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Lecture outline
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1. Evolutionary distance and mutation models

2. Substitution matrices for amino acids

3. Trees: Hierarchical structures relating different biological objects
- File formats



Evolutionary Distance and Mutation Models

Part 1



Evolutionary distance
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• Suppose we have an alignment of two sequences. 
At a site, one sequence has a A and one has a C.
– Assume that the sequences have a common ancestor
–What did the common ancestor have at that site?
–We don’t know.
– Let’s say A. How many mutations have happened?
• Could be one (A® C)
• Could be more (A® G® C, A® T® C, A® C® A, etc.)
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Evolutionary distance

5

• Suppose we have an alignment of two sequences. 
At a site, one sequence has a A and one has a C.
– Assume that the sequences have a common ancestor
–What did the common ancestor have at that site?
–We don’t know.
– Let’s say A. How many mutations have happened?
• Could be one (A® C)
• Could be more (A® G® C, A® T® C, A® C® A, etc.)

•We want a way to define the “evolutionary distance” between  
two observed sequences
– According to the number of mutations happened or the time 

since their divergence
–We need to first define a mutation model
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Mutation model
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• A mutation model is a probabilistic model that describes how mutations 
happen over time
– How often a mutation happens
–What kinds of mutation are more frequent
• To make things simple, we will make the following assumptions:
– Sites are independent
–Mutation rates are the same for different sites and at different time in the history
– Given current state, future states do not depend on past states
•We know these assumptions are usually not true, but without them the 
calculations can be difficult
–More complex models that require fewer strong assumptions exist. 

We only study the simple models here



The Jukes-Cantor model
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• Proposed by Jukes and Cantor in 1969
• Equal rate of substitution, a, to the other three bases in one unit of time
–Assume there is at most one mutation within one unit of time – We can always make 
the unit smaller to ensure this
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Notes: In this lecture,
1.We do not consider indels
2.A “substitution” is a point 

mutation actually happened, 
while a mismatch in an 
alignment could be caused by 
one or more substitutions



Illustration of the Jukes-Cantor model
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• Suppose at time 0, site 1 of a sequence was A

• At time 1:
–There is a probability of 1-3a that the site was A
–There is a probability of a that the site was C
–There is a probability of a that the site was G
–There is a probability of a that the site was T

• At time 2, what is the probability that the site is A, if we only know it was A at 
time 0 but do not know what it was at time 1?
–Two possibilities:

1. At time 1, the site was A, and there was no mutation from time 1 to time 2 
[probability: (1-3a)2]

2. At time 1, the site was C, G or T, and there was a mutation to A from time 1 to 
time 2 [probability: 3a2]

–Therefore, the total probability that the site is A at time 2 is (1-3a)2 + 3a2



Recursive formulas
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• Denote PX®Y(t) as the probability that for a base that was X at time 0, it 
is Y at time t for any X and Y
– Here “site”, “base”, “nucleotide” all mean the same thing
– PA®A(1) = 1 - 3a
– PA®A(2) = (1 - 3a)2 + 3a2

– In general,
PA®A(t+1) = (1 - 3a)PA®A(t) + a[1 - PA®A(t)]
– Similarly:
• PX®X(t+1) = (1 - 3a)PX®X(t) + a[1 - PX®X(t)] for any X
• PX®Y(t+1) = [1 - PX®X(t+1)] / 3 for any X and Y



Recursive formulas

10

• Denote PX®Y(t) as the probability that for a base that was X at time 0, it 
is Y at time t for any X and Y
– Here “site”, “base”, “nucleotide” all mean the same thing
– PA®A(1) = 1 - 3a
– PA®A(2) = (1 - 3a)2 + 3a2

– In general,
PA®A(t+1) = (1 - 3a)PA®A(t) + a[1 - PA®A(t)]
– Similarly:
• PX®X(t+1) = (1 - 3a)PX®X(t) + a[1 - PX®X(t)] for any X
• PX®Y(t+1) = [1 - PX®X(t+1)] / 3 for any X and Y

–We first study how to compute PX®Y(t) for given mutation rate a and divergence 
time t, and then study how we can use PX®Y(t) to estimate the number of mutations 
that have happened since the divergence of the two sequences



Solving PA®A(t)
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• PA®A(t+1) = (1 - 3a)PA®A(t) + a[1 - PA®A(t)]
• D PA®A(t)
º PA®A(t+1) - PA®A(t) (here º means “is defined as”)
= (1 - 3a)PA®A(t) + a[1 - PA®A(t)] - PA®A(t)
= a[1 - 4 PA®A(t)]



Solving PA®A(t)
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• PA®A(t+1) = (1 - 3a)PA®A(t) + a[1 - PA®A(t)]
• D PA®A(t)
º PA®A(t+1) - PA®A(t) (here º means “is defined as”)
= (1 - 3a)PA®A(t) + a[1 - PA®A(t)] - PA®A(t)
= a[1 - 4 PA®A(t)]

• For an infinitesimally small time unit, we get a first-order differential equation, which can be 
solved by using an integrating factor

– Observation: When t is large, the initial state (i.e., nucleotide) does not matter any 
more and all four bases are equally likely

dPA→A(𝑡)
d𝑡

= α[1 − 4PA→A(𝑡)]

⟹ PA→A(𝑡) =
1
4
+ /PA→A(0) −

1
4
1 e−4α𝑡

=
1
4
+
3
4
e−4α𝑡

 



Final formulas for PX®Y(t)
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• By symmetry,

• Similarly, it is easy to show that

• You don’t need to memorize these formulas
–But you do need to know what the probabilities mean and how to 

apply them in calculations

PA→A(𝑡) = PC→C(𝑡) = PG→G(𝑡) = PT→T(𝑡) =
1
4
+
3
4
e−4α𝑡  

PA→C(𝑡) = PA→G(𝑡) = PA→T(𝑡) = ⋯ = PT→G(𝑡) = (1 − +
1
4 +

3
4e

−4α𝑡12 33 =
1
4 −

1
4e

−4α𝑡  



An alternative formula [optional]
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• Another way to solve the equation without using differential equations, 
suggested by a former student taking this class, Cao Jianquan:

PA®A(t) = (1 - 3a)PA®A(t-1) + a[1 - PA®A(t-1)]
= (1 - 4a)PA®A(t-1) + a

Þ PA®A(t) - 1/4 = (1 - 4a)PA®A(t-1) + a - 1/4
= (1 - 4a)PA®A(t-1) - 1/4 (1 - 4a)
= (1 - 4a)(PA®A(t-1) - 1/4)
= (1 - 4a)2(PA®A(t-2) - 1/4)
= ...
= (1 - 4a)t-1(PA®A(1) - 1/4)
= (1 - 4a)t-1(1 - 3a - 1/4)
= (1 - 4a)t-1(3/4 - 3a)
= 3/4 (1 - 4a)t

Þ PA®A(t) = 3/4 (1 - 4a)t + 1/4

Key: The underlined 
parts have exactly 
the same form



Comparing the formulas [optional]
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They differ significantly only when a (“a” in the figure) is large, and only in 
the first few time points 
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Comparing the formulas [optional]

• The exact solution on the last page:
– PA®A(t) = 3/4 (1 - 4a)t + 1/4
• The approximate solution based on differential equation:
– PA®A(t) = 3/4 e-4at + 1/4
• How similar are (1 - 4a)t and e-4at?
– By Taylor expansion, ex = 1 + x/1! + x2/2! + x3/3! + ...
– Therefore e-4at = 1 - 4at + (4at)2/2 - (4at)3/6 + ...
– On the other hand,

(1 - 4a)t = 1 - 4at + t(t-1)/2(4a)2 - t(t-1)(t-2)/6(4a)3 + ...
= 1 - 4at + [(t2-t)(4a)2/2] - [(t3-3t2+2t)(4a)3/6] + ...

– Therefore, their difference is
e-4at - (1 - 4a)t = t(4a)2/2 - (3t2-2t)(4a)3/6 + ...

16



Problem revisited
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•What have we done so far?
–Given

1. The ancestral state of a site
2. The substitution rate a (probability of each type of mutation in unit time)

– Determine the probability of the current state, which is t units of time after the 
separation event, where t is also given

• What do we really want?
– Given the current states of two sequences
• The ancestral state is unknown

– Determine the number of substitutions happened in the two sequences since 
their divergence, both observed and unobserved
• The substitution rate (a) and for how long the two sequences have diverged 

(t) are also unknown



Difficulties and ideas
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• Difficulty #1: We do not know the ancestral state, mutation rate a or 
divergence time t
– Solutions:
• Due to symmetry, the ancestral state does not matter if we care only about 
whether two current sequences have the same nucleotide or not at each site
– Psame(t)
= [PA→A(t)]2 + [PA→C(t)]2 + [PA→G(t)]2 + [PA→T(t)]2

= [PC→A(t)]2 + [PC→C(t)]2 + [PC→G(t)]2 + [PC→T(t)]2

= [PG→A(t)]2 + [PG→C(t)]2 + [PG→G(t)]2 + [PG→T(t)]2

= [PT→A(t)]2 + [PT→C(t)]2 + [PT→G(t)]2 + [PT→T(t)]2

•We do not know a or t, but we can easily estimate their product at and
it turns out this is all that we need



Difficulties and ideas
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• Difficulty #2: Even if we knew the ancestral state, mutation rate a and 
divergence time t, there would still be an infinite number of possibilities 
each with an associated probability

– Solution:
•We will talk about the expected number of mutations happened

i.e., the average of all cases by considering their number of mutations and 
probability of happening



Expectation and variance
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• A little bit on two basic statistical concepts:
– Consider flipping an unfair coin with 60% chance of head and 40% chance of tail. 
We flip it 100 times. How many heads do we get?
–We do not know before the experiment, because the number could vary every time
– But if we repeat the experiment many times, on average we get 60 heads per 
experiment
• This is called the expectation
– There are variations between the numbers obtained from different experiments. 
We can quantify the variation by the average squared difference between the 
observed numbers and the expectation
• This is called the variance
– If we change to 30% chance of head but flip 200 times per experiment, the 
expected number of heads per experiment remains 60



How do these concepts help in solving our problem?
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• Although we do not know whether a mutation appears after one time 
unit, but if we consider a large number of time units, the expected
number of mutations in t time units is 3at

• If we can estimate the number of mutations that have happened, we can 
compute 3at even we never know the separate values of a and t alone
– That’s why we use the approximation formula for PA®A(t) = 3/4 e-4at + 1/4 

It only involves the product of a and t but not their separate values



Estimating the number of substitutions
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• For the Jukes-Cantor model:
– For a single site, probability for two sequences separated t units of time ago having 
the same state is (assuming the ancestral state was A, but the same formula holds for 
other ancestral states): – Idea #1

– Correspondingly, the probability that the two sequences have different states 
at a single site is – Idea #2

[PA→A(𝑡)]2 + [PA→C(𝑡)]2 + [PA→G(𝑡)]2 + [PA→T(𝑡)]2

= +
1
4
+
3
4
e−4α𝑡2

2

+ 3 +
1
4
−
1
4
e−4α𝑡2

2

= +
1
16

+
6
16
e−4α𝑡 +

9
16
e−8α𝑡2 + +

3
16

−
6
16
e−4α𝑡 +

3
16
e−8α𝑡2

=
1
4
+
3
4
e−8α𝑡

 

We don’t know the value of a
(substitution rate) or t (number 
of time units since the divergence 
of the two sequences), but we 
can estimate pdiff, which will give 
us an estimate of at.

pdiff ≡ 1 − (
1
4
+
3
4
e−8α𝑡0 =

3
4
(1 − e−8α𝑡)

⇒ α𝑡 = −
1
8
ln (1 −

4
3
pdiff 0

 

Psame(t) =



Estimating the number of substitutions
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• How to estimate pdiff probability for two random sequences generated according to 
the above procedure to have different states at a site?
–We estimate pdiff by x/n, where x is the number of sites different between the observed 
sequences – our best guess based on observed data

• Putting everything together:
– Suppose we have two length-n sequences diverged t units of time ago currently with x
mismatches (assuming no indels)
– Let Ksup be the no. of substitutions per site happened to the two sequences since their 
divergence
– According to the Jukes-Cantor model, the expected value of Ksup is (from previous page)

– For large n, variance of this estimation is approximately

E"Ksup ' = 2(3α𝑡) = 6 0−
1
8 ln

61 −
4
3pdiff

;< = −
3
4 ln

61 −
4
3pdiff

; = −
3
4 ln

61 −
4𝑥
3𝑛
; 

Var$E&Ksup +, =
pdiff − (pdiff )2

𝑛 61 − 43pdiff :
2 =

𝑥/𝑛 − (𝑥/𝑛)2

𝑛 61 − 4𝑥3𝑛:
2  

Estimate the variance, details refer to: https://link.springer.com/content/pdf/10.1007/BF01653945.pdf



Estimating the number of substitutions
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• Let’s see how we can apply the results
• Example:
– Suppose two sequences each with n=200 nucleotides have x=66 observed mismatches,

then
• pdiff = x/n = 66/200 = 0.33

•

• Variance of this estimation is

– Observations:
1. Observed number of substitutions per site is smaller than the estimated number of 

(observed + unobserved) substitutions per site, as expected
2. Variance is fairly large -- The actual number may be a bit different from this estimate 

(would be smaller for large n)

E"Ksup ' = −
3
4
ln .1 −

4
3
pdiff 3 ≈ 0.43 

Var$E&Ksup +, =
pdiff − (pdiff )2

𝑛 61 − 43pdiff :
2 ≈ 0.0035 



Evolutionary distance
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• Now, we can use E[Ksup] as a measure of the evolutionary distance between two 
aligned sequences without indels.
– Using a mutation model to define the distance is more theoretical grounded than 
defining the substitution score matrix arbitrarily (like match=1, mismatch=-1).
– Of course, we need to align the sequences first, at which time we still need a 
substitution matrix to start with

• There are other models that allow
–More parameters (e.g., different sub-types of substitutions)
– Variable rates at different sties
– Dependency between different sites
– Changing substitution rates over time
– Indels

• Let’s study one more model that considers differences between transitions and 
transversions



The Kimura two-parameter model
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• Kimura proposed the following model in 1980:
– Assume transitions are more frequent than transversions
– In one unit of time, probability of a for a transition to happen and probability of b (<a) for a 
transversion to happen

• Again, it is possible to estimate E[Ksup] without knowing a, b and t

A G

C T

a

a

a

a

b b b b

b
b

b
b

1-a-2b 1-a-2b

1-a-2b 1-a-2b



Recursive formulas [optional]

27

• PA®A(t+1) = (1 - a - 2b)PA®A(t) + bPA®C(t) + aPA®G(t) + bPA®T(t)
• D PA®A(t)
= PA®A(t+1) - PA®A(t)
= (1 - a - 2b)PA®A(t) + bPA®C(t) + aPA®G(t) + bPA®T(t) - PA®A(t)
= -(a + 2b)PA®A(t) + bPA®C(t) + aPA®G(t) + bPA®T(t)

• For an infinitesimally small time unit,

• Solving the four simultaneous differential equations for

,               ,               and              , we get the formulas on the next slide

dPA→A(𝑡)
d𝑡

= −[α+ 2β]PA→A(𝑡) + βPA→C(𝑡) + αPA→G(𝑡) + βPA→T(𝑡) 

dPA→A(𝑡)
d𝑡

 
dPA→C(𝑡)

d𝑡
 
dPA→G(𝑡)

d𝑡
 

dPA→T(𝑡)
d𝑡

 



Final formulas
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• Same base after t units of time:

• An observed transition after t units of time:

• An observed transversion after t units of time:

PA→A(𝑡) = PC→C(𝑡) = PG→G(𝑡) = PT→T(𝑡) =
1
4
+
1
4
e−4β𝑡 +

1
2
e−2(α+β)𝑡  

PA→G(𝑡) = PC→T(𝑡) = PG→A(𝑡) = PT→C(𝑡) =
1
4
+
1
4
e−4β𝑡 −

1
2
e−2(α+β)𝑡  

PA→C(𝑡) = PA→T(𝑡) = ⋯ = PT→G(𝑡) =
1
4
−
1
4
e−4β𝑡  



Estimating the number of substitutions
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• Skipping the remaining derivations:
– Suppose there are x1 observed transitions and x2 observed transversions
– Correspondingly, we estimate the probability of having a transition and a transversion per 

site in the final sequences as pdiff1 º x1/n and pdiff2 º x2/n, respectively
– Then using a derivation similar as before, we get
•

• For large n, , variance of this estimation

E"Ksup ' =
1
2
ln -

1
1 − 2pdiff 1 − pdiff 2

2 +
1
4
ln -

1
1 − 2pdiff 2

2 

Var$E&Ksup +, =
1
𝑛
0pdiff 1 4

1
1 − 2pdiff 1 − pdiff 2

7
2

+ pdiff 2 4
1

2 − 4pdiff 1 − 2pdiff 2
+

1
2 − 4pdiff 2

7
2

− 4
pdiff 1

1 − 2pdiff 1 − pdiff 2
+

pdiff 2
2 − 4pdiff 1 − 2pdiff 2

+
pdiff 2

2 − 4pdiff 2
7
2
: 



Estimating the number of substitutions
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• Example:
– Suppose two sequences each with n=200 nucleotides have x1=50 observed 
transitions and x2=16 transversions, then
• pdiff1 = x1/n = 50/200 = 0.25
• pdiff2 = x2/n = 16/200 = 0.08

•

• Variance of this estimation
• This estimated number of substitutions per site is even larger than the estimate 
from the Jukes-Cantor model
– This one may be more accurate for more diverged sequences

E"Ksup ' =
1
2
ln -

1
1 − 2pdiff 1 − pdiff 2

2 +
1
4
ln -

1
1 − 2pdiff 2

2 ≈ 0.48 

Var$E&Ksup +, ≈ 0.0056 



Substitution Matrices for Amino Acids

Part 2



Amino acid substitutions
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• If we only see amino acid sequences, it is 
more difficult to estimate the number of DNA 
substitutions
– Because one amino acid substitution can be caused 
by several possible DNA substitutions
– However, similar ideas still apply. For example, the 
observed number of substitutions is likely smaller 
than the actual number of substitutions happened

Observed Percent
Difference

Evolutionary 
Distance in PAM

1 1

5 5

10 11

15 17

20 23

25 30

30 38

35 47

40 56

45 67

50 80

55 94

60 112

65 133

70 159

75 195

80 246

85 328

Table source: Dayhoff et al., Atlas of Protein Sequence and Structure 5(3):345-352, (1978)



Amino acid substitutions
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• For non-coding DNA, we can build simple yet highly reasonable mutation 
models using just one or two parameters

• In contrast, amino acid substitutions depend heavily on biochemical 
properties, and it is difficult to form a simple model
– For example, a leucine is more likely substituted by an isoleucine than a valine
– Instead, people have estimated substitution rates from data in large databases



PAM
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• One commonly used series of substitution matrices for amino acids is 
PAM (point accepted mutation)
–“Accepted” means survived, so that we can observe today
• Created by Dayhoff et al. in 1978 based on 1,572 observed substitutions 
in 71 families of closely related proteins



Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
A R N D C Q E G H I L K M F P S T W Y V

Ala A 0.9867 0.0001 0.0004 0.0006 0.0001 0.0003 0.0010 0.0021 0.0001 0.0002 0.0003 0.0002 0.0001 0.0001 0.0013 0.0028 0.0022 0.0000 0.0001 0.0013
Arg R 0.0002 0.9913 0.0001 0.0000 0.0001 0.0009 0.0000 0.0001 0.0008 0.0002 0.0001 0.0037 0.0001 0.0001 0.0005 0.0011 0.0002 0.0002 0.0000 0.0002
Asn N 0.0009 0.0001 0.9822 0.0042 0.0000 0.0004 0.0007 0.0012 0.0018 0.0003 0.0003 0.0025 0.0000 0.0001 0.0002 0.0034 0.0013 0.0000 0.0003 0.0001
Asp D 0.0010 0.0000 0.0036 0.9859 0.0000 0.0005 0.0056 0.0011 0.0003 0.0001 0.0000 0.0006 0.0000 0.0000 0.0001 0.0007 0.0004 0.0000 0.0000 0.0001
Cys C 0.0003 0.0001 0.0000 0.0000 0.9973 0.0000 0.0000 0.0001 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0011 0.0001 0.0000 0.0003 0.0003
Gln Q 0.0008 0.0010 0.0004 0.0006 0.0000 0.9876 0.0035 0.0003 0.0020 0.0001 0.0006 0.0012 0.0002 0.0000 0.0008 0.0004 0.0003 0.0000 0.0000 0.0002
Glu E 0.0017 0.0000 0.0006 0.0053 0.0000 0.0027 0.9865 0.0007 0.0001 0.0002 0.0001 0.0007 0.0000 0.0000 0.0003 0.0006 0.0002 0.0000 0.0001 0.0002
Gly G 0.0021 0.0000 0.0006 0.0006 0.0000 0.0001 0.0004 0.9935 0.0000 0.0000 0.0001 0.0002 0.0000 0.0001 0.0002 0.0016 0.0002 0.0000 0.0000 0.0003
His H 0.0002 0.0010 0.0021 0.0004 0.0001 0.0023 0.0002 0.0001 0.9912 0.0000 0.0004 0.0002 0.0000 0.0002 0.0005 0.0002 0.0001 0.0000 0.0004 0.0003
Ile I 0.0006 0.0003 0.0003 0.0001 0.0001 0.0001 0.0003 0.0000 0.0000 0.9872 0.0022 0.0004 0.0005 0.0008 0.0001 0.0002 0.0011 0.0000 0.0001 0.0057
Leu L 0.0004 0.0001 0.0001 0.0000 0.0000 0.0003 0.0001 0.0001 0.0001 0.0009 0.9947 0.0001 0.0008 0.0006 0.0002 0.0001 0.0002 0.0000 0.0001 0.0011
Lys K 0.0002 0.0019 0.0013 0.0003 0.0000 0.0006 0.0004 0.0002 0.0001 0.0002 0.0002 0.9926 0.0004 0.0000 0.0002 0.0007 0.0008 0.0000 0.0000 0.0001
Met M 0.0006 0.0004 0.0000 0.0000 0.0000 0.0004 0.0001 0.0001 0.0000 0.0012 0.0045 0.0020 0.9874 0.0004 0.0001 0.0004 0.0006 0.0000 0.0000 0.0017
Phe F 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0007 0.0013 0.0000 0.0001 0.9946 0.0001 0.0003 0.0001 0.0001 0.0021 0.0001
Pro P 0.0022 0.0004 0.0002 0.0001 0.0001 0.0006 0.0003 0.0003 0.0003 0.0000 0.0003 0.0003 0.0000 0.0000 0.9926 0.0017 0.0005 0.0000 0.0000 0.0003
Ser S 0.0035 0.0006 0.0020 0.0005 0.0005 0.0002 0.0004 0.0021 0.0001 0.0001 0.0001 0.0008 0.0001 0.0002 0.0012 0.9840 0.0032 0.0001 0.0001 0.0002
Thr T 0.0032 0.0001 0.0009 0.0003 0.0001 0.0002 0.0002 0.0003 0.0001 0.0007 0.0003 0.0011 0.0002 0.0001 0.0004 0.0038 0.9871 0.0000 0.0001 0.0010
Trp W 0.0000 0.0008 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0004 0.0000 0.0000 0.0003 0.0000 0.0005 0.0000 0.9976 0.0002 0.0000
Tyr Y 0.0002 0.0000 0.0004 0.0000 0.0003 0.0000 0.0001 0.0000 0.0004 0.0001 0.0002 0.0001 0.0000 0.0028 0.0000 0.0002 0.0002 0.0001 0.9945 0.0002
Val V 0.0018 0.0001 0.0001 0.0001 0.0002 0.0001 0.0002 0.0005 0.0001 0.0033 0.0015 0.0001 0.0004 0.0000 0.0002 0.0002 0.0009 0.0000 0.0001 0.9901

PAM1
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Source of the original table (transpose of this one): http://www.icp.ucl.ac.be/~opperd/private/pam1.html



PAM
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• One commonly used series of substitution matrices for amino acids is PAM (point 
accepted mutation)
–“Accepted” means survived, so that we can observe today
• Created by Dayhoff et al. in 1978 based on 1,572 observed substitutions in 71 families 
of closely related proteins
• In the PAM1 matrix, each element records the probability of that substitution given 
a mutation rate of one substitution per 100 amino acids
– Reason to define in this way is to setup a time context without knowing exactly how 
long it was
– For any x³1, the PAMx matrix records substitution probabilities given a mutation 
rate of x substitutions per 100 amino acids
• Larger x Þ more substitutions
• It is equal to PAM1 to the power x (matrix multiplication)
– The matrix is asymmetric



Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
A R N D C Q E G H I L K M F P S T W Y V

Ala A 0.9867 0.0001 0.0004 0.0006 0.0001 0.0003 0.0010 0.0021 0.0001 0.0002 0.0003 0.0002 0.0001 0.0001 0.0013 0.0028 0.0022 0.0000 0.0001 0.0013
Arg R 0.0002 0.9913 0.0001 0.0000 0.0001 0.0009 0.0000 0.0001 0.0008 0.0002 0.0001 0.0037 0.0001 0.0001 0.0005 0.0011 0.0002 0.0002 0.0000 0.0002
Asn N 0.0009 0.0001 0.9822 0.0042 0.0000 0.0004 0.0007 0.0012 0.0018 0.0003 0.0003 0.0025 0.0000 0.0001 0.0002 0.0034 0.0013 0.0000 0.0003 0.0001
Asp D 0.0010 0.0000 0.0036 0.9859 0.0000 0.0005 0.0056 0.0011 0.0003 0.0001 0.0000 0.0006 0.0000 0.0000 0.0001 0.0007 0.0004 0.0000 0.0000 0.0001
Cys C 0.0003 0.0001 0.0000 0.0000 0.9973 0.0000 0.0000 0.0001 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0011 0.0001 0.0000 0.0003 0.0003
Gln Q 0.0008 0.0010 0.0004 0.0006 0.0000 0.9876 0.0035 0.0003 0.0020 0.0001 0.0006 0.0012 0.0002 0.0000 0.0008 0.0004 0.0003 0.0000 0.0000 0.0002
Glu E 0.0017 0.0000 0.0006 0.0053 0.0000 0.0027 0.9865 0.0007 0.0001 0.0002 0.0001 0.0007 0.0000 0.0000 0.0003 0.0006 0.0002 0.0000 0.0001 0.0002
Gly G 0.0021 0.0000 0.0006 0.0006 0.0000 0.0001 0.0004 0.9935 0.0000 0.0000 0.0001 0.0002 0.0000 0.0001 0.0002 0.0016 0.0002 0.0000 0.0000 0.0003
His H 0.0002 0.0010 0.0021 0.0004 0.0001 0.0023 0.0002 0.0001 0.9912 0.0000 0.0004 0.0002 0.0000 0.0002 0.0005 0.0002 0.0001 0.0000 0.0004 0.0003
Ile I 0.0006 0.0003 0.0003 0.0001 0.0001 0.0001 0.0003 0.0000 0.0000 0.9872 0.0022 0.0004 0.0005 0.0008 0.0001 0.0002 0.0011 0.0000 0.0001 0.0057
Leu L 0.0004 0.0001 0.0001 0.0000 0.0000 0.0003 0.0001 0.0001 0.0001 0.0009 0.9947 0.0001 0.0008 0.0006 0.0002 0.0001 0.0002 0.0000 0.0001 0.0011
Lys K 0.0002 0.0019 0.0013 0.0003 0.0000 0.0006 0.0004 0.0002 0.0001 0.0002 0.0002 0.9926 0.0004 0.0000 0.0002 0.0007 0.0008 0.0000 0.0000 0.0001
Met M 0.0006 0.0004 0.0000 0.0000 0.0000 0.0004 0.0001 0.0001 0.0000 0.0012 0.0045 0.0020 0.9874 0.0004 0.0001 0.0004 0.0006 0.0000 0.0000 0.0017
Phe F 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0007 0.0013 0.0000 0.0001 0.9946 0.0001 0.0003 0.0001 0.0001 0.0021 0.0001
Pro P 0.0022 0.0004 0.0002 0.0001 0.0001 0.0006 0.0003 0.0003 0.0003 0.0000 0.0003 0.0003 0.0000 0.0000 0.9926 0.0017 0.0005 0.0000 0.0000 0.0003
Ser S 0.0035 0.0006 0.0020 0.0005 0.0005 0.0002 0.0004 0.0021 0.0001 0.0001 0.0001 0.0008 0.0001 0.0002 0.0012 0.9840 0.0032 0.0001 0.0001 0.0002
Thr T 0.0032 0.0001 0.0009 0.0003 0.0001 0.0002 0.0002 0.0003 0.0001 0.0007 0.0003 0.0011 0.0002 0.0001 0.0004 0.0038 0.9871 0.0000 0.0001 0.0010
Trp W 0.0000 0.0008 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0004 0.0000 0.0000 0.0003 0.0000 0.0005 0.0000 0.9976 0.0002 0.0000
Tyr Y 0.0002 0.0000 0.0004 0.0000 0.0003 0.0000 0.0001 0.0000 0.0004 0.0001 0.0002 0.0001 0.0000 0.0028 0.0000 0.0002 0.0002 0.0001 0.9945 0.0002
Val V 0.0018 0.0001 0.0001 0.0001 0.0002 0.0001 0.0002 0.0005 0.0001 0.0033 0.0015 0.0001 0.0004 0.0000 0.0002 0.0002 0.0009 0.0000 0.0001 0.9901

PAM1
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Source of the original table (transpose of this one): http://www.icp.ucl.ac.be/~opperd/private/pam1.html

If there is a mutation rate of 1 substitution per 100 amino acids, 
there is a probability of about 0.0033 that a valine would be 
mutated to an isoleucine (why much larger than others?)

Please also take note on this 
number, which is smaller



Valine and isoleucine

• Similar chemical properties
® Less impact upon substitution
® Substitution more likely to occur
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Information source: Wikipedia

Amino Acid Side-chain 
polarity

Side-chain charge 
(pH 7.4)

Hydropathy 
index

Alanine nonpolar neutral 1.8
Arginine polar positive −4.5
Asparagine polar neutral −3.5
Aspartic acid polar negative −3.5
Cysteine polar neutral 2.5
Glutamic acid polar negative −3.5
Glutamine polar neutral −3.5
Glycine nonpolar neutral −0.4

Histidine polar positive(10%) 
neutral(90%)

−3.2

Isoleucine nonpolar neutral 4.5

Amino Acid Side-chain 
polarity

Side-chain charge 
(pH 7.4)

Hydropathy 
index

Leucine nonpolar neutral 3.8
Lysine polar positive −3.9
Methionine nonpolar neutral 1.9
Phenylalanine nonpolar neutral 2.8
Proline nonpolar neutral −1.6
Serine polar neutral −0.8
Threonine polar neutral −0.7
Tryptophan nonpolar neutral −0.9
Tyrosine polar neutral −1.3
Valine nonpolar neutral 4.2



Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
A R N D C Q E G H I L K M F P S T W Y V

Ala A 0.13 0.03 0.04 0.05 0.02 0.03 0.05 0.12 0.02 0.03 0.06 0.06 0.01 0.02 0.07 0.09 0.08 0.00 0.01 0.07
Arg R 0.06 0.17 0.04 0.04 0.01 0.05 0.04 0.05 0.05 0.02 0.04 0.18 0.01 0.01 0.05 0.06 0.05 0.02 0.01 0.04
Asn N 0.09 0.04 0.06 0.08 0.01 0.05 0.07 0.10 0.05 0.02 0.04 0.10 0.01 0.02 0.05 0.08 0.06 0.00 0.02 0.04
Asp D 0.09 0.03 0.07 0.11 0.01 0.06 0.11 0.10 0.04 0.02 0.03 0.08 0.01 0.01 0.04 0.07 0.06 0.00 0.01 0.04
Cys C 0.05 0.02 0.02 0.01 0.52 0.01 0.01 0.04 0.02 0.02 0.02 0.02 0.00 0.01 0.03 0.07 0.04 0.00 0.03 0.04
Gln Q 0.08 0.05 0.05 0.07 0.01 0.10 0.09 0.07 0.07 0.02 0.06 0.10 0.01 0.01 0.05 0.06 0.05 0.00 0.01 0.04
Glu E 0.09 0.03 0.06 0.10 0.01 0.07 0.12 0.09 0.04 0.02 0.04 0.08 0.01 0.01 0.04 0.07 0.05 0.00 0.01 0.04
Gly G 0.12 0.02 0.04 0.05 0.02 0.03 0.05 0.27 0.02 0.02 0.03 0.05 0.01 0.01 0.05 0.09 0.06 0.00 0.01 0.04
His H 0.06 0.06 0.06 0.06 0.02 0.07 0.06 0.05 0.15 0.02 0.05 0.08 0.01 0.03 0.05 0.06 0.04 0.01 0.03 0.05
Ile I 0.08 0.03 0.03 0.03 0.02 0.02 0.03 0.05 0.02 0.10 0.15 0.05 0.02 0.05 0.03 0.05 0.06 0.00 0.02 0.04
Leu L 0.06 0.02 0.02 0.02 0.01 0.03 0.02 0.04 0.02 0.06 0.34 0.04 0.03 0.06 0.03 0.04 0.04 0.01 0.02 0.15
Lys K 0.07 0.09 0.05 0.05 0.01 0.05 0.05 0.06 0.03 0.02 0.04 0.24 0.02 0.01 0.04 0.07 0.06 0.00 0.01 0.10
Met M 0.07 0.04 0.03 0.03 0.01 0.03 0.03 0.05 0.02 0.06 0.20 0.09 0.06 0.04 0.03 0.05 0.05 0.00 0.02 0.04
Phe F 0.04 0.01 0.02 0.01 0.01 0.01 0.01 0.03 0.02 0.05 0.13 0.02 0.02 0.32 0.02 0.03 0.03 0.01 0.15 0.10
Pro P 0.11 0.04 0.04 0.04 0.02 0.04 0.04 0.08 0.03 0.02 0.05 0.06 0.01 0.01 0.20 0.09 0.06 0.00 0.01 0.05
Ser S 0.11 0.04 0.05 0.05 0.03 0.03 0.05 0.11 0.03 0.03 0.04 0.08 0.01 0.02 0.06 0.10 0.08 0.01 0.02 0.05
Thr T 0.11 0.03 0.04 0.05 0.02 0.03 0.05 0.09 0.02 0.04 0.06 0.08 0.01 0.02 0.05 0.09 0.11 0.00 0.02 0.05
Trp W 0.02 0.07 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.06 0.04 0.01 0.04 0.01 0.04 0.02 0.55 0.03 0.72
Tyr Y 0.04 0.02 0.03 0.02 0.04 0.02 0.02 0.03 0.03 0.03 0.07 0.03 0.01 0.20 0.02 0.04 0.03 0.01 0.31 0.04
Val V 0.09 0.02 0.03 0.03 0.02 0.03 0.03 0.07 0.02 0.09 0.13 0.05 0.02 0.03 0.04 0.06 0.06 0.00 0.02 0.17

PAM250
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Source of the original table (transpose of this one): http://www.icp.ucl.ac.be/~opperd/private/pam250.html

If there is a mutation rate of 250 substitutions per 100 
amino acids, there is a probability of about 0.09 that a 
valine would be mutated to an isoleucine

Why V®L is more likely than V®I?
Because (1) there are indirect paths for V to get 
mutated to L, (2) I is a source and (3) L is a sink



Another matrix: BLOSUM
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• Blocks of amino acid substitution matrix is another set of commonly used substitution 
matrix for amino acids.
• Based on local alignments of very conserved protein regions



BLOSUM62
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Table source: http://www.ncbi.nlm.nih.gov/Class/FieldGuide/BLOSUM62.txt

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
A R N D C Q E G H I L K M F P S T W Y V

Ala A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
Arg R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
Asn N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3
Asp D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
Cys C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Gln Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
Glu E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
Gly G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
His H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
Ile I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
Leu L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
Lys K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
Met M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
Phe F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
Pro P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
Ser S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
Thr T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0
Trp W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3
Tyr Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
Val V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4



Another matrix: BLOSUM
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• Blocks of amino acid substitution matrix is another set of commonly used substitution 
matrix for amino acids.
• Based on local alignments of very conserved protein regions
• The BLOSUMy matrix (y between 0 and 100), the local alignments involve sequences 
that are more than y% identical
– Larger y Þ less substitutions
• The entry at the i-th row and j-th column is the log-odd score:
– Sij = 1/l log2(pij / (pipj)), where
• pij is the fraction of observed substitutions between amino acids i and j
• pi and pj are the fraction of sites with amino acids i and j, respectively
• l is a scaling factor to make the numbers close to integers
– For example, if amino acids i and j are independent, i.e., pipj = pij, 

then log2(pij / (pipj)) = 0



PAM vs. BLOSUM
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•Meaning of numbers in the matrices:
– PAM: probabilities of substitution Pi®j (x)
• Asymmetric
– BLOSUM: log odds of observed substitutions and expectation
• Symmetric
– Can also compute log odds for the PAM probabilities 

(some “PAM matrices” that you can find on the Web are actually log odds)
• Construction methods:
– PAM: groups of related proteins
– BLOSUM: local alignments of very conserved regions of proteins
•Meaning of x and y in PAMx and BLOSUMy
– PAM: mutation rate of x substitutions per 100 amino acids. 

Larger x means more substitutions
– BLOSUM: identity threshold above which sequences are grouped to perform local alignment. 

Larger y means less substitutions



Trees

Part 3



Classification of species

45

Image credit: Wikipedia, http://ridge.icu.ac.jp/gen-ed/classif-gifs/animal-class-example.gif

Domains and 
kingdoms

The animal kingdom



Taxonomy
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Image credit: Wikipedia, http://www2.estrellamountain.edu/faculty/farabee/biobk/BioBookDivers_class.html



Finer scales
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• Same idea can be applied to classify different strains of a type of bacteria
• Or even family relationships

Image credit: Hershberg et al., Genome Biology 8:R164 (2007), http://www.accessexcellence.org/RC/VL/GG/images/pedigree.gif, 
http://www.jdrf.ca/



Relating biological objects
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• How were the hierarchies determined?
– Species: traditionally by morphological and behavioral similarities, 

or paleontological evidences
– Bacterial strains: by physical, chemical and biological properties

• Question: Which features should be used first?

Image credit: http://www2.estrellamountain.edu/faculty/farabee/biobk/BioBookDivers_class.html



Phylogeny
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• A systematic and objective way to construct these trees is by comparing 
DNA/protein sequences

• In these two lectures, we study trees that relate objects sufficiently different
– Different species
– Different strains/populations of a species

• Our goal is to reconstruct the actual evolutionary relationships based on 
observable sequences



Assumptions

• Basic assumptions behind phylogenetic trees:
1. The current sequences share a common ancestor
2. All were mutated from the common ancestor
3. Mutations are rare. Therefore, if the DNA of A and B are more similar than both 

A and C as well as B and C, likely C was separated from A and B before their 
separation

50

A B C

Common ancestor of A and B

Common ancestor of A, B and C

Time



Terminology
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• A tree is an acyclic graph with nodes 
connected by edges

• A phylogenetic tree is a binary tree with 
sequences (nodes) connected by branches 
(edges)
– Leaf nodes are the observed sequences
– Internal nodes are the unobserved ancestral 
sequences
– The root node is the common ancestor of all the 
observed sequences
– Branch lengths may represent evolutionary 
distances

Root

A branch

Image credit: Hershberg et al., Genome Biology 8:R164 (2007) , http://www.jdrf.ca/

An internal node
A leaf 
node

Branch length



Rooted and unrooted trees

• Sometimes it is not very clear where the common ancestor should be put
–We can have a tree without root – an unrooted tree
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Image credit: Lowery et al., Oncogene 24(2):248-259, (2005)



Common file formats for phylogenetic trees
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• Newick (nested brackets, with distances)
• NEXUS (giving short IDs to sequences, with more metadata)
• PhyloXML (using XML’s structure)



The Newick format

• Use brackets and comma to group two sub-trees
• Use colon to indicate distance to parent, if available
• End with a semicolon

54

Remarks:
• For an unrooted tree, one simple way to 

represent it using the Newick format is to 
root the tree arbitrarily

• You can name internal nodes by giving the 
label after the close bracket (e.g., 
(Homo:0.21, Pongo:0.21)HP:0.28

((((Homo:0.21,Pongo:0.21):0.28,
Macaca:0.49):0.13,Ateles:0.62):
0.38,Galago:1.00);

Newick:

Image credit: http://www.zoology.ubc.ca/~schluter/zoo502stats/Rtips.phylogeny.html

Graphical representation:

0.21

0.21
0.28

0.49

0.13

0.62

0.38

1.00
Galago

Ateles

Macaca

Pongo

Homo



Common file formats
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• Example

((((Homo:0.21,Pongo:0.21):0.28,Macaca:0.49):
0.13,Ateles:0.62):0.38,Galago:1.00);

Newick:

BEGIN TAXA;
DIMENSIONS NTAX = 5;
TAXLABELS

Homo
Pongo
Macaca
Ateles
Galago

;
END;
BEGIN TREES;

TRANSLATE
1       Homo,
2       Pongo,
3       Macaca,
4       Ateles,
5       Galago

;
TREE * UNTITLED = [&R] 

((((1:0.21,2:0.21):0.28,3:0.49):0.13,4:0.62):0.38,5:1);
END;

NEXUS:

Image credit: http://www.zoology.ubc.ca/~schluter/zoo502stats/Rtips.phylogeny.html

Graphical representation:

0.21

0.21
0.28

0.49

0.13

0.62

0.38

1.00
Galago

Ateles

Macaca

Pongo

Homo



Common file formats

• PhyloXML
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Information source: http://www.phyloxml.org/examples_syntax/phyloxml_syntax_example_1.html

<phyloxml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns="http://www.phyloxml.org" xsi:schemaLocation="http://www.phyloxml.org 
http://www.phyloxml.org/1.10/phyloxml.xsd">

<phylogeny rooted="true">
<name>Alcohol dehydrogenases</name>
<description>contains examples of commonly used elements</description>
<clade>

<events>
<speciations>1</speciations>

</events>
<clade>

<taxonomy>
<id provider="ncbi">6645</id>
<scientific_name>Octopus vulgaris</scientific_name>

</taxonomy>
<sequence>

<accession source="UniProtKB">P81431</accession>
<name>Alcohol dehydrogenase class-3</name>

</sequence>
</clade>
...

</clade>
</phylogeny>

</phyloxml>



Case Study, Summary and Further Readings

Epilogue



Case study: Unexpected classifications
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• In the old days, biologists classified species based on their high-level 
features
– If a species possesses features that make the organisms similar to multiple other 
types of species, it could be difficult to classify
–When molecular features (e.g., DNA sequences) become available, they can be used 
to classify species in a systematic way
• Some previous classifications were found to be inconsistent with molecular evidence



Case study: Unexpected classifications
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• Example 1: Mammals
–Bats look like birds, dolphins look like fish, but both are actually mammals
• Kingdom: Animalia (animals)

Superphylum: Deuterostomia
Phylum: Chordata

Subphylum: Vertebrata (animals with backbones)
Infraphylum: Gnathostomata (jawed vertebrates)

Class:  Chondrichthyes (cartilaginous fish)
Superclass: Osteichthyes (bony fish)
Superclass: Tetrapoda (four-limbed vertebrates)

Class: Aves (birds)
Class Mammalia (mammals)

Image source: Wikipedia



Case study: Unexpected classifications
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• Example 2: The three domains
• All species on earth belong to one of the three 
domains
– Archaea
• Single-celled, no nucleus
• Usually live in places with extreme conditions (e.g., 
high temperature or salinity – “extremophiles”)
– Bacteria
• Single-celled, no nucleus
– Eukaryote
•Many are multi-celled, with nucleus

Image source: Wikipedia

Halobacteria sp. strain NRC-1, an archaaeon

Escherichia coli, a beacterium

Various eukaryotic species



Case study: Unexpected classifications

• It seems reasonable to assume that eukaryotes separated from the 
other two first
• However, based on the sequence of ribosomal RNAs, something so 
important that evolve slowly, archaea are closer to eukaryotes than 
bacteria
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Image source: Wikipedia



Summary
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•Mutation models allow us to formally estimate number of mutations 
happened based on observed data
– Jukes-Cantor one parameter model
– Kimura’s two parameter model
– PAM and BLOSUM matrices

• Phylogenetic trees capture separation events and when they happened
• Common file formats for trees



Further readings
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• Chapter 3 of the book “Fundamentals of Molecular Evolution (Second 
Edition)” by Dan Graur and Wen-Hsiung Li. Sinauer Associates, Inc., 2000
– Other mutation models
–Models for coding sequences



Further readings
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• The 1000 Genomes Project Consortium, A Global Reference for Human 
Genetic Variation. Nature 526(7571):68-74, (2015)
– The 1000 Genomes Project aims at studying genetic differences among 
different human populations.
– This paper is one of the latest reports from this consortium.


