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Lecture outline
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1. Ome, omic and omics

2. Genomics (DNA)
- Sequencing methods
- Computational problems in reconstructing sequence

3. Transcriptomics (RNA)
- Microarrays and RNA-sequencing
- Data clustering and classification



Ome, Omic and Omics

Part 1
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• Traditionally, biologists study one or a few biological objects at a time
–Hypothesis driven
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• Traditionally, biologists study one or a few biological objects at a time
–Hypothesis driven

• Now it is possible to study many biological objects at the same time
–Data driven

• Suppose we want to study a type of objects or phenomena, X
– “X-ome”: A large amount of data related to X, or the whole set of X
– “X-omic”: To study a large amount of data related to X
– “X-omics”: The area of studying a large amount of data related to X



What: Different kinds of X-omics
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Object/ phenomenon type, X X-ome X-omics

Genes/ DNA Genome Genomics (The study of all genes/whole set of DNA)

Transcripts/ transcription Transcriptome Transcriptomics (The study of gene expression levels)

Exons/ transcription Exome Exomics

Proteins Proteome Proteomics (The study of protein identity and abundance)

Metabolism Metabolome Metabolomics (The study of metabolic reactions)

DNA methylation Methylome Methylomics

Non-coding RNAs, DNA methylation, 
histone modifications

Epigenome Epigenomics (The study of inheritable non-DNA signals)

Population of co-existing species in 
an environment

Metagenome Metagenomics (The study of different genomes, transcriptomes, etc. 
in a common environment)

Phenotypes Phenome Phenomics

Interactions Interactome Interactomics

... ... ...
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• Key idea in omic research: high-throughput experiments by means of...
–Parallelization



How: High-throughput experiments

9

• Key idea in omic research: high-throughput experiments by means of...
–Parallelization

• Examples:
–Measuring the expression levels of a small number of genes (e.g., RT-PCR) vs. 

measuring the expression levels of a large number of genes in parallel (microarray 
or RNA-seq)
–Measuring the interaction between a protein and a particular piece of DNA (e.g., 

DNase I footprinting) vs. measuring the interactions between a protein and all 
regions in the genome in parallel (ChIP-chip or ChIP-seq)



Why: Strengths and weaknesses
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• Strengths of the omic approach:
–High-throughput: fast, less tedious, relatively inexpensive
–Comprehensive
–Relatively unbiased
– Easier to study interactions and combinatorial effects
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• Strengths of the omic approach:
–High-throughput: fast, less tedious, relatively inexpensive
–Comprehensive
–Relatively unbiased
– Easier to study interactions and combinatorial effects

• Weaknesses:
–Noise
– Secondary effects
– Lack of clear hypotheses
–High initial cost (the machines)



Typical omic workflow
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1. Production of data
2. Data processing
– Quality control
– Data normalization

3. Data analysis (pattern discovery)
4. Data annotation and comparisons
– Evaluation of statistical significance

5. Selection and summarization of results
6. Hypothesis formation
7. Experimental validation



Genomics

Part 2



Sequencing
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• We have studied many problems related to sequences
–Alignments
– Estimation of actual number of substitutions based on the observed number
–Phylogenetic tree reconstruction
– Secondary structure prediction

• How did we get the sequences in the first place?
– Sequencing
• Input: Cell sample containing the DNA
• Output: The string representation of the DNA sequence



Sanger sequencing
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• For sequencing DNA
• Low-throughput, but high reliability
• Can sequence up to 300-1000 nucleotides per reaction
–Versus ~100nt for high-throughput experiments

• Used for sequencing the first human genome
• Method of choice for common laboratory use
• Now also used for validating results obtained from high-throughput, 

“next-generation” sequencing



Next generation sequencing

16

• “Second generation”, “next 
generation”, or “massively 
parallel” sequencing

• Going parallel
–Platform (droplet vs. solid-phase)
– Immobilization (primer vs. 

template vs. polymerase)

Image credit: Metzker, Nature Reviews Genetics 11:31-46, (2010)



Comparison of technologies
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Image credit: Lee et al., Translational Cancer Research 2:1 (2013); http://blog.genohub.com/wp-content/uploads/2015/01/Slide1.jpg



Sequencing cost
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Image source: https://insidehpc.com/2016/11/enabling-personalized-medicine-through-genomic-workflow-acceleration/



Third generation sequencing
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• Characteristics:
– Longer reads
–Higher error rate (currently)
–Higher cost (currently)
– Single-cell sequencing

• Example: Pacific Biosciences’ Single Molecule Real-Time (SMRT) 
sequencing
– Several hundred base pairs or more
–>10 times higher error rate than NGS



Third generation sequencing technologies
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Image credit: Schadt et al., Human Molecular Genetics 19(R2):227-240, (2010)

How third-generation DNA-sequencing 
technologies work. Third-generation DNA-
sequencing technologies are distinguished by 
direct inspection of single molecules with methods 
that do not require wash steps during DNA 
synthesis. (A) Pacific Biosciences technology for 
direct observation of DNA synthesis on single DNA 
molecules in real time. A DNA polymerase is 
confined in a zero-mode waveguide and base 
additions measured with florescence detection of 
gamma-labeled phosphonucleotides. (B) Several 
companies seek to sequence DNA by direct 
inspection using electron microscopy similar to the 
Reveo technology pictured here, in which an 
ssDNA molecule is first stretched and then 
examined by STM. (C) Oxford Nanopore technology 
for measuring translocation of nucleotides cleaved 
from a DNA molecule across a pore, driven by the 
force of differential ion concentrations across the 
membrane. (D) IBM's DNA transistor technology 
reads individual bases of ssDNA molecules as they 
pass through a narrow aperture based on the 
unique electronic signature of each individual 
nucleotide. Gold bands represent metal and gray 
bands dielectric layers of the transistor. 



Sequencing a long DNA
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• How to sequence DNA longer than what a single reaction can achieve?
–Cut the DNA into shorter fragments
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• How to sequence DNA longer than what a single reaction can achieve?
–Cut the DNA into shorter fragments

• How to get back the whole sequence?
– If the short fragments do not overlap, we need to record the exact order
–Experimentally infeasible: 3´109 / 1000 = 3´106 fragments



Sequencing a long DNA
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• How to sequence DNA longer than what a single reaction can achieve?
–Cut the DNA into shorter fragments

• How to get back the whole sequence?
– If the short fragments do not overlap, we need to record the exact order
–Experimentally infeasible: 3´109 / 1000 = 3´106 fragments

• Key idea: cut randomly, with overlaps
–60x coverage means on average each position is covered by 60 sequencing reads
–“Shotgun sequencing”



Shotgun sequencing
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Whole genome in a single run Hierarchical approach

Image credit: Commins et al., Biological Procedures Online 11(1):52-78, (2009)



The resulting raw data

25

Read 
length

Insert size

Fragment length

mate pair

Breaking down a long DNA into fragments by 
sonication or enzymatic treatment

• Raw data:
– Single-end sequencing: one sequencing 

read (i.e., a short string) per fragment
–Paired-end sequencing: two sequencing 

reads per fragment

• Quality score:
–How reliable each sequenced base is
• While sequencing is quite reliable, errors do 

occur (e.g., due to unclear signals)



FASTQ file format (for raw reads)
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• Sequence (FASTA) + Quality (Q)
• Each sequence occupies four lines:

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

– Line 1: @, followed by sequence ID and descriptions
– Line 2: sequence
– Line 3: +, optionally followed by sequence ID and descriptions
– Line 4: quality scores
• Standard: int score = (ASCII code of character) – 33;

– E.g., ‘!’ means a quality (Phred) score of 33 – 33 = 0, i.e., very bad
– If probability of base-calling error is p, then Phred score is –log10 p

• Illumina has a different standard (with different versions)
Example source: Wikipedia



ASCII table and Phred score
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Image source: Wikimedia



ASCII table and Phred score
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• Example: The character ‘*’ has 
ASCII code of 42

• Suppose the probability of 
sequencing error of that base is p, 
then
– –log10 p = 42 – 33
Þ p = 10-9

Þ Reported base is unlikely to be 
an error

Image source: Wikimedia



Getting back the original sequence
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• After sequencing the ends of the fragments (the “reads”), how to get 
back the original sequence?

• Two main approaches:
– Sequence assembly (“de novo assembly”)
– Sequence alignment (“re-sequencing”)



Sequence assembly
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• From the short fragments, reconstruct 
the original long sequence
– Not always able to get one single final sequence
– If not, each assembled sequence is called a contig 

(remember seeing this term in GenBank?)

Image credit: Commins et al., Biological Procedures Online 11(1):52-78, (2009)

Eulerian



Sequence assembly methods
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• Many methods proposed for different sequencing methods
–ABySS
– Euler
– SOAPdenovo
–Velvet
– ...

• We will just study some basic ideas



de Bruijn graph
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• A set of nodes, each with a length-k sub-sequence
• There is a directed edge from a node A to a node B if the length-(k-1) 

suffix of A is equal to the length-(k-1) prefix of B
• Example:

Image credit: Wikipedia
How to pronounce “de Bruijn”? You may take a look at this page: 
http://thegenomefactory.blogspot.hk/2013/08/how-to-pronounce-de-bruijn.html



de Bruijn graph and sequencing
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• After sequencing, we obtain a set of short reads, each consisting of a 
sub-sequence
• We can construct a de Bruijn graph by considering k-mers of the sub-

sequences
– Two nodes are connected if they appear in consecutive positions on a single read

• Then based on the graph structure, we try to deduce the original long 
sequence
– Theoretically, we try to find a path that visits every edge exactly once
– In practice, there are many issues



Illustration: Constructing the de Bruijn graph
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Sequencing error

Image credit: Flicek and Birney, Nature Methods 6(11s):S6-S12, (2009)



Simplification
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Image credit: Flicek and Birney, Nature Methods 6(11s):S6-S12, (2009)



Error detection and removal
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• Signals of errors:
– Tips
–Bubbles
– Low-coverage paths

Image credit: Flicek and Birney, Nature Methods 6(11s):S6-S12, (2009)



The final graph: A real example
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• Artificial mixing of two similar DNA sequences



Mapping and alignment
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• It is not very common to perform de novo assembly nowadays
–Reason 1: Current high-throughput technologies give very short reads (about or 

less than 100nt). The resulting de Bruijn graphs are very hard to simplify
• For example, it is hard to deal with repeat regions

–Reason 2: Databases contain many DNA sequences that can be used as references

• Instead, it is more common to perform mapping by means of alignment
–Aligning many (billions of) short reads to a long reference
–Perform assembly only when a good reference is not available



Common short-read alignment methods
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• BFAST
• BOWTIE
• BWA
• ELAND
• Maq
• SHRiMP, SHRiMP2
• SOAP, SOAP2, SOAP3
• ...



Mapping short reads to a reference genome
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• Basically, a local sequence alignment problem
–Dynamic programming?
• Reference too long (~3 billion for human)
• Too many reads (up to billions)

–BLAST/FASTA?
• Still too slow
• No need to be so flexible. Can be more stringent by allowing fewer mismatches

– Faster data structures
• Hash tables (similar to what BLAST and FASTA use)
• Suffix tree/trie/array
• Burrows Wheeler Transform (BWT)



Efficient data structures
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• The key to these fast methods is to construct an index of the reference 
and/or the reads, so that near-exact searching can be very efficient
–Similar to an index/glossary at the end of a book

• Example: Suppose we want to check whether a short substring appears 
in the string TATACATTAG$ (the $ symbol indicates the end of the 
string)
–CAT? Yes: Position 5
–GAG? No



An example data structure: Suffix trie
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• s=TATACATTAG$
• Suffixes:
TATACATTAG$
ATACATTAG$
TACATTAG$
ACATTAG$
CATTAG$
ATTAG$
TTAG$
TAG$
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G$
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SAM file format (for alignment results)
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• Alignment:
Coor    12345678901234  5678901234567890123456789012345
ref     AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
+r001/1       TTAGATAAAGGATA*CTG
+r002        aaaAGATAA*GGATA
+r003      gcctaAGCTAA
+r004                    ATAGCT..............TCAGC
-r003                           ttagctTAGGC
-r001/2                                       CAGCGCCAT

• SAM format:
@HD VN:1.3 SO:coordinate
@SQ SN:ref LN:45
r001 163 ref  7 30 8M2I4M1D3M = 37  39 TTAGATAAAGGATACTG *
r002   0 ref  9 30 3S6M1P1I4M *  0   0 AAAAGATAAGGATA    *
r003   0 ref  9 30 5H6M       *  0   0 AGCTAA   *   NM:i:1
r004   0 ref 16 30 6M14N5M    *  0   0 ATAGCTTCAGC       *
r003  16 ref 29 30 6H5M       *  0   0 TAGGC    *   NM:i:0
r001  83 ref 37 30 9M         =  7 -39 CAGCGCCAT         *

– CIGAR (Compact Idiosyncratic Gapped Alignment Report) string:
M: alignment match; S: substitution (mismatch); I: insertion; D: deletion, etc.

Example source: http://samtools.sourceforge.net/SAM1.pdf



Other common file formats
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• See http://genome.ucsc.edu/FAQ/FAQformat.html for a list of commonly 
used file formats in addition to FASTQ and SAM

http://genome.ucsc.edu/FAQ/FAQformat.html


Transcriptomics

Part 3



Gene expression
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• We have only one genome, but why do we have many different types of 
cells?
– Expression of different genes:
• Amount of RNAs produced
• Amount of proteins produced

• Examining gene expression is a first step to understanding function
–Also a way to see what has gone wrong (e.g., in cancer cells)

• As explained before, gene expression is regulated by a complex set of 
mechanisms



RNA level vs. protein level

47

• For protein-coding genes, activity is best reflected by protein abundance
–However, it is difficult to measure

• Instead, amount of RNAs produced is usually used as a proxy of protein 
abundance
–RNA level does not perfectly correlate with protein level due to post-

transcriptional regulation, RNA degradation, translation efficiency, etc.
– Transcription rate is yet another measurement.

• We will use the term “gene expression” to mean RNA level (number of 
copies of an RNA in a cell)



Measuring gene expression levels
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• High-throughput methods:
–Microarrays
• Design probes
• Convert RNA back to DNA

– Since DNA is more stable
– Called complementary DNA, or cDNA

• Hybridization
• Fluorescent dye as measurable output

– cDNA sequencing (RNA-seq)
• Convert RNA back to cDNA
• Sequence DNA
• Map back to genome
• Count number of reads from each gene



Microarrays
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• Basic ideas:
–We need to know the DNA sequences of the genes
– For each gene, we design short sequences that are unique to the gene
• Usually 25-75 nucleotides

–When RNA is converted back to DNA, if it is complementary to a probe, it will bind 
to the probe – “hybridization”
• Ideally only for perfect match, but sometimes hybridization also happens with some 

mismatches



Illustrations: the arrays
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Image sources: http://www4.carleton.ca/jmc/catalyst/2006s/images/dk-PersMed3.jpg, 
http://bioweb.wku.edu/courses/biol566/Images/stemAffyChip.jpg



Illustrations: hybridization
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Image credit: Wikipedia



Microarrays
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• Basic ideas (cont’d):
–Detection: using florescent dye, more hybridization gives stronger signal
– Thousands or tens of thousands of such experiments are performed at the same 

time by having many small wells on a solid surface, each with a different type of 
probes – the microarray
–When cDNA is added to a microarray, they will hybridize to complementary probes



Illustrations: workflows
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Image source: http://www.stat.berkeley.edu/users/terry/Classes/s246.2004/Week9/2004L17Stat246.pdf



Processing microarray data
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• Microarray data are relatively noisy
–Cross-hybridization (binding to an unexpected probe)
–Background signals
– Sensitivity to experimental condition

• There are many steps in microarray data processing. We do not go into 
the details
–Combining values from different probes
–Normalization
– Filtering
– ...



RNA-seq
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• Convert RNAs back to cDNAs, sequence them, and identify which genes 
they correspond to
–Better signal-to-noise ratio than microarrays
• Especially important for genes with low expression

–Wider signal range
–No need to have prior knowledge about the sequences
– If a sequence is not unique to a gene, cannot determine which gene it comes from
• Also a problem for microarrays



RNA-seq
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Image credit: Wang et al., Nature Review Genetics 10(1):57-63, (2009)



Processing RNA-seq data
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• Again, many steps and we will not go into the details
–Quality check
–Read trimming and filtering
–Read mapping
–Data normalization
– ...



Measuring expression levels
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• How to compute an expression level from a distribution of read counts?
–Calculate the average
–Based on a statistical model

• Normalization: If expression levels of different genes or the same gene in 
different datasets are to be compared
– Longer genes are expected to get more reads
– For a dataset with more reads, each gene gets more reads on average
–RPKM: Reads per Kilobase of exons per Million reads
• There are more advanced methods

Image credit: Wang et al., Nature Reviews Genetics 10(1):57-63, (2009)



Analyzing gene expression data
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• Ultimately, from a high-throughput gene expression experiment we get a 
vector of real numbers, corresponding to the expression values of the 
genes
• We will briefly study two types of analysis
–Clustering
–Classification



Clustering gene expression data
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• The data:
–A matrix of real numbers
– Each row corresponds to a gene
– Each column corresponds to a sample/experiment:
• A particular condition
• A cell type (e.g., cancer)

• Questions:
–Any genes that show similar changes of their expression levels  across experiments?
–Any samples with similar sets of genes expressed?



Hierarchical clustering
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• There are many clustering algorithms
• We have learned one in phylogenetic tree reconstruction: UPGMA
–A hierarchical clustering algorithm
– In each step, we merge two clusters that are most similar, until all clusters have 

been merged into one

• Can apply the same idea in clustering gene expression data
–Of course here branch lengths do not mean evolutionary time



Two-way hierarchical clustering
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• Things to consider when clustering gene expression data:
–We want to both cluster genes and cluster samples – two-way clustering
–May use either distance matrix or similarity matrix
• Euclidean distance (if absolute expression levels matter):

• Pearson correlation (if only the trend matters):

– Between -1 and 1
– Positive: correlated; negative: anti-correlated; 0: uncorrelated

r(x, y) =
∑ (xi − x+)(yi − y+)i

,∑ (xi − x+)2i ,∑ (yi − y+)2i
 

d(x, y) = ()(xi − yi)2
i

 



Absolute distance vs. correlation
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• d(x, y) = 0.92 < d(x, z) = 4.56
– x is closer (i.e., more similar) to y than z

• r(x, y) = 0.01 < r(x, z) = 0.99
– x is more similar to z than y
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The whole procedure
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1. Compute the distance/similarity between every pair of rows, using the 
columns as features

2. Use the distance/similarity matrix to perform a hierarchical clustering 
of the rows

3. Compute the distance/similarity between every pair of columns, using 
the rows as features

4. Use the distance/similarity matrix to perform a hierarchical clustering 
of the columns



An example: different subtypes of cancer
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• Note the separation of 
different types of samples 
(labeled by different colors)

Image credit: Alizadeh et al., Nature 403(6769):503-533, (2000)



K-means
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• K-means is another classical clustering algorithm
–MacQueen, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and 

Probability 281-297, (1967)

• Instead of hierarchically merging clusters, k-means iteratively partitions 
the objects into k clusters by repeating two steps until stabilized:

1. Determining cluster representatives
• Randomly determined initially
• Centroids of current members in subsequent iterations

2. Assigning each object to the cluster with the closest representative



Example (k=2)
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Unsupervised vs. supervised learning
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• In clustering analysis, we grouped objects (genes or samples) together 
purely based on expression values
–Did not use any knowledge about the samples (e.g., type of cancer)
– “Unsupervised” learning

• Alternatively, one may try to build a model that can distinguish different 
types of genes/samples, using known labels
– “Supervised” learning
–Goal: Given a new object without label, use the model to predict it



Classification: supervised learning
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• If the target is discrete labels, the supervised learning problem is called 
classification
• There are many methods for performing classification
–Bottom line: You need to know the difference between clustering and classification
–We will introduce one very simple method for classification



Nearest neighbor
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• One simple method is to predict the label of the object as the same as 
that of the most similar object
–Again, similarity can be measured by different ways
–Can generalize to consider k nearest neighbors instead of the single most similar 

one – let them vote



Example
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• Suppose we have this set of gene expression data:

• Similarity Between S5 and the other samples based on Pearson 
correlation:

• Therefore, S5 is predicted to be of type A (due to S2)

S1 S2 S3 S4 S5

Gene 1 1 2 4 3 3

Gene 2 2 5 2 9 5

Gene 3 2 3 6 1 4

Gene 4 5 7 1 2 6

Cancer type A A B B ?

S1 S2 S3 S4

Correlation with S5 0.89 0.99 -0.76 0.18



An example
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• Predicting the survival of medulloblastoma (a form of brain tumour) 
patients (mainly children)
• Method: a variation of k nearest neighbors

Patients 
predicted to 

survive

Patients predicted to 
be treatment failures

Image credit: Pomeroy et al., Nature 415(6870):436-442, (2002)



Summary and Further Readings

Epilogue



Further readings
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• SEQAnswers: An important online forum for discussing almost 
everything about high-throughput sequencing
• There are many good review and assessment papers. For example:
– Sequence assembly: Compeau et al., How to Apply de Bruijn Graphs to Genome 

Assembly. Nature Biotechnology 29(11):987-991, (2011)
–RNA-seq: Marioni et al., RNA-seq: An Assessment of Technical Reproducibility and 

Comparison with Gene Expression Arrays. Genome Research 18(9):1509-1517, 
(2008)
–Differential expression: Dillies et al., A Comprehensive Evaluation of Normalization 

Methods for Illumina High-Throughput RNA Sequencing Data Analysis. Briefings in 
Bioinformatics doi:10.1093/bib/bbs046, (2012)

http://www.nature.com/nbt/journal/v29/n11/full/nbt.2023.html
http://genome.cshlp.org/content/18/9/1509.long
http://bib.oxfordjournals.org/content/early/2012/09/15/bib.bbs046.full.html

