
Qi Dou

Email: qidou@cuhk.edu.hk

Office: Room 1014, 10/F, SHB

BMEG3102 Bioinformatics

The Chinese University of Hong Kong

BMEG3102 Bioinformatics

Lecture 5. Mutation Models and
Molecular Phylogenetics (2/2)

Lecture outline

2

1. Phylogenetic tree reconstruction
- Problem definition

2. Distance-based methods

- UPGMA

- Neighbor-joining

3. Sequence-based methods
- Maximum parsimony

- Maximum likelihood

Phylogenetic Tree Reconstruction

Part 1

Phylogenetic tree reconstruction

4

• General problem:

– Given a set of DNA/protein sequences

– Find a phylogenetic tree such that it likely corresponds to the actual historical

evolutionary events, involving:

• Order of separation events (how the nodes are connected)

• Ancestral sequences (what sequences the internal nodes have)

• Branch lengths (how much time it has been since the separation)

There are various ways to evaluate how likely a tree is correct.

We will study them in this lecture

–“Re”-construction: The tree was defined by history. We only try to reconstruct it from
the observed sequences

What sequence to use?

5

• If we are studying a gene

– DNA/protein sequence of the gene

• If we want to know the relationship between different species

– Whole genome (may not be feasible)

– Some genes that are essential and single-copied

• Ribosomal RNA

Complexity of problem

6

• Finding the “best” tree is a hard problem

• How many tree topologies (i.e., ignore branch lengths and left-right order) are there
for a set of k sequences?

Complexity of problem

7

• Finding the “best” tree is a hard problem

• How many tree topologies (i.e., ignore branch lengths and left-right order) are there
for a set of k sequences?

• For rooted trees:
– k=2: 1 possible tree topology

– k=3: 3 possible branches to add #3

– k=4: 5 possible branches to add #4, and so on

–Therefore, number of tree topologies is
1  3  5  ...  (2k-3)

• Exponential

1 2 1 3 2 1 3 21 2 3

k Num. of rooted tree topologies

2 1

3 3

4 15

5 105

6 945

7 10,395

8 135,135

9 2,027,025

10 34,459,425

11 654,729,075

12 13,749,310,575

13 316,234,143,225

14 7,905,853,580,625

15 213,458,046,676,875

16 6,190,283,353,629,370

17 191,898,783,962,511,000

18 6,332,659,870,762,850,000

19 221,643,095,476,700,000,000

20 8,200,794,532,637,890,000,000

Complexity of problem

8

• Similarly, for unrooted trees,
– k=2: 1 possible tree topology

– k=3: 1 possible branch to add #3

– k=4: 3 possible branches to add #4

– k=5: 5 possible branches to add #5

– There number of tree topologies is
1  3  5  ...  (2k-5)

1

2

1

2

3

1

2

3

1

2

3

1

2

3

4

4

4

k Num. of rooted tree topologies Num. of unrooted tree topologies

2 1 1

3 3 1

4 15 3

5 105 15

6 945 105

7 10,395 945

8 135,135 10,395

9 2,027,025 135,135

10 34,459,425 2,027,025

11 654,729,075 34,459,425

12 13,749,310,575 654,729,075

13 316,234,143,225 13,749,310,575

14 7,905,853,580,625 316,234,143,225

15 213,458,046,676,875 7,905,853,580,625

16 6,190,283,353,629,370 213,458,046,676,875

17 191,898,783,962,511,000 6,190,283,353,629,370

18 6,332,659,870,762,850,000 191,898,783,962,511,000

19 221,643,095,476,700,000,000 6,332,659,870,762,850,000

20 8,200,794,532,637,890,000,000 221,643,095,476,700,000,000

http://ureply.mobi/mobile_index.php

Solving the problem: Ideas

9

• What do you do when you encounter a computationally hard problem?

– Define an easier version of the problem

• By making certain assumptions

– Design smart algorithms/data structures to avoid redundant calculations

– Use heuristics to solve it, not necessarily getting the optimal solution

Phylogenetic tree reconstruction methods

10

• Two main types of methods:

– Sequence-based: need the sequences
• Parsimony methods (easier problems, smart algorithms)

• Probabilistic methods (easier problems, smart algorithms)

– Maximum likelihood

– Bayesian

• ...

– Distance-based: only depends on the distances between the sequences
• UPGMA (heuristics)

• Neighbor joining (heuristics)

• ...

– We will study some of these algorithms

Lecture scope

11

• What you need to know:

– Basic concepts behind each type of algorithms

– How to use the methods to solve simple problems in phylogenetic tree reconstruction

• Except the maximum likelihood method

• What you are NOT required to know:

– Details of the maximum likelihood method

– Proof of the correctness of the algorithms

– How to implement the methods in a programming language

Distance-based Methods: UPGMA

Part 2a

Motivation

13

• In the sequence-based algorithms, the exact sequences are used when
reconstructing the phylogenetic trees

• In a distance-based method, only the pairwise distances between the
sequences are considered

– Good if the sequences are long, and we care only about the tree structure but not
the ancestral sequences

– The distances can be computed by methods based on sequence alignment

– Once the pairwise distances have been computed, the original sequences will not be
used

UPGMA

14

• Unweighted Pair Group Method with Arithmetic Mean

• Algorithm:

1. Compute the distance between each pair of sequences

2. Treat each sequence as a cluster by itself

3. Merge the two closest clusters. The distance between two clusters is the average
distance between all their sequences (except that d(Ci, Ci)=0):

(Notice that d(r, s) is the distance between r and s in the input distance matrix)

4. Repeat 2 and 3 until only one cluster remains

d Ci , Cj =
1

 Ci Cj
 d 𝑟, 𝑠

𝑟∈C i ,𝑠∈C j

Example

15

A B C D E

A 0 8 4 6 8

B 8 0 8 8 4

C 4 8 0 6 8

D 6 8 6 0 8

E 8 4 8 8 0

A B C D E

{A},{C}

A,C B D E

A,C 0 8 6 8

B 8 0 8 4

D 6 8 0 8

E 8 4 8 0

A C B D E

2 2

A,C B,E D

A,C 0 8 6

B,E 8 0 8

D 6 8 0

A C B E D

2 2 2 2

{A,C}, {D}

{B},{E}

A,C,D B,E

A,C,D 0 8

B,E 8 0

A C B ED

2 2 2 2

1

3

{A,C,D}, {B,E}
A,B,C,D,E

A,B,C,D,E 0

A C B ED

2 2 2 2

1
3

1
2

Note: Here node labels are sequence names,
not the actual characters/bases

Note: In this case,
• The tree is unique
• Sum of branch

lengths between
two sequences
equals their input
distance

• All leaves are on the
same horizontal line

Do we always have
these properties?

Uniqueness

16

• Not always unique, also not always possible to put all leaf nodes on a line:

A B C

A 0 4 6

B 4 0 4

C 6 4 0

A B C

{B},{C}
A B,C

A 0 5

B,C 5 0

A B C

2 2

{A},{B,C}
A,B,C

A,B,C 0

B

C

A
1

3

1
2

{A},{B}

A,B C

A,B 0 5

C 5 0

A B C

2 2

{A,B},{C}

A,B,C

A,B,C 0

A

B C3
1

1
2

Branch lengths

17

• Not always possible to assign branch lengths according to distances:

A B C

A 0 4 8

B 4 0 2

C 8 2 0

A B C

{B},{C}

A B,C

A 0 6

B,C 6 0

A B C

1 1

{A},{B,C}
A,B,C

A,B,C 0

B C

A 1 1

33

Here the branch lengths only
reflect the cluster distances, not
the sequence distances

Ultrametric distances [Optional]

18

• Additive tree: A tree where the length between two nodes is the total length of the
branches between them
–For example, when the length represents the number of observed + unobserved substitutions

• Desirable properties of the input distance matrix:

i. d(x, y)  0

ii. d(x, y) = 0 if x = y

iii. d(x, y) = d(y, x)

iv. d(x, y) + d(y, z)  d(x, z)

v. d(x, y) max{d(x, z), d(y, z)}

• We can get an additive tree

and with all leaf nodes on the

same line (i.e., an ultrametric tree) if i, ii, iii, iv and v are true

A B C D E

A 0 8 4 6 8

B 8 0 8 8 4

C 4 8 0 6 8

D 6 8 6 0 8

E 8 4 8 8 0

A B C

A 0 4 6

B 4 0 4

C 6 4 0

A B C

A 0 4 8

B 4 0 2

C 8 2 0
True: i, ii, iii, iv and v

True: i, ii, iii and iv

True: i, ii and iii

Additive trees [Optional]

19

• When a tree is additive, the branch lengths can be determined by solving
simultaneous equations

• For non-additive trees, we will
learn how to assign “reasonable”
distances by neighbor joining

A B C

A 0 4 6

B 4 0 4

C 6 4 0

A B C

{A},{B}

A,B C

A,B 0 5

C 5 0

A B C

2 2

{A,B},{C}

A,B,C

A,B,C 0

A

B C

x
3

1
y1

2

d(A,x) + d(B,x) = d(A,B) = 4 (1)
d(A,x) + d(x,y) + d(C,y) = d(A,C) = 6 (2)
d(B,x) + d(x,y) + d(C,y) = d(B,C) = 4 (3)
[(1) – (2) + (3)] / 2:
d(B,x) = 1
d(A,x) = 3
d(x,y) + d(C,y) = 3 [e.g., d(x,y) = 1, d(C,y) = 2]

Distance-based Methods: Neighbor Joining

Part 2b

Neighbor joining

21

• In UPGMA, each time we merge the two closest clusters according to
their distance (criterion #1):

• Would be good to choose the pair that is also far away from other
clusters (criterion #2), measured by:

u Ci = d Ci , Cj

j

d Ci , Cj =
1

 Ci Cj
 d 𝑟, 𝑠

𝑟∈C i ,𝑠∈C j

Neighbor joining

22

• In UPGMA, each time we merge the two closest clusters according to
their distance (criterion #1):

• Would be good to choose the pair that is also far away from other
clusters (criterion #2), measured by:

• In the Neighbor Joining algorithm, the two clusters to merge is the pair
that minimizes , where r is the current
number of clusters (and Q(i, i)  0 for all i)
– The formula considers both criteria, while the (r-2) factor is to balance the relative
weights of them

u Ci = d Ci , Cj

j

Q i, j = r− 2 d Ci , Cj − u Ci − u Cj

d Ci , Cj =
1

 Ci Cj
 d 𝑟, 𝑠

𝑟∈C i ,𝑠∈C j

Neighbor joining

23

• The algorithm:

1. Start with each sequence as a cluster. All of them are connected to a hub,
forming a star.

2. Find clusters i and j connected to the hub where Q(i, j) is minimum among
all cluster pairs

3. Insert a new internal node Ck

- Connect it to Ci, Cj and the hub

- Assign length to the edge CiCk (r is the number of clusters before the merge)

- Assign length to the edge CjCk

- For each node Cl, d(Ck, Cl) = [d(Ci, Cl) + d(Cj, Cl) – d(Ci, Cj)] / 2

(Notice that all d(Cx, Cy) values are from the previous step.)

4. Repeat 2 and 3 until all branch lengths are assigned

- The final result will be an unrooted tree

d Ci , Cj

2
+
u Ci − u Cj

2 r− 2

d Ci , Cj

2
+
u Cj − u Ci

2 r− 2

Example

24

d A B C D

A 0 8 4 6

B 8 0 8 8

C 4 8 0 6

D 6 8 6 0

{A}, {C}

u

A 18

B 24

C 18

D 20

Q A B C D

A 0 -26 -28 -26

B -26 0 -26 -28

C -28 -26 0 -26

D -26 -28 -26 0

A B

CD

A C

BD

2 2
d A,C B D

A,C 0 6 4

B 6 0 8

D 4 8 0

u

A,C 10

B 14

D 12

Q A,C B D

A,C 0 -18 -18

B -18 0 -18

D -18 -18 0

{A,C}, {B}

d A,B,C D

A,B,C 0 3

D 3 0

u

A,B,C 3

D 3

A C

B

D

2 2
1

53

Q(i,j) = (r-2)d(Ci,Cj) – u(Ci) – u(Cj)

Distance between A
and the new node:
d(A,C)/2 + [u(A) –
u(C)] / [2(r-2)] = 4/2
+ (18-18) / [2(2)] = 2

In the last step, we simply
remove the hub and write

down the distance

d(Ck, Cl) = [d(Ci, Cl) + d(Cj, Cl) – d(Ci, Cj)] / 2

http://ureply.mobi/mobile_index.php

Comparing the results

25

• UPGMA: (with one more node, E)

• Neighbor Joining:

A C B ED

2 2 2 2

1
3

1
2

A C

B

D

2 2
1

53

Reason for the branch length assignment

26

• If distances are additive:
– x + z = [u(ci) – d(Ci, Cj)] / (r – 2)

– y + z = [u(cj) – d(Ci, Cj)] / (r – 2)

– x + y = d(Ci, Cj)

– [(x + z) – (y + z) + (x + y)] / 2 =

x =

– and [(y + z) – (x + z) + (x + y)] / 2 =

y =

Ci

Cj

Ck

Everything
else

Average length:
[u(ci) – d(Ci, Cj)] /
(r – 2)

Average length:
[u(cj) – d(Ci, Cj)] /
(r – 2)

Length:
d(Ci, Cj)

x
y

z

d Ci , Cj

2
+
u Ci − u Cj

2 r− 2

d Ci , Cj

2
+
u Cj − u Ci

2 r− 2

Reason for the branch length assignment

27

• If distances are additive:
– x + z = [u(ci) – d(Ci, Cj)] / (r – 2)

– y + z = [u(cj) – d(Ci, Cj)] / (r – 2)

– x + y = d(Ci, Cj)

– [(x + z) – (y + z) + (x + y)] / 2 =

x =

– and [(y + z) – (x + z) + (x + y)] / 2 =

y =

• If distances are not additive, the assigned distances

are still usually reasonable

• d(Ck, Cl) = [(d(Ci, Cl) + d(Cj, Cl) – d(Ci, Cj)] / 2

Ci

Cj

Ck

Everything
else

Average length:
[u(ci) – d(Ci, Cj)] /
(r – 2)

Average length:
[u(cj) – d(Ci, Cj)] /
(r – 2)

Length:
d(Ci, Cj)

x
y

z

d Ci , Cj

2
+
u Ci − u Cj

2 r− 2

d Ci , Cj

2
+
u Cj − u Ci

2 r− 2

Rooting an unrooted tree

28

• How to find the root of an
unrooted tree?

– Usually by using an “out group”,
something that should be separated
first

– There are some other methods

Image credit: Wikipedia, http://blog.ohinternet.com/wp-content/uploads/2011/03/fugu.jpg ,
http://www.currentprotocols.com/protocol/bi0601

http://en.wikipedia.org/wiki/File:Drosophila_repleta_lateral.jpg
http://en.wikipedia.org/wiki/File:%D0%9C%D1%8B%D1%88%D1%8C_2.jpg

Sequence-based Methods: Maximum Parsimony

Part 3a

Maximum parsimony

30

• Assumption: A tree is likely to be true if it involves few mutations

• Rationale:

– Mutations are rare

– “Occam’s razor”: The simplest explanation is likely the correct one

Maximum parsimony

31

• Assumption: A tree is likely to be true if it involves few mutations

• Rationale:

– Mutations are rare

– “Occam’s razor”: The simplest explanation is likely the correct one

• “Large parsimony” problem:

– Given a set of sequences

– Find a rooted tree topology of the sequences and the ancestral sequences of the tree

– Such that the total number of mutations along the branches is minimized

– NP hard: Currently no polynomial time algorithm is known

Maximum parsimony

32

• Assumption: A tree is likely to be true if it involves few mutations
• Rationale:
– Mutations are rare
– “Occam’s razor”: The simplest explanation is likely the correct one

• “Large parsimony” problem:
– Given a set of sequences
– Find a rooted tree topology of the sequences and the ancestral sequences of the tree
– Such that the total number of mutations along the branches is minimized
– NP hard: Currently no polynomial time algorithm is known

• “Small parsimony” problem:
– Given a set of sequences and a rooted tree topology of the sequences
– Find the ancestral sequences
– Such that the total number of mutations along the branches is minimized

• We will focus on the small parsimony problem

Small parsimony example

33

• We will consider one single site
– By assuming that sites are independent, we only need an algorithm for one site

– Will show an example with more sites later

A C

C

G T

G

A

G

G

CA

GC

GA

GT

Small parsimony example

34

• We will consider one single site
– By assuming that sites are independent, we only need an algorithm for one site

– Will show an example with more sites later

• In the upper tree on the right, the number of mutations is 4
– Is it the minimum (i.e., most parsimonious solution)?

– For this tree topology, the minimum number of mutations is 3.

There are three sets of ancestral states that result in this number of mutations,

shown in the three trees below

A C

C

G T

G

A

G

G

CA

GC

GA

GT

A C

A

G T

G

A

A

A

AC

AG

GT

A C

A

G T

A

A

A

A

AC ATAG

A C

A

G T

T

A

A

A

AC

AT

TG

Small parsimony problem

35

• How to assign ancestral states so that the total number of mutations

is minimized?

• Ideas: For a given node,

– If both children have the same state, probably good to adopt the state

– If the two children have different states, probably good to adopt one of them

– Delay the decision of the exact choice until the parent has also expressed a preference

The algorithm: simple version

36

• Fitch’s algorithm: If you only need some solutions

The algorithm: simple version

37

• Fitch’s algorithm: If you only need some solutions
– For each internal node i with parent p and children l and r, we will determine its preference set Si

and its final character Ci that would minimize the total number of mutations

– Steps:

1. For each leaf node i, set Si to the character of the sequence

2. Upward phase: For each internal node i,
if (Sl  Sr)={} // l and r do not agree: take both sets

Si := Sl  Sr

else // l and r agree on something: take the agreed part
Si := Sl  Sr

3. Downward phase: First pick any Croot from Sroot. Then for each other internal node i,
if Cp  Si // p agrees with i on something: take it

Ci := Cp

else // p disagrees with i: use i’s own preferences
Ci := choose one from Si

l r

i

p

An example

38

A C G T A

Upward phase

A C G T A

A,C G,T

A,G,T

A

A C G T A

A T

A

A

A C G T A

Downward phase
(2 choices)

A,C G,T

A,G,T

A

A G

A OR

A

Preference set

Final character chosen

Why does it work? [Optional]

39

• Proof by induction

– When there are two leaves, there are only two cases:

• They have the same character

– Actual minimum number of mutations: 0

– The algorithm gives the same number

• They have different characters

– Actual minimum number of mutations: 1

– The algorithm also gives the same number

Therefore, the algorithm is optimal

A A

A C A C

A

A A

A

A C

C

Why does it work? [Optional]

40

• Assume the algorithm is able to minimize the number

of mutations for trees with k or fewer leaves

• Now for a tree with k+1 leaves,

– It consists of a root connected to two sub-trees with roots l
and r, both with k or fewer leaves

– Two cases:

• If Sl  Sr  {}, the algorithm gives a solution with ml + mr

mutations, which is optimal due to the induction hypothesis

• If Sl  Sr = {}, the algorithm gives a solution with ml + mr + 1
mutations, which is also optimal since one extra mutation must
be introduced between the root and one of its children

l r

root

...

Minimum
number of
mutations: ml

Minimum
number of
mutations: mr

The algorithm: extended version

41

• If you need all solutions

– Steps:

1. For each leaf node i, set Si to the character of the sequence

2. Upward phase (same as before): For each internal node i,
if (Sl  Sr)={} // l and r do not agree: take both sets

Si := Sl  Sr

else // l and r agree on something: take it
Si := Sl  Sr

3. Downward phase: First pick Croot from Sroot. Then for each other internal node i (different
strategy -- majority vote): we will choose Ci from the characters that exist in the largest
number of sets among {Cp}, Sl and Sr. Also, whenever there are multiple choices, we
choose each in turn to enumerate all optimal solutions.

– A special case of Sankoff’s dynamic programming algorithm

l r

i

p

Revisiting the same example

42

A C G T A

Upward phase
A,C G,T

A,G,T

A

A C G T A

Downward phase
(3 choices)

A A

A

A

A C G T A

OR

A,C G,T

A,G,T

A

A C G T A

A T

A

A

A C G T A

A G

A OR

A

Found by
Algorithm 2 but
not Algorithm 1

A more complex example

43

A C A A G G

Upward phase

Downward phase
(6 choices)

A C A A G G

A,C A

A,G

G

A,C,G

A C

A,C

A A

A

G

A,G

G

G

A,C,GA

A

A

A

A C

A,C

A A

A

G

A,G

G

G

A,C,GA

A

G

A C

A,C

A A

A

G

A,G

G

G

A,C,GC

C

G

A C

A,C

A A

A

G

A,G

G

G

A,C,GG

A

G

A C

A,C

A A

A

G

A,G

G

G

A,C,GG

C

G

A C

A,C

A A

A

G

A,G

G

G

A,C,GG

G

G

A

G

A

G

A

G

A

G

A

G

A

Multiple sites

44

• In a real situation, we need to deal with sequences that contain more
than one site

• We simply apply the above algorithm to the different sites independently

– As we assume that different sites mutate independently

Example

45

• Minimum: 1 substitution for position 1, 1 substitution for position 2

• Maximum parsimony: 2 trees that can achieve this minimum

AC GC GT

Upward phase

AC GC GT

[A,G][C]

[G][C,T]

Downward phase

AC GC GT

[A,G][C]

[G][C,T]

AC GC GT

[A,G][C]

[G][C,T]

OR

GC GT

GC GC

Sequence-based Methods: Maximum Likelihood

Part 3b

Maximum likelihood

47

• Likelihood: Probability of producing the observed data by a model given
the model parameters, Pr(X|)

– X: Observed data

• The input sequences, assumed aligned

• Again, we consider one single site here. The likelihood for the whole sequences is
the product of the likelihood of individual sites since they are assumed independent

– : Model parameters (see next page)

• Maximum likelihood: Find value of  such that Pr(X|) is maximized

Model parameters

48

• There are different possibilities

–In all cases, X is the input sequences

• Big likelihood problem

– : tree topology, mutation rates and divergence times

– Very difficult

• Small likelihood problem

– Tree topology is given

– : mutation rates and divergence times

– There are effective heuristic solutions that usually (but not always) produce

optimal results

Computing likelihood

49

• Suppose we are given the followings, as shown in the figure:

– Tree topology

– Observed data, X = {a:G, b:G, c:T, d:G}

– Ancestral sequences

– Parameters,  = {<mutation rates>, tae, tbe, tcf, tdf, teg, tfg}

a:G b:G c:T d:G

e:G f:G

:

Node labels
Observed sequences

Ancestral sequences

Divergence times

tae

g:G

tbe tcf tdf

teg tfg

Computing likelihood

50

• Suppose we are given the followings, as shown in the figure:

– Tree topology

– Observed data, X = {a:G, b:G, c:T, d:G}

– Ancestral sequences

– Parameters,  = {<mutation rates>, tae, tbe, tcf, tdf, teg, tfg}

• Likelihood =Pr(g:G)
Pr(e:G|g:G, teg) Pr(f:G|g:G, tfg)
Pr(a:G|e:G, tae) Pr(b:G|e:G, tbe)
Pr(c:T|f:G, tcf) Pr(d:G|f:G, tdf)

– We have learned how to compute these conditional probabilities for two mutation
models (Jukes-Cantor and Kimura) in the last lecture

a:G b:G c:T d:G

e:G f:G

:

Node labels
Observed sequences

Ancestral sequences

Divergence times

tae

g:G

tbe tcf tdf

teg tfg

Computing likelihood

51

• In the small likelihood problem, we are only given the tree topology,
but not the ancestral sequences – Then how to compute likelihood?

• Need to try them all (summation of 43 = 64 terms): Likelihood =
Pr(g:A)
Pr(e:A|g:A, teg) Pr(f:A|g:A, tfg)
Pr(a:G|e:A, tae) Pr(b:G|e:A, tbe)
Pr(c:T|f:A, tcf) Pr(d:G|f:A, tdf)
+
Pr(g:C)
Pr(e:A|g:C, teg) Pr(f:A|g:C, tfg)
Pr(a:G|e:A, tae) Pr(b:G|e:A, tbe)
Pr(c:T|f:A, tcf) Pr(d:G|f:A, tdf)
+
...
+
Pr(g:T)
Pr(e:T|g:T, teg) Pr(f:T|g:T, tfg)
Pr(a:G|e:T, tae) Pr(b:G|e:T, tbe)
Pr(c:T|f:T, tcf) Pr(d:G|f:T, tdf)

Possible ancestral states:

e A A A A A T

f A A A A C ... T

g A C G T A T

a:G b:G c:T d:G

e:? f:?

tae

g:?

tbe tcf tdf

teg tfg

Computing likelihood efficiently [optional]

52

• An important observation: once the root of a sub-
tree is determined, the likelihood of this sub-tree does
not depend on other nodes in the whole tree

• E.g., once node e is decided to take character A, the
likelihood of the sub-tree involving nodes a, b and e is
Pr(e:A|g, teg)
Pr(a:G|e:A, tae)Pr(b:G|e:A, tbe)

– If the character at node g does not change, the value of the
above expression will not change no matter what character
node f takes.

– Therefore, this value can be re-used
a:G b:G c:T d:G

e:A f:?

tae

g:?

tbe tcf tdf

teg tfg

Computing likelihood efficiently [optional]

53

• Define table V, where entry V(i,x) is the likelihood of the sub-tree rooted at i when the
parent of i takes character x
–Likelihood =
Pr(g:A) V(e,A) V(f,A) +
Pr(g:C) V(e,C) V(f,C) +
Pr(g:G) V(e,G) V(f,G) +
Pr(g:T) V(e,T) V(f,T)
–V(e, A) =
Pr(e:A|g:A,teg) V(a,A) V(b,A) +
Pr(e:C|g:A,teg) V(a,C) V(b,C) +
Pr(e:G|g:A,teg) V(a,G) V(b,G) +
Pr(e:T|g:A,teg) V(a,T) V(b,T)
–V(a,A) = Pr(a:G|e:A, tae)
–V(a,C) = Pr(a:G|e:C, tae)
–...

• Table V contains O(n) entries. Computing the value for each entry requires a constant
number of operations  Linear time overall

a:G b:G c:T d:G

e:? f:?

tae

g:?

tbe tcf tdf

teg tfg

Solving the small likelihood problem

54

• Then how to find the optimal parameter values?

– Start with a random estimate of 

– Apply a “hill climbing” algorithm
• Change the value of a parameter so that the likelihood is increased

• Repeat it for each parameter in turn, for multiple iterations

• Will reach maximum if there is a single “peak” – This is true in many real situations, though
theoretically cases can be constructed in which this it not true

Image source: http://www.absoluteastronomy.com/topics/Hill_climbing

a

tab

Likelihood Current estimate
New estimate

(For simplicity, assume ={, tab} here)

Which method to use?

55

• No definite answer
– There are different camps

• In general, it is good to use methods that
– Do not require strong assumptions

– Are robust (do not produce drastically different results when the inputs are just
slightly changed)

• Build multiple trees using different parameters, then combine

• Build trees with different subsets of sequences, then combine

• Use probabilistic methods

– Are computationally efficient

• There are many other algorithms that we did not cover, including those
that consider mutation models.

Summary and Further Readings

Epilogue

Summary

57

• Two main types of tree reconstruction methods:

– Distance-based

• UPGMA

• Neighbor joining

– Sequence-based

• Maximum parsimony

• Maximum likelihood

Further readings

58

• Chapter 7 of Algorithms in Bioinformatics: A Practical Introduction

–More details of the algorithms

–Complexity analysis

–Free slides available

http://www.comp.nus.edu.sg/~ksung/algo_in_bioinfo/slides/Ch7_phylogeny.pdf

Further readings

59

• Liu et al., Science 324(5934):1561-1564, (2009)

–Although we have discussed multiple sequence alignment (MSA) and phylogenetic
tree reconstruction in two different lectures, they are highly related

• A good phylogenetic tree can guide the construction of the MSA

–Recall the Clustal algorithm

• A good MSA can help deduce the phylogenetic tree

–For example, in computing sequence distances

