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ABSTRACT
This paper addresses the issue of social recommendation
based on collaborative filtering (CF) algorithms. Social rec-
ommendation emphasizes utilizing various attributes infor-
mation and relations in social networks to assist recom-
mender systems. Although recommendation techniques have
obtained distinct developments over the decades, traditional
CF algorithms still have these following two limitations: (1)
relational dependency within predictions, an important fac-
tor especially when the data is sparse, is not being uti-
lized effectively; and (2) straightforward methods for com-
bining features like linear integration suffer from high com-
puting complexity in learning the weights by enumerating
the whole value space, making it difficult to combine var-
ious information into an unified approach. In this paper,
we propose a novel model, Multi-scale Continuous Condi-
tional Random Fields (MCCRF), as a framework to solve
above problems for social recommendations. In MCCRF,
relational dependency within predictions is modeled by the
Markov property, thus predictions are generated simultane-
ously and can help each other. This strategy has never been
employed previously. Besides, diverse information and rela-
tions in social network can be modeled by state and edge
feature functions in MCCRF, whose weights can be opti-
mized globally. Thus both problems can be solved under
this framework. In addition, We propose to utilize Markov
chain Monte Carlo (MCMC) estimation methods to solve the
difficulties in training and inference processes of MCCRF.
Experimental results conducted on two real world data have
demonstrated that our approach outperforms traditional CF
algorithms. Additional experiments also show the improve-
ments from the two factors of relational dependency and
feature combination, respectively.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering
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1. INTRODUCTION
Recommender system is to suggest relevant items (news,

books, movies, images, etc.) attracting particular users,
which plays an important role on the Web nowadays since it
satisfies both commercial companies and users in daily lives.
Traditionally, CF algorithms are used in these systems, as-
signing each user-item pair a score indicating the user’s rat-
ing on the item, based on which a ranking list of items is
generated to the user as suggestions. Classical CF meth-
ods are divided into memory-based methods [4, 12, 14, 20,
30, 34] and model-based methods [7, 13, 32, 33]. Recently,
social relations have been considered in many applications,
and in this paper, we address the issue of social recommen-
dation. Different from traditional recommender systems, in
social recommendation, multiple information and various re-
lational dependencies in social networks should be utilized
to improve recommendation results. Traditional CF algo-
rithms, however, suffer from the following two weaknesses.

To illustrate the problem, we use an example showed in
Figure 1. In this example, there are four users, denoted by
ul and seven items, denoted by im. rlm is rating record by
ul to im. (e.g., scale from 1 to 5, higher value means better
satisfaction). The CF algorithms predict values of unrated
user-item pairs, denoted as ylm (without loss of generality,
not all ylm are shown in the figure), and suggest top ranked
items as recommendations.

Lack of relational dependency within predictions.
In traditional methods, predictions are only relationally de-
pendent on the rated records, while predictions among each
other are independent. For example, in Figure 1, suppose
u3 and u4 are similar users based on observed ratings, and
then y33 can be predicted by referring to r43, because it is
the same item and the two users have high similarity. In
the same way, suppose i3 and i5 are observed to have high
similarity, and then y45 can be predicted by referring to r43,
because they are similar items by the same user. For sim-
plicity, we suppose no high similarity exists between other
items/users pairs, and we do not consider any other rela-
tions. In this case, based on traditional CF algorithms, y35
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Figure 1: An illustration example for CF

cannot be predicted accurately. Because there are no rated
items by u3 which is similar to i5 and there is no rating on
i5 whose host is similar to u3. Thus no relevant information
can be referred to. But if we consider relational dependency
within predictions, things are different. As u3 and u4 are
similar, y35 and y45 should be close; as i3 and i5 are simi-
lar, y35 and y33 should be close. So if relational dependency
within predictions is utilized, the information of r43 can be
passed to y35 through relational dependency of y33, y45, and
y35. In this case, predictions should be generated simultane-
ously by utilizing the dependency, which let predictions help
each other, improving the accuracy. In social recommenda-
tions, the data is sparse [30], thus a number of predictions
lack of information to refer to, leading to low accuracy. Ef-
fectively utilizing relational dependency is indeed important.
Previous work, however, did not utilize such information suf-
ficiently. Wang et al.[34] proposed a heuristic method to find
r43. It has two limitations: (1) It is difficult to measure the
similarity between r43 and y35; and (2) It cannot guarantee
the nearness of y35 and y33 (or y35 and y45). Ma et al.[20]
proposed to firstly predict y33 and y45, and then to predict
y35. The problem is that mistakes can propagate from top
level to bottom level, which influences the accuracy.

Being difficult to integrate various features in so-
cial network into an unified approach. In social rec-
ommendation, various attributes information and relations
have been demonstrated to be effective features. For ex-
ample, in attribute information, Melville et al.[22] utilized
content information (genres, directors, etc.) to boost CF
algorithms in movie recommender systems; Nakamoto et
al.[23] and Sen et al.[31] employed tag information to im-
prove the accuracy. In relations information, trust relations
are utilized effectively in some recent works [1, 3, 9, 21, 24].
These attribute and relation features should be combined to
assist predictions in social recommendation. But in tradi-
tional CF algorithms, it is hard to combine these features
into an unified model. Melville et al.[22] has to convert tradi-
tional CF to a classification problem in order to add content
features, in which ratings are not predicted. Some of pre-
vious work utilized linear integration techniques to smooth
feature weights [20]. Consequently, the computing complex-
ity for enumerating values in all spaces to obtain a fitting
weight-vector is large when the number of features increases.
Thus a framework to globally optimize the weights of mul-
tiple effective features should be explored.

Continuous Conditional Random Fields (CCRF) [26] is a
desirable approach by going through literatures on solving

similar problems mentioned above. CCRF is a recently pro-
posed new model which defines a conditional distribution
on predictions of items conditioned on observations. Rela-
tional dependency within predictions is modeled in feature
functions. CCRF has outstanding advantages comparing
to other methods: (1) relational dependency within predic-
tions can be modeled by the Markov property, which is the
most general assumption in probabilistic graphical models
and has been proven effective in many applications [16]; and
(2) feature function weights are globally optimized in CCRF
model, which makes it easy to combine various of features.
Thus all the two problems aforementioned can be solved
based on this approach. Therefore, it is natural to lead us
to employ CCRF in social recommendation problems. How-
ever, single-scale of CCRF in [26] cannot be directly em-
ployed to model different users in recommendations, which
will be discussed in detail in Section 3. Therefore in this pa-
per, we extend CCRF model from single-scale to multi-scale
in theory, in which each scale corresponds to predictions of
a particular user, and apply this new model in social recom-
mendations as a framework to solve the two problems dis-
cussed above, which to the best of our knowledge is the first
attempt to employ CCRF in recommender systems. The
main contributions of this paper include:

1. We formulate the problem of social recommendations
and propose a Multi-scale CCRF approach as a frame-
work, extended from single-scale CCRF. In this ap-
proach, social relational dependency within predictions
is modeled by Markov property. In addition, we com-
bine content and trust relation features into our ap-
proach and build an unified model. Experimental re-
sults on two real world datasets, Epinions and Movie-
Lens, have demonstrated that our proposed approach
performs better than state-of-the-art CF algorithms.
Additional experiments are also conducted to show
the effectiveness of social relational dependency within
predictions and combination of various features.

2. We propose a gradient-based optimization algorithm
to train the model and a constrained simulated an-
nealing inference process. Gibbs sampling methods in
Markov chain Monte Carlo estimation are employed in
both training and inference processes.

The rest of this paper is organized as follows: In Section
2, we introduce the related work. In Section 3, we formu-
late the problem of social recommendations and present our
MCCRF framework. Algorithms are discussed in Section 4
and experimental results together with analysis are given in
Section 5. Finally, we summarize this paper in Section 6.

2. RELATED WORK
Traditionally, there are two categories of CF methods:

memory-based and model-based. The basic idea of memory-
based methods (also called neighborhood-based) is that rat-
ing predictions for a user depends on other similar users’
rated values on the same item or on the current user’s pre-
vious rated values on other similar items. So approaches
are naturally divided into user-based [4, 12, 14] and item-
based [5, 18, 30], together with combined approaches [20,
34]. The key point of these methods is the selection of sim-
ilarity calculation. Typical examples include Pearson Cor-
relation Coefficient (PCC) [27] and Vector Similarity (VS)

1248



[4]. Alternatively, model-based methods [7, 13, 32, 33] are
from a probabilistic perspective, which builds a probabilistic
model to calculate the expectation of a user’s rating on an
item. A classical way is to utilize probabilistic latent class
[13]. In this approach, latent space exists between users
and items, which can be explained as the users’ interests or
styles. Different latent classes have different distributions on
the rating of items, and different users have different distri-
butions on the latent classes. Expectations are calculated as
predictions. Some work also combined memory-based and
model-based methods into an unified model [25, 36]. Other
recent algorithms of CF include [28, 29, 37, 38], etc. The dif-
ference of our method from traditional CF methods is that
relational dependency within predictions is not utilized suf-
ficiently in most of previous work, but MCCRF models this
information using Markov property.

In parallel with the development of CF algorithms is the
exploration of effective features in recommendation. At the
beginning, only rating information is utilized [4, 5, 12, 13, 30,
33]. However, the data is usually sparse, making it difficult
to obtain high accuracy in some cases. Yet some work tried
to utilize more features to boost CF algorithms. As men-
tioned before, the features are divided into attribute features
and relational features. Attribute features are descriptions
of a single item or a single user, which can be item con-
tent (e.g., director, genre in movie recommendations ) [22],
tags [23, 31], etc. Relational features, on the other hand,
are relationships among item or users, such as user trust in-
formation [1, 9, 21, 24]. In previous work, these additional
features are combined separately, because under traditional
framework of algorithms, it suffers from computing com-
plexity to linearly combine large number of features. But
in our approach, since the weights of features are optimized
globally, we combine various features into a unified model.

Conditional Random Fields (CRF) is first proposed as a
state-of-the-art probabilistic model for segment and labeling
sequences data [10, 16]. This model can describe relational
dependency in undirected probabilistic graphs, solving the
label bias problem. Due to effectiveness in many applica-
tions, the theory is widely developed such as Multi-scale
CRF [11], Constrained CRF [15, 35], etc. A more detailed
tutorial can be found in [8]. Qin et al.[26] first extended con-
ditional random fields from discrete label spaces to contin-
uous label spaces, and applied this CCRF model in “global
ranking” tasks. Compared with traditional learning to rank
methods relying only on local features of single objects, this
method can also model relational dependency among objects
to improve ranking. In this paper, we extend this model
from single-scale label space to multi-scale label space and
apply the new model in social recommendations. We also
propose a MCMC-based algorithm to solve the difficulties
in training and inference processes.

3. SOCIAL RECOMMENDATION FRAME-
WORK BASED ON MCCRF

3.1 Social Recommendation Formulation
Let X denote observations which can be existing rat-

ing records, trust information, similarities between different
users/items, profile information of users, etc. Let vector Y
denote predictions with ylm denoting the prediction of item
im by user ul.

Figure 2: Probabilistic graph of single-scale CCRF

We call“local recommendation”or“traditional recommen-
dation”, if the problem is formulated as

yl,m = f(X).

Further more, we call “global recommendation” or “social
recommendation”, if the problem is formulated as

Y = f(X), or

yl,m = f(X, y−l,−m),

where y−l,−m denotes all other predictions except yl,m.
The major difference of these two formulations is that pre-

dictions in social recommendation are dependent on each
other conditioned on observations and thus predictions on
different items should be generated simultaneously; while
in traditional recommendation, predictions are independent.
In other words, traditional recommendation is a special case
of social recommendation when relational dependency within
predictions is removed.

3.2 Single-scale CCRF
Single-scale CCRF is proposed by Qin et al.[26], applied

in the issue of “global ranking”. In this model, a joint con-
ditional probability distribution of a probabilistic graph is
defined conditioned on observations. In this section, we ex-
plain the model in the application of recommender systems.
Please notice single-scale CCRF can only model predictions
of a single user and we discuss how to handle multiple users
in the next sub-section.

The detailed definition of single-scale CCRF is as fol-
lows. Figure 2 gives the probabilistic graph. Let nodes
X(x1, x2, ..., x5) denote observations and nodes Y (y1, y2, ..., y5)
denote predictions (ym for item im). The edge connecting
ym and yn indicates that relational dependency exits be-
tween them in the model. We define the set of nodes con-
nected to ym by actual line as the “neighbor” of ym, de-
noted as neighbor(ym). Since X denotes observations and
all values of Y are conditioned on it, we use dotted line to
approximately express the relational dependency among X
and Y . The joint conditional probability density function of
predictions Y conditioned on observations X is defined as

p(Y |X) =
1

Zsgl(X)
exp

{

∑

m

α · H(ym, X)

+
∑

m,n

β · G(ym, yn, X)

}

,
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where H(ym, X) is a local state feature functions vector de-
fined on a local value ym, and G(ym, yn, X) is a relational
edge feature functions vector defined on the relational de-
pendent values of ym and yn. α and β are function weights
vectors to be learned from the training dataset. Zsgl(X) is
a normalization factor defined as

Zsgl(X) =

∫

y

exp

{

∑

m

α · H(ym, X)

+
∑

m,n

β · G(ym, yn, X)

}

dy.

The goal for social recommendation is to find a vector of
predictions Y for this user, which can maximize the joint
conditional probabilistic distribution of p(Y |X). The feature
functions are defined in the quadratic form as:

ht1(ym, X) = −(ym − xm,t1)
2,

gt2(ym, yn, X) = −
1

2
Mm,n,t2(ym − yn)2.

In the equations, t1 is state feature function index ranging
from 1 to T1 and t2 is edge feature function index ranging
from 1 to T2. Here, xm,t1 is observed features on item im
which can be the average rating of im; Mm,n,t2 is a relational
feature measure which can be the similarity between item im
and item in. If we use these two features as an example, it is
not difficult to conclude that p(Y |X) will be high if predic-
tions Y fit the following conditions: (1) predictions on item
im is close to the average rating of item im; and (2) similar
items receive similar ratings predictions. Therefore, rela-
tional dependency within predictions for a particular user is
described in single-scale CCRF model.

3.3 Multi-scale CCRF
Single-scale CCRF cannot model multiple users, because

there is only single value for each item, though conditioned
relational dependency within predictions is modeled on dif-
ferent items. In this case, all users will be treated the same,
which is not reasonable. Besides, what we need to do is not
only distinguishing prediction strategies of different users,
but also modeling the relational dependency within them.
In social recommendation, various relationships (trust infor-
mation, similarity information, etc) among users are needed
to be modeled. Therefore, in this paper, we extend CCRF
from single-scale to multi-scale to form a novel model and
apply it as a framework in social recommendations to solve
aforementioned limitation.

Figure 3 gives the probabilistic graph of MCCRF. In this
graph, label space of Y has been extended from single-scale
to multi-scale with yl,m denoting prediction on item im by
user ul. Different scales of Y are drawn in different layers
which denote predictions of multiple users. For example,
(y11, y12, y13, y14, y15) is the rating predictions for user u1,
and (y21, y22, y23, y24, y25) is for user u2. We still use ac-
tual line to denote the relational dependency of predictions
Y in the model. In MCCRF, relational dependency exists
not only within predictions of the same user (layer), but
also within predictions among different users (layers). For
example, the prediction of y13, has dependent relationship
with {y11, y12, y14, y15, y23}. This example also shows how
neighbor(y13) (the five dependent nodes) is defined in MC-
CRF.

Figure 3: Probabilistic graph of MCCRF

In this model, the joint conditional probability density
function is defined as

p(Y |X) =
1

Zmul(X)
exp

{

∑

l

∑

m

α · H(yl,m, X)

+
∑

l

∑

m,n

β · G(yl,m, yl,n, X)

+
∑

m

∑

l,j

γ · R(yl,m, yj,m, X)







, (1)

where l and j denote different users; m and n denote dif-
ferent items. H(yl,m, X) is a local state feature functions
vector defined on local value yl,m; G(yl,m, yj,n, X) is a re-
lational edge feature functions vector defined on relational
dependent values within the same layer; R(yl,m, yj,m, X) is a
relational edge feature functions vector defined on relational
dependent values across different layers. {α, β, γ} is feature
function weights vectors to be learned from training data.
Zmul(X) is the normalization factor defined as

Zmul(X) =

∫

y

exp

{

∑

l

∑

m

α · H(yl,m, X)

+
∑

l

∑

m,n

β · G(yl,m, yl,n, X)

+
∑

m

∑

l,j

γ · R(yl,m, yj,m, X)







dy.

The task for social recommendations under this framework
is to find the predictions Y that can maximize the joint
probabilistic distributions p(Y |X). Feature functions are
still defined in the quadratic form as:

ht1(yl,m, X) = −(yl,m − xl,m,t1)
2,

gt2(yl,m, yl,n, X) = −
1

2
Mm,n,t2(yl,m − yl,n)2,

rt3(yl,m, yl,n, X) = −
1

2
Ul,j,t3(yl,m − yj,m)2.
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Here, xl,m,t1 is observed features of im or ul, which can be
the average rating of ul; Mm,n,t2 is a measure of relational
feature in the same layer which can be the similarity of im
and in; Ul,j,t3 is a measure of relational feature across differ-
ent layers which can be the trust relation of ul and uj (e.g.
the value of Ul,j,t3 is 1 of ul trust uj and is 0 of not). Under
this definition of features as an example, it is not difficult
to conclude that p(Y |X) will be high if Y fits the follow-
ing conditions: (1) predictions of a user are close to average
rating of the user; (2) predictions on similar items for the
same user are close; and (3) predictions of trusted users on
the same item are close. Therefore all kinds of relational
dependency within predictions have been modeled.

3.4 Features
The feature selection in our work is experiment-based. In

CRF, features are divided into state features and edge fea-
tures. Following are the features combined in our model.
We will also show the effectiveness of each feature in exper-
imental section.

State Features (The three kinds of state features are only
provided in MovieLens dataset):

1. Average rating of an item within users of similar oc-
cupation.

2. Average rating of an item within users of similar age
and same gender.

3. Average rating of the same genre.

Edge Features (Trust is only contained in Epinions dataset
and the other two are in both datasets):

1. Trust information among users: if one user trusts an-
other user, the latter one will be treated as the former
one’s neighbor.

2. Similarity of users (please refer to [20] for definition): if
the similarity between two users is larger than a thresh-
old, an edge is connected between them denoting they
are neighbors of each other. Referring to [20], we set
the value of this threshold 0.4 for movieLens dataset
and 0.2 for Epinions dataset.

3. Similarity of items (please refer to [20] for definition):
if the similarity between two items is larger than a
threshold, an edge is connected between them denoting
they are neighbors of each other. Referring to [20],
we set the value of this threshold 0.4 for movieLens
dataset and 0.2 for Epinions dataset.

4. ALGORITHMS
In this section, we introduce the details of learning and

inference processes of MCCRF.

4.1 Learning
Parameters learning is to obtain parameter {α, β, γ} which

can maximize the log-likelihood from training data D =
{(xk, yk)}N

k=0, where x is observations and y is predictions.
(xk, yk) is a training data sample, the setup of which will be
explained in the experimental section. In this paper, Gradi-
ent Ascent is chosen as optimization method. For simple de-
notation, we use vector λ to denote feature function weights
{α, β, γ}, and use vector F (yk, xk) to denote the value of

feature function vectors {H,G, R} given yk and xk. Then,
the log-likelihood can be written in

Lλ =
N

∑

k=0

log pλ(yk|xk)

=

N
∑

k

[λ · F (yk, xk) − log Zλ(xk)] .

As discussed in [26], to make the integration Z calculable,
we must have λ > 0. Thus it is substituted in algorithm by
another variable in order to employ Gradient Ascent opti-

mization method. Let λ = eλ′

, where eλ′

is set by eλ′

i = eλ′

i .
Thus

Lλ = L′
λ′ =

N
∑

k

[eλ′

· F (yk, xk) − log Zeλ′ (xk)].

The gradient of the objective function is

∇L′
λ′ = eλ′

·

N
∑

k=0

[

F (yk, xk) − Epλ′ (Y |xk) (F (Y, xk))
]

. (2)

To calculate the expectation term is expensive. In this pa-
per, we propose an approximate estimation method based on
Markov chain Monte Carlo. Particularly, we employ Gibbs
sampling technique as our method. The main idea is to first
sample a sequence of variables y following the distribution
of current p(y|x) (this distribution is defined in Eq. (1) and
is decided by current λ). Then, the feature function values
of the sequence data y are averaged as the expectation of
feature function value denoted as

Epλ(Y |xk)(F (Y |xk)) =
1

S
(

S
∑

1

F (ỹ, xk)), (3)

where S is the length of the sequence.
One of the key points for Gibbs sampling is to calculate

p(yl,m|y−l,−m, X) in sampling the sequence, where y−l,−m

denotes all other predictions except yl,m. In our case,

P (yl,m|y−l,−m, X) =
P (yl,m, y−l,−m|X)

∫

yl,m
P (yl,m, y−l,−m|X)dyl,m

. (4)

Under the definition of p(y|x) in Eq. (1), it is not difficult
to conclude that p(yl,m|y−l,−m, X) is a Gaussian distribu-
tion, the mean and variance of which can be calculated by
current y−l,−m, x and λ. Thus the Gibbs sampling methods
is feasible in this estimation case by using existing Gaus-
sian distribution sampling methods (in this paper, we use
DistLib1) as tools. Due to space limitation, please refer to
[2, 19] for more details about the theory of Gibbs sampling.
The detailed learning algorithm is shown in Algorithm 1.

4.2 Inference
Inference is to search predictions that can maximize the

joint probability density function conditioned on observa-
tions, which is formulated as

ŷ = arg max p(y|x).

On this problem of MCCRF, exact estimation is hard to
calculate, thus we still consider approximate methods. Gen-
erally speaking, Gibbs sampling can be directly used to esti-
mate the optimal solution, however, as discussed in [2], this
1http://statdistlib.sourceforge.net
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Algorithm 1 Learning Algorithm for MCCRF

Input: Training data D = {(xk, yk)}N
k=0,

U : number of updating iterations
S: number of sampling iterations
Algorithm:

for i = 0 to N-1 do
Load features
Initialize λ, y

end for
Gibbs sampling initialization
for i = 0 to U -1 do

for k = 0 to N-1 do
for j = 0 to S-1 do

for each user-item pair t in (xk, yk) do
Sample yt according to Eq. (1) and Eq. (4)
Update distributions of y for relevant user-item
pairs

end for
end for

end for
Compute the expectation term according to Eq. (3)
Compute ∇λ′ according to Eq. (2)
Update λ′′ = λ′ + η ∗ ∇λ′

end for

Output: Parameter λ of MCCRF model.

method is inefficient because random samples can rarely ap-
proach the optimal solution unless p(y|x) has large proba-
bility mass around the solution. Thus, in this paper, we
employ Simulated Annealing. Using this strategy, the joint
conditioned probability function of acceptable sampling data
sequence can be controlled by the temperature schema as

pi(ỹ|x) = p1/T (i)(ỹ|x), (5)

where T (i) is the temperature at time i. When tempera-
ture falls, probability mass around the optimal solution will
increase, making the sampling process approach to the so-
lution faster. More details about simulated annealing in
MCMC are shown in [2, 6, 19].

Utilizing MCMC technique as inference method has an-
other advantage: it is easy to add constraints in the infer-
ence process to improve the prediction results. In social
recommendations, users usually have rating history on some
items, and these ratings can serve as constraints in the in-
ference to assist predictions. In our proposed framework,
the constraints can be added into the model by fixing the
rated scores in the inference process when sampling. Refer-
ring to [10, 15, 17], such process will not destroy the Markov
property of the Conditional Random Fields model, and the
inference result will be the best one in candidates that can
fit the constraints. The detailed algorithm for inference of
MCCRF is shown in Algorithm 2.

5. EXPERIMENTS
Our experiments are conducted on two real world datasets

from MovieLens and Epinions. We aim at verifying the fol-
lowing issues:

1. How about the overall performance of our proposed
approach comparing with traditional and state-of-the-
art CF methods?

Algorithm 2 Inference Algorithm for MCCRF

Input: Testing Data
Ti: time control sequence
S: number of sampling iterations
λ: function weights vector
Algorithm:

Load features, λ, constraints
Fix predictions of relevant user-item pairs
Initialize predictions
Gibbs sampling initialization
for T = T0 to Tmin according to Ti do

for i = 0 to S-1 do
for each user-item pair t do

if (prediction is not fixed by constraints) then
Sample yt according to Eq. (1), Eq. (4) and
Eq. (5)
Calculate ∆F defined in Simulated Annealing
if (min(1, exp(−∆F/T )) > random[0, 1]) then

Accept yt

Update relevant distributions
end if

end if
end for

end for
end for

Output: Predictions of MCCRF.

2. How does the relational dependency in predictions af-
fect the accuracy of recommendation results?

3. How do the features we combined from previous work
affect the recommendation results?

4. How about the computing complexity of MCCRF?

To Issue 1, we compare our approach with traditional and
state-of-the-art CF algorithms in Section 5.4; to Issues 2
and 3, additional experiments are conducted to show the
effectiveness of relational dependency and combination of
various features in Section 5.5 and Section 5.6. We give
analysis of Issue 4 in Section 5.7. Experiments setup is in-
troduced in Section 5.1, Section 5.2 and Section 5.3. In the
pre-processing, clustering algorithms are employed, and the
impact of cluster size is analyzed in Section 5.8.

5.1 Datasets
In this paper, we choose two datasets, MovieLens2 and

Epinions3 in our experiments for social recommendation.
MovieLens is a famous dataset in CF tasks. In this dataset,
there are 1, 682 movies and 943 users. Ratings are given on
the scale of 1 to 5, with higher value indicating better sat-
isfaction. There are totally 100, 000 rating records in this
user-item matrix. The density is

100, 000

1, 682 ∗ 943
= 6.3%.

For a single user, there are at least 20 ratings. Some of the
statistical results are shown in Table 1. Besides rating infor-
mation, the dataset also provides other content information.
For a movie item, content information includes released date,

2http://www.cs.umn.edu/Research/GroupLens
3http://www.epinions.com/
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Table 1: Statistics of MovieLens Dataset
Statistics User Item

Min. Num. of Ratings 20 1
Max. Num. of Ratings 737 583
Avg. Num. of Ratings 106.04 59.45

Table 2: Statistics of Epinions Dataset
Statistics User Item

Min. Num. of Ratings 1 1
Max. Num. of Ratings 1022 2018
Avg. Num. of Ratings 16.55 4.76

genre, etc; and for a user, age, gender, occupation are pro-
vided. In our approach, genre, occupation, age and gender
are combined as content features.

Epinions dataset comes from a consumer review site Epin-
ion.com. In this system, users can give reviews (scale from 1
to 5) to products, being used for future customers as refer-
ence and for companies to receive feedbacks or to recommend
items. Different from traditional benchmark datasets, Epin-
ions dataset has social trust information among users besides
basic rating records. A user can build a trust/distrust list
of other users for personalized products ranking as well as
indicating users’ reputations in the whole social network.
Thus it is a good dataset for social recommendation. The
whole dataset contains 40, 163 users who rated a total num-
ber of 139, 529 different items at least once, writing 664, 824
reviews. The density is

664, 824

40, 163 ∗ 139, 529
= 0.01186%.

There are totally 487, 183 trust information records in our
dataset. The density of trust relationship is

487, 183

2 ∗ C2
40,163

= 0.0302%.

Other statistics are summarized in Table 2.
In both datasets, we randomly group users into four groups,

with three groups as training, and the rest as testing. To
observe the performances when active users have different
number of ratings as history, experiments are conducted by
selecting 5, 10 and 15 as rating history for each active user
respectively in MovieLens and 2, 5, and 10 in Epinions. We
name them Given2, Given5, Given10, and Given15.

5.2 Data Sample Building
In this section, we introduce how we build probabilistic

graphs on the two datasets. A probabilistic graph repre-
sents a data sample (xk, yk) in dataset D = (xk, yk)N

k=1. For
MovieLens, since it is small in size, all users and items can
be contained in one probabilistic graph. For Epinions, the
size is large. For this problem in memory-based CF, Xue et
al.[36] proposed a cluster-based method as a solution. By
clustering users into small groups, non-similar users are re-
moved in predicting a particular user’s evaluations. Thus
not only the scalable problem is solved, the accuracy can
also be improved. In this paper, we employ similar ideas in
our approach. Both users and items are clustered into sub-
groups, and a probabilistic graph is built on one group of

users and one group of items. Referring to [36], we employ
K-means algorithm as our clustering algorithm. K is the
number of clusters, which is manually defined. In this al-
gorithm, we first randomly select K nodes (users/items) as
centroid. All other nodes are assigned into a cluster whose
centroid is closest to current node. During iteration pro-
cesses, the centroid of each cluster is re-calculated based on
current nodes in the cluster, and then other nodes are re-
assigned to adapt the new centroid configuration. In each
iteration, the node which has the smallest average distance
to other nodes are selected as centroid. Similar to [36], we
employ PCC to measure the distance between two nodes.
For users, it is defined as

Sim(a, u) =

∑

i∈I(a)∩I(u)

(ra,i − ra)(ru,i − ru)

√

∑

i∈I(a)∩I(u)

(ra,i − ra)2
√

∑

i∈I(a)∩I(u)

(ru,i − ru)2
,

where a and u denote two users. I(a) and I(u) are the items
they have rated. ra,i is the rating of item i by user a. ra

is the average rating of user a. For items, the definition is
similar. Due to space limitation, please refer [20] for the
details of the definition. In Section 5.8, we will give analysis
on the impact of cluster size K in this task.

5.3 Metrics
We use Mean Absolute Error (MAE) and Root Mean

Squared Error (RMSE) as our evaluation metrics. MAE
is defined as

MAE =

∑

|Ru,i − R̃u,i|

N
,

where R̃u,i is the predicted ratings of item i by user u, Ru,i

is the ground truth, and N is the total number of testing
predictions. RMSE is defined as

RMSE =

√

∑

(Ru,i − R̃u,i)2

N
.

In both metrics, lower value indicates higher accuracy.

5.4 Overall Performance
To compare our approach with traditional methods, we

choose two algorithms (one memory-based and one model-
based) as baselines. In memory-based methods, user-based
PCC [4] and item-based PCC [30] are widely used. In our
baseline, following the idea in [20] which improves the ac-
curacy, we linearly combine these two methods, denoted as
EPCC. For model-based methods, generative models are re-
spective. Specifically, Aspect Model (AM) [13] is chosen
as baseline. Since our approach belongs to memory-based
methods, we choose two state-of-the-art memory-based meth-
ods, Similarity Fusion (Fusion) [34] and EMDP [20], for com-
parison. As stated before, these methods tried to solve sim-
ilar problems with our approach, but our model have more
advantages for solving the error propagation problem.

Table 3 and Table 4 shows the overall performance of
different methods on MovieLens and Epinions, respectively.
Lower MAE and RMSE values indicate better accuracy. On
both datasets, we can conclude that MCCRF outperforms
traditional and state-of-the-art algorithms. We summarize
the improvements from two factors: relational dependency
within predictions and combination of various features.
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Table 3: Performance on MovieLens dataset

Methods
MAE RMSE

Given5 Given10 Given15 Given5 Given10 Given15

EPCC 0.835 0.830 0.815 1.065 1.059 1.033
AM 0.827 0.819 0.816 1.041 1.031 1.025

Fusion 0.815 0.806 0.805 1.029 1.024 1.022
EMDP 0.811 0.804 0.801 1.036 1.019 1.020

MCCRF 0.784 0.781 0.778 0.995 0.994 0.988

Table 4: Performance on Epinions dataset

Methods
MAE RMSE

Given2 Given5 Given10 Given2 Given5 Given10

EPCC 0.887 0.867 0.858 1.136 1.105 1.092
AM 0.893 0.885 0.863 1.132 1.131 1.101

Fusion 0.885 0.860 0.853 1.132 1.092 1.101
EMDP 0.885 0.861 0.857 1.131 1.094 1.091

MCCRF 0.871 0.845 0.837 1.115 1.078 1.067
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Figure 4: Dependency effectiveness on MovieLens
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Figure 5: Dependency effectiveness on Epinions

5.5 Effectiveness of Relational Dependency
To evaluate the effectiveness of relational dependency in

predictions, we conduct experiments with only basic features
(CRF-B) of user/item similarities. This means we use the
same information comparing with previous work, and the
main difference of our approach is that we add relational de-
pendency in predictions. The two state-of-the-art memory-
based methods, Fusion method and EMDP method, are cho-
sen for comparisons. Figure 4 and Figure 5 show the exper-
imental results on the two datasets.

From these two figures we can conclude that relational de-
pendency within predictions can improve recommendation
results. This is because predictions of user-item pairs can
help each other without error propagation. As the data is
very sparse in real recommendation systems, utilizing rela-
tions in social network sufficiently can improve the accuracy.

5.6 Effectiveness of Various Features
To evaluate the effectiveness of various features, we con-

duct experiments by adding features separately to basic fea-
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Figure 7: Result samples of different iteration times

tures of user/item similarity. In MovieLens, we conduct
experiments by adding occupation features (CRF-BO), age
and gender features (CRF-BA), and genre features (CRF-
BG). We compare the results with only basic features (CRF-
B) and all features (CRF-All). In Epinions, we compare
models with (CRF-T) and without (CRF-B) trust informa-
tion. Figure 6 shows the results in the two datasets (left
two: MovieLens, right two: Epinions).

We can observe that each feature we combined (CRF-BO,
CRF-BA, CRF-BG, CRF-T) can improve the prediction ac-
curacy comparing to CRF-B. The combination of all features
(CRF-ALL, CRF-T) can outperform models with single ad-
ditional feature.

5.7 Computing Complexity Analysis
The main computation in our model lies in the sampling

process in both training and inferencing. The number of
sampling times is the key factor. It is determined by the
number of sampling iterations at each temperature and the
temperature control schema. Figure 7 shows the results
of different iterations in the initialized temperature on two
datasets (left: MovieLens; right: Epinions). We can observe
after four iterations, the change is not obvious. Figure 8
shows the results in different temperatures (left two: Movie-
Lens; right two: Epinions). According to these results, we
set iteration number be 4 and temperature schema from 1.0
to 0.2 with interval of 0.2. Suppose there are m items and n
users, the sampling times is O(m∗n). Another computation
comes from the the updating process of Gaussian distribu-
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Figure 6: Effectiveness of various features
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Figure 8: Result samples of different temperature schema
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Figure 9: Results on different cluster sizes in Epin-
ions (x-axis: userSize*itemSize)

tions of user-item pairs. This is decided by the neighbor
size of current user-item pair. The neighbor size s can be
controlled by adjusting the threshold mentioned in Section
3.4. The updating times for each sample of user-item pair
is O(s).

In our experiments, the testing hardware environment is
on two Windows workstations with four dual-core 2.5GHz
CPU and 8GB physical memory each. The approximate
total time for inference in Epinions dataset is 9 hours.

5.8 Impact of Cluster Size
As discussed before, we employ clustering techniques as

pre-processing. We conduct experiments on different set-
tings to see the impact of cluster size. Figure 9 shows the
experimental results. The accuracy increases first and then
falls down. This is because at the beginning, there are not
enough reference resources. But as the size of a cluster en-
larges, non-relevant users/items are included, which influ-
ences the accuracy. In our experiments, items are clustered
into 50 groups and users are clustered into 20 groups.

6. CONCLUSION
In this paper, we have investigated the problem of so-

cial recommendation based on CF. Different from traditional

recommender systems, various information should be consid-
ered in social recommendations. According to limitations of
traditional CF algorithms, we extend single-scale CCRF in
theory and propose a new model MCCRF as a framework
for social recommendation. We also propose MCMC-based
methods for training and inference of the model. Experi-
mental results on real world datasets, MovieLens and Epin-
ions, have demonstrated: (1) Markov property in MCCRF
is an effective technique to model the relational dependency
within predictions. In sparse data, utilizing this kind of
dependency can improve recommendation results. (2) Com-
bination of various features into the model can enhance the
ability of prediction, which is also the original intention of
social recommendations.
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