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ABSTRACT
Collaborative Filtering, considered by many researchers as
the most important technique for information filtering, has
been extensively studied by both academic and industrial
communities. One of the most popular approaches to col-
laborative filtering recommendation algorithms is based on
low-dimensional factor models. The assumption behind such
models is that a user’s preferences can be modeled by lin-
early combining item factor vectors using user-specific coef-
ficients. In this paper, aiming at several aspects ignored by
previous work, we propose a semi-nonnegative matrix fac-
torization method with global statistical consistency. The
major contribution of our work is twofold: (1) We endow a
new understanding on the generation or latent compositions
of the user-item rating matrix. Under the new interpreta-
tion, our work can be formulated as the semi-nonnegative
matrix factorization problem. (2) Moreover, we propose a
novel method of imposing the consistency between the statis-
tics given by the predicted values and the statistics given by
the data. We further develop an optimization algorithm to
determine the model complexity automatically. The com-
plexity of our method is linear with the number of the ob-
served ratings, hence it is scalable to very large datasets.
Finally, comparing with other state-of-the-art methods, the
experimental analysis on the EachMovie dataset illustrates
the effectiveness of our approach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering; G.1.6 [Numerical Analysis]: Optimization

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Recommender Systems attempt to suggest items (movies,

books, music, news, Web pages, images, etc.) that are likely
to interest the users. Typically, recommender systems are
based on Collaborative Filtering, which refers to the tech-
nique for the task of predicting preferences of users by col-
lecting taste information from many other users. The un-
derlying assumption of collaborative filtering is that the ac-
tive user will prefer those items which the similar users pre-
fer [16]. Due to the potential commercial values and the
great research challenges, Collaborative Filtering techniques
have drawn much attention in both information retrieval [16,
25, 35, 36] and machine learning [19, 21, 23, 24, 37] com-
munities. Collaborative filtering algorithms suggesting per-
sonalized recommendations greatly increase the likelihoods
of customers making the purchases online. Hence, the de-
veloped recommendation applications have been widely de-
ployed in several large and famous commercial Web sites,
such as Amazon1, Ebay2, Netflix3, Apple4, etc.

A number of algorithms have been proposed to improve
both the recommendation quality and the scalability prob-
lems. These collaborative filtering algorithms can be divided
into two main categories: neighborhood-based and model-
based approaches [2, 25]. Different methods are based on
different assumptions. The neighborhood-based recommen-
dation algorithms are based on the assumption that those
who agreed in the past tend to agree again in the future.
They usually fall into two classes: user-based approaches [2,
6] and item-based approaches [5, 25]. To predict a rating for
an item from a user, user-based methods find other similar
users and leverage their ratings to the item for prediction,
while item-based methods use the ratings to other similar
items from the user instead [4]. Despite their success in
the industry, neighborhood-based methods suffer from both
the data sparsity and the scalability problems. In addition
to the neighborhood-based approach, the model-based ap-
proaches use the observed user-item ratings to train a pre-
defined model. Algorithms in this category include Bayesian
model [35], aspect model [9], etc.

Recently, due to its efficiency in handling very large datasets,
low-dimensional factor models have become one of the most
popular approaches in the model-based collaborative filter-
ing algorithms. The premise behind a low-dimensional fac-

1http://www.amazon.com
2http://www.half.ebay.com
3http://www.netflix.com
4http://www.apple.com
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Table 1: User-Item Matrix

i1 i2 i3 i4 i5 i6 i7 i8

u1 5 2 3 4
u2 4 3 5
u3 4 2 2 4
u4

u5 5 1 2 4 3
u6 4 3 2 4 3 5

tor model is that there is only a small number of factors in-
fluencing the preferences, and that a user’s preference vector
is determined by how each factor applies to that user [21].
Most recently, some assumptions are developed to enhance
the factor models. For examples, in [31], a matrix factoriza-
tion method is proposed to constrain the norms of U and V
instead of their dimensionality; a probabilistic linear model
with Gaussian observation noise is proposed in [24]; and
Gaussian-Wishart priors are placed on the user and item
hyperparameters in [23]. These models achieve promising
prediction results.

Although these methods can effectively predict missing
values, several disadvantages are unveiled, which will poten-
tially decrease the prediction accuracy. First, in low-rank
factor-based approaches, both item factor vectors and user-
specific coefficients are understood as latent factors which
have no physical meanings, and hence uninterpretable. More-
over, the lack of interpretability will result in the improper
modeling of the latent factors. For example, these latent
factors in [23, 24] are set to be in the Euclidean space, while
they are nonnegative in [34]. Second, due to the sparsity
of the user-item rating matrix (the density of available rat-
ings in commercial recommender systems is often less than
1% [25]), many matrix factorization methods fail to provide
accurate recommendations. In the sparse user-item rating
matrix, the ratings for training the user features are rare,
hence the learned user features and the coefficients cannot
accurately reflect the taste of users, which will result in the
bad prediction accuracy.

In this paper, aiming at providing solutions for the issues
analyzed above, we propose a Semi-Nonnegative Matrix Fac-
torization with Global Statistical Consistency (SNGSC) ap-
proach for collaborative filtering. First, we endow a new un-
derstanding on the latent compositions of the ratings, which
is based on the following assumptions: (1) there are totally a
number of d types of items; (2) on each type of items, every
user has a confidence value indicating the taste of this user
on the type; (3) each item also has a quality value on each
type. Based on these assumptions, we formulate the collab-
orative filtering algorithm as the Semi-Nonnegative Matrix
Factorization problem, and propose an optimization formu-
lation with sensitive analysis. Second, based on the observa-
tion that the statistics of the predicted ratings are not con-
sistent with the statistics of the training data, we propose
to impose the consistency between them. This considera-
tion generates very good performance when the dataset is
spare. Furthermore, we develop an algorithm to determine
the model complexity automatically. The complexity of our
method is linear with the number of the observed ratings,
which can be applied to very large datasets. Finally, com-

Table 2: Predicted User-Item Matrix

i1 i2 i3 i4 i5 i6 i7 i8

u1 5 2 2.5 3 4.8 4 2.2 4.8

u2 4 3 2.4 2.9 5 4.1 2.6 4.7

u3 4 1.7 2 3.2 3.9 3.0 2 4
u4 4.8 2.1 2.7 2.6 4.7 3.8 2.4 4.9

u5 5 1 2 3.4 4 3 1.5 4.6

u6 4 3 2.9 2 4 3.4 3 5

paring with other state-of-the-art methods, the experimental
analysis on the EachMovie dataset shows the effectiveness
of our approach.

The rest of this paper is organized as follows. We interpret
the physical meaning to latent factors in Section 2.2, conduct
the sensitivity analysis in Section 2.3, and formulate the op-
timization problem in Section 2.4. In Section 2.5, we propose
a method that determines the dimensionality automatically.
In Section 3, we present an approach of imposing the consis-
tency between the statistics given by predicted values and
the statistics given by the observed data. The experimental
results on EachMovie dataset are shown in Section 4. The
related work is introduced in Section 5. Finally, we draw
the conclusions in Section 6.

2. FRAMEWORK

2.1 Problem Definition
Without loss of generality, in this paper, we use the movie

recommender systems as the example. In a collaborative
prediction movie recommendation system, the inputs to the
system are user ratings on the movies the users have already
seen. Prediction of user preferences on the movies they have
not yet seen are then based on patterns in the partially ob-
served rating matrix X ∈ Rn×m

+ , where n is the number of
users, and m is the number of movies. The value Xij in-
dicates the score of item j rated by user i. This approach
contrasts with feature-based approach where predictions are
made based on features of the movies (e.g. genre, year, ac-
tors, external reviews) and the users (e.g. age, gender, ex-
plicitly specified preferences, social trust networks [17, 18]).
Users “collaborate” by sharing their ratings instead of rely-
ing on external information [21].

Table 1 and Table 2 are the toy examples on the problem
we study. As illustrated in Table 1, each user (from u1 to u6)
rated some items (from i1 to i8) on a 5-point integer scale
to express the extent of favor of each item. The problem
we study in this paper is how to predict the missing values
of the user-item matrix effectively and efficiently. Usually,
as introduced in Section 1, the density of available ratings
in commercial recommender systems (X) is often less than
1% [25].

2.2 How is user-item matrixX generated?
The n × m matrix X contains the ratings of users on

items. X is generated by the users who rate the movies
according to their overall feeling about the movies that they
have seen. By anatomizing their overall feeling, we give a
detailed analysis on the rating process as follows.
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Each user has a different taste on different type of genre,
actors, or something else. But with the only given rating
matrix, the information for genre or actors is unknown, so
we assume there are d different unknown types of objects,
which are named as latent types. We further assume that
user i has confidence Uik (Uik ∈ R+) on k-th type, and Uik

is also the taste of user i in ranking objects of type k; on the
other hand, on k-th type, each item j has a “true” quality
value Vjk (Vjk ∈ R). So to user i, item j should be rated
by user i as Uik ∗ Vjk. As a result, on k-th type, if both the
quality of object j and the taste of user i are high, then user
i will rate object j with a high score.

These d latent types may have cross-effects on each other.
For example, War type movies may also belong to classic
Hollywood sub-category. Considering the cross-effects, we
assume a symmetric non-negative matrix Σd×d, in which
Σkl = Σlk denotes the cross-effect between type k and l,
and Σkk = λk. Ideally, we hope that the d latent types
are independent, and their significance can be ordered, i.e.,
nonnegative significance values λ1 ≥ λ2 ≥ . . . ≥ λd can be
assigned to the d latent types.

Consequently, on type k, user i rates item j with a score

d∑

l=1

Uik ∗ Vjl ∗ Σkl,

where the quality Vjl of item j on type l is transferred to
quality Vjl ∗ Σkl by Σkl. Note that, if Σd×d is diagonal,

then it becomes
∑d

l=1 λk ∗ Uik ∗ Vjk. Accumulating all the
different unknown types, we obtain that

d∑

k=1

d∑

l=1

Uik ∗ Vjl ∗ Σkl = (UΣV T )ij ,

where Uk is the vector consisting of Uik, Vk is the vec-
tor consisting of Vjk, and U = (U1, U2, . . . , Ud) and V =
(V1, V2, . . . , Vd). We consider factorizations of the form X ≈
UΣV T , where U ∈ Rn×d

+ , Σ ∈ Rd×d
+ , and V ∈ Rm×d.

Remark. According to the physical meaning of U and
V , U is nonnegative while V should be unrestricted. For
example, a movie may be very bad so that everyone dislikes
it, and hence the quality of this movie can be scored as
−1. The confidence is the ability of a user to rate a movie,
and so should not be negative. To explain it further, if
the confidence of a user is also set as −1, then the product
of -1 and -1 will be 1, which means that a user with low
confidence rates a bad movie with a high score, which is
not true in reality. On the contrary, the setting Ui ∈ Rn

+

avoids such unreasonable cases, leading to the advantage of
the interpretability of U .

2.3 Sensitivity Analysis
We find U , Σ, and V so that P = UΣV T approximates

X well. But it is not preferable that small changes (due
to computing errors or error propagated from observation
errors in X) in these three matrices result in a big change
in their product. Since the derivatives with respect to the
variables U , Σ, and V mean the change rate, we examine
the square sum of the corresponding derivatives. Let the
notation || · ||F denote the Frobenius norm.

By
∂(BA)ij

∂Bmn
= δim(A)nj , we have

∑

ijmn

(
∂(UΣV T )ij

∂Umk

)2

=
∑

ijmk

(
δim(ΣV T )kj

)2

=
∑

ijk

(
(ΣV T )kj

)2

= n
∑

jk

(
(ΣV T )kj

)2

= n||ΣV T ||2F . (1)

Similarly we have

∑

ijmn

(
∂(UΣV T )ij

∂Vmk

)2

= m||UΣ||2F , (2)

∑

ijmn

(
∂(UΣV T )ij

∂Σmk

)2

= d||U ||2F ||V ||2F . (3)

2.4 Optimization Problem
Considering both the approximation X ≈ UΣV T and the

sensitivity analysis, a factorization problem can be cast as
an optimization problem.

min
U,Σ,V

∑

(i,j)∈OI

(Xij − (UΣV T )ij)
2

+ λ
(
n||ΣV T ||2F + m||UΣ||2F + d||U ||2F ||V ||2F

)
,

s.t. U ≥ 0,

Σ ≥ 0. (4)

where λ is a hyperparameter that controls the balance be-
tween the approximation and the sensitivity, and OI denote
the set of observed index pairs.

2.5 Problem Simplification and Solution
Let Ui’s and Vi’s be the columns of U and V respectively.

Without loss of generality, we set ||Uk||F = 1, ||Vk||F = 1
for 1 ≤ k ≤ d. As a result, ||U ||2F = d, ||V ||2F = d. For the
purpose of simplifying the solution, we further assume that
Σd×d is diagonal, i.e., Σd×d = diag(λ1, λ2, . . . , λd). Conse-
quently,

||ΣV T ||2F =

d∑

k=1

λ2
k,

and

||UΣ||2F =

d∑

k=1

λ2
k.

In order to simplify the notation, we denote UΣ as U , then
Σ disappears, and the conditions λ1 ≥ λ2 ≥ . . . ≥ λd can be
changed to ||U1||F ≥ ||U2||F ≥ . . . ≥ ||Ud||F . Based on the
above simplification, Eq. (4) can be reformulated as follows.
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Given an n × m nonnegative matrix X, solve

min
Uk,Vk

∑

(i,j)∈OI

(
Xij −

d∑

k=1

(UkV T
k )ij

)2

+ λn
d∑

k=1

||Uk||2F + λm
d∑

k=1

||Vk||2F + λd3,

s.t. Uk ≥ 0,

||Uk||F ≥ ||Uk+1||F ,

||Vk||F = 1. (5)

In order to obtain the most informative latent features
and find the dimension d, we fit the incomplete matrix X
step by step in such a way that when Uk and Vk are learned,
Uj (j ≤ k − 1) and Vj (j ≤ k − 1) are fixed, and we only
learn Uk and Vk based on the residual R. R is defined as

R = X −
k−1∑

j=1

UjV
T

j

on OI , and R = 0 on others for convenience. The process
continues until there is no useful information retained in R.
When the process stops, the dimension can be determined.
So we only focus on the following problem:

min
Uk,Vk

∑

(i,j)∈OI

(
Rij − (UkV T

k )ij

)2

+ λn||Uk||2F + λm||Vk||2F ,

s.t. Uk ≥ 0,

||Uk−1||F ≥ ||Uk||F ,

||Vk||F = 1. (6)

Note that the elements in R may be negative. If we ignore
the variant λk, the Lagrangian of the above problem is

J =
∑

(i,j)∈OI

(
Rij − (UkV T

k )ij

)2

+ λ(m + n)||Uk||2F
+ µk(UT

k Uk − UT
k−1Uk−1)

+ νk(V T
k Vk − 1) − Y T UK , (7)

where Y ∈ Rn
+, and µk ∈ R+. Let the i-th element of Uk,

the j-th element of Vk, and the i-th element of Y be Uki,
Vkj and Yi respectively. In order to solve this problem, take
derivative on J with respect to Uki and Vj . We have

∂J

∂Uki

=
∑

j:(i,j)∈OI

2(Rij − UkiVkj)(−Vkj)

+ 2µkUki − Yi = 0, (8)

∂J

∂Vkj

=
∑

i:(i,j)∈OI

2(Rij − UkiVkj)(−Uki)

+ 2νkVkj = 0. (9)

If Uk is given, then minimizing the quadratic function in
Eq. (7), we obtain that

Vkj =

∑
i:(i,j)∈OI RijUki∑

i:(i,j)∈OI U2
ki + νk

, (10)

where νk is a parameter such that ||Vk||F = 1.

If Vk is given, considering the constraints that Uk ≥ 0 and
||Uk−1||F ≥ ||Uk||F , we obtain

Uki =

∑
j:(i,j)∈OI RijVkj + Yi/2
∑

j:(i,j)∈OI V 2
kj + µk

=
(
∑

j:(i,j)∈OI RijVkj)+∑
j:(i,j)∈OI V 2

kj + µk

, (11)

where Yi is the minimum positive number such that

∑

j:(i,j)∈OI

RijVkj + Yi/2 ≥ 0,

i.e.,

Yi = 0 if
∑

j:(i,j)∈OI

RijVkj ≥ 0,

and

Yi = −
∑

j:(i,j)∈OI

RijVkj if
∑

j:(i,j)∈OI

RijVkj < 0,

and µk is the minimum positive number such that

||Uk||F ≤ ||Uk−1||F .

We name our algorithm as Semi-Nonnegative Matrix Fac-
torization with Global Statistical Consistency (SNGSC). In
Algorithm 1, we summarize a learning algorithm by employ-
ing Eq. (10) and Eq. (11). The criterion that no useful infor-
mation can be mined in R is specified in our experiments as:
the difference between the mean residual 1

|OI|

∑
(i,j)∈OI |Rij |

in the current dimension d and that in the previous dimen-
sion is smaller than 0.0005.

From the algorithm, we can see the time complexity of
SNGSC is linear on the number of ratings, i.e., O(|OI |), be-
cause we only need to calculate the multiplications when the
ratings values are not missing. Moreover, with the proper
physical meaning in U and V , our algorithm is expected to
achieve more accurate results.

Algorithm 1: SNGSC Learning Algorithm

Input: Incomplete matrix X ≥ 0
Output: d, {Uk}d

k=1, and {Vk}d
k=1

1: Initialize d = 0, k = 1.
2: repeat

3: if k == 1 then

4: R = X
5: else

6: R = R − Uk−1V
T

k−1

7: end if

8: repeat

9: for j = 1 TO m do

10: Vkj =
∑

i:(i,j)∈OI RijUki∑
i:(i,j)∈OI U2

ki
+νk

11: end for

12: for i = 1 TO n do

13: Uki =
(
∑

j:(i,j)∈OI RijVkj)+∑
j:(i,j)∈OI V 2

kj
+µk

14: end for

15: until Converge
16: k = k + 1
17: until No useful information can be mined in R
18: d = k − 1
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Figure 1: An illustration showing the problem of SNGSC
and SVD without controlling the global statistics. The
means predicted by models are far away from the true
means.

3. CONSISTENCY WITH GLOBAL INFOR-
MATION

Until now, we only constrain the expression
∑d

k=1(UkV T
k )

in Eq. (5) by fitting its values on the user-item pairs with
the training data. However, we observe that this partial
constraint cannot make the values

∑d

k=1(UkV T
k ) follow the

global statistics such as the first moment and the second
moment. The previous low-dimensional factor models share
this problem because no action is taken on controlling the
global statistics. For example, the mean of ratings in Each-
Movie Data is 0.607357 (after scaling to the interval [0,1]),
but the mean given by SVD and SNGSC is far away from
the true mean. In Figure 1, we demonstrate this problem.

Based on the above observation, we propose to impose the
consistency on SNGSC between the predicted statistics and
those given in the data samples. Ideally we should consider
moments of all orders and the data priors, but considering
the computation cost and the model complexity, we only in-
clude the first moment X̄–the mean of ratings in this paper.
The predicted values are given by

∑d

k=1(UkV T
k ), and hence

the predicted mean by the model is

1

nm

n∑

i=1

m∑

j=1

d∑

k=1

(UkiVkj) =
d∑

k=1

(ŪkV̄ T
k ),

where Ūk and V̄k are the vector means of Uk and Vk re-
spectively. Let η be the parameter balancing the tradeoff of
fitting the data and fitting the mean of ratings. Then we
should optimize

min
Uk,Vk

∑

(i,j)∈OI

(
Rij − (UkV T

k )ij

)2

+ λn||Uk||2F + λm||Uk||2F

+ η
1

nm

n∑

i=1

m∑

j=1

(

k∑

l=1

UliVlj − X̄)2,

s.t. Uk ≥ 0,

||Uk−1||F ≥ ||Uk||F ,

||Vk||F = 1. (12)

When η = 0, no global information is included; when η =
+∞, all the predicted values

∑k

l=1 UliVlj will be equal to
X̄ such that the first moment is perfectly fitted. The best
η should be in the middle of these two extreme cases. In
our experiments, we set η =

√
nm/|OI | based on experi-

ences. An ordinary calculus can result in similar equations
as Eq. (10) and Eq. (11).

4. EXPERIMENTS
In this section, we conduct several experiments to com-

pare the recommendation quality of our approach with other
state-of-the-art collaborative filtering methods. Our experi-
ments are intended to address the following questions:

1. How does our approach compare with the published
state-of-the-art collaborative filtering algorithms?

2. How does the model parameter η (the global consis-
tency parameter) affect the accuracy of the prediction?

3. How do the non-negative constraints affect the accu-
racy of the recommendation quality?

4. What is the performance comparison on users with
different observed ratings?

4.1 Description of Dataset
We evaluate our algorithms on the EachMovie dataset5,

which is commonly used in previous work [19, 21, 37]. The
EachMovie dataset contains 74,424 users, 1,648 movies, and
2,811,718 ratings in the scale of zero to five. We map the
ratings 0,1,2,3,4 and 5 to the interval [0, 1] using the linear
function t(x) = x/5.

As to the training data, we employ three settings: 80%,
50% and 20% for training, where 80% means we randomly
select 80% ratings as training data to predict the remaining
20% ratings. Selecting 80% as training data is the standard
evaluation setting which is widely employed in the previous
work. However, in this paper, we are also interested in the
settings to include 50% and 20% as training data, since these
two settings can be used to examine how well the algorithms
are under the sparse data settings. The reported results in
all of the experiments in this paper are the average of ten
runs of the algorithms on the ten random partitions of the
dataset.

4.2 Metrics
We use the Mean Absolute Error (MAE) and Root Mean

Square Error (RMSE) metrics to measure the prediction
quality of our proposed approach in comparison with other
collaborative filtering methods. MAE is defined as:

MAE =

∑
i,j |ri,j − r̂i,j |

N
, (13)

where ri,j denotes the rating user i gave to item j, r̂i,j de-
notes the rating user i gave to item j as predicted by our ap-
proach, and N denotes the number of tested ratings. RMSE
is defined as:

RMSE =

√∑
i,j(ri,j − r̂i,j)2

N
. (14)

5http://www.research.digital.com/SRC/EachMovie/. It is
retired by Hewlett-Packard (HP).
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Table 3: Comparison with other popular algorithms. The reported values are the mean RMSE and MAE on the EachMovie
Dataset achieved by ten runs from dividing the data into 80%, 50%, and 20% for training data, respectively.

Dataset Traning Data Metrics User Mean Item Mean MMMF PMF SNGSC

EachMovie

80%

RMSE 1.426 1.386 1.173 1.151 1.122

Variance ≤ 10−4 ≤ 10−4 ≤ 0.001 ≤ 0.001 ≤ 10−5

MAE 1.141 1.102 0.928 0.901 0.860

Variance ≤ 10−4 ≤ 10−4 ≤0.001 ≤0.001 ≤ 10−5

50%

RMSE 1.438 1.387 1.342 1.335 1.176

Variance ≤ 10−4 ≤ 10−4 ≤ 0.001 ≤ 0.001 ≤ 10−5

MAE 1.149 1.103 0.978 0.963 0.891

Variance ≤ 10−4 ≤ 10−4 ≤0.001 ≤0.001 ≤ 10−5

20%

RMSE 1.484 1.388 1.466 1.451 1.266

Variance ≤ 0.001 ≤ 0.001 ≤ 0.01 ≤ 0.01 ≤ 10−4

MAE 1.180 1.103 1.143 1.085 0.973

Variance ≤ 0.001 ≤ 0.001 ≤0.01 ≤0.01 ≤ 10−4

4.3 Performance Comparisons
We compare our SNGSC approach with other four ap-

proaches.

1. User Mean: This is a baseline method which predicts
a user’s missing rating on an item by the sample mean
of this user’s ratings.

2. Item Mean: This is a baseline method which predicts
a user’s missing rating on an item by the sample mean
of this item’s ratings.

3. MMMF [21, 31]: This method constrains the norms
of U and V instead of their dimensionality. This cor-
responds to constraining the overall “strength” of the
factors, rather than their number.

4. PMF [24]: This method proposes a probabilistic frame-
work to employ UT

i Vj with Gaussian noise fitting each
rating observation.

The prediction accuracies evaluated by Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) are shown
in Table 3. In SNGSC, the parameter λ is set to be 0.000004,
and the parameter η is set to be

√
nm/|OI |, where |OI | is

the number of observed ratings. The dimensions for SNGSC
are automatically determined at each of the ten runs, and
they are between 25 and 30. In order to compare other al-
gorithms fairly, we set the dimensions of MMMF and PMF
to 30.

From Table 3, we can observe that our algorithm con-
sistently performs better than the other methods in all the
settings. When we use a sparse dataset (20% as training
data), we find that our method generates much better per-
formance than MMMF and PMF. However, MMMF and
PMF do not address the problem of sparsity, hence they
even perform worse than the Item Mean method when us-
ing 20% as training data. This demonstrates the advantage
of our algorithm in handling the sparsity problem.

In Figure 2 and Figure 3, we also plot the percentages
of performance increase of our algorithm against other four
methods in terms of RMSE and MAE on the EachMovie
dataset, respectively. From these figures, we observe an in-
teresting phenomenon: as the sparsity of the data increases,
the percentages of performance increase against MMMF and

PMF keep increasing. This observation again proves the ad-
vantage of our algorithm. On the other hand, we can also
notice that as the sparsity increases, although our method
still can generates much better recommendation qualities
than User Mean and Item Mean methods, the percentages of
performance increase against these two methods keep drop-
ping. This observation is reasonable because our random
testing data generation method does not change the distri-
bution of the ratings. Hence, the User Mean and Item Mean
algorithms should be relatively stable against the sparsity
problem.

In order to show the usefulness of each key part of SNGSC,
we also evaluate our algorithm on its various degraded cases
as follows:

1. SNGSC-1: It is the SNGSC algorithm without the
global consistency (η = 0);

2. SNGSC-2: It is the SNGSC algorithm without the
nonnegative constraint (a modified version of SVD with
global consistency);

3. SNGSC-3: It is the SNGSC algorithm with nonnega-
tive constraints on both U and V (a modified version
of NMF with global consistency).

The results on the EachMovie dataset are reported in Ta-
ble 4. From the results, we observe that our Semi-Nonnegative
setting is the best among all these variants, which empiri-
cally demonstrates the need of introducing SNMF.

However, the global consistency achieves only a little accu-
racy improvement in this experimental setting (See SNGSC-
1 and SNGSC). This phenomenon may be caused by the set-
ting that majority (80%) of data is chosen as training data.
In the extreme case that the rating data is very sparse and
each user only rates one movie, then the latent features U
and V do not have much meanings, but we can at least pre-
dict all the missing ratings as the mean of training data.
We believe that the sparser the training data, the better
the global consistency approach. To demonstrate the ef-
fectiveness of the global consistency approach, we run both
SNGSC-1 and SNGSC in a different setting: 20% of the data
are chosen for training and 80% for testing. The results are
shown in Table 5. From the results, we can see SNGSC
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Figure 2: Performance Increase on RMSE (EachMovie)

with the global consistency significantly outperforms the one
without the global consistency (SNGSC-1). In such a set-
ting, it is not surprising to see that the difference between
SNGSC and SNGSC-2 is small, because the latent feature
is not very meaningful and hence the sign setting is not so
important; therefor, the global consistency dominates the
results.

5. RELATED WORK
Recommender systems have been developed to automate

the recommendation process [10]. Examples of research pro-
totypes of recommender systems are PHOAKS [32], Syskills
and Webert [20], Fab [1] and GroupLens [13, 26]. These
systems recommend various types of Web resources, online
news, movies, among others, to potentially interested par-
ties [10]. They are becoming part of the standard e-business
technology that can enhance e-commerce sales by convert-
ing browsers to buyers, increasing cross-selling, and building
customer loyalty [27].

As stated in [10], one of the most commonly-used and suc-
cessful recommendation approaches is the collaborative fil-
tering approach [7, 22, 28]. In the field of collaborative filter-
ing, two types of methods are widely studied: neighborhood-
based approaches and model-based approaches.

The neighborhood-based approaches are well studied and
successfully applied to lots of commercial recommender sys-
tems [14, 22]. The most analyzed examples of neighborhood-
based collaborative filtering include user-based approaches [2,
6, 11] and item-based approaches [5, 14, 25]. User-based ap-
proaches predict the ratings of active users based on the
ratings of similar users found, and item-based approaches
predict the ratings of active users based on the computed
information of items similar to those chosen by the active
user. User-based and item-based approaches often use the
PCC algorithm [22] and the VSS algorithm [2] as the similar-
ity computation methods. PCC-based collaborative filter-
ing can generally achieve higher performance than the other
popular algorithm VSS, since it considers the differences of
user rating style. Another set of related work considers
how to employ the user-based and item-based approaches
together [16]. Ma et al. [16] presented a method to em-
ploy both user information and item information to firstly
fill some missing values before making predictions for active
users. As mentioned in Section 1, despite the success in the
industry, almost most of the neighborhood-based methods
suffer from the data sparsity and scalability problems.

Figure 3: Performance Increase on MAE (EachMovie)

In contrast to the neighborhood-based approaches, the
model-based approaches to collaborative filtering use the
observed user-item ratings to train a compact model that
explains the given data, so that ratings could be predicted
via the model instead of directly manipulating the origi-
nal rating database as the neighborhood-based approaches
do [15]. Algorithms in this category include the aspect mod-
els [8, 9, 29] and the latent factor model [3]. [12] presented
an algorithm for collaborative filtering based on hierarchi-
cal clustering, which tried to balance both robustness and
accuracy of predictions, especially when few data were avail-
able. [8] proposed an algorithm based on a generalization of
probabilistic latent semantic analysis to continuous-valued
response variables.

Recently, due to the efficiency in dealing with large datasets,
several low-dimensional matrix approximation methods [21,
23, 24, 30] have been proposed for collaborative filtering.
These methods focus on fitting a factor model to the data,
and use it in order to make further predictions.

Low-rank matrix approximations based on minimizing the
sum-squared errors can be easily solved using Singular Value
Decomposition (SVD), and a simple and efficient Expec-
tation Maximization (EM) algorithm for solving weighted
low-rank approximation is proposed in [30]. In [31], Sre-
bro et al. proposed a matrix factorization method to con-
strain the norms of U and V instead of their dimensional-
ity. Salakhutdinov et al. presented a probabilistic linear
model with Gaussian observation noise in [24]. In [23], the
Gaussian-Wishart priors are placed on the user and item
hyperparameters. Although low-dimensional methods are
proved to be very effective and efficient, these methods still
suffer several disadvantages that are unveiled. In the SVD
method, as well as other well-known methods such as the
weighted low-rank approximation method [30], Probabilis-
tic Principal Component Analysis (PPCA) [33], Probabilis-
tic Matrix Factorization (PMF) [24] and Constrained Prob-
abilistic Matrix Factorization [24], the latent features are
uninterpretable, and there is no range constraint bound on
the latent features vectors. The lack of interpretability re-
sults in the improper modeling of the latent factors, hence
downgrades the recommendation accuracy. In [34], a non-
negative constraint is imposed on both user-specific features
U and item-specific features V (Nonnegative Matrix Fac-
torization), but this work is also unable to interpret the
physical meanings of the latent factors. Furthermore, the
low-rank approximation methods also suffer from the data
sparsity problem. Hence, in this paper, we propose a novel
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Table 4: Comparison with variants of SNGSC in a setting with 80% for training and 20% for testing on the EachMovie
dataset. (1) SNGSC-1: SNGSC without the global consistency (η = 0); (2) SNGSC-2: SNGSC without the nonnegative
constraint (a modified version of SVD with global consistency); and (3) SNGSC-3: SNGSC with nonnegative constraints on
both U and V (a modified version of NMF with global consistency).

Algorithms SNGSC-1 SNGSC-2 SNGSC-3 SNGSC

RMSE 1.151 1.212 1.258 1.122
Variance ≤ 10−5 ≤0.001 ≤0.001 ≤ 10−5

MAE 0.883 0.932 0.971 0.860
Variance ≤ 10−5 ≤0.001 ≤0.001 ≤ 10−5

Table 5: Comparison with variants of SNGSC in a 20% for training 80% for testing setting on the EachMovie dataset.

Algorithms SNGSC-1 SNGSC-2 SNGSC-3 SNGSC

RMSE 1.423 1.356 1.365 1.266
Variance ≤ 10−4 ≤0.01 ≤0.01 ≤ 10−4

MAE 1.095 1.048 1.060 0.973
Variance ≤ 10−4 ≤0.01 ≤0.01 ≤ 10−4

matrix factorization method to solve the analyzed problems
and remedy the aforementioned deficiencies.

6. CONCLUSIONS AND FUTURE WORK
We demonstrate a Semi-Nonnegative Matrix Factorization

method with Global Statistical Consistency for collabora-
tive filtering, in which the user-specific latent feature Uik

includes the meaning of the confidence of user i on the k-th
latent type of the item, and the item-specific latent feature
Vjk includes the meaning of the quality of the item j on the
k-th latent type of the item. This work has showed that
the latent features with physical meanings can achieve not
only the model interpretability but also the prediction accu-
racy. Moreover, we propose a novel method that imposes the
consistency between the statistics of training data and the
statistics of the predicted ratings. The experimental analy-
sis shows that our method outperforms other state-of-the-art
algorithms.

For the global consistency, we only take the first step, i.e.,
we only make our models consistent with the first moment
currently. By doing so we have already achieved promising
results. In order to capitalize on these achievements, further
study is needed on the following problems:

1. We would enforce the consistency with the second mo-
ment globally in the models without increasing the complex-
ity of our models.

2. There is prior information that all values in the matrix∑d

k=1(UkV T
k ) should be between zero and one after the map-

ping. Without taking any action, prediction by
∑d

k=1 UkV T
k

will run outside of the range of valid rating values. For this,
one choice is to map the values to the interval [0, 1] by some
nonlinear functions like logistic function. But in our setting,
such a mapping does not match our intuition–the prediction
on the user-item pair (i, j) results from a linear combina-
tion of the products of i’s authority on a latent type and j’s
quality. For such a consideration, how can we put a con-
straint that 0 ≤ ∑d

k=1(UkV T
k ) ≤ 1 while we can still learn

the latent features dimension by dimension.
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