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Lecture outline

1. Ome, omic and omics

2. Genomics (DNA)
- Sequencing methods
- Computational problems in reconstructing sequence

3. Transcriptomics (RNA)

- Microarrays and RNA-sequencing
- Data clustering and classification
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Ome, omic, and omics

* Traditionally, biologists study one or a few biological objects at a time
—Hypothesis driven

* Now it is possible to study many biological objects at the same time
— Data driven

e Suppose we want to study a type of objects or phenomena, X

—“X-ome”: A large amount of data related to X, or the whole set of X
— “X-omic”: To study a large amount of data related to X

— “X-omics”: The area of studying a large amount of data related to X




What: Different kinds of X-omics

Genes/ DNA Genome Genomics (The study of all genes/whole set of DNA)
Transcripts/ transcription Transcriptome Transcriptomics (The study of gene expression levels)
Exons/ transcription Exome Exomics

Proteins Proteome Proteomics (The study of protein identity and abundance)
Metabolism Metabolome Metabolomics (The study of metabolic reactions)

DNA methylation Methylome Methylomics

Non-coding RNAs, DNA methylation, Epigenome Epigenomics (The study of inheritable non-DNA signals)
histone modifications

Population of co-existing speciesin  Metagenome Metagenomics (The study of different genomes, transcriptomes, etc.
an environment in a common environment)

Phenotypes Phenome Phenomics

Interactions Interactome Interactomics
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* Key idea in omic research: high-throughput experiments by means of...

— Parallelization




How: High-throughput experiments

* Key idea in omic research: high-throughput experiments by means of...

— Parallelization

* Examples:

— Measuring the expression levels of a small number of genes (e.g., RT-PCR) vs.

measuring the expression levels of a large number of genes in parallel (microarray
or RNA-seq)

—Measuring the interaction between a protein and a particular piece of DNA (e.g.,
DNase | footprinting) vs. measuring the interactions between a protein and all
regions in the genome in parallel (ChIP-chip or ChIP-seq)




Why: Strengths and weaknesses

e Strengths of the omic approach:
— High-throughput: fast, less tedious, relatively inexpensive
— Comprehensive
— Relatively unbiased

— Easier to study interactions and combinatorial effects




Why: Strengths and weaknesses

e Strengths of the omic approach:
— High-throughput: fast, less tedious, relatively inexpensive
— Comprehensive
— Relatively unbiased
— Easier to study interactions and combinatorial effects

* Weaknesses:
—Noise
—Secondary effects
— Lack of clear hypotheses
—High initial cost (the machines)



Typical omic workflow

1. Production of data

2. Data processing
— Quality control
— Data normalization

3. Data analysis (pattern discovery)
4. Data annotation and comparisons

— Evaluation of statistical significance
5. Selection and summarization of results
6. Hypothesis formation
7. Experimental validation



Part 2

Genomics



Sequencing

* We have studied many problems related to sequences
— Alignments
— Estimation of actual number of substitutions based on the observed number
— Phylogenetic tree reconstruction
—Secondary structure prediction

* How did we get the sequences in the first place?

—Sequencing
* Input: Cell sample containing the DNA

* Output: The string representation of the DNA sequence




Sanger sequencing

* For sequencing DNA
* Low-throughput, but high reliability

e Can sequence up to 300-1000 nucleotides per reaction
—Versus ~100nt for high-throughput experiments

e Used for sequencing the first human genome
* Method of choice for common laboratory use

* Now also used for validating results obtained from high-throughput,
“next-generation” sequencing




Next generation sequencing

e “Second generation”, “next
generation”, or “massively
parallel” sequencing

* Going parallel

— Platform (droplet vs. solid-phase)

—Immobilization (primer vs.
template vs. polymerase)

a Roche/454, Life/APG, Polonator
Emulsion PCR

One DNA molecule per bead. Clonal amplification to thousands of copies occurs in microreactors in an emulsion

Chemically cross-

dNTPs and polymerase linked to a glass slide

b Illumina/Solexa
Solid-phase amplification
One DNA molecule per cluster

¢ Helicos BioSciences: one-pass sequencing
Single molecule: primer immobilized

Bridge amplification Billions of primed, single-molecule templates

d Helicos BioSciences: two-pass sequencing
Single molecule: template immobilized

e Pacific Biosciences, Life/Visigen, LI-COR Biosciences
Single molecule: polymerase immobilized ]

Billions of primed, single-molecule templates

Thousands of primed, single-molecule templates

Image credit: Metzker, Nature Reviews Genetics 11:31-46, (2010)




Comparison of technologies

Table 1 Comparison of next generation ing platform:
Com-  Sequencing . System  Readlength Numberof _ Through- Machine
pany  Principle "o Do (op) Reads MMM iprun  ACOURSY oo Advantage e
llumina Reversible Fluores- HiSeq 36/50/100 3 billion 2~11days 600 GB >99% 740,000 Very high Long run time;
terminator  cence/ 2500/1500 (SE) throughput; Short read lengths;
sequencing Optical Cost-effective-  Expensive instru-
by synthesis ness; Steadily ~ ment; Lower error
improving read  rate
lengths; Massive
throughput
Genome  35/50/75/100 320 million 2-14 days 95GB >99% 250,000 High throughput; Low multiplex-
Analyzer (SE) The most widely ing capability of
3 used platform samples
MiSeq 25/36/100/ 17 milion  4-27hours 85GB  >99% 125,000 High throughput; Short read lengths
150/250 (SE) Cost-effective-
ness; Short run
times; Appropri- =
ate throughput
e Sequencing Power For Every Scale.
applications;
Minimal hands-
on time; High
coverage
Roche Pyrosg— Optical 454 GS 700 1 million 23hours 0.7 GB 99.997% 450,000 High through- Appreciam‘e \ HiSeq X Ten
quencing FLX+ put; Longer read  hands-on time;
lengths; Short  High reagent
run times; High  costs; Higher error
coverage rate in homopoly- Hi seq X Five
454GS 400 imilion  10hours 0.035GB >99% 108,000 Longerread mers regions
Junior lengths; Short
run times W
Helicos  Single Fluores- Heliscope 25-55 (aver- 600-800 8 days 37GB 99.99% 999,000 Single-molecule Expensive instru- ’i
Biosci-  molecule cence/ age: 32) million nature of tech-  ment; Very short Q.
ences  sequencing Optical nology; Non-bias read lengths =
representation  (increase cost and o o
of templates for  difficulty of as- o
b e - 150060 | 58] 12%150 1800GY | 68 |
error rate Q
ABI Life Ligation Fluores- 5500 75435 1.4billion 7 days 90 GB 99.99% 350,000 High throughput; Long run times; E
Tech- cence/  SOLID Lowest reagent  Very short read
nologies Optical cost lengths (increase g
5500x 75435 28bilion 7days  180GB  99.99% 595,000 Very high cost and difficulty - :
SOLID throughput; Low ©of assembly) ‘; HiSeq 2500
error rate; Mas- w
sive throughput o X
Protonde- Change lonPer-  35/200/400 12million 2hours  2GB >99% 80,000 Shortrun times; Appreciable £ HiSeq 3000
tecon  inpH  sonal Low costper  hands-on fime; -
detected  Genome sample; Appro-  High reagent o NextSeq
bylon-  Machine priate through-  costs; Higher error g b
Sensitive  (PGM) put for micro- rate in homopoly- -
Field Ef- bial applications; mers (sequential 1000(6b | 4B 2x325
fect Tran- Direct measure-  washing steps) MiSeq (Dx)
sistors ment of nucleo-
i) pase Incorpora 206D 400|260
lonProton Upto200  60-80mil- 2hours  10GB/  >99% 243,000 Shortruntimes; Instrument not
Chip VI lion 100 GB Flexible chip  available at time of
LT TG 15Gb | 250 | 2x200
Pacific  Real-time, Fluores- PacBio RS Average: ~50 K 2 hours 13GB 84-85% 750,000 Short run times; No paired reads;
Biosci-  single mol- cence/ 3000 Verylongread  Highest error
ence  eculeDNA Optical lengths; Low rates; i >
sequencing reagent costs;  instrument; Dif-
Simple sample ficutt installation Decreasing Price Per Gb
preparation
Oxford Nanopore  Electrical gridlON  TensofKb  4-10mil-  According Tens of GB 96% Accord- Extremelylong 4% error rates;
Nano-  exonucle-  Conduc- lion to experi- ing to read lengths; Cleaved nucleo-
pore  asese- tivity ment experi-  Low cost of tide may be read
quencing ment  a-HL nanopore in the wrong order;
production; Difficult to fabri-

Customization; ~ cate a device with
No fluorescent  multiple parallel
labeling; No pores.

optics

Image credit: Lee et al., Translational Cancer Research 2:1 (2013); http://blog.genohub.com/wp-content/uploads/2015/01/Slidel.jpg




Sequencing cost

$100,000,000
$10,000,000

$1,000,000

$100,000 . - ’ - (051 per Genome

. B - Moore's Law
»10,000 — Moore's Law Forecast
$1.000 == Historic Rate Forecast
Step-Change Forecast

$100

510

Figure 1: Human Genome Sequencing Costs. Data Source: NHGRI Genome Sequencing Program (GSP)

Image source: https://insidehpc.com/2016/11/enabling-personalized-medicine-through-genomic-workflow-acceleration/



Third generation sequencing

* Characteristics:
—Longer reads
—Higher error rate (currently)
—Higher cost (currently)
—Single-cell sequencing

* Example: Pacific Biosciences’ Single Molecule Real-Time (SMRT)
segquencing
—Several hundred base pairs or more
—>10 times higher error rate than NGS



Third generation sequencing technologies
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Image credit: Schadt et al., Human Molecular Genetics 19(R2):227-240, (2010)

How third-generation DNA-sequencing
technologies work. Third-generation DNA-
sequencing technologies are distinguished by
direct inspection of single molecules with methods
that do not require wash steps during DNA
synthesis. (A) Pacific Biosciences technology for
direct observation of DNA synthesis on single DNA
molecules in real time. A DNA polymerase is
confined in a zero-mode waveguide and base
additions measured with florescence detection of
gamma-labeled phosphonucleotides. (B) Several
companies seek to sequence DNA by direct
inspection using electron microscopy similar to the
Reveo technology pictured here, in which an
ssDNA molecule is first stretched and then
examined by STM. (C) Oxford Nanopore technology
for measuring translocation of nucleotides cleaved
from a DNA molecule across a pore, driven by the
force of differential ion concentrations across the
membrane. (D) IBM's DNA transistor technology
reads individual bases of ssDNA molecules as they
pass through a narrow aperture based on the
unique electronic signature of each individual
nucleotide. Gold bands represent metal and gray
bands dielectric layers of the transistor.



Sequencing a long DNA

 How to sequence DNA longer than what a single reaction can achieve?

—Cut the DNA into shorter fragments




Sequencing a long DNA

 How to sequence DNA longer than what a single reaction can achieve?
—Cut the DNA into shorter fragments

* How to get back the whole sequence?
—If the short fragments do not overlap, we need to record the exact order

—Experimentally infeasible: 3x10° / 1000 = 3x10° fragments




Sequencing a long DNA

* How to sequence DNA longer than what a single reaction can achieve?
—Cut the DNA into shorter fragments

* How to get back the whole sequence?
—If the short fragments do not overlap, we need to record the exact order
—Experimentally infeasible: 3x10° / 1000 = 3x10° fragments

e Key idea: cut randomly, with overlaps
—60x coverage means on average each position is covered by 60 sequencing reads
—“Shotgun sequencing”



Shotgun sequencing

-

ATGTTCCGATTA

TTTCATTCAGTAAAAGGAGGAAATATAA

—

N

Cloned genomes

Multiple genomes are sheared
into variable sized segments

Unordered sequenced
segments.

Computational automated
assembly

Resulting overlapping sequence
segments. (The higher the
coverage the better the quality
of the sequencing.

& %
pping 9

combined to construct the

genome consensus. /

Whole genome in a single run

Image credit: Commins et al., Biological Procedures Online 11(1):52-78, (2009)
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Genome divided into large
segments of known order.
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The resulting raw data

* Raw data:
Breaking down a long DNA into fragments by

—Single-end sequencing: one sequencing sonication or enzymatic treatment
read (i.e., a short string) per fragment '

— Paired-end sequencing: two sequencing
reads per fragment

FragmenAt length

e Quality score: , |

—How reliable each sequenced base is

* While sequencing is quite reliable, errors do
occur (e.g., due to unclear signals)

mate pair



FASTQ file format (for raw reads)

e Sequence (FASTA) + Quality (Q)

* Each sequence occupies four lines:

@SEQ ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

_|_
PVUk ((((F%%4) ) 33%++) (33%3) . 1***—4*1 1)) *x*55CCF>>>>>>CCCCCCCHS5

—Line 1: @, followed by sequence ID and descriptions

—Line 2: sequence
—Line 3: +, optionally followed by sequence ID and descriptions

—Line 4: quality scores

» Standard: int score = (ASCIl code of character) — 33;
— E.g., ‘Y means a quality (Phred) score of 33 -33 =0, i.e., very bad
— If probability of base-calling error is p, then Phred score is —log,o p

* lllumina has a different standard (with different versions)

Example source: Wikipedia



ASCII table and Phred score

Decimal Hexadecimal Binary Octal Char Decimal Hexadecimal Binary Octal Char | Decimal Hexadecimal Binary Octal Char
0 0 0 0 (NULL] 48 30 110000 60 0 96 60 1100000 140 °
1 1 1 1 [START OF HEADING] 49 31 110001 61 1 97 61 1100001 141 a
2 2 10 2 [START OF TEXT) 50 32 110010 62 2 98 62 1100010 142 b
3 3 11 3 [END OF TEXT] 51 33 110011 63 3 99 63 1100011 143 ¢
4 4 100 4 [END OF TRANSMISSION] 52 34 110100 64 4 100 64 1100100 144 d
5 5 101 5 (ENQUIRY] 53 35 110101 65 5 101 65 1100101 145 e
6 6 110 6 [ACKNOWLEDGE] 54 36 110110 66 6 102 66 1100110 146 f
7 7 111 7 (BELL] 55 37 110111 67 7 103 67 1100111 147 g
8 8 1000 10 [BACKSPACE] 56 38 111000 70 8 104 68 1101000 150 h
9 9 1001 11 [HORIZONTAL TAB) 57 39 111001 71 9 105 69 1101001 151 i
10 A 1010 12 [LINE FEED] 58 3A 111010 72 : 106 6A 1101010 152 j
11 B 1011 13 [VERTICAL TAB] 59 3B 111011 73 ; 107 6B 1101011 153 k
12 C 1100 14 (FORM FEED] 60 3C 111100 74 < 108 6C 1101100 154 |
13 D 1101 15 [CARRIAGE RETURN] 61 3D 111101 75 = 109 6D 1101101 155 m
14 E 1110 16 [SHIFT OUT] 62 3E 111110 76 > 110 6E 1101110 156 n
15 F 1111 17 [SHIFT IN] 63 3F 111111 77 ? 111 6F 1101111 157 o
16 10 10000 20 [DATA LINK ESCAPE] 64 40 1000000 100 @ 112 70 1110000 160 p
17 11 10001 21 [DEVICE CONTROL 1] 65 41 1000001 101 A 113 71 1110001 161 gq
18 12 10010 22 [DEVICE CONTROL 2] 66 42 1000010 102 B 114 72 1110010 162 r
19 13 10011 23 [DEVICE CONTROL 3] 67 43 1000011103 C 115 73 1110011 163 s
20 14 10100 24 (DEVICE CONTROL 4] 68 44 1000100 104 D 116 74 1110100 164 t
21 15 10101 25 [NEGATIVE ACKNOWLEDGE]| 69 45 1000101 105 E 117 75 1110101 165 wu
22 16 10110 26 [SYNCHRONOUS IDLE] 70 46 1000110 106 F 118 76 1110110 166 v
23 17 10111 27 [ENG OF TRANS. BLOCK] 71 a7 1000111 107 G 119 77 1110111 167 w
24 18 11000 30 [CANCEL] 72 48 1001000 110 H 120 78 1111000 170 x
25 19 11001 31 [END OF MEDIUM] 73 49 1001001 111 1 121 79 1111001 171 vy
26 1A 11010 32 [SUBSTITUTE] 74 4A 1001010 112 ) 122 TA 1111010 172 =z
27 1B 11011 33 [ESCAPE) 75 4B 1001011 113 K 123 7B 1111011 173 {
28 1C 11100 34 [FILE SEPARATOR] 76 4C 1001100 114 L 124 7C 1111100 174 |
29 1D 11101 35 [GROUP SEPARATOR] 77 4D 1001101115 ™M 125 7D 1111101 175 }
30 1E 11110 36 [RECORD SEPARATOR] 78 4E 1001110 116 N 126 7E 1111110 176 ~
31 1F 11111 37 [UNIT SEPARATOR] 79 4F 1001111117 ©O 127 7F 1111111 177 [DEL)
32 20 100000 40 [SPACE] 80 50 1010000 120 P

33 21 100001 41 ! 81 51 1010001 121 Q

34 22 100010 42 - 82 52 1010010 122 R

35 23 100011 43 # 83 53 1010011 123 S

36 24 100100 44 $ 84 54 1010100124 T

37 25 100101 45 % 85 55 1010101125 U

38 26 100110 46 & 86 56 1010110 126 V

39 27 100111 47 ! 87 57 1010111 127 W

40 28 101000 50 ( 88 58 1011000 130 X

41 29 101001 51 ) 89 59 1011001 131 Y

42 2A 101010 52 * 90 5A 1011010 132 Z

43 2B 101011 53 + 91 5B 1011011 133 [

44 2C 101100 54 ’ 92 5C 1011100 134 \

45 2D 101101 55 - 93 5D 1011101 135 ]

46 2E 101110 56 . 94 5E 1011110 136 ~

47 2F 101111 57 ! 95 5F 1011111 137 _

Image source: Wikimedia



ASCII table and Phred score

Decimal Hexadecimal Binary Octal Char Decimal Hexadecimal Binary Octal Char | Decimal Hexadecimal Binary Octal Char

0 0 0 0 [NULL] 48 30 110000 60 O 96 60 1100000 140

1 1 1 1 [START OF HEADING] 49 31 110001 61 1 97 61 1100001 141 a

2 2 10 2 [START OF TEXT) 50 32 110010 62 2 98 62 1100010 142 b

3 3 11 3 [END OF TEXT] 51 33 110011 63 3 99 63 1100011 143 ¢

4 4 100 4 [END OF TRANSMISSION] | 52 34 110100 64 4 100 64 1100100 144 d

5 5 101 5 [ENQUIRY] 53 35 110101 65 5 101 65 1100101 145 e

6 6 110 6 [ACKNOWLEDGE] 54 36 110110 66 6 102 66 1100110 146 f

7 7 11 7 [BELL) 55 37 110111 67 7 103 67 1100111 147 g

8 8 1000 10  [BACKSPACE] 56 38 111000 70 8 104 68 1101000 150 h

9 9 1001 11  [HORIZONTAL TAB) 57 39 111001 71 9 105 69 1101001 151 i

10 A 1010 12 [LINE FEED] 58 3A 111010 72 106 6A 1101010 152

11 B 1011 13 [VERTICAL TAB] 59 38 111011 73 107 6B 1101011 153 k

12 C 1100 14  [FORM FEED] 60 3C 111100 74 < 108 6C 1101100 154 |

13 D 1101 15  (CARRIAGE RETURN] 61 3D 111101 75 = 109 6D 1101101 155 m

14 E 1110 16 [SHIFTOUT) 62 3E 111110 76 > 110 6E 1101110 156 n

15 F 1111 17 [SHIFTIN] 63 3F 111111 77 2 111 6F 1101111 157 o

16 10 10000 20  [DATA LINK ESCAPE] 64 40 1000000 100 @ 112 70 1110000 160 p

17 11 10001 21  [DEVICE CONTROL 1] 65 a1 1000001 101 A 113 71 1110001 161 gq

18 12 10010 22  [DEVICE CONTROL 2] 66 42 1000010 102 B 114 72 1110010 162 r

19 13 10011 23 [DEVICE CONTROL 3] 67 43 1000011 103 C 115 73 1110011 163 s

20 14 10100 24  [DEVICE CONTROL 4] 68 44 1000100 104 D 116 74 1110100 164 t

21 15 10101 25  [NEGATIVE ACKNOWLEDGE]| 69 45 1000101 105 E 117 75 1110101 165 u

22 16 10110 26  [SYNCHRONOUS IDLE] 70 46 1000110 106 F 118 76 1110110 166 v

23 17 10111 27  [ENG OF TRANS. BLOCK] 71 47 1000111 107 G 119 77 1110111 167 w

24 18 11000 30  [CANCEL] 72 48 1001000 110 H 120 78 1111000 170 x

25 19 11001 31  [END OF MEDIUM) 73 49 1001001 111 I 121 79 1111001 171 vy

26 1A 11010 32  [SUBSTITUTE] 74 4A 1001010 112 J 122 7A 1111010 172 z

27 1B 11011 33  [ESCAPE) 75 4B 1001011 113 K 123 7B 1111011 173 {

28 1C 11100 34  [FILE SEPARATOR] 76 ac 1001100 114 L 124 7C 1111100 174 |

29 1D 11101 35  [GROUP SEPARATOR] 77 4D 1001101 115 ™ 125 7D 1111101 175 }

30 1E 11110 36  [RECORD SEPARATOR] 78 4E 1001110 116 N 126 7E 1111110 176 ~

31 1F 11111 37  [UNIT SEPARATOR) 79 aF 1001111 117 © 127 7F 1111111 177 [DEL]

32 20 100000 40  [SPACE] 80 50 1010000 120 P *  Example: The character “*’ has

33 21 100001 41 ! 81 51 1010001 121 Q ASCII code of 42

34 22 100010 42  * 82 52 1010010 122 R .

35 23 100011 43  # 83 53 1010011 123 S *  Suppose the probability of

36 24 100100 44  $ 84 54 1010100 124 T sequencing error of that base is p,

37 25 100101 45 % 85 55 1010101 125 U then

38 26 100110 46 & 86 56 1010110 126 V

39 27 100111 47 ° 87 57 1010111 127 W — —logiop=42-33

40 28 101000 50  ( 88 58 1011000 130 X = p=10°

41 29 101001 51 ) 89 59 1011001 131 Y . .
Ca2 2A 101010 52 +] 90 5A 1011010 132 Z = Reported base is unlikely to be

43 2B 101011 53  + 91 58 1011011 133 [ an error

44 2C 101100 54 92 5C 1011100 134 \

45 2D 101101 55 - 93 5D 1011101 135 ]

46 2E 101110 56 . 94 5E 1011110 136 ~

47 2F 101111 57  / 95 5F 1011111 137

Image source: Wikimedia
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Getting back the original sequence

» After sequencing the ends of the fragments (the “reads”), how to get
back the original sequence?

 Two main approaches:
—Sequence assembly (“de novo assembly”)

—Sequence alignment (“re-sequencing”)




Sequence assembly

| =
* From the short fragments, reconstruct %ﬁ-‘ﬁ —* :-5‘:”:]%
the original long sequence
— Not always able to get one single final sequence

— If not, each assembled sequence is called a contig
(remember seeing this term in GenBank?)

=tiomiltenian Path identified

Eulerian l i =
Reads connected by overlaps
Consensus sequence

Image credit: Commins et al., Biological Procedures Online 11(1):52-78, (2009)




Sequence assembly methods

* Many methods proposed for different sequencing methods
— ABYySS
—Euler
—SOAPdenovo
—Velvet

* We will just study some basic ideas




de Bruijn graph

* A set of nodes, each with a length-k sub-sequence

* There is a directed edge from a node A to a node B if the length-(k-1)
suffix of A is equal to the length-(k-1) prefix of B

* Example:

@OO 001 010 011 100 101 110 11@

How to pronounce “de Bruijn”? You may take a look at this page:
http://thegenomefactory.blogspot.hk/2013/08/how-to-pronounce-de-bruijn.html

Image credit: Wikipedia



de Bruijn graph and sequencing

* After sequencing, we obtain a set of short reads, each consisting of a
sub-sequence

* We can construct a de Bruijn graph by considering k-mers of the sub-
sequences
—Two nodes are connected if they appear in consecutive positions on a single read

* Then based on the graph structure, we try to deduce the original long
sequence

—Theoretically, we try to find a path that visits every edge exactly once

—In practice, there are many issues




Illustration: Constructing the de Bruijn graph

| TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG | 1. Sequencing
(for example, Solexa or 454)

AGTCGAG CTTTAGA CGATGAG CTTTAGA
GTCGGG TTAGATC ATGAGGC GAGACAG
GAGGCTC ATCCGAT AGGCTTT GAGACAG
AGTCGAG TAGATCC ATGAGGC  TAGAGAA
TAGTCGA CTTTAGA CCGATGA TTAGAGA H
CGAGGCT AGATCCG TGAGGCT AGAGACA SequenCIng error
TAGTCGA GCTTTAG TCCGATG GCTCTAG
TCGACGC GATCCGA GAGGCTT AGAGACA
TAGTCGA TTAGATC GATGAGG TTTAGAG
GTCGAGG  TCTAGAT ATGAGGC TAGAGAC
AGGCTTT ATCCGAT AGGCTTT GAGACAG
AGTCGAG TTAGATT ATGAGGC AGAGACA

GGCTTTA TCCGATG TITAGAG 2 Hashing
CGAGGCT TAGATCC  TGAGGCT GAGACAG '
AGTCGAG TITAGATC ATGAGGC  TTAGAGA

GAGGCTT GATCCGA GAGGCTT GAGACAG

Linear stretches
‘%
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Image credit: Flicek and Birney, Nature Methods 6(11s):56-512, (2009)




Simplification

Linear stretches
‘%
(1)

L

TGAG ATGA GATG CGAT CCGA TCCG ATCC GATC AGAT
9 @) (9 @) T 9 ) @) (8

L L L L L L L Ot 0= -

-0 — 20— w0 —»o AGAA

(1)
- -e . >0 ~ =0 o . -e - w‘zfjc C(IST T‘g:’: C;? R e > Q-0 -e -
TAGT AGTC GTCG TCGA CGAG GAGG AGGC GGCT GGCT TAGA AGAG GAGA AGAC GACA ACAG
B9 79 99 (109 | (&) (189 (183 (163 (1 T o —Fe—wo—we= 16 () (1) (9 @I
e +so +o GCTT CTTT TTTA TTAG ———

@9 @) @ (129
CGAC GACG ACGC

(1= (= 9

3. Simplification of linear
stretches

Image credit: Flicek and Birney, Nature Methods 6(11s):56-512, (2009)




Error detection and removal

* Signals of errors:
—Tips
—Bubbles
— Low-coverage paths

Tips

4. Error (tip and bubble) remoVal‘ \ Bubble

AGATCCGATGAG

) -

- - = @ —= -e

TAGTCGAG GAGGCTTTAGA AGAGACAG

Image credit: Flicek and Birney, Nature Methods 6(11s):56-512, (2009)



The final graph: A real example

 Artificial mixing of two similar DNA sequences




Mapping and alignment

* It is not very common to perform de novo assembly nowadays

—Reason 1: Current high-throughput technologies give very short reads (about or
less than 100nt). The resulting de Bruijn graphs are very hard to simplify

* For example, it is hard to deal with repeat regions
—Reason 2: Databases contain many DNA sequences that can be used as references

* Instead, it is more common to perform mapping by means of alignment
— Aligning many (billions of) short reads to a long reference

— Perform assembly only when a good reference is not available




Common short-read alighnment methods

BFAST
BOWTIE
* BWA
ELAND

* Maqg
SHRIMP, SHRiMP2
* SOAP, SOAP2, SOAP3




Mapping short reads to a reference genome

 Basically, a local sequence alignment problem
—Dynamic programming?
 Reference too long (~3 billion for human)
* Too many reads (up to billions)
— BLAST/FASTA?
* Still too slow
* No need to be so flexible. Can be more stringent by allowing fewer mismatches
— Faster data structures
* Hash tables (similar to what BLAST and FASTA use)
o Suffix tree/trie/array
* Burrows Wheeler Transform (BWT)



Efficient data structures

* The key to these fast methods is to construct an index of the reference
and/or the reads, so that near-exact searching can be very efficient

—Similar to an index/glossary at the end of a book

* Example: Suppose we want to check whether a short substring appears
in the string TATACATTAGS (the $ symbol indicates the end of the

string)
— CAT? Yes: Position 5

—GAG? No




An example data structure: Suffix trie

e s=TATACATTAGS ()
e Suffixes: A c —FC
TATACATTAGS . G A $ . ©. @
ATACATTAGS @ $ O OO () ()
A A T C T A
TACATTAGS T ) C A T A $ A G
ACATTAGS T A G A T ) C $
TTAGS G T () $ A T
TGS $ A () G T
AGs @ G $ A
Gé $ () G
5 () $
()

‘
N



SAM file format (for alignment results)

e Alignment:
Coor 12345678901234 5678901234567890123456789012345

ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
+r001/1 TTAGATAAAGGATA*CTG

+r002 aaaAGATAA*GGATA

+r003 gcctaAGCTAA

+r004 ATAGCT ... eeenn.. TCAGC
-r003 ttagctTAGGC

-r001/2 CAGCGCCAT

e SAM format:
@HD VN:1.3 SO:coordinate
@SQ SN:ref LN:45

r001 163 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3SeM1P1I4M * O 0 AAAAGATAAGGATA *
r003 0 ref 9 30 HHeM * 0 0 AGCTAA * NM:1i:1
r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *
r003 16 ref 29 30 o©oHLHM * 0 0 TAGGC * NM:1:0
r001 83 ref 37 30 SM = 7 -39 CAGCGCCAT *

— CIGAR (Compact Idiosyncratic Gapped Alignment Report) string:
M: alignment match; S: substitution (mismatch); I: insertion; D: deletion, etc.
Reply

Example source: http://samtools.sourceforge.net/SAM1.pdf



Other common file formats

 See http://genome.ucsc.edu/FAQ/FAQformat.html for a list of commonly

used file formats in addition to FASTQ and SAM



http://genome.ucsc.edu/FAQ/FAQformat.html

Part 3

Transcriptomics



Gene expression

* We have only one genome, but why do we have many different types of
cells?
— Expression of different genes:
* Amount of RNAs produced
* Amount of proteins produced

* Examining gene expression is a first step to understanding function
— Also a way to see what has gone wrong (e.g., in cancer cells)

* As explained before, gene expression is regulated by a complex set of
mechanisms



RNA level vs. protein level

* For protein-coding genes, activity is best reflected by protein abundance

—However, it is difficult to measure

* Instead, amount of RNAs produced is usually used as a proxy of protein
abundance

—RNA level does not perfectly correlate with protein level due to post-
transcriptional regulation, RNA degradation, translation efficiency, etc.

—Transcription rate is yet another measurement.

* We will use the term “gene expression” to mean RNA level (number of
copies of an RNA in a cell)



Measuring gene expression levels

* High-throughput methods:

— Microarrays
* Design probes
* Convert RNA back to DNA

— Since DNA is more stable
— Called complementary DNA, or cDNA

* Hybridization

* Fluorescent dye as measurable output
—cDNA sequencing (RNA-seq)

* Convert RNA back to cDNA

* Sequence DNA

* Map back to genome

* Count number of reads from each gene



Microarrays

e Basic ideas:

—We need to know the DNA sequences of the genes

—For each gene, we design short sequences that are unique to the gene
e Usually 25-75 nucleotides

—When RNA is converted back to DNA, if it is complementary to a probe, it will bind
to the probe — “hybridization”

* Ideally only for perfect match, but sometimes hybridization also happens with some
mismatches




lllustrations: the arrays

© Davidl Kawai

Image sources: http://www4.carleton.ca/jmc/catalyst/2006s/images/dk-PersMed3.jpg,
http://bioweb.wku.edu/courses/biol566/Images/stemAffyChip.jpg




Illustrations: hybridization

y, labelled target (sample)
fixed probes *
~ < ) 2 %
% —

different features |
(e.g. bind different genes)
Fully complementary Partially complementary

strands bind strongly strands bind weakly

Image credit: Wikipedia
— 1

|



Microarrays

e Basic ideas (cont’d):
— Detection: using florescent dye, more hybridization gives stronger signal

—Thousands or tens of thousands of such experiments are performed at the same
time by having many small wells on a solid surface, each with a different type of
probes — the microarray

—When cDNA is added to a microarray, they will hybridize to complementary probes




lllustrations: workflows

cDNA-microarrays high-density oligonucleotide arrays

o mRNA reference

l®) cDNA collection / \ sequence
=

£ EEEEEHEEEEEEERER et 1" probe set

Q2 insert amplification by PCR 1

8 vector specific pnmers

(@9 gene specfic primers N .

O in situ synthesis
Ra) by photolithography

Qo printing

=

o coupling

denaturing
ratio Cy5/Cy3 <= - ==> ratio array 1/array 2
T staining T fragmented

g hybridization hybridization

g mixing R — T biotin labeled

= —— - cRNA

*ce' Cy3 I I (generated using T7 promoter)
% Cy3orCys6 _— e Iin vitro transcriptiorT

sé: labeled cODNA o =0 double-stranded

e - ™ cDNA

qo)D modified oligodT T cDNA synthesis T (generated using T7 primer)
= aonsnrs

S total RNA e /I total RNA

cellsitissue 6 @ 6 @ cellsftissue

Image source: http://www.stat.berkeley.edu/users/terry/Classes/s246.2004/Week9/2004L17Stat246.pdf



Processing microarray data

* Microarray data are relatively noisy
— Cross-hybridization (binding to an unexpected probe)
— Background signals
—Sensitivity to experimental condition

* There are many steps in microarray data processing. We do not go into
the details

— Combining values from different probes
—Normalization
— Filtering



* Convert RNAs back to cDNAs, sequence them, and identify which genes
they correspond to
— Better signal-to-noise ratio than microarrays

* Especially important for genes with low expression
— Wider signal range
—No need to have prior knowledge about the sequences
—If a sequence is not unique to a gene, cannot determine which gene it comes from

* Also a problem for microarrays




|

MRNA

| —r | — or
— —

RNA fragments l cDNA
i — - — - —

|

ATCACAGTGGGACTCCATAAATTTTTCT
CGAAGGACCAGCAGAAACGAGAGINYNNN
GGACAGAGTCCCCAGCGGGCTGAAGGGG
ATGAAACATTAAAGTCAAACAATATGAA

|

with adaptors

Short sequence reads

ORF
Coding sequence =
Dmmm-- o .
e Exonc reads
D----- ] — —
onreads e rt= e =
.
Junction reads . —— poly(A) end reads
— /—
— — s e = =
— — Mapped sequence reads

Base-resolution expression profile

[

RNA expression level

Nucleotide position

Image credit: Wang et al., Nature Review Genetics 10(1):57-63, (2009)




Processing RNA-seq data

e Again, many steps and we will not go into the details
— Quality check
—Read trimming and filtering
—Read mapping
— Data normalization




Measuring expression levels

* How to compute an expression level from a distribution of read counts?

—Calculate the avera ge Base-resolution expression profile
—Based on a statistical model - m Wm
* Normalization: If expression levels of (s ane in
I ucleotide position
different datasets are to be compared M

—Longer genes are expected to get more reads
— For a dataset with more reads, each gene gets more reads on average

expression level

—RPKM: Reads per Kilobase of exons per Million reads

* There are more advanced methods

Image credit: Wang et al., Nature Reviews Genetics 10(1):57-63, (2009)




Analyzing gene expression data

e Ultimately, from a high-throughput gene expression experiment we get a
vector of real numbers, corresponding to the expression values of the
genes

* We will briefly study two types of analysis
— Clustering

— Classification




Clustering gene expression data

* The data:

— A matrix of real numbers
—Each row corresponds to a gene

—Each column corresponds to a sample/experiment:
A particular condition
* A cell type (e.g., cancer)

* Questions:
— Any genes that show similar changes of their expression levels across experiments?

— Any samples with similar sets of genes expressed?




Hierarchical clustering

* There are many clustering algorithms

 We have learned one in phylogenetic tree reconstruction: UPGMA
— A hierarchical clustering algorithm

—In each step, we merge two clusters that are most similar, until all clusters have
been merged into one

e Can apply the same idea in clustering gene expression data
— Of course here branch lengths do not mean evolutionary time




Two-way hierarchical clustering

* Things to consider when clustering gene expression data:

—We want to both cluster genes and cluster samples — two-way clustering

—May use either distance matrix or similarity matrix
 Euclidean distance (if absolute expression levels matter):

d(x,y) = JZ(xi 0k

* Pearson correlation (if only the trend matters):

i =)@ —y)

r(x,y) =

\/Zi(xi — X)? \/Zi(Yi —¥)?

— Positive: correlated; negative: anti-correlated; O0: uncorrelated

— Between-1and 1




Absolute distance vs. correlation

Expression value
[EEY
(0]
x

o

o
n [
1

e d(x,y) =0.92 <d(x, z) =4.56
—X is closer (i.e., more similar) to y than z
* r(x,y)=0.01<r(x,z)=0.99

—X is more similar to z thany




The whole procedure

1. Compute the distance/similarity between every pair of rows, using the
columns as features

2. Use the distance/similarity matrix to perform a hierarchical clustering
of the rows

3. Compute the distance/similarity between every pair of columns, using
the rows as features

4. Use the distance/similarity matrix to perform a hierarchical clustering
of the columns




An example: different subtypes of cancer

—— 0155 « Note the separation of
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Image credit: Alizadeh et al., Nature 403(6769):503-533, (2000)




K-means

* K-means is another classical clustering algorithm
—MacQueen, Proceedings of 5t Berkeley Symposium on Mathematical Statistics and
Probability 281-297, (1967)

* Instead of hierarchically merging clusters, k-means iteratively partitions
the objects into k clusters by repeating two steps until stabilized:
1. Determining cluster representatives

. Randomly determined initially
. Centroids of current members in subsequent iterations

2. Assigning each object to the cluster with the closest representative




Example (k=2) W
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Unsupervised vs. supervised learning

* In clustering analysis, we grouped objects (genes or samples) together
purely based on expression values
—Did not use any knowledge about the samples (e.g., type of cancer)
—“Unsupervised” learning

* Alternatively, one may try to build a model that can distinguish different
types of genes/samples, using known labels
— “Supervised” learning

— Goal: Given a new object without label, use the model to predict it




Classification: supervised learning

* If the target is discrete labels, the supervised learning problem is called
classification

* There are many methods for performing classification
—Bottom line: You need to know the difference between clustering and classification

—We will introduce one very simple method for classification




Nearest neighbor

* One simple method is to predict the label of the object as the same as
that of the most similar object
— Again, similarity can be measured by different ways

— Can generalize to consider k nearest neighbors instead of the single most similar
one — let them vote




Example

* Suppose we have this set of gene expression data:

T s [s2 (s [sa Iss
Gene 1 1 2 4 3 3
Gene 2 2 5 2 9 5
Gene 3 2 3 6 1 4
Gene 4 5 7 1 2 6
Cancer type A A B B ?

e Similarity Between S5 and the other samples based on Pearson

correlation:
 [s1 o [s2 [s3 [sa

Correlation withS5 0.89 099 -0.76 0.18

e Therefore, S5 is predicted to be of type A (due to S2)



An example

* Predicting the survival of medulloblastoma (a form of brain tumour)
patients (mainly children)

* Method: a variation of k nearest neighbors

1.0- Patients
predicted to

0.8 survive
S
e 0.6
@
3 Patients predicted to
g 041 be treatment failures

0.2 P = 0.009

0
0 20 40 60 80 100 120

Image credit: Pomeroy et al., Nature 415(6870):436-442, (2002)



Epilogue

Summary and Further Readings



Further readings

 SEQAnswers: An important online forum for discussing almost
everything about high-throughput sequencing

* There are many good review and assessment papers. For example:

—Sequence assembly: Compeau et al., How to Apply de Bruijn Graphs to Genome
Assembly. Nature Biotechnology 29(11):987-991, (2011)

—RNA-seq: Marioni et al., RNA-seq: An Assessment of Technical Reproducibility and
Comparison with Gene Expression Arrays. Genome Research 18(9):1509-1517,
(2008)

— Differential expression: Dillies et al., A Comprehensive Evaluation of Normalization
Methods for lllumina High-Throughput RNA Sequencing Data Analysis. Briefings in
Bioinformatics doi:10.1093/bib/bbs046, (2012)



http://www.nature.com/nbt/journal/v29/n11/full/nbt.2023.html
http://genome.cshlp.org/content/18/9/1509.long
http://bib.oxfordjournals.org/content/early/2012/09/15/bib.bbs046.full.html

