BMEG3102 Bioinformatics

Lecture 5. Mutation Models and
Molecular Phylogenetics (2/2)

Qi Dou
Email: qidou@cuhk.edu.hk
Office: Room 1014, 10/F, SHB

BMEG3102 Bioinformatics

The Chinese University of Hong Kong

Lecture outline

1. Phylogenetic tree reconstruction
- Problem definition

2. Distance-based methods

- UPGMA
- Neighbor-joining

3. Sequence-based methods

- Maximum parsimony
- Maximum likelihood

Part 1

Phylogenetic Tree Reconstruction

Phylogenetic tree reconstruction

* General problem:
— Given a set of DNA/protein sequences
— Find a phylogenetic tree such that it likely corresponds to the actual historical
evolutionary events, involving:
* Order of separation events (how the nodes are connected)
* Ancestral sequences (what sequences the internal nodes have)
* Branch lengths (how much time it has been since the separation)

There are various ways to evaluate how likely a tree is correct.
We will study them in this lecture

—“Re”-construction: The tree was defined by history. We only try to reconstruct it from
the observed sequences

What sequence to use?

* If we are studying a gene
— DNA/protein sequence of the gene

* If we want to know the relationship between different species
— Whole genome (may not be feasible)

— Some genes that are essential and single-copied
* Ribosomal RNA

Complexity of problem

* Finding the “best” tree is a hard problem

* How many tree topologies (i.e., ignore branch lengths and left-right order) are there
for a set of k sequences?

Complexity of problem

* Finding the “best” tree is a hard problem

* How many tree topologies (i.e., ignore branch lengths and left-right order) are there
for a set of k sequences?

k Num. of rooted tree topologies

* For rooted trees:

2 1

— k=2:1 possible tree topology i 1?
— k=3: 3 possible branches to add #3 Z ;22
— k=4: 5 possible branches to add #4, and so on : —
. . 9 2,027,025

—Therefore, number of tree topologies is — 34,450,475
1x3x5x... x (2k-3) 1 654,729,075

12 13,749,310,575

13 316,234,143,225

14 7,905,853,580,625
15 213,458,046,676,875
16 6,190,283,353,629,370
17 191,898,783,962,511,000
18 6,332,659,870,762,850,000
19 221,643,095,476,700,000,000
20 8,200,794,532,637,890,000,000

e Exponential

Complexity of problem

k Num. of rooted tree topologies Num. of unrooted tree topologies

2 1 1

. . 3 3 1

* Similarly, for unrooted trees, ; . ;
. . 5 105 15
—k=2: 1 possible tree topology - — —
—2. : 7 10,395 945
k=3: 1 possible branch to add #3 - — —
— k=4: 3 possible branches to add #4 ° 2,027,025 135,135
10 34,459,425 2,027,025

— k=5: 5 possible branches to add #5 " S O S
12 13,749,310,575 654,729,075

— There number of tree topologies is 13 316,234,143, 225 13,749,310,575
14 7,905,853,580,625 316,234,143,225

1x3x5x...x(2k-5) 15 213,458,046,676,875 7,905,853,580,625
16 6,190,283,353,629,370 213,458,046,676,875

17 191,898,783,962,511,000 6,190,283,353,629,370

18 6,332,659,870,762,850,000 191,898,783,962,511,000

19 221,643,095,476,700,000,000 6,332,659,870,762,850,000
20 8,200,794,532,637,890,000,000 221,643,095,476,700,000,000

Rt P

%' uRepIy

http://ureply.mobi/mobile_index.php

Solving the problem: Ideas

* What do you do when you encounter a computationally hard problem?
— Define an easier version of the problem

* By making certain assumptions
— Design smart algorithms/data structures to avoid redundant calculations

— Use heuristics to solve it, not necessarily getting the optimal solution

Phylogenetic tree reconstruction methods

* Two main types of methods:

— Sequence-based: need the sequences
* Parsimony methods (easier problems, smart algorithms)
* Probabilistic methods (easier problems, smart algorithms)
— Maximum likelihood
— Bayesian
— Distance-based: only depends on the distances between the sequences
 UPGMA (heuristics)
* Neighbor joining (heuristics)

— We will study some of these algorithms

Lecture scope

* What you need to know:

— Basic concepts behind each type of algorithms

— How to use the methods to solve simple problems in phylogenetic tree reconstruction
* Except the maximum likelihood method

* What you are NOT required to know:
— Details of the maximum likelihood method
— Proof of the correctness of the algorithms

— How to implement the methods in a programming language

Part 2a
Distance-based Methods: UPGMA

Motivation

* In the sequence-based algorithms, the exact sequences are used when
reconstructing the phylogenetic trees

* In a distance-based method, only the pairwise distances between the
sequences are considered

— Good if the sequences are long, and we care only about the tree structure but not
the ancestral sequences

— The distances can be computed by methods based on sequence alignment

— Once the pairwise distances have been computed, the original sequences will not be
used

* Unweighted Pair Group Method with Arithmetic Mean

* Algorithm:
1. Compute the distance between each pair of sequences

2. Treat each sequence as a cluster by itself

3. Merge the two closest clusters. The distance between two clusters is the average
distance between all their sequences (except that d(C,, C.)=0):

d(c, q) =

(Notice that d(r, s) is the distance between r and s in the input distance matrix)

d(r,s)

TECi,SECj

ICII il

4.Repeat 2 and 3 until only one cluster remains

Example

Note: Here node labels are sequence names,

Eﬂﬂ-ﬂﬂ
0

he actual characters/bases
 [acls [|c [ERAA
-I!!II

{B,{E) — T

8 0

6
8
6
0

AC m
anc > N s
ﬂ 6

8
0
6
8

© 00 00 P»
A 00 O ©®
cOo O 00 O
© o0 ~ o

0
8
8
4

Es

QGGQG ﬁ@@ﬁ ﬁﬁ@

-E Note: In this case

{A,C}, {D} A, C D N¢ {A,C,D}, {B,E} - e Thetreeis unique
8 0 0 Sum of branch

lengths between
2 2 3 2 2
1

two sequences
equals their input
distance

2 « Allleaves are on the
same horizontal line

2 Do we always have
these properties?

Uniqueness

* Not always unique, also not always possible to put all leaf nodes on a line:

~ Tasc
Eé-j- {A},{B} {A,B},{C}> 0
E 4 0 4
, A,B,C
e T

Branch lengths

A,B,C NV

{A},{B,C}> ____lABC

Here the branch lengths only
reflect the cluster distances, not
the sequence distances

Ultrametric distances [Optional]

» Additive tree: A tree where the length between two nodes is the total length of the
branches between them
—For example, when the length represents the number of observed + unobserved substitutions

* Desirable properties of the input distance matrix:
i. d(x,y)=0
i. d(x,y)=0ifx=y
iii. d(x,y)=dly, x)
iv. d(x,y)+dl(y, z)=>d(x, z)
v. d(x,y) <max{d(x, z), d(y, z)}

* We can get an additive tree

0 8
8 6
8 0

8 4
0 8
6 8
4 8 8 O

. True: i, ii, iii, ivand v
and with all leaf nodes on the

True: i, ii and iii

same line (i.e., an ultrametric tree) if i, ii, iii, iv and v are true

Additive trees [Optional]

* When a tree is additive, the branch lengths can be determined by solving
simultaneous equations

__lAls lc

Mo 4 s

B o - __[asC

4 6 4 o |{AL{B} {A,B},{C}> 0
* For non-additive trees, we will o e A des)

. “ ” d(B,x) + d(x,y) + d(C,y) =d(B,C) =4 (3)

learn how to assign “reasonable (1) 2) 4+ (3] 12
distances by neighbor joining R

d(x,y) +d(Cyy) =3 [e.g., d(x,y) = 1, d(C)y) = 2]

Part 2b

Distance-based Methods: Neighbor Joining

Neighbor joining

* In UPGMA, each time we merge the two closest clusters according to

their distance (criterion #1):
d(c;, C) = Z d(r,s)

ICIICI

* Would be good to choose the pair that is also far away from other

clusters (criterion #2), measured by:
u(c) = Zd(c C)

Neighbor joining

* In UPGMA, each time we merge the two closest clusters according to
their distance (criterion #1):

* Would be good to choose the pair that is also far away from other

clusters (criterion #2), measured by:
u(c) = Zd(c C)

* In the Neighbor Joining algorithm, the two clusters to merge is the pair
that minimizes Q(,j) = (r — 2)d(C;, ¢;) — u(C) —u(c;), where r is the current
number of clusters (and Q(i, i) = O for all i)

— The formula considers both criteria, while the (r-2) factor is to balance the relative
weights of them

Neighbor joining

* The algorithm:

1. Start with each sequence as a cluster. All of them are connected to a hub,
forming a star.

2. Find clusters i and j connected to the hub where Q(i, j) is minimum among
all cluster pairs

3. Insertanew internal node C,
- Connect it to C, C. and the hub

i” ™

- Assign length d(ciz' G) +“(§i()r__“2()ci) to the edge C.C, (r is the number of clusters before the merge)

- Assign length d(c,¢) u(c)-u(c) tothe edge CC,

2 20 =2
- For each node C,, d(C,, C) = [d(C, C) +d(C, C)—d(C, C)] /2
(Notice that all d(C,, C,) values are from the previous step.)

4. Repeat 2 and 3 until all branch lengths are assigned
- The final result will be an unrooted tree

Example

Distance between A
and the new node:
d(A,C)/2 + [u(A) -
u(C)] / [2(r-2)] = 4/2
+(18-18) / [2(2)] =2

AL {C)

{AC), {B} >

Q(i,j) = (r-2)d(C, C;) - u(C) - u(C)

d [alsjc o fu JENa A B lC [D_
26 -28 -26

8 4 6 18 Bl o 2 2 -

o 8 8 24 B 26 o 26 -28
8 0 6 18 28 26 0 -26
8 6 0 20 BN 26 28 26 o

a_|Ac|B

0 -18 -18
I 18 o -8
El 2 s o

., C)—d(C, C)1/2

d _|aBc/p M. |
0 BBl A,B,C 3
Dn : . ;

In the last step, we simply

remove the hub and write
down the distance uRepIy

d(C,, C) = [d(C, C) +d(C

http://ureply.mobi/mobile_index.php

Comparing the results

« UPGMA: (with one more node, E)

Reason for the branch length assignment

* If distances are additive: Length:
—x+z=[u(g)-d(C, Cj)] /(r=2) d(C, G
—y+z=[u(g)-d(C,)1/ (r-2) | A\a

—x+y=d(C, C)
- [(X+Z)—(y+2)+(X+y)]/2=
_ d(C;,G) | u(c) —u(g)

X

: e Average length: Average length:
—and [(y+2z)—(x+2z)+(x+y)] /2= [u(c;) = d(C, €)1/ [u(c) - d(C, C)] /
(r—2) (r—2)
y = d(ci'ci) u(Cj) —u(C)
2 2(r—2)

Everything
else

Reason for the branch length assignment

* If distances are additive: Length:
—x+z=[u(g)-d(C, Cj)] /(r=2) d(C, G
—y+z=[ulg)—d(C,)/ (r-2) | \a
—x+y=d(C, C)
—=>x+z)=(y+2)+(x+y)/2=

¥ = d(C, C) u(C) —u(c)

: e Average length: Average length:
—and [(y+2z)—(x+2z)+(x+y)] /2= [u(c;) = d(C, €)1/ [u(c) - d(C, C)] /
(r—2) (r—2)
y = d(ci'ci) u(Cj) —u(C)
2 2(r—2)

Everything
else

* If distances are not additive, the assigned distances
are still usually reasonable
* d(Ckl CI) = [(d(cu CI) + d(CJI CI) - d(Cil CJ)] / 2

Rooting an unrooted tree

* How to find the root of an
unrooted tree?

A
— Usually by using an “out group”,
something that should be separated
first
B
— There are some other methods
Drosophila
¢ gene duplication o é"& X o
human-ct human-p & \S@s vé@

I‘uga-c:>_’—< fuga-p Kj/

Image credit: Wikipedia, http://blog.ohinternet.com/wp-content/uploads/2011/03/fugu.jpg,
http://www.currentprotocols.com/protocol/bi0601

http://en.wikipedia.org/wiki/File:Drosophila_repleta_lateral.jpg
http://en.wikipedia.org/wiki/File:%D0%9C%D1%8B%D1%88%D1%8C_2.jpg

Part 3a

Sequence-based Methods: Maximum Parsimony

Maximum parsimony

e Assumption: A tree is likely to be true if it involves few mutations
* Rationale:

— Mutations are rare

— “Occam’s razor”: The simplest explanation is likely the correct one

Maximum parsimony

e Assumption: A tree is likely to be true if it involves few mutations
* Rationale:

— Mutations are rare
— “Occam’s razor”: The simplest explanation is likely the correct one

e “Large parsimony” problem:
— Given a set of sequences

— Find a rooted tree topology of the sequences and the ancestral sequences of the tree
— Such that the total number of mutations along the branches is minimized

— NP hard: Currently no polynomial time algorithm is known

Maximum parsimony

* Assumption: A tree is likely to be true if it involves few mutations

e Rationale:

— Mutations are rare

— “Occam’s razor”: The simplest explanation is likely the correct one

e “Large parsimony” problem:

— Given a set of sequences

— Find a rooted tree topology of the sequences and the ancestral sequences of the tree
— Such that the total number of mutations along the branches is minimized
— NP hard: Currently no polynomial time algorithm is known

* “Small parsimony” problem:

— Given a set of sequences and a rooted tree topology of the sequences

— Find the ancestral sequences

— Such that the total number of mutations along the branches is minimized

* We will focus on the small parsimony problem

Small parsimony example

* We will consider one single site é

— By assuming that sites are independent, we only need an algorithm for one site G—C é

— Will show an example with more sites later G-pA
PP

Small parsimony example

* We will consider one single site é

— By assuming that sites are independent, we only need an algorithm for one site G—C

— Will show an example with more sites later G—A
* In the upper tree on the right, the number of mutationsis 4 <2* T

— Is it the minimum (i.e., most parsimonious solution)?
— For this tree topology, the minimum number of mutations is 3.
There are three sets of ancestral states that result in this number of mutations,

o
S

shown in the three trees below

Small parsimony problem

* How to assign ancestral states so that the total number of mutations
is minimized?

* |deas: For a given node,
— If both children have the same state, probably good to adopt the state
— If the two children have different states, probably good to adopt one of them

— Delay the decision of the exact choice until the parent has also expressed a preference

The algorithm: simple version

* Fitch’s algorithm: If you only need some solutions

The algorithm: simple version

* Fitch’s algorithm: If you only need some solutions
— For each internal node i with parent p and children | and r, we will determine its preference set S,
and its final character C, that would minimize the total number of mutations

— Steps:
1. For each leaf node i, set S, to the character of the sequence i

2. Upward phase: For each internal node i,
if (5,nS,)={} //landrdo not agree: take both sets
S, :=S,US,
else // 1 and r agree on something: take the agreed part
S;:=S5, NS,
3. Downward phase: First pick any C, . from S__.,. Then for each other internal node i,
ifC, €S, // p agrees with i on something: take it
C:=C,
else // p disagrees with i: use i’s own preferences
C, := choose one from S,

An example

0
=

Downward phase

W

‘ Preference set

‘ Final character chosen

0 0
o e S s

Why does it work? [Optional]

* Proof by induction
— When there are two leaves, there are only two cases:

* They have the same character
— Actual minimum number of mutations: O & :}&
— The algorithm gives the same number

* They have different characters

— Actual minimum number of mutations: 1 Eﬂg = éﬁg

— The algorithm also gives the same number

Therefore, the algorithm is optimal &

Why does it work? [Optional]

* Assume the algorithm is able to minimize the number
of mutations for trees with k or fewer leaves

* Now for a tree with k+1 leaves,

— |t consists of a root connected to two sub-trees with roots |
and r, both with k or fewer leaves

— Two cases:
*If S, S, # {}, the algorithm gives a solution with m, + m, = " ;
mutations, which is optimal due to the induction hypothesis number of number of

mutations: m; mutations: m,

*If S, S, = {}, the algorithm gives a solution with m;+ m_+1
mutations, which is also optimal since one extra mutation must
be introduced between the root and one of its children

The algorithm: extended version

* If you need all solutions

— Steps: i
1. For each leaf node, set S, to the character of the sequence

2. Upward phase (same as before): For each internal node i, r

if (5,S,)={} //landrdo not agree: take both sets
S ;=S US,

else // | and r agree on something: take it
S;:=5,NS§,

3. Downward phase: First pick C,,., from S__.,. Then for each other internal node i (different
strategy -- majority vote): we will choose C, from the characters that exist in the largest
number of sets among {Cp}, S,and S.. Also, whenever there are multiple choices, we
choose each in turn to enumerate all optimal solutions.

— A special case of Sankoff’s dynamic programming algorithm

Revisiting the same example

0
o

Downward phase

W Found by

Algorithm 2 but

not Algorithm 1

o

A more complex example

o s

Multiple sites

* In a real situation, we need to deal with sequences that contain more
than one site

* We simply apply the above algorithm to the different sites independently
— As we assume that different sites mutate independently

Example

 Minimum: 1 substitution for position 1, 1 substitution for position 2
* Maximum parsimony: 2 trees that can achieve this minimum

Upward phase >

Downward phase

Part 3b

Sequence-based Methods: Maximum Likelihood

Maximum likelihood

* Likelihood: Probability of producing the observed data by a model given
the model parameters, Pr(X|0)
— X: Observed data

* The input sequences, assumed aligned

* Again, we consider one single site here. The likelihood for the whole sequences is
the product of the likelihood of individual sites since they are assumed independent

— 0: Model parameters (see next page)

* Maximum likelihood: Find value of 6 such that Pr(X]|0) is maximized

Model parameters

* There are different possibilities
—In all cases, X'is the input sequences

* Big likelihood problem

— 0: tree topology, mutation rates and divergence times
— Very difficult

* Small likelihood problem
— Tree topology is given
— 0: mutation rates and divergence times

— There are effective heuristic solutions that usually (but not always) produce
optimal results

Computing likelihood

* Suppose we are given the followings, as shown in the figure:

— Tree topology
— Observed data, X = {a:G, b:G, c:T, d:G}
— Ancestral sequences

— Parameters, 0= {<mutation rates>, tae' tbe' tcfz tdfr teg' tfg}

Node labels

Observed sequences

Divergence times

Computing likelihood

* Suppose we are given the followings, as shown in the figure:

— Tree topology

— Observed data, X = {a:G, b:G, c:T, d:G}

— Ancestral sequences

— Parameters, 0 = {<mutation rates>, t.,, t,., ts tyn Loy Lk
* Likelihood =Pr(g:G)

Pr(e:G|g:G, t,,) Pr(:G|g:G, t;)

Pr(a:Gle:G, t,,) Pr(b:G|e:G, t,,)

Pr(c:T|f.G, t) Pr(d:G|f:G, t)

Node labels
Observed sequences

Ancestral sequences

Divergence times

— We have learned how to compute these conditional probabilities for two mutation
models (Jukes-Cantor and Kimura) in the last lecture

Computing likelihood

* In the small likelihood problem, we are only given the tree topology,
but not the ancestral sequences — Then how to compute likelihood?

* Need to try them all (summation of 43 = 64 terms): Likelihood =

Pr(f:2|g:
Pr(b:G|e:
Pr(d:G|f:

Pr(g:2)
Prie:x|g:2, t,))
Pr(a:G|e:2, t)
Pr(c:T|f:2, t
+

Pr(g:C)
Prie:2|g:C, t.))
Pr(a:G|e:2, t,.)
Pr(c:T|f:2, t)
+

Pr(g:T)
Pr(e:T|g:T, t,,)
Pr(a:G|e:T, t,.)
Pr(c:T|f:T, t)

Pr(f:2|g:
Pr(b:G|e:
Pr(d:G|f:

Pr(f:T|g:
Pr(b:G|e:
Pr(d:G|f:

) tﬁg)
, tbe
) tdf)

’ t}g)
) tbe)
) tdf)

’ t}g)

) he) f
L)

Computing likelihood efficiently [optional]

* An important observation: once the root of a sub-
tree is determined, the likelihood of this sub-tree does
not depend on other nodes in the whole tree

* E.g., once node e is decided to take character A, the

likelihood of the sub-tree involving nodes a, b and e is

Pr(e:Alg, t.,)

Pr(a:Gle:A, t,)Pr(b:G|e:A, t,,)
— If the character at node g does not change, the value of the

above expression will not change no matter what character
node f takes.

— Therefore, this value can be re-used

Computing likelihood efficiently [optional]

* Define table V, where entry V(i,x) is the likelihood of the sub-tree rooted at i when the
parent of j takes character x

—Likelihood =

Pr(g:2) V(e,2) V(f,2) +

Pr(g:C) V(e,C) V(f,C) +

Pr(g:G) V(e,G) V(f,G) +

Pr(g:T) V(e, T) V(f,T)

—V(e, 7) =

Pr(e:A|g:At,,) V(a,A) V(b,A) +
Pr(e:C|g: At)V(a C) V(b,C) +
Pr(e:G|g: At)V(a G) V(b,G) +
Pr(e:T|g: At)V(a T) V(b,T)
—V(a,R) = Pr(a Gle:A, t,,)
—V(a,C) = Pr(a:G|e:C, tae)

* Table V contains O(n) entries. Computing the value for each entry requires a constant
number of operations = Linear time overall

Solving the small likelihood problem

* Then how to find the optimal parameter values?

— Start with a random estimate of 0
— Apply a “hill climbing” algorithm
* Change the value of a parameter so that the likelihood is increased

* Repeat it for each parameter in turn, for multiple iterations

* Will reach maximum if there is a single “peak” — This is true in many real situations, though
theoretically cases can be constructed in which this it not true

(For simplicity, assumf%g={a, t,,} here)
.'"_" > ’::::x\\

Likelihood

Image source: http://www.absoluteastronomy.com/topics/Hill_climbing

Which method to use?

* No definite answer
— There are different camps

* In general, it is good to use methods that
— Do not require strong assumptions

— Are robust (do not produce drastically different results when the inputs are just
slightly changed)

 Build multiple trees using different parameters, then combine
* Build trees with different subsets of sequences, then combine
e Use probabilistic methods

— Are computationally efficient

* There are many other algorithms that we did not cover, including those
that consider mutation models.

Epilogue

Summary and Further Readings

Summary

* Two main types of tree reconstruction methods:

— Distance-based
e UPGMA
* Neighbor joining

— Sequence-based
* Maximum parsimony

* Maximum likelihood

Further readings

e Chapter 7 of Algorithms in Bioinformatics: A Practical Introduction
—More details of the algorithms
—Complexity analysis

—Free slides available

http://www.comp.nus.edu.sg/~ksung/algo_in_bioinfo/slides/Ch7_phylogeny.pdf

Further readings

* Liu et al., Science 324(5934):1561-1564, (2009)

—Although we have discussed multiple sequence alignment (MSA) and phylogenetic
tree reconstruction in two different lectures, they are highly related

* A good phylogenetic tree can guide the construction of the MSA
—Recall the Clustal algorithm
* A good MSA can help deduce the phylogenetic tree

—For example, in computing sequence distances

