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Abstract. The quadratic discriminant function (QDF) derived from the
multivariate Gaussian distribution is effective for classification in many
pattern recognition tasks. In particular, a variant of QDF, called MQDF,
has achieved great success and is widely recognized as the state-of-the-art
method in character recognition. However, when the number of training
samples is small, covariance estimation involved in QDF will usually be
ill-posed, and it leads to the loss of the classification accuracy. To attack
this problem, in this paper, we engage the graphical lasso method to es-
timate the covariance and propose a new classification method called the
Graphical Lasso Quadratic Discriminant Function (GLQDF). By exploit-
ing a coordinate descent procedure for the lasso, GLQDF can estimate
the covariance matrix (and its inverse) more precisely. Experimental re-
sults demonstrate that the proposed method can perform better than the
competitive methods on two artificial and six real data sets (including
both benchmark digit and Chinese character data).

Keywords: Graphical Lasso, Quadratic Discriminant Function, Char-
acter Recognition.

1 Introduction

In many pattern recognition tasks, it is very common to assume that the data
follow a Gaussian distribution. The quadratic discriminant function (QDF) de-
rived from the multivariate Gaussian distribution can then be used for classifica-
tion. Despite of its simplicity, QDF or its variants have achieved great success in
many fields. The parameters involved in QDF, e.g., the mean and the covariance,
are often obtained via the principle of the maximization-likelihood Estimation
(MLE) [6]. MLE has a number of attractive features. First, it usually has good
convergence properties as the number of training samples increases. Furthermore,
it can often be simpler than alternative methods, such as Bayesian techniques.
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However, when the number of training samples is small (especially when com-
pared to dimensionality), the estimated covariance based on MLE could be often
ill-posed, making the covariance matrix singular; this further leads its inverse
matrix cannot be computed reliably.

To solve this problem, there have been a number of approaches in the lit-
erature. Modified Quadratic Discriminant Function (MQDF) [8] is proposed to
replace the minor eigenvalues of covariance matrix of each class with a con-
stant parameter. This small change proves very effective and has made MQDF
a state-of-the-art classifier in character recognition. However, the substitution
of minor eigenvalues with a constant inevitably loses some class information.
Meanwhile, the cutoff threshold of minor eigenvalues and the constant selection
are critical for the final performance. Liu et al. [11] proposed a discriminative
learning algorithm called Discriminative Learning QDF (DLQDF). It optimizes
the parameters of MQDF with the aim to improve the classification accuracy
based on the criterion of Minimum Classification Estimation (MCE). Similar to
MQDF, DLQDF has the same problem in parameter selection. Alternatively, the
Regularized Discriminant Analysis (RDA) [5] improves the performance of QDF
by covariance matrix interpolation. Hoffbeck and Landgrebe further extended
RDA by optimizing the interpolation coefficients [7]. Empirical results showed
that these two algorithms can usually improve the classification performance of
QDF. However, the improvements are also dependent on two critical parameters
β and γ. In short, all of the above-mentioned methods need empirical settings of
parameters to achieve the best results, which are however both time-consuming
and task-dependent in real applications.

Different from the above approaches, in this paper, we present a novel method,
called the Graphical Lasso Quadratic Discriminant Function (GLQDF). By en-
gaging the graphical lasso, the covariance estimation of the ordinal QDF can be
successfully conducted even when the number of training samples is very small.
Moreover, we can estimate the inverse of the covariance directly and hence avoid
singular problems involved in QDF. One appealing feature is that the whole
process is parameter-insensitive. This presents one big advantage over the other
methods.

The rest of the paper is organized as follows. In the next section, we make an
overview of QDF and MQDF. In Section 3, we introduce our novel GLQDF in
details. In Section 4, we conduct a series of experiments to verify our method.
Finally, we set out concluding remarks in Section 5.

2 Review of QDF and MQDF

2.1 Quadratic Discriminant Function

Let d be the dimension of the feature. The probability density function of d-
dimensional normal distribution is:

p(x) =
1

(2π)d/2 |Σ|1/2
exp{−1

2
(x − u)t

Σ−1(x − u)} , (1)
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where x is a d-component vector, μ is the mean vector, and Σ is the d × d
covariance matrix. The quadratic discriminant function is derived from Eq.(1)
as follows:

g(x) = (x − μ)tΣ−1(x − μ) + log |Σ| =
d∑

i=1

((x−μ)tϕi)
2

λi
+

d∑

i=1

log λi , (2)

where λi is the i-th eigenvalue of Σ sorted by descending order and ϕi is the
eigenvector that corresponds to λi. This function will lead to the optimal classi-
fier, provided that (1) the actual distribution is normal, (2) the prior probabilities
of all categories are equal and (3) the parameters μ and Σ can be reliably pro-
vided. However, since the parameters are usually unknown, the sample mean
vector μ̂ and sample covariance matrix Σ̂ are used.

ĝ(x) = (x − μ̂)tΣ̂−1(x − μ̂) + log
∣
∣
∣Σ̂

∣
∣
∣

=
d∑

i=1

((x−μ̂)tϕ̂i)
2

λ̂i
+

d∑

i=1

log λ̂i .
(3)

Here, λi is the i-th eigenvalue of σ̂ and ϕ̂i is the eigenvector. It is well-known
that small eigenvalues in Eq.(3) are usually inaccurate; this hence causes the
reduction of recognition accuracy. Moreover, the computational cost of Eq.(3) is
O(d3) for d-dimensional vectors, which may be computationally difficult when
the dimension is high.

2.2 Modified Quadratic Discriminant Function

MQDF is a modified version of the ordinary QDF. QDF suffers from the quadratic
number of parameters, which cannot be estimated reliably when the number of
samples per class is smaller than the feature dimensionality. MQDF reduces the
complexity of QDF by replacing the small eigenvalues of covariance matrix of
each class with a constant. Consequently, the small eigenvectors will disappear
in the discriminant function. This reduces both the space and the computational
complexity. More importantly, this small change proves to improve the classi-
fication performance significantly. Denote the input sample by a d-dimensional
feature vector x = (x1, x2, x3, , xd)T . For classification, each class ci is assumed to
have a Gaussian density p(x|ci) = N(ui, σi), where μi and σi are the class mean
and covariance matrix, respectively. Assuming equal a priori class probabilities,
the discriminant function is given by the log-likelihood:

− 2 log p (x|ci) = (x − μi)T Σ−1
i (x − μi) + log |Σi| + CI (4)

where CI is a class-independent term, and is usually omitted. We take the minus
log-likelihood to make the discriminant function a distance measure. The covari-
ance matrix Σi can be diagonalized as: Λi, where Λi = diag[λi1, ..., λik, ..., λid]
has the eigenvalues of λik(in descending order) as diagonal elements, ϕik is an
ortho-normal matrix comprising as columns the eigenvectors of λik. Replacing
the minor eigenvalues with a constant, i.e., replacing Λi with diag[λi1, , λik, δi, , δi]
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(k is the number of principal eigenvectors to be retained), the discriminant func-
tion of Eq. (3) becomes what we call MQDF:

g(x, ci) =
k∑

j=1

((x−μi)
tϕij)

2

λij
+

k∑

j=1

log λij

+ 1
δi

(

‖x − μi‖2 −
k∑

j=1

∣
∣(x − μi)T ϕij

∣
∣2

)

+ (d − k) log δi ,

(5)

where i, j = 1, . . . , k, are the principal eigenvectors of the covariance matrix of
class ωi. In classification, the input pattern is classified to the class of mini-
mum quadratic distance (MQDF), and multiple candidate classes are ordered in
ascending order of distances.

3 Graphical Lasso Quadratic Discriminant Function

In recent years, a number of researchers have proposed the estimation of Gaus-
sian models through the use of L1 (lasso) regularization, which increase the
sparsity of the inverse covariance. Meinshausen and Buhlmann [12] took a simple
approach to this problem. They estimated a sparse model by fitting a lasso model
to each variable while using the others as predictors. Other researchers have pro-
posed algorithms for the exact maximization of the L1−penalized log-likelihood.
For example, Yuan and Lin [13], Banerjee et al.[1] and Dahl et al. [2] adapted in-
terior point optimization methods for the solution to this problem. Both papers
revealed that the simpler approach of Meinshausen and Buhlmann [12] can be
viewed as an approximation to the exact problem. Banerjee et al. [1] exploited
the blockwise coordinate descent approach to solve the lasso problem. Fried-
man et al. [4] invented the graphical lasso and applied fast coordinate descent
algorithms to solve the lasso problem. Graphical lasso is faster than previous
methods and also provides a conceptual link between the exact problem and
the approximation suggested by Meinshausen et al. [12]. In the following, we
introduce the details on how to apply the graphical lasso on QDF.

The graphical lasso estimates the covariance matrix of Gaussian distribution
by recursively solving and updating the lasso problem. Suppose, we have N
multivariate normal observations of dimension d, with mean μ and covariance
Σ. Let Θ = Σ−1 and let S be the empirical covariance matrix, the problem of
graphical lasso is to maximize the penalized log-likelihood

log detΘ − tr(SΘ) − ρ ‖Θ‖1 (6)

Here, tr denotes the trace and ||Θ||1 is the L1 norm−the sum of the absolute
values of the elements of Σ−1. ρ is a trade-off parameter, which however proves
insensitive to the optimization. We set it to 10−4 in all the experiments of this
paper. Expression (6) is the Gaussian log-likelihood of the data, partially maxi-
mized with respect to the mean parameter μ.

Let W be the estimation of Σ. We can solve the problem by optimizing over
each row and corresponding column of W in a block coordinate descent approach.
Partitioning W and S
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W =
(

W11 w12

wT
12 w22

)

, S =
(

S11 s12

sT
12 s22

)

, (7)

the solution for w12 satisfies

w12 = argmin
y

{
yT W−1

11 y : ‖y − s12‖∞ ≤ ρ
}

(8)

This is a box-constrained quadratic program (QP), which can be solved using
an interior-point procedure. By permuting the rows and columns, the target
column is always the last. We can then solve a problem similar to Eq. (8) for
each column and update their estimate of W after each stage. This is repeated
until convergence. If this procedure is initialized with a positive definite matrix,
the iterates from this procedure remains positive definite and invertible, even if
p > N .

Using convex duality, the solution of problem (8) is equivalent to solving the
dual problem

min
β

{1
2

∥
∥
∥W

1/2
11 β − b

∥
∥
∥

2

+ ρ ‖β‖1} , (9)

where b = W
−1/2
11 s12; if β solves Eq. (9), then w12 = W11β solves Eq. (8).

Expression (9) resembles a lasso (L1regularized) least squares problem. If W11 =
S11, the solutions β̂ are easily seen to equal the lasso estimates for the pth variable
on the others. When W11 �= S11 in general, we can use fast coordinate descent
algorithm [3], which makes solution of the lasso problem very attractive.

To solve problem (9), graphical lasso uses W11 and s12, where W11 is the
current estimate of the upper block of W . The algorithm updates w and cycles
through all of the variables until convergence.

The detailed algorithm is listed as below:

Algorithm 1. Graphical lasso algorithm
1: Start with W = S + ρI . The diagonal of W remains unchanged in what follows.
2: for j = 1, 2, ...p, 1, 2, ...p, ...
3: input: W11 and s12

4: solve the lasso problem (9)
5: gives a p − 1 vector solution β̂.
6: fill in the corresponding row and column of W using w12 = W11β̂
7: continue until convergence
8: end for

4 Experimental Results

We conduct extensive experiments to verify the effectiveness of the proposed
algorithm for covariance estimation and classification. We compare our algorithm
to the state-of-the-art algorithm MQDF. All the algorithms are implemented and
run using matlab on a PC with 3.0Ghz CPU and 2G RAM.
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4.1 Results on Synthetic Data

In this section, we perform experiments on synthetic data to measure how ac-
curate the proposed graphical Lasso covariance estimate will be. We compared
the estimated covariance obtained by graphical lasso and the EM algorithm,
which is used in QDF. In more details, we first generate samples following a spe-
cific Gaussian distribution. We then use EM and Graphical Lasso to estimate
the covariance. Finally we examine the estimation error between the ground
truth covariance and estimated covariance. The estimation error is computed by
Eq. (10)

D = sqrt(
m∑

i=1

m∑

j=1

|Cij − C′
ij |). (10)

We generate both two-dimensional data and ten-dimensional data, the number
of samples are from 50 to 10000. The results are listed in Fig. 1.
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(a) 2-dimensional estimation
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(b) 10-dimensional estimation

Fig. 1. Estimation Error on Synthetic Data

From the results, we can see that the graphical lasso estimates the covariance
more precisely than EM estimator both on 2-dimensional data and 10-dimensional
data. The superiority is more distinctive when the number of samples is smaller
than the data dimensionality. This can be seen in the left part of Fig. 1(b).

4.2 Results on UCI

To examine the classification performance of GLQDF, we conduct a series of
experiments on three data sets from UCI repository: 1)Optdigits: with 10 class
and 64 dimension, 3,823 training and 1,797 test samples. 2) Sat, with 6 class and
36 dimension, 4,435 training and 2,000 test samples. 3) HW306class: with 153
class and 512 dimension, 91,365 training and 9,141 test samples. For simplicity,
we apply Linear Discriminant Analysis (LDA) to reduce the dimensionality to
the class number minus 1 in the experiments. The recognition rate of MQDF
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and GLQDF is listed in Table 1. It is clear that the GLQDF achieves better
recognition rate in every dataset than MQDF. This clearly demonstrates the
advantages of the proposed GLQDF.

Table 1. Recognition rate on UCI data sets

dateset MQDF GLQDF

Optdigits 94.0 94.4

Sat 84.8 85.8

HW306class 93.4 96.0

4.3 Results on Handwritten Digital Datasets

In this section, we report the experimental results of the proposed algorithm
on two handwritten digital datasets, USPS and MNIST. USPS contains 9, 298
handwriting character measurements divided into 10 classes. The entire USPS
data set is divided into two parts, a training set with 7, 291 measurements and a
test set with 2, 007 measurements. The original image size is 16×16. The MNIST
dataset is another handwritten digits data collection, in which a training set of
60,000 examples and a test set of 10, 000 examples in 10 classes. The original
image size is 20 × 20. We compare the recognition rate of different classifier on
both the pixel-level feature and gradient feature. The pixel-level feature number
of those two datasets is 256 and 400. The gradient feature is extracted by the
algorithm in [9]. We specify 8 direcgions of gradient, choose grid structure of
4× 4 for USPS and 5× 5 for MNIST. Thus, the gradient feature dimensionality
of USPS and MNIST is 128 and 200, respectively. We reduce the dimensionality
to c - 1 by LDA in both the USPS and MNIST and feed to the MQDF and
GLQDF for training and test. We obtain the hyper-parameter of MQDF, which
is a multiplier used for the selection of constant δi, by cross validation and we
select the principle axes as 8. The final results on pixel feature is listed in Table 2
and the result on gradient feature is listed in Table 3.

From the results, either on the pixel feature or gradient feature, the recognition
rate of GLQDF is better than the MQDF. This proves again the effectiveness of
the lasso criterion based covariance estimation.

Table 2. Recognition rate on handwritten digits data set of pixel feature

dataset MQDF GLQDF

USPS 89.09 89.74

MNIST 89.91 90.07
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Table 3. Recognition rate on handwritten digits data set of gradient feature

dataset MQDF GLQDF

USPS 95.96 96.16

MNIST 98.21 98.21

4.4 Results on Handwritten Chinese Character Data

We exploit the CASIA data set for comparison. The CASIA data set, collected
by the Institute of Automation, Chinese Academy of Sciences, contains 3, 755
Chinese characters of the level-1 set of the standard GB2312-80, 300 samples per
class. We choose 250 samples per class for training and the remaining 50 samples
per class for test. To save time, we only selected the first 200 classes from CASIA
data for our experiment. Each binary image of CASIA data was firstly normalized
to gray-scale image of 64×64 pixels by the bi-moment normalization method [10].
Then the 8-direction gradient direction features were extracted. The resulting
512-dimensional feature vector was projected into a low dimensional subspace
learned by the global LDA. All of projected vectors were then fed to the MQDF
classifier and GLQDF classifier. The hyper-parameter of MQDF was learned by
cross validation and its principle axes was set as 20 in different lower subspace.

To compare the performance between MQDF and GLQDF, we projected the
original features into different lower subspace and recorded the recognition rate
of the corresponding classifier. The results were listed in the Table 4. From the
results, we can see that GLQDF almost achieves the same recognition rate as
the MQDF, even when the number of lower subspace is equal to 150.

Table 4. Recognition rate on CASIA data set

Dimensionality MQDF GLQDF

LDA = 30 98.72 98.72

LDA = 50 99.22 99.15

LDA = 100 99.52 99.46

LDA = 150 99.51 99.54

5 Conclusion

In this paper, we engage the graphical lasso method to estimate the covariance
and propose a new quadratic method called the Graphical Lasso Quadratic Dis-
criminant Function (GLQDF). By exploiting a coordinate descent procedure for
the lasso, GLQDF can estimate the covariance matrix more precisely. We can
even compute the inverse of the covariance. This solves the singular problem in
covariance estimation, especially when the number of samples is smaller than the
dimensionality. Extensive experiments demonstrate that the proposed method
can perform better than the competitive methods on two artificial and six real
data sets.
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