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Abstract

We propose a novel large margin classifier, called the Maxi-Min Margin Machine (M4). This model

learns the decision boundary both locally and globally. In comparison, other large margin classifiers

construct separating hyperplanes only either locally or globally. For example, a state-of-the-art large

margin classifier, the Support Vector Machine (SVM), considers data only locally, while another sig-

nificant model, the Minimax Probability Machine (MPM), focuses on building the decision hyperplane

exclusively based on the global information. As a major contribution, we show that SVM yields the

same solution as M4 when data satisfy certain conditions, and MPM can be regarded as a relaxation

model of M4. Moreover, based on our proposed local and global view of data, another popular model,

the Linear Discriminant Analysis, can easily be interpreted and extended as well. We describe the M4

model definition, provide a geometrical interpretation, present theoretical justifications, and propose a

practical sequential conic programming method to solve the optimization problem. We also show how

to exploit Mercer kernels to extend M4 for nonlinear classifications. Furthermore, we perform a series

of evaluations on both synthetic data sets and real world benchmark data sets. Comparison with SVM

and MPM demonstrates the advantages of our new model.

Index Terms

classification, large margin, kernel methods, second order cone programming, learning locally and

globally
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I. INTRODUCTION

Recently, large margin classifiers [18] have attracted much interest in the community of machine

learning and pattern recognition. The Support Vector Machine (SVM) [25][21][10], the most famous of

them, represents a state-of-the-art classifier. The essential point of SVM is to find a linear separating

hyperplane which achieves the maximal margin among different classes of data. Furthermore, one can

extend SVM to build nonlinear separating decision hyperplanes by exploiting kernelization techniques.

However, SVM obtains the decision hyperplane in a “local” way, i.e., the decision boundary is

exclusively determined by a number of critical points, which are called support vectors, whereas all

other points are irrelevant to this hyperplane. Although this scheme has been shown to be powerful both

theoretically and empirically, it discards the global information in the data.

An illustration example can be seen in Figure 1. In this figure, the classification boundary is intuitively

observed to be mainly determined by the dotted axis, i.e., the long axis of the Y data (represented by

¤’s) or the short axis of the X data (represented by ◦’s). Moreover, along this axis, the Y data are

more likely to be scattered than the X data, since the Y data contain a relatively larger variance in this

direction. Noting this “global” fact, a good decision hyperplane seems reasonable to lie closer to the X

side (see the dash-dot line). However, SVM ignores this kind of “global” information, i.e., the statistical

trend of data occurrence: the derived SVM decision hyperplane (the solid line) lies unbiasedly right in

the middle of two “local” points (the support vectors).1

Aiming to construct classifiers both locally and globally, we propose the Maxi-Min Margin Machine

(M4) in this paper. As we show later, one key contribution of this novel model is that M4 is closely

related to SVM and an important model, the Minimax Probability Machine (MPM) [9]. More specifically,

SVM yields the same solution as M4 when data satisfy certain conditions, while MPM can be regarded

as a relaxation method of our proposed model. Moreover, based on our proposed local and global view

of data, another popular model, the Linear Discriminant Analysis (LDA) [4], can easily be interpreted

and extended as well.

Another good feature of the M4 model is that it can be cast as a sequential conic programming

problem [17], or more specifically, a sequential Second Order Cone Programming (SOCP) problem [11],

[14], which thus can be solved practically in polynomial time. In addition, with incorporating the global

1Note that two classes of data cannot easily be scaled to the same data trend simultaneously. The only viable approach is to

scale one class of data first by using a certain transformation, while the other class of data needs to be scaled subsequently,

based on the same transformation.
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Fig. 1. A decision hyperplane with considerations of both local and global information.

information, a reduction method is proposed for decreasing the computational time of this new model.

The third important feature of our proposed model is that, the kernelization methodology is also

applicable for this formulation. This thus generalizes the linear M4 into a more powerful classification

approach, which can derive nonlinear decision boundaries.

The rest of this paper is organized as follows. In the next section, we introduce the M4 model in

detail, including its model definition, the geometrical interpretation, connections with other models, and

the associated solving methods. In Section III, we develop a reduction method to remove redundant

points, in order to decrease the computational time. In Section IV, we exploit kernelization to extend M4

to nonlinear classification tasks. In Section V, we evaluate this novel model on both synthetic data sets

and real world benchmark data sets. In Section VI, we discuss the M4 model and also present future

work. Finally, we conclude this paper in Section VII. Some results of Section II, IV, and V of this paper

have appeared earlier in [5], but they are expanded significantly both theoretically and experimentally in

the current paper, while the remaining sections are new.
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II. MAXI-MIN MARGIN MACHINE

In the following, we first, for the purpose of clarity, divide M4 into separable and nonseparable

categories, and then introduce the corresponding hard-margin M4 and soft-margin M4 in turn. In this

section, we will also establish the connections of the M4 model with other large margin classifiers

including SVM, MPM, LDA, and the Mininum Error Minimax Probability Machine (MEMPM) [6].

A. Separable Case

Assuming the classification samples are separable, we first introduce the model definition and the

geometrical interpretation. We then transform the model optimization problem into a sequential SOCP

problem and discuss the optimization method.

1) Problem Definition: Only two-category classification tasks are considered in this paper. Let a

training data set contain two classes of samples X and Y , represented by xi ∈ Rn and yj ∈ Rn

respectively, where i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny. Hereafter, we denote the total number of samples

as N = Nx + Ny. The basic task here can be informally described as finding a suitable hyperplane

f(z) = wTz+ b separating the two classes of data as robustly as possible (w ∈ Rn\{0}, b ∈ R, and wT

is the transpose of w). Future data points z for which f(z) ≥ 0 are then classified as class X; otherwise,

they are classified as class Y .

The formulation for M4 can be written as:

max
ρ,w 6=0,b

ρ s.t. (1)

(wTxi + b)√
wTΣxw

≥ ρ, i = 1, 2, . . . , Nx , (2)

−(wTyj + b)√
wTΣyw

≥ ρ, j = 1, 2, . . . , Ny , (3)

where Σx and Σy refer to the covariance matrices of the X and the Y data, respectively.2

This model tries to maximize the margin defined as the minimum Mahalanobis distance for all training

samples,3 while simultaneously classifying all the data correctly. Compared to SVM, M4 incorporates the

data information in a global way; specifically, in our model, the covariance information of the data or the

2For simplicity, we assume Σx and Σy are always positive definite. In practice, this can be satisfied by adding a small positive

amount into their diagonal elements, which is a widely used technique.
3This suggested the name of our model.
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statistical trend of data occurrence is considered, while SVMs, including l1-SVM [27] and l2-SVM [24],4

simply discard this information or use the same covariance for each class.

One important feature of M4 is that its solution is invariant with respect to invertible linear trans-

formations of data. This is verified as follows. Assume an invertible linear transformation is given

as Tr(xi) = Axi, Tr(yi) = Ayi, where A is an invertible matrix. By using ΣTr(x) = AΣxAT ,

ΣTr(y) = AΣyAT , we can formulate the optimization for the transformed data as follows:

max
ρ∗,w∗ 6=0,b∗

ρ s.t. (4)

(w∗T Axi + b∗)√
w∗T AΣxATw∗

≥ ρ∗, i = 1, 2, . . . , Nx , (5)

−(w∗T Ayj + b∗)√
w∗T AΣyATw∗

≥ ρ∗, j = 1, 2, . . . , Ny . (6)

In the above, {ρ∗,w∗, b∗} denotes the variables to be optimized in the transformed problem. As observed

from the optimization, if w maximizes (1)-(3), ATw∗ should be equal to w. Therefore we have the

following:

ATw∗ = w ⇒ w∗ = (AT )−1w . (7)

For an input data point z, we have w∗T Tr(z) = w∗T Az = wT A−1Az = wTz. Hence, the derived

decision boundary is invariant against invertible linear transformations.

2) Geometrical Interpretation: A geometrical interpretation of M4 can be seen in Figure 2. In this

figure, the X data are represented by the inner ellipsoid on the left side with its center at x0, while

the Y data are represented by the inner ellipsoid on the right side with its center at y0. It is observed

that these two ellipsoids contain unequal covariances or risks of data occurrence. However, SVM does

not consider this global information: its decision hyperplane (the dotted blue line) locates unbiasedly

midway between two support vectors (filled points). In contrast, M4 defines the margin as a Maxi-

Min Mahalanobis distance, which constructs a decision plane (the solid magenta line) taking account

of both the local and the global information: the M4 hyperplane corresponds to the tangent line of two

dashed ellipsoids centered at the support vectors (the local information) and shaped by the corresponding

covariances (the global information).

4lp-SVM means the “p-norm” distance-based SVM.
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Fig. 2. A geometric interpretation of M4. The M4 hyperplane corresponds to the tangent line (the solid magenta line) of two

small dashed ellipsoids centered at the support vectors (the local information) and shaped by the corresponding covariances (the

global information). It is thus more reasonable than the hyperplane generated by SVM (the dotted line).

3) Optimization Method: In the following, we propose the optimization method for the M4 model.

We will demonstrate that the above problem can be cast as a sequential conic programming problem, or

more specifically, a sequential SOCP problem.

Our strategy is based on the “Divide and Conquer” technique. One may note that in the optimization

problem of M4, if ρ is fixed to a constant ρn, the problem to “conquer” changes exactly into the problem

of checking whether the constraints of (2) and (3) can be satisfied. Moreover, as will be demonstrated

shortly, this “checking” procedure can be stated as an SOCP problem. Thus the problem now becomes

one of determining how ρ is set, which we can use a “divide” strategy to handle: if the constraints are

satisfied, we can increase ρn accordingly; otherwise, we decrease ρn.

We detail this solving technique in the following two steps:

1. Divide: Set ρn = (ρ0 + ρm)/2, where ρ0 is a feasible ρ, ρm is an infeasible ρ, and ρ0 ≤ ρm.

2. Conquer: Call the Modified Second Order Cone Programming (MSOCP) procedure elaborated in

the following discussion to check whether ρn is a feasible ρ. If yes, set ρ0 = ρn; otherwise, set

ρm = ρn.

In the above, if a ρ value satisfies the constraints of (2) and (3), we call it a feasible ρ; otherwise, we call

May 20, 2007 DRAFT
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it an infeasible ρ. These two steps are iterated until |ρ0 − ρm| ≤ ε, where ε is a small positive value.5

We propose the following Theorem showing that the MSOCP procedure, namely, the checking problem

with ρ fixed to a constant ρn, is solvable by casting it as an SOCP problem.

Theorem 1: The problem of checking whether there exist w and b satisfying the following two sets

of constraints (8) and (9) can be transformed into an SOCP problem, which can be solved in polynomial

time:

(wTxi + b) ≥ ρn

√
wTΣxw, i = 1, . . . , Nx , (8)

−(wTyj + b) ≥ ρn

√
wTΣyw, j = 1, . . . , Ny , (9)

w 6= 0 .

Proof: Introducing dummy variables τ , we rewrite the above checking problem into an equivalent

optimization problem:

max
w 6=0,b,τ

{
N

min
k=1

τ k} s.t.

(wTxi + b) ≥ ρn

√
wTΣxw − τ i,

−(wTyj + b) ≥ ρn

√
wTΣyw − τ j+Nx

,

w 6= 0 ,

where i = 1, . . . , Nx and j = 1, . . . , Ny.

By checking whether the minimum τ k at the optimum point is positive, we can know whether the

constraints of (2) and (3) can be satisfied. If we go further, we can introduce another dummy variable

and transform the above problem into an SOCP problem:

max
w 6=0,b,τ ,η

η s.t.

(wTxi + b) ≥ ρn

√
wTΣxw − τ i ,

−(wTyj + b) ≥ ρn

√
wTΣyw − τ j+Nx

,

η ≤ τ k ,

w 6= 0 ,

where i = 1, . . . , Nx, j = 1, . . . , Ny, and k = 1, . . . , N . By checking whether the optimal η is greater

than 0, we can immediately know whether there exist w and b satisfying the constraints of (2) and (3).

5The proposed solving technique is also referred to as the bi-section search method.
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Moreover, the above optimization is easily verified to be the standard SOCP form, since the optimization

function is a linear form and the constraints are either linear or the typical second order conic constraints.

Remarks. In practice, many SOCP programs, e.g., Sedumi [19], provide schemes to directly handle the

above checking procedure. Therefore, it may not be necessary to introduce dummy variables as we have

done in the proof. Furthermore, ρ0 can often be set to zero, while ρmax can simply be set to a large

value, e.g., 50 as used in our experiments.

We now analyze the time complexity of M4. As indicated in [11], if the SOCP is solved based on

interior-point methods, it contains a worst-case complexity of O(n3). If we denote the range of feasible

ρ’s as L = ρmax−ρmin and the required precision as ε, then the number of iterations for M4 is log(L/ε)

in the worst case. Adding the cost of forming the system matrix (constraint matrix), which is O(Nn3)

(N represents the number of training points), the total complexity would be O(n3 log(L/ε) + Nn3) ≈
O(Nn3), a polynomial time complexity.

B. Connections with Other Models

In this section, we establish connections between M4 and other models. We show that our model can

be changed to SVM and MPM when certain settings are used. Moreover, LDA can be interpreted and

extended according to our local and global views of data.

1) Connection with Minimax Probability Machine: If one performs constraint relaxation, i.e., expands

the constraints of (2) and adds all of them together, one can immediately obtain the following:

wT
Nx∑

i=1

xi + Nxb ≥ Nxρ
√

wTΣxw ,

⇒ wTx + b ≥ ρ
√

wTΣxw , (10)

where x denotes the mean of the X training data.

Similarly, from (3) one can obtain:

−(wT

Ny∑

j=1

yj + Nyb) ≥ Nyρ
√

wTΣyw ,

⇒ −(wTy + b) ≥ ρ
√

wTΣyw , (11)

where y denotes the mean of the Y training data.
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Adding (10) and (11), one can obtain:

max
ρ,w 6=0

ρ s.t.

wT (x− y) ≥ ρ(
√

wTΣxw +
√

wTΣyw) . (12)

The above optimization is exactly the MPM optimization [9]. Note, however, that the above procedure

cannot be reversed. This means that MPM is looser than M4. In another word, MPM is actually a

relaxation model of M4.

Remarks. In MPM, since the decision is completely determined by the global information, namely, the

mean and covariance matrices [9],6 the estimates of mean and covariance matrices need to be reliable

in order to ensure accurate performance. However, this may not always be the case in real world tasks.

On the other hand, M4 seems to solve this problem in a natural way, because the impact caused by

inaccurately estimated mean and covariance matrices can be partly neutralized by utilizing the local

information, namely by satisfying the constraints of (2) and (3) for each local data point. This will be

demonstrated later in the experiments.

2) Connection with Support Vector Machine: If one assumes Σx = Σy = Σ, the optimization of M4

can be changed to:

max
ρ,w 6=0,b

ρ s.t.

(wTxi + b) ≥ ρ
√

wTΣw ,

−(wTyj + b) ≥ ρ
√

wTΣw ,

where i = 1, . . . , Nx and j = 1, . . . , Ny.

Observing that the magnitude of w will not influence the optimization, without loss of generality, one

can further assume ρ
√

wTΣw = 1. Therefore the optimization can be changed to:

min
w 6=0,b

wTΣw s.t. (13)

(wTxi + b) ≥ 1 , (14)

−(wTyj + b) ≥ 1 , (15)

where i = 1, . . . , Nx and j = 1, . . . , Ny.7

6This can be directly observed from (12).
7The optimization of (13)-(15) is actually a standard SVM formulation with the linear kernel K(z1, z2) = zT

1 Σ−1z2.
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A special case of the above with Σ = I is precisely the optimization of SVM, where I is the unit

matrix.

Remarks. In the above, SVM is equivalent to M4 when making two assumptions: one is the assumption

about data “orientation” or data shape, i.e., Σx = Σy = Σ, and the other is the assumption about

data “scattering magnitude” or data compactness, i.e., Σ = I. However, these two assumptions are

inappropriate. We demonstrate this in Figure 3 (a) and Figure 3 (b). We assume the orientation and the

magnitude of each ellipsoid represent the data shape and compactness, respectively, in these figures.

Figure 3 (a) plots two types of data with the same data orientations but different data scattering

magnitudes. It is obvious that, by ignoring data scattering, SVM inappropriately locates itself unbiasedly

midway between the support vectors (filled points), since x is likely to be scattered in the horizontal

axis. Instead, M4 is more reasonable (see the solid line in this figure). Furthermore, Figure 3 (b) plots the

case with the same data scattering magnitudes but different data orientations. Similarly, SVM does not

capture the orientation information. In contrast, M4 employs this information and demonstrates a more

suitable decision plane: M4 represents the tangent line between two small dashed ellipsoids centered at

the support vectors (filled points). Note that SVM and M4 do not necessarily achieve the same support

vectors. In Figure 3 (b), M4 uses the two filled points mentioned above as support vectors, whereas

SVM uses all three of the filled points as support vectors. It is also interesting that when Σx = Σy,

SVM can produce the same results as M4 with less computational time cost. However, it proves to be

tough for SVM to consider different covariance matrices. Note that again, generally speaking, no single

normalization can make two classes of data contain the same data trend simultaneously.

3) Link with Linear Discriminant Analysis: LDA, an important and popular method, is used widely

in constructing decision hyperplanes [13][15] and reducing the feature dimensionality [12]. In the fol-

lowing discussion, we mainly consider its application as a classifier. LDA involves solving the following

optimization problem:

max
w 6=0

|wT (x− y)|√
wTΣxw + wTΣyw

.

Like MPM, LDA also focuses on using the global information rather than considering data both locally

and globally. We now show that LDA can be modified to consider data both locally and globally.

If one changes the denominators in (2) and (3) to
√

wTΣxw + wTΣyw, the optimization can be

May 20, 2007 DRAFT
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(a) (b) (c)

Fig. 3. An illustration on the connections between SVM, LDA and M4. (a) demonstrates SVM omits the data compactness

information. (b) demonstrates SVM discards the data orientation information. (c) demonstrates LDA partly yet incompletely

considers the data orientation.

changed to:

max
ρ,w 6=0,b

ρ s.t. (16)

(wTxi + b)√
wTΣxw + wTΣyw

≥ ρ , (17)

−(wTyj + b)√
wTΣxw + wTΣyw

≥ ρ , (18)

where i = 1, . . . , Nx and j = 1, . . . , Ny. The above optimization is a variant of LDA, which considers

data locally and globally. This is verified as follows.

If one performs the procedure similar to that of Section II-B.1, the above optimization problem is

easily verified to be the following optimization problem:

max
ρ,w 6=0,b

ρ s.t.

wT (x− y) ≥ ρ
√

wTΣxw + wTΣyw. (19)

One can change (19) to: ρ ≤ |wT (x−y)|√
wTΣxw+wTΣyw

, which is exactly the optimization of the LDA (note

that wT (x− y) must have a positive value, from (17) and (18)).

Remarks. The extended LDA optimization focuses on considering the data orientation, while omitting the

data scattering magnitude information. This can be shown from an analysis similar to that of Section II-

B.2. Its decision hyperplane in the example of Figure 3 (a) coincides with that of SVM. With respect

May 20, 2007 DRAFT
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to the data orientation, it uses the average of the covariances for the two types of data. As illustrated

in Figure 3 (c), the extended LDA corresponds to the line lying exactly in the middle of the long axes

of the X and Y data. This shows that the extended LDA considers the data orientation partially yet

incompletely.

C. Nonseparable Case

In this section, we modify the M4 model to handle the nonseparable case. We need to introduce slack

variables in this case. The optimization of M4 is changed to:

max
ρ,w 6=0,b,ξ

ρ− C

N∑

k=1

ξk s.t. (20)

(wTxi + b) ≥ ρ
√

wTΣxw − ξi , (21)

−(wTyj + b) ≥ ρ
√

wTΣyw − ξj+Nx
, (22)

ξk ≥ 0 ,

where i = 1, . . . , Nx, j = 1, . . . , Ny, and k = 1, . . . , N . C is the positive penalty parameter and ξk is

the slack variable, which can be considered as the extent how the training point zk disobeys the ρ margin

(zk = xk when 1 ≤ k ≤ Nx; zk = yk−Ny
when Nx + 1 ≤ k ≤ N ). Thus

∑N
k=1 ξk can be conceptually

regarded as the training error or the empirical error. In other words, the above optimization successfully

maximizes the minimum margin while minimizing the total training error.

1) Method of Solution: As clearly observed, when ρ is fixed, the optimization is equivalent to min-

imizing
∑N

k=1 ξk under the same constraints. This is once again an SOCP problem and thus can be

solved in polynomial time. We can then update ρ according to certain rules and repeat the whole process

until an optimal ρ is found. This is also known as the so-called line search problem. More precisely, if

we denote the value of optimization as a function f(ρ) = ρ − C
∑N

k=1 ξρ
k , (where ξρ

k is the associated

optimal value for ξk when a specific ρ is set), the above procedure corresponds to finding an optimal ρ

to maximize f(ρ). Instead of using an explicit function as in traditional line search problems, the value

of the function here is implicitly given by an SOCP procedure.

The line search problem can be solved by many methods. In this paper, we adopt the Quadratic

Interpolation (QI) method, which converges superlinearly to a local optimum. Figure 4 illustrates the QI

algorithm. QI searches for the maximum point by updating a three-point pattern (ρ1, ρ2, ρ3) repeatedly.

The new ρ denoted as ρnew is given by the quadratic interpolation from the three-point pattern. Then a

new three-point pattern is constructed by ρnew and two of ρ1, ρ2, ρ3.

May 20, 2007 DRAFT
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f(ρ) 

ρ
1
 ρ

2
 ρ

new ρ
3
 

Fig. 4. A three-point pattern and Quadratic Line search method. A ρnew is obtained and a new three-point pattern is constructed

by ρnew and two of ρ1, ρ2 and ρ3.

In summary, we iterate the following two steps to solve the modified optimization.

Step 1.Generate a new ρn from three previous ρ1, ρ2, ρ3 by using the Quadratic Interpolation method.

Step 2.Fixing ρ = ρn, perform the optimization based on SOCP algorithms. Then update ρ1, ρ2, ρ3.

Remarks. Note that the above solution method is non-convex. The non-convexity is introduced by the

coupled ρ and w in the term ρ
√

wTΣxw and ρ
√

wTΣyw. Our proposed method can de-couple ρ and

w by a sequential step successfully, and therefore provides a practical way to solve the optimization.

Moreover, the final optimization of f(ρ) is a one-dimensional line search problem with respect to ρ and

can be globally optimized. Later experimental results on both toy and real data sets also demonstrate the

effectiveness of this solving method.

D. Further Connection with Minimum Error Minimax Probability Machine

In this section, we show how the M4 can be connected with the Minimum Error Minimax Probability

Machine [6], which is a worst-case Bayes optimal classifier as well as a superset of MPM.

A careful consideration of the optimization of nonseparable M4 shows that a more precise form is

the one replacing ξk with ξk

√
wTΣxw in (21) and ξk

√
wTΣyw in (22). However, this optimization

may prove to be a difficult problem, since slack variables ξi (i = 1, 2, . . . , N ) are coupled with wT .

Nevertheless, we can start from this precise form and derive the connection of M4 with MEMPM.
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We reformulate the optimization of (21)-(22) as their precise forms as follows:

max
ρ,w 6=0,b,ξ

ρ− C
N∑

k=1

ξk s.t. (23)

wTxi + b√
wTΣxw

≥ ρ− ξi , (24)

− wTyj + b√
wTΣyw

≥ ρ− ξj+Nx
, (25)

ξk ≥ 0 , (26)

where i = 1, . . . , Nx, j = 1, . . . , Ny, and k = 1, . . . , N .

Maximizing (23) implies a similar meaning as minimizing 1
ρ2 +B

∑N
k=1 ξk (B is a positive parameter)

in the sense that they both attempt to maximize the margin ρ and minimize the error rate. If we consider
∑N

k=1 ξk as the residue and regard 1
ρ2 as the regularization term, the optimization can be cast into the

framework of solving ill-posed problems.8

According to [24], [26], the above optimization, known as Tikhonov’s Variation Method [22], is

equivalent to the optimization below referred to Ivannov’s Quasi-Solution Method [7], in the sense that

if one of the methods for a given value of the parameter (say C) produces a solution {w, b}, then the

other method can derive the same solution by adapting its corresponding parameter (say A).

min
ρ,w 6=0,b,ξ

N∑

k=1

ξk s.t.

wTxi + b√
wTΣxw

≥ ρ− ξi , (27)

− wTyj + b√
wTΣyw

≥ ρ− ξj+Nx
, (28)

ρ ≥ A , ξk ≥ 0 , (29)

where A is a positive constant parameter.

Now if we expand (27) for each i and add them all together, we can obtain:

Nx
wTx + b√
wTΣxw

≥ Nxρ−
Nx∑

i=1

ξi . (30)

This equation can easily be changed to:
Nx∑

i=1

ξi ≥ Nxρ−Nx
wTx + b√
wTΣxw

. (31)

8A trick can be made by assuming 1
ρ

as a new variable and thus the condition that the regularization is convex can be satisfied.
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Similarly, if we expand (28) for each j and add them all together, we obtain:
Ny∑

j=1

ξj+Nx
≥ Nyρ + Ny

wTy + b√
wTΣyw

. (32)

By adding (31) and (32), we can change the optimization to:

min
ρ,w 6=0,b,ξ

N∑

k=1

ξk s.t.

N∑

k=1

ξk ≥ Nρ− (Nx
wTx + b√
wTΣxw

−Ny
wTy + b√
wTΣyw

) . (33)

To achieve the minimum residue, namely, minρ,w 6=0,b,ξ
∑N

k=1 ξk, we may minimize the right hand

side of (33).9 Hence in this case ρ should attain its lower bound A, while the second part should be as

large as possible, i.e.,

max
w 6=0,b

θ
wTx + b√
wTΣxw

− (1− θ)
wTy + b√
wTΣyw

, (34)

where θ is defined as Nx

N and thus 1− θ denotes Ny

N . If one further transforms the above to:

max
w 6=0,b

θt + (1− θ)s s.t. (35)

wTx + b√
wTΣxw

≥ t , (36)

− wTy + b√
wTΣyw

≥ s , (37)

one can see that the above optimization has a very similar form to the MEMPM model except that (35)

changes to minw 6=0,b θ t2

1+t2 +(1−θ) s2

1+s2 [6]. In MEMPM, t2

1+t2 ( s2

1+s2 ) (denoted as α (β)) represents the

worst-case accuracy for the classification of future X(Y ) data. Thus MEMPM maximizes the weighted

accuracy of the future data. In M4, s and t represent the corresponding margin, which is defined as the

distance from the hyperplane to the class center. Therefore, it represents the weighted maximum margin

machine in this sense. Moreover, since the conversion function of g(u) = u2

1+u2 increases monotonically

with u, maximizing the above formulae contains a physical meaning similar to the optimization of

MEMPM in some sense.

9In fact, when the optimum is achieved, (33) will change to an equality in this optimization; otherwise, we can maintain the

current optimum, say w∗, b∗, ρ∗ unchanged and decrease ξ∗. The new solution will satisfy the constraints and will be a better

solution. Therefore, this is contradictory with the statement that {w∗, b∗, ρ∗, ξ∗} is the optimal solution.
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III. REDUCTION

The variable in previous sections is [w, b, ξ1, . . . , ξNx
, . . . , ξN ], whose dimension is n + 1 + N . The

number of the second order conic constraints is easily verified to be N . This size of the generated

constraint matrix will be large and we may thus encounter problems typically in solving large scale

classification tasks. Therefore, we should reduce both the number of constraints and the number of

variables.

Since this problem is caused by the number of the data points, we consider removing some redundant

points to reduce both the space and time complexity. The reduction rule is introduced as follows:

Reduction Rule. Set a threshold ν ∈ [0, 1). In each class, calculate the Mahalanobis distance, di, of

each point to its corresponding class center. If d2
i /(1 + d2

i ), denoted as νi, is greater than ν, namely,

νi ≥ ν, keep this point; otherwise, remove this point.

The intuition underlying this rule is that, in general, the more discriminant information the point

contains, the further it is from its center (unless it is a noise point). The inner justification under this rule

is from [9]: d2/(1+d2), is the worst-case classification accuracy for future data, where d is the minimax

Mahalanobis distance from the class center to the decision hyperplane. Thus removing those points with

small ν’s, namely, d2
i /(1 + d2

i ) will not affect the worst-case classification accuracy and will not greatly

reduce the overall performance.

Nevertheless, to cancel the negative impact caused by removing those points, we add the following

global constraint:

wT (x− y) ≥ ρ(
√

wTΣxw +
√

wTΣyw). (38)

This global constraint can be obtained by using the process described in Section II-B.1.

Integrating the above, we formulate the modified model as follows:

max
ρ,w 6=0,b,ξ

{ρ− C(
rx+ry∑

k=1

ξk + (N − rx − ry)ξm)} s.t. (39)

(wTxi + b) ≥ ρ(
√

wTΣxw)− ξi, i = 1, . . . , rx ,

−(wTyj + b) ≥ ρ(
√

wTΣyw)− ξj+rx , j = 1, . . . , ry ,

wT (x− y) ≥ ρ(
√

wTΣxw +
√

wTΣyw)− ξm ,

ξm ≥ 0, ξk ≥ 0, k = 1, . . . , rx + ry ,

where ξm is the slack variable for the global constraint (38), ξk are modified slack variables for the

remaining data points, rx is the number of the remaining points in X , and ry is the number of the
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remaining points in Y . Note that, in the aforementioned optimization, since (38) is used to cancel negative

impact caused by removing N−rx−ry points, the slack variable ξm should be weighted by N−rx−ry

as indicated in (39).

Remarks. Two issues deserve our attentions. First, an interesting observation from the above is that, when

we set the reduction threshold ν to a larger value, or simply to the maximum value 1, the M4 optimization

degrades to the standard MPM optimization. This would imply that the above modified M4 model contains

the worst-case performance of MPM, if the incorporated local information is useful. Second, although the

worst-case probability is relatively safe for reducing data points, it is highly related to the Mahalanobis

distance. When used in real applications especially in non-linear cases, the Mahalanobis distance measure

in the input space cannot tightly represent the true probability belonging to the corresponding class [6].

Therefore, we may need to set the threshold ν carefully in this case.

IV. KERNELIZATION

In the above discussion, the classifier derived from M4 is provided in a linear configuration. In order

to handle nonlinear classification problems, we seek to use the kernelization trick [18] to map the n-

dimensional data points into a high-dimensional feature space Rf , where a linear classifier corresponds

to a nonlinear hyperplane in the original space. The implementation of this for our model is described

below.

The kernel mapping can be formulated as: xi → ϕ(xi), yj → ϕ(yj), where i = 1, . . . , Nx, j =

1, . . . , Ny, and ϕ : Rn → Rf is a mapping function. The corresponding linear classifier in Rf is

γT ϕ(z) = b, where γ, ϕ(z) ∈ Rf , and b ∈ R.

The optimization of M4 in the feature space can be written as:

max
ρ,γ 6=0,b

ρ s.t. (40)

(γT ϕ(xi) + b)√
γTΣϕ(x)γ

≥ ρ, i = 1, 2, . . . , Nx , (41)

−(γT ϕ(yj) + b)√
γTΣϕ(y)γ

≥ ρ, j = 1, 2, . . . , Ny . (42)

However, to make the kernel work, we need to represent the optimization and the final decision hyperplane

into a kernel form, K(z1, z2) = ϕ(z1)T ϕ(z2), namely, an inner product form of the mapping data points.
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A. Foundation of Kernelization for M4

In the following, we demonstrate that the kernelization trick works in M4, provided suitable estimates

of means and covariance matrices are applied therein.

Proposition 1: If the estimates of means and covariance matrices are given in M4 as the following

estimates:

ϕ(x) =
Nx∑

i=1

λiϕ(xi), ϕ(y) =
Ny∑

j=1

ωjϕ(yj) ,

Σϕ(x) = ρxIn +
Nx∑

i=1

Λi(ϕ(xi)− ϕ(x))(ϕ(xi)− ϕ(x))T ,

Σϕ(y) = ρyIn +
Ny∑

j=1

Ωj(ϕ(yj)− ϕ(y))(ϕ(yj)− ϕ(y))T ,

then the optimal γ in (40)-(42) lies in the space spanned by the training points. In the above, positive

constants ρx and ρy can be regarded as the regularization terms for the covariance matrices; In is the unit

matrix of dimension n (n is the dimension of the feature space); Λi and Ωj are the normalized weights

for the sample xi (i = 1, 2, . . . , Nx) and yj (j = 1, 2, . . . , Ny) respectively.

Proof: We write γ = γp + γd, where γp is the projection of γ in the vector space spanned by all

the training data points and γd is the orthogonal component to this span space. By using γT
d ϕ(xi) = 0

and γT
d ϕ(yj) = 0, one can easily verify that the optimization (40)-(42) changes to:

max
ρ,{γ

p
,γ

d
}6=0,b

ρ s.t.

−(γT
p ϕ(xi) + b)√

γT
p

∑Nx

i=1 Λi(ϕ(xj)− ϕ(x))(ϕ(xi)− ϕ(x))T γp + ρx(γT
p γp + γT

d γd)
≥ ρ ,

−(γT
p ϕ(yj) + b)√

γT
p

∑Ny

j=1 Ωj(ϕ(yj)− ϕ(y))(ϕ(yj)− ϕ(y))T γp + ρy(γT
p γp + γT

d γd)
≥ ρ ,

where i = 1, . . . , Nx, j = 1, . . . , Ny. Since we intend to maximize the margin ρ, the denominators in the

above two constraints need to be as small as possible. This would lead to γd = 0. In other words, the

optimal γ lies in the vector space spanned by all the training data points. Note that the above discussion

refers to the feature space.

According to Proposition 1, if we use the plug-in estimates to approximate the means and covariance

matrices, we can write γ as a linear combination form of training data points:

γ =
Nx∑

i=1

µiϕ(xi) +
Ny∑

j=1

υjϕ(yj) , (43)
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where the coefficients µi, υj ∈ R, i = 1, . . . , Nx, j = 1, . . . , Ny.

B. The Kernelization Result

Before we present the main kernelization result, we first introduce the notations. Let {z}N
i=1 denote

all N = N data points in the training set, where

zi = xi i = 1, 2, . . . , Nx ,

zi = yi−Nx
i = Nx + 1, Nx + 2, . . . , N.

The element of the Gram matrix K in the position of (i, j) is defined as Ki,j = ϕ(zi)T ϕ(zj) for

i, j = 1, 2, . . . , N . We define Ki as the i-th column vector of the K. We further define Kx and Ky as

the matrices formed by the first Nx rows and the last Ny rows of K, respectively. In other words,

K :=


 Kx

Ky


 .

By setting the row average of the Kx block and the Ky block to zero, the block-row-averaged Gram

matrix K̃ is thus obtained:

K :=


 K̃x

K̃y


 =


 Kx − 1Nx

k̃T
x

Ky − 1Ny
k̃T

y


 ,

where k̃x, k̃y ∈ RN are defined as:

[k̃x]i :=
1

Nx

Nx∑

j=1

K(xj , zi) ,

[k̃y]i :=
1

Ny

Ny∑

j=1

K(yj , zi) .

In the above, 1Nx
∈ RNx and 1Ny

∈ RNy , which are defined as:

1i = 1, i = 1, 2, . . . Nx ,

1j = 1, j = 1, 2, . . . Ny .

Finally, we define the vector formed by the coefficients of γ as

η = [µ1, µ2, . . . , µNx
, υ1, υ2, . . . , υNy

]T . (44)
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We present the kernelization result as the following theorem.

Kernelization Theorem of M4 The optimal decision hyperplane for M4 involves solving the following

optimization problem:

max
ρ,η 6=0,b

ρ s.t.

(ηTKi + b)√
1

Nx
ηT K̃T

xK̃xη
≥ ρ, i = 1, 2, . . . , Nx ,

−(ηTKj+Nx
+ b)√

1
Ny

ηT K̃T
yK̃yη

≥ ρ, j = 1, 2, . . . , Ny .

Proof: The theorem can easily be proved by simply substituting the plug-in estimates of the means

and covariance matrices and (43) into (40-42).

The optimal decision hyperplane can be represented as a linear form in the kernel space

f(z) =
Nx∑

i=1

η∗iK(z,xi) +
Ny∑

i=1

η∗Nx+iK(z,yi) + b∗ ,

where η∗ and b∗ are the optimal parameters obtained by the optimization procedure.

V. EXPERIMENTS

In this section, we present the evaluation results of M4 in comparison with SVM and MPM on both

synthetic toy data sets and real world benchmark data sets. SOCP problems are solved based on the

general software named Sedumi [19], [20]. The covariance matrices are given by the plug-in estimates.

A. Evaluations on Four Synthetic Toy Data Sets

We demonstrate the advantages of our approach in comparison with SVM and MPM in the following

synthetic toy data sets first.

As illustrated in Figure 5, we generate two types of data with the same data orientations but different

data magnitudes in Figure 5 (a), and another two types of data with the same data magnitudes but different

data orientations in Figure 5 (b). In (a), the X data are randomly sampled from the Gaussian distribution

with the mean as [3.5, 0]T and a covariance of [1, 0; 0, 1.5], while the Y data are randomly sampled

from another Gaussian distribution with the mean and the covariance as [−3.5, 0]T and [3, 0; 0, 4.5]

respectively. In (b), the x data are randomly sampled from the Gaussian distribution with the mean

as [4, 0]T and the covariance as [1, 0; 0, 5], while the Y data are randomly sampled from another

distribution with the mean and the covariance as [−4, 0]T and [1, 0; 0, 5] respectively. Moreover, to
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Fig. 5. The first two synthetic toy examples to illustrate M4. Training (test) data, consisting of 120 (250) data points for each

class are presented as ◦’s(×’s) and ¤’s (+’s) for x and y respectively. Subfigure (a) demonstrates that SVM omits the data

compactness information and (b) demonstrates that SVM discards the data orientation information, while the decision boundary

of M4 considers data both locally and globally.
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Fig. 6. The third and fourth synthetic toy examples to illustrate M4. Training (test) data, consisting of 120 (250) data points in

(a) and 20 (60) in (b) for each class are presented as ◦’s(×’s) and ¤’s (+’s) for x and y respectively. Subfigure (a) demonstrates

M4 performs better in a mixture of Gaussian data than SVM, while (b) shows that the M4 achieves the suitable decision

boundary, which considers data both locally and globally.
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generate different data orientations, in this figure, the X data are rotated anti-clockwise at the angle of

−3
8π. In both (a) and (b), training (test) data, consisting of 120 (250) data points for each class, are

presented as ◦’s(×’s) and ¤’s (+’s) for X and Y respectively. Observed from Figure 5, M4 demonstrates

its advantages over SVM. More specifically, in Figure 5 (a), SVM discards the information of the data

magnitudes, whose decision hyperplane lies basically in the middle of boundary points of two types

of data, while M4 successfully utilizes this information, i.e., its decision hyperplane lies closer to the

compact class (X data), which is more reasonable. Similarly, in Figure 5 (b), M4 takes advantage of

the information of the data orientation, while SVM simply overlooks this information, resulting in a

misclassification of many points.

In Figure 6 (a), we further generate two types of data. The X data are randomly sampled from the

Gaussian distribution with the mean as [4, 0] and the covariance as [1, 0; 0, 8]; the Y data are described

by a mixture of two Gaussian data with the means as [−4,−3]T and [−4, 3]T respectively and both

covariances as [5, 0; 0, 0.4]T . Training (testing) data are 120 (250) random samples for each category

resented as ◦’s (×’s) and ¤’s (+’s) for X and Y respectively. As seen in this figure, the derived decision

boundary of M4 once again demonstrates a more appropriate separating plane than the SVM.

When MPM is compared with M4, they achieve similar performance. This is because the global

information, i.e., the mean and the covariance, can be reliably estimated from the data in the two data sets.

To see the difference between M4 and MPM, we generate another data set as illustrated in Figure 6 (b),

where we intentionally produce a very small number of training data, i.e., only 20 training points.

Similarly, the data are generated under two Gaussian distributions: The X data are randomly sampled

from the Gaussian distribution with the mean as [4, 0]T and the covariance as [6, 0; 0, 1], while the

Y data are randomly sampled from another distribution with the mean and the covariance as [−3, 0]T

and [0.5, 0; 0, 8] respectively. Training data and test data are represented using symbols similar to

Figure 6 (a). From Figure 6 (b), once again M4 achieves a suitable decision boundary, which considers

data both locally and globally; in contrast, SVM obtains the local boundary that is simply midway

between the support vectors, thus discarding the global information, namely the statistical “trend” of

data occurrence. The decision hyperplane of MPM is exclusively dependent on the mean and covariance

matrices. Thus we can see that this hyperplane coincides with the data shape, i.e., the long axis of training

data of Y is nearly in the same direction as the MPM decision hyperplane. However, the estimated mean

and covariance is inaccurate due to the small number of traning data points. This results in a relatively

lower test accuracy as illustrated in Figure 6 (b). In comparison, M4 incorporates the information of the

local points to neutralize the effect caused by inaccurate estimation.
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In the above, we also plot the optimal decision boundaries by directly using the Gaussian distribution

functions as seen in Figure 5 and Figure 6 (b). As observed, our M4 boundaries are closer to the optimal

lines than those of SVM. The test accuracies for the above three toy data sets listed in Table I further

demonstrate the advantages of M4.

Dataset M4 SVM MPM

I(%) 98.8 96.8 98.8

II(%) 98.8 97.2 98.8

III(%) 98.8 97.2 98.8

IV(%) 98.3 97.5 95.8

TABLE I

COMPARISONS OF CLASSIFICATION ACCURACIES BETWEEN M4 , SVM, AND MPM ON THE TOY DATA SETS.

B. Evaluations on Benchmark Data Sets

We perform evaluations on seven standard data sets. Data for the Twonorm problem were synthetically

generated according to [3]. The remaining six data sets were real world data obtained from the UCI

machine learning repository [2]. We compared M4 with SVM and MPM, engaging both the linear and

Gaussian kernels. The parameter C for both M4 and SVM was tuned via cross validation in the inner

loop of 10-fold cross validation [8], as was the width parameter in the Gaussian kernel for all three

models. The final performance were given with the 10−fold cross validation results. Table II summarizes

the evaluation results.

From the results, we observe that M4 achieves the best overall performance. In comparison with SVM

and MPM, M4 wins five cases in the linear kernel and four in the Gaussian kernel. The evaluations

on these standard benchmark data sets demonstrate that it is worth considering data both locally and

globally, which is emphasized in M4. Inspecting the differences between M4 with SVM, the kernelized

M4 appears marginally better than the kernelized SVM, while the linear M4 demonstrates a distinct

advantage over the linear SVM. Moreover, we conduct the t-test at the significance level 0.05. The

results show that M4 is significantly better than SVM and MPM in Breast, Ionosphere, Sonar, Vote,

and Heart-disease in the linear case, while it is only significant better than SVM and MPM in Breast,

Ionosphere, Vote, and Heart-disease in the Gaussian kernel case. On the one hand, this can be explained

from the fact that the data points are very sparse in the kernelized space or feature space (compared with
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Data set Linear kernel Gaussian kernel

M4 SVM MPM M4 SVM MPM

Twonorm(%) 96.5± 0.6 95.1± 0.7 97.6± 0.5 96.5± 0.7 96.1± 0.4 97.6± 0.5

Breast(%) 97.5± 0.7 96.6± 0.5 96.9± 0.8 97.5± 0.6 96.7± 0.4 96.9± 0.8

Ionosphere(%) 87.7± 0.8 86.9± 0.6 84.8± 0.8 94.5± 0.4 94.2± 0.3 92.3± 0.6

Pima(%) 77.7± 0.9 77.9± 0.7 76.1± 1.2 77.6± 0.8 78.0± 0.5 76.2± 1.2

Sonar(%) 77.6± 1.2 76.2± 1.1 75.5± 1.1 84.9± 1.2 86.5± 1.1 87.3± 0.8

Vote(%) 96.1± 0.5 95.1± 0.4 94.8± 0.4 96.2± 0.5 95.9± 0.6 94.6± 0.4

Heart-disease(%) 86.6± 0.8 84.1± 0.7 83.2± 0.8 86.2± 0.8 83.8± 0.5 83.1± 1.0

TABLE II

COMPARISONS OF CLASSIFICATION ACCURACIES AMONG M4 , SVM, AND MPM.

the huge dimensionality in the Gaussian kernel). Thus the plug-in estimates of the covariance matrices

may not accurately represent the data information in this case. On the other hand, it is still uncertain

whether the kernelization will not precisely keep the structure information in the feature space. One

possible consequence is that maximizing the margin in the feature space does not necessarily maximize

the margin in the original space [23]. Therefore, unless some connections are built between the original

space and the feature space, utilizing the structure information, e.g., covariance matrices in the feature

space, does not seem to help in this sense. By examining these two viewpoints, one interesting topic

for future study is to consider forcing constraints on the mapping function so as to maintain the data

topology in the kernelization process.

In the above experiments, we do not perform reduction on these data sets. To illustrate how well the

reduction algorithm works at decreasing the computational time while maintaining the test accuracy, we

implement it on the Heart-disease data set. We perform the reduction on training sets and keep the test

sets unchanged. We repeat this process for different thresholds ν. We then plot the curve of the cross-

validation accuracy against the threshold ν. Moreover, we also plot the curve of the computational time

against the threshold. This can be seen in Figure 7. From this figure, we can see both the computational

time and the test accuracy show little dependency on ν when ν is set to small values, e.g., ν ≤ 0.7. If

looking at the Heart-disease data set, we find that most data points are far from their corresponding class

center in terms of the Mahalanobis distance. Thus, setting small values of ν does not eliminate many data

points. This generates a relatively flat curve with respect to both the test accuracy and the computational

time in this range. As ν increases, the computational time decreases fast as more and more data points

are removed, while the test accuracy goes down slowly. When the threshold is set to 1, the M4 degrades
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Fig. 7. Reduction on the Heart-disease data set.This figures demonstrates how the proposed reduction algorithms can decrease

the computational time while maintaining good performance.

to the MPM model, yielding the same test accuracy between M4 and MPM. This demonstrates how the

proposed reduction algorithms can decrease the computational time while maintaining good performance.

When applied in practice, the threshold can be set according to the required response time.

VI. FUTURE WORK AND OPEN PROBLEMS

We will discuss several important issues in this section. First, one important future direction is to

further develop special, and efficient optimization methods for the proposed model. Although M4 can be

solved in polynomial time O(Nn3), the computational time overhead is still its main shortcoming. In
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particular, when compared with the time complexity of O(n3 + Nn2) in solving MPM or the quadratic

programs of SVM, the computational cost may present a big challenge for large-scale data sets. Moreover,

although we have proposed a reduction algorithm in this paper, removing points will inevitably discard

useful information. In this sense, it is crucial to develop some special algorithms for M4. Due to the

sparsity of M4 (which also contains support vectors), it is therefore very interesting to investigate whether

decomposable methods, or an analogy to the Sequential Minimal Optimization [16] designed for SVM,

can also be applied in training M4. We believe there is much to gain from such explorations.

Second, since both SVM and MPM come with a generalization error bound, it is interesting whether a

bound can be derived from their related model M4? This interesting subject deserves future explorations.

Third, currently, the covariances used in this model are given by the plug-in estimations. When the

number of the input data points are small, plug-in estimations may not be reliable or accurate. This would

influence the performance of the proposed model. Therefore how to estimate the covariances robustly

and reliably presents an important research topic.

Finally, since in this paper we mainly discuss M4 for two-category classifications, determining how to

extend its application to multi-way classifications is also an important future topic.

VII. CONCLUSION

Large margin machines have demonstrated their advantages in machine learning and pattern recognition.

Many types of these machines learn their decision boundaries based on only either a global or a local

view of data. For example, the most popular large margin classifier, the Support Vector Machine, obtains

the decision hyperplane by focusing on considering some critical local points called support vectors,

while discarding all other points; on the other hand, another significant model, the Minimax Probability

Machine, uses only the global information, i.e., the mean and covariance information from data, while

ignoring all individual local points. As a distinct contribution, our proposed model is constructed based

on both a local and a global view of data. This new model is theoretically important in the sense that

SVM and MPM show close relationship with it. Furthermore, the optimization of M4 can be cast as a

sequential conic programming problem, which can be solved in polynomial time.

We have provided a clear geometrical interpretation, and established detailed connections among our

model and other models such as the Support Vector Machine, the Minimax Probability Machine, the Linear

Discriminant Analysis, and the Minimum Error Minimax Probability Machine. We have also extended our

model by exploiting Mercer kernels in building up nonlinear decision boundaries. In addition, we have

proposed a reduction method to decrease the computational time. Experimental results on both synthetic
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data sets and real world benchmark data sets have demonstrated the advantages of M4 over the Support

Vector Machine and the Minimax Probability Machine.
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