a unique
path of selected features can be obtained. A similar model
is LARS (Efron et al., 2004), which can be regarded as un-
constrained version of lasso. In addition to the optimization
onL2-norm andL1-norm, several studies (Bradley &Man-
gasarian, 1998; Weston et al., 2003; Neumann et al., 2005;
Chan et al., 2007) explored L0-norm when computing the
weights of features. In (Bradley & Mangasarian, 1998),
the authors proposed Feature Selection Concave method
(FSV) that uses an approximate L0-norm of the weights.
It was improved in (Weston et al., 2003; Neumann et al.,
2005) via an additional regularizer or a different approx-
imation of L0-norm. In addition to selecting features by
weights, in (Vapnik, 1998; Weston et al., 2000; Rakotoma-
monjy, 2003), the authors proposed to select features based
on R2‖w‖2, where R is the radius of the smallest sphere
that contains all the data points.

Although the above approximate approaches have been
successfully applied to a number of applications of feature
selection, they are limited by the monotonic property of
feature selection that is defined below:

A feature selection algorithm A is monotonic if and only
if it satisfies the following property: for any two different
numbers of selected features, i.e., k andm, we always have
Sk ⊆ Sm if k ≤ m, where Sm stands for the subset of m
features selected byA.

To see the monotonic property of most existing algorithms
for feature selection, first note that these algorithms rank
features according to their weights/scores that are com-
puted independently from the number of selected features
m. Hence, if a feature f is chosen when the number of
selected features is k, it will also be chosen if the num-
ber of selected featuresm is larger than k. In other words,
f ∈ Sk → f ∈ Sm if k < m, and therefore Sk ⊆ Sm.
As argued in (Guyon & Elisseeff, 2003), since variables
that are less informative by themselves can be informa-
tive together, a monotonic feature selection algorithm may
be suboptimal in identifying the set of most informative
features. To further motivate the need of non-monotonic
feature selection, we consider a bi-category problem with
three features X, Y, Z. Fig. 1 (a)-(c) show the projection
of data points on individual features X , Y and Z , respec-
tively. We clearly see that Z is the most informative fea-
ture to the two classes. Fig. 1 (d)-(f) show the projection
of data distribution on the plane of two joint featuresXY ,
XZ , and Y Z , respectively. We observe that XY are the
two most informative features. Note that although Z is the
single most informative feature, its combinations with any
other feature are not as informative as XY , which justifies
the need of non-monotonic feature selection.

In this paper, we propose a non-monotonic feature selec-
tion method that solves the optimization problem in (1)
approximately. In particular, we alleviate the monotonic
property by computing scores for individual features that
depend on the number of selected featuresm. We first con-
vert the combinatorial optimization problem in (1) into a
formulation that is closely related to multiple kernel learn-
ing (MKL) (Lanckriet et al., 2004; Bach et al., 2004; Son-
nenburg et al., 2006; Rakotomamonjy et al., 2007; Xu et al.,
2009; Cortes et al., 2008). The key idea is to first construct
a separate kernel matrix for each feature, and then find the
binary combination of kernels that minimizes the margin
classification error. We relax the original combinatorial
optimization problem into a convex optimization problem
that can be solved efficiently by expressing it as a Quadrat-
ically Constrained Quadratic Programming (QCQP) prob-
lem. We present a strategy that selects a subset of features
based on the solution of the relaxed problem. We further-
more show the performance guarantee, which bounds the
difference in the value of objective function between using
the features selected by the proposed strategy and using
the global optimal subset of features found by exhaustive
search. Our empirical study shows that the proposed ap-
proach performs better than the state-of-the-arts for feature
selection. Finally, we would like to clarify that although
our work involves the employment of MKL, the focus of
our work is not to develop a new algorithm for MKL, but
an efficient algorithm for non-monotonic feature selection.

The rest of this paper is organized as follows. We present
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Figure 1. A failed example for monotonic feature selection. (a)-(c) show the projection of data distribution on individual featuresX, Y ,
and Z, respectively. (d)-(f) show the projection on the plane of two joint features, respectively. The two classes are denoted by symbols
◦ and ∗, respectively.

the non-monotonic feature selection in Section 2. Section 3
presents experimental results with a number of benchmark
data sets. We conclude our work in Section 4.

2. Non-monotonic Feature Selection via
Multiple Kernel Learning

In this section, we first show that multiple kernel learning
approaches can be utilized for non-monotonic feature se-
lection. We then present an efficient algorithm to approxi-
mately solve the related discrete optimization problem. Fi-
nally, we prove the performance guarantee of the approxi-
mate solution for the discrete optimization problem.

Let N denote the number of training examples. We denote
by xi ∈ RN the vector of the ith attributes for all the train-
ing examples. LetX = (x1, . . . ,xd)" where d is the total
number of features. We denote the feature index set {i}d

i=1

as P . We denote ed ∈ Rd as a d-dimensional vector with
all elements being one. We also omit the suffix when the
dimensionality d of ed can be easily inferred from the con-
text. For a linear kernel, the kernel matrixK is written as:
K = X"X =

∑d
i=1

xix
"
i =

∑d
i=1

Ki, where a kernel
Ki = xix

"
i is defined for each feature. To select a subset

ofm < d features, we modifyK as:

K(p) =
d∑

i=1

pixix
"
i =

d∑

i=1

piKi, (2)

where pi ∈ {0, 1} is a binary variable that indicates if the

ith feature is selected, and p = (p1, . . . , pd). As revealed
in (2), to selectm features, we need to find optimal binary
weights pi to combine the kernels derived from individual
features. This observation motivates us to cast the feature
selection problem into a multiple kernel learning problem.

Following the maximum margin framework for classifica-
tion, given a kernel matrixK(p) =

∑d
i=1

piKi, the classi-
fication model is found by solving the following optimiza-
tion problem:

max
α

2α"e− (α ◦ y)" (K(p) + τI) (α ◦ y) (3)

s. t. α"y = 0, 0 ≤ α ≤ C,

where I is the identity matrix; α is the dual variable for the
margin error; both C and τ are manually set constants; ◦
stands for the element-wise product between two vectors.
Notation 0 ≤ α ≤ C is a shorthand for 0 ≤ αi ≤ C, i =
1, . . . , N . If p = e, then (3) reduces to a standard SVM.

We denote by ω(p) the value of the objective function in
(3), which represents the overall margin errors of the classi-
fication model. The subset ofm most informative features
are chosen by minimizing ω(p), i.e.,

min
p∈{0,1}d

ω(p) s. t. p"e = m. (4)

Evidently, the challenge with solving the above problem is
the constraint p ∈ {0, 1}d. We thus relax pi in (4) into
a continuous variable, and have the following continuous



optimization problem:

min
0≤p≤1

ω(p) s. t. p"e = m. (5)

Remark It is important to note that although the objec-
tive function in (3) appears to be a linear function in p,
ω(p) is NOT a linear function of p because of the maxi-
mization. As a result, (5) may have a non-discrete solution.
To see this, consider the problem

min
0≤p≤1,p!e=1

max
x∈Rd

2p"x − ‖x‖2
2. (6)

Sincemaxx 2p"x−‖x‖2
2 = ‖p‖2

2, the optimal solution to
(6) is pi = 1/d, which is definitely not discrete.

Below, we will discuss how to solve the relaxed min-max
problem in (5) efficiently, followed by the algorithm that
derives a discrete solution for (4) based on the optimal so-
lution to (5).

It can be shown that (5) is equivalent to the following prob-
lem according to (Lanckriet et al., 2004):

min
p,t,ν,δ,θ

t + 2Cδ"e (7)

s. t.
(

K(p) ◦ (yy") + τI e + ν − δ + θy
(e + ν − δ + θy)" t

)
( 0,

ν ≥ 0, δ ≥ 0, p"e = m, 0 ≤ p ≤ 1.

However, the above formulation is a semi-definite pro-
gramming (SDP) problem and is therefore expensive to
solve. The following theorem shows that (7) can be refor-
mulated into a Quadratically Constrained Quadratic Pro-
gramming (QCQP) problem, which is also justified in
(Bach et al., 2004).
Theorem 1. The dual problem of (7) is

max
α,λ,γ

2α"e − τα"α− mλ− γ"e (8)

s. t. α"y = 0, 0 ≤ α ≤ C,

(α ◦ y)"Ki(α ◦ y) ≤ λ + γi, ∀i ∈ P ,

γi ≥ 0, ∀i ∈ P .

The KKT conditions are

(K(p) ◦ yy" + τI)α = e + ν − δ + θy,

t = α"(e + ν − δ + θy),

ν ◦ α = 0, α ◦ δ = Cδ, γ ◦ (e− p) = 0,

pi(λ + γi − (α ◦ y)"Ki(α ◦ y)) = 0, ∀i ∈ P .

We can now derive properties of the primal and dual solu-
tions using the KKT conditions in Theorem 1. Before we
state the results, we first rank the features in the descending
order of

τi = α"(Ki ◦ (yy"))α . (9)

We denote by i1, . . . , id the ranked features, and by kmin

and kmax the smallest and the largest indices such that
τik

= τim
for 1 ≤ k ≤ d. We divide features into three

sets:

A = {ik|1 ≤ k < kmin}, (10)
B = {ik|kmin ≤ k ≤ kmax}, (11)
C = {ik|kmax < k ≤ d}. (12)

Corollary 2. We have the following properties for λ and
p.

λ ∈ [τ1+kmax
, τm], pi =

{
1, i ∈ A,
0, i ∈ C.

(13)

The following corollary shows the relationship between (8)
and the dual problem of SVM in (3).
Corollary 3. When m = d, i.e., when all the features are
selected, (8) is reduced to the dual problem of a linear SVM
in (3).

Proof. First, we combine these two constraints λ + γi ≥
α"(Ki ◦ (yy"))α and γi ≥ 0, and express γi as γi =
max(0, τi − λ). We then rewrite (8) as follows:

max
α,λ,γ

2α"e− τα"α + λ(d − m) −
d∑

i=1

max(λ, τi) (14)

s. t. α"y = 0, 0 ≤ α ≤ C, λ ≥ 0, γ ≥ 0.

When m = d, we have λ = 0 since the linear term
λ(m − d) = 0, and max (λ, τi) = τi since τi ≥ 0. Sub-
stituting λ = 0 and max(λ, τi) = τi in (14), we have the
formulation of a linear SVM in (3).

Remark The desired number of selected features, i.e.,m,
controls the sparseness of features. It is related to the ν-
SVM (Schölkopf et al., 2000), which bounds the ratio of
support vectors.

The following theorem shows how to derive p from the
solution of the dual problem in (7).
Theorem 4. Given the solution to the dual problem in (8),
denoted by α, γ, and λ, the solution to the primal problem
in (7) can be found by solving the following linear pro-
gramming problem:

min
p,ν,δ

α"(K(p) ◦ yy" + τI)α + 2Ce"δ (15)

s. t. (K(p) ◦ yy" + τI)α = e + ν − δ + θy,

ν ◦ α = 0, α ◦ δ = Cδ, δ ≥ 0, ν ≥ 0,

0 ≤ p ≤ 1, e"p = m, γ ◦ (e− p) = 0,

pi(λ + γi − (α ◦ y)"Ki(α ◦ y)) = 0, ∀i ∈ P .



Proof. The problem in (15) can be verified directly using
the KKT conditions in Theorem 1.

Although (15) is a linear programming problem, the solu-
tion for p may be not completely discrete due to the con-
straint

(K(p) ◦ yy" + τI)α = e + ν − δ + θy. (16)

The following theorem shows the optimal solution to (15)
is discrete if constraint (16) is dropped.
Theorem 5. Consider the following problem:

min
p,ν,δ

α"(K(p) ◦ yy" + τI)α + 2Ce"δ (17)

s. t. ν ◦ α = 0, α ◦ δ = Cδ, δ ≥ 0, ν ≥ 0,

0 ≤ p ≤ 1, e"p = m, γ ◦ (e− p) = 0,

pi(λ + γi − (α ◦ y)"Ki(α ◦ y)) = 0, ∀i ∈ P ,

where λ, γ, and α are the optimal solution to (8). An opti-
mal solution p to (17) can be obtained by selecting the first
m features with the largest τi (defined in (9)) and assigning
pi = 1 for the selected features.

Proof. First, notice that an optimal solution for δ and ν to
(17) is δ = ν = 0. Since (13) gives binary solutions for
pi if i ∈ A ∪ C, the only remaining undecided variables
for (17) are {pi|i ∈ B}. Second, notice that the objective
function in (17) remains the same no matter which subset
of s = m + 1 − kmin features are selected from B. This
because τj = α"(Kj ◦ yy")α = λ for any j ∈ B. This
implies the selection ofm features with the largest τi pro-
vides an optimal solution to (17).

The above theorem suggests a simple algorithm of deriving
a discrete solution for p based on the value of α"(Ki ◦
(yy"))α, which is summarized in Algorithm 1.

Remark We can rewrite τi as follows τi = α"(Ki ◦

yy")α = (
∑N

j=1
αjyjXi,j)2 = w2

i , where wi is the
weight computed for the ith feature. Hence, the algorithm
described in Algorithm 1 essentially selects the features
with the largest absolute weights. Compared with the sim-
ple greedy algorithm that selects features with the largest
absolute weights computed by SVM, the key difference is
that α used in our algorithm is computed by (8), not by (3).

The following theorem shows that the performance guaran-
tee of the discrete solution constructed by Algorithm 1 for
the combinatorial optimization problem in (4).
Theorem 6. The discrete solution constructed by Algo-
rithm 1, denoted byp, has the following performance guar-
antee for the combinatorial optimization problem in (4):

ω(p)

ω(p̃∗)
≤

1

1 − σmax(M−1/2BM−1/2)
,

Algorithm 1 Non-monotonic feature selection via MKL
Input:

• X ∈ R
d×N , y ∈ {−1, +1}N : training data

• m: the number of selected features
Algorithm:

• Solve α for (8)
• Compute τi = (

PN
j=1

Xi,jαjyj)
2

• Select the firstm features with the largest τi.

where

M = K(p∗) ◦ (yy") + τI, B =
∑

j∈B

p∗jKj .

The operator σmax(·) calculates the largest eigenvalue. p∗

is the optimal solution to the relaxed optimization problem
in (5), and p̃∗ is the global optimal solution to the combi-
natorial optimization problem in (4).

The proof can be found in the long version of this paper.
As indicated by Theorem 6, the bound for the suboptimal-
ity of the approximate solution depends on the number of
selected features through the set B. Thus, by incorporat-
ing the required number of selected features, the resulting
approximate solution could be more accurate than without
it. This suggests that the proposed algorithm produces a
better approximation to the underlying combinatorial opti-
mization problem (4).

3. Experiment
We denote by NMMKL the proposed algorithm for non-
monotonic feature selection. The greedy algorithm that
selects the features with the largest absolute weights |wi|
computed by SVM is used as our baseline method, and is
referred to as SVM-LW. We also compare our algorithm to
the following state-of-the-art approaches for feature selec-
tion:

• Fisher (Bishop, 1995) that calculates a
Fisher/Correlation score for each feature.

• FSV (Bradley & Mangasarian, 1998) that approxi-
mates the L0-norm ofw by a summation of exponen-
tial functions.

• R2W 2 (Weston et al., 2000) that adjusts weightw by
computing gradient descents on a bound of the leave-
one-out error.

• L0-appr (Weston et al., 2003) that approximates the
L0-norm by minimizing a logarithm function.

• L1-SVM (Fung & Mangasarian, 2000) that replaces
L2-norm ofw with L1-norm in SVM.

For all the methods, features with the largest scores are
selected. For L1-SVM, we use the implementation in
(Fung & Mangasarian, 2000); for other baseline algo-
rithms, we adopt the implementations in Spider (www.
kyb.tuebingen.mpg.de/bs/people/spider/).



Table 1. The test accuracy (%) for the toy data set. #SF stands for the number of selected features.
#SF NMMKL SVM-LW L0-appr Fisher R2W 2 FSV L1-SVM
1 93.9±1.9 86.4±3.2 85.7±2.9 93.9±1.9 90.3±4.4 86.3±2.7 86.3±3.3
2 99.7±0.5 99.7±0.5 99.7±0.5 94.7±1.8 97.5±2.8 99.4±1.4 99.7±0.5

3.1. Experiment on Toy Data

We first run our experiments over the toy dataset that is il-
lustrated in Fig. 1. We randomly select 400 examples from
the toy dataset as the training data and the remaining 100
examples are used as the test data. We repeat the experi-
ment 30 times. To avoid any side effects caused by scales
of different dimensions, we normalize each feature to be
a Gaussian distribution with zero mean and unit standard
deviation, based on the training data. The regularization
parameter C in all SVM-based feature selection methods
is chosen by a 5-fold cross validation. Parameter τ in our
formulation is also tuned by a 5-fold cross validation. The
number of required features is varied from 1 to 2. A linear
SVM using the features selected by different algorithms is
used as the classifier to compute the classification accuracy
on the test data. We report the results averaged over 30
runs in Table 1. When selecting one feature, we observe
that both the proposed NMMKL and Fisher could identify
the most informative feature, i.e., S1 = {Z}, for the toy
data. In contrast, the other five algorithms rank Z as the
least informative feature, which leads to relatively low clas-
sification accuracy. When selecting two features, NMMKL
and most of the comparison algorithms are able to identify
the best feature subset S2 = {X, Y }. In contrast, Fisher
fails to identify {X, Y } as the subset of two most infor-
mative features. This is because according the monotonic
property of Fisher, S2 selected by Fisher must be a super-
set of S1, and as a result Z ∈ S2 for Fisher. In conclusion,
NMMKL successfully identifies the best feature subsets in
both cases. This shows the importance of non-monotonic
feature selection, which requires the ranking procedure in
feature selection to be dependent on the number of selected
features.

3.2. Experiment on Real-World Data Sets

The data sets well studied from previous literatures of
feature selection (Guyon et al., 2002; Weston et al.,
2003) are employed in our experiments. We select
data sets from three different data repositories for our
evaluation: (a) four binary data sets from the UCI
repository (http://archive.ics.uci.edu/ml/),
namely Ionosphere, Sonar, Wdbc, and Wpbc; (b) three
data sets from the Semi-supervised Learning book
(www.kyb.tuebingen.mpg.de/ssl-book/),
namely Digit1, Usps, and Bci; and (c) two microarray data
sets (www.kyb.tuebingen.mpg.de/bs/people/
weston/l0/), namely Colon and Lymphoma. Table 2

lists the size for each data set.

Note that the two microarray data sets are rather challeng-
ing compared to the other data sets since they contain a
small number of data points but have very high dimension-
alities. Therefore, it is important to study the effect of fea-
ture selection when the number of features is very large
while the number of instances is modest.

For all the data sets, 80% of the examples are randomly
selected as the training data and the remainder are used as
the test data. Every experiment is repeated with 30 random
trials. The same procedure, which was applied to the toy
data set, is also applied to the nine real-world data sets to
normalize data and decide parameters C and τ . To speed
up the computation for the two microarray data sets (i.e.,
Colon and Lymphoma), Fisher is first used to select the
1000 features with the largest Fisher scores as the candi-
dates for feature selection. Features selected by different
algorithms are fed into a linear SVM for training, and the
classification accuracy of test data is used as the evaluation
metric. The number of selected features is set to be 10 and
20 for the four UCI data sets, and 10, 20, 40, and 60 for the
other five data sets. This is because Bci, Digit1, Usps, and
the two micro-array data sets contain examples with signif-
icantly higher dimensionality than the UCI data sets, and
therefore allow for larger numbers of selected features.

We present the classification results for the four UCI data
sets in Table 3 and the results of the remaining data sets
in Figure 2.1 First, we compare the proposed feature se-
lection method to SVM-LW. We observe that for almost all
the cases, the proposed approach outperforms SVM-LW.
For several data sets with different number of selected fea-
tures (e.g., Colon and Sonar with 10 and 20 features), the
improvement is significant. As revealed in Corollary 3, the
proposed algorithm is similar to SVM-LW except that the
weights α are computed differently. Thus, this result indi-
cates thatα computed by the proposed approach is more ef-
fective for feature selection than those computed by SVM.
Second, we compare the proposed method to the other
state-of-the-art approaches for feature selection. Among
all the competitors, we found that methods L0-appr and
L1-SVM overall deliver good performance across all the
data sets. We find that overall the proposed approach per-
forms slightly better than L0-appr and L1-SVM for most
of the cases. For data sets Sonar and Bci, the improvement
made by the proposed algorithm is statistically significant

1Since R2W 2 and FSV are time consuming on high dimen-
sional data sets, we do not include their results.



Table 2. Data sets used in the experiments
Data dim Num Data dim Num

Iono 34 351 Wdbc 30 569
Wpbc 33 198 Sonar 60 208
Bci 117 400 Digit1 241 1500
Usps 241 1500 Coil 241 1500
Colon 2000 62 Lym 4026 96

(student-t) when compared to L0-appr and L1-SVM. Note
that although the proposed algorithm does not always de-
liver the best performance, it consistently performs well
across all the data sets for different numbers of selected
features. In contrast, we observe that both L0-appr and L1-
SVM could have poor performance for certain data sets.
For instance, when the number of selected features is 10,
L0-appr does not perform well on Colon and Bci, and L1-
SVM fails to deliver good performance for Sonar. Finally,
we conduct the pairwise t-test to compare the performance
of the proposed algorithms to the five baselines. We found
that the proposed non-monotonic feature selection algo-
rithm is better or not significantly worse than other meth-
ods in almost all cases when p value is 0.05. We would like
to note that the variance in classification accuracy is sig-
nificantly larger for the two micro-array data sets than the
others. This may be attributed by the very high dimensions
of the two data sets.

4. Conclusion
This paper presents a new framework of non-monotonic
feature selection that considers the number of selected fea-
tures during searching for the optimal feature subset. We
develop an efficient algorithm via multiple kernel learn-
ing to approximately solve the original combinatorial op-
timization problem. We further propose a strategy to de-
rive a discrete solution for the relaxed problem with per-
formance guarantee. Our empirical study with a number of
benchmark data sets shows the promising performance of
the proposed framework.

For future work, we aim to employmore efficient optimiza-
tion techniques to solve large scale non-monotonic feature
selection problems. We also plan to study the tightness of
the performance guarantee stated in Theorem 6. Moreover,
it is desirable to extend the current non-monotonic feature
selection method to nonlinear feature selection. We leave
this as an open problem and our long term goal.
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