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Lecture outline

1. Problems related to sequences

– Core: Sequence alignment

2. Sequence alignment

– Problem components

– Difficulty

– Methods (focused on optimal methods in this lecture)

• Global alignment

• Local alignment



PROBLEMS RELATED TO SEQUENCES

Part 1
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Recall: Sequence data

• Many biological objects are represented by sequences (text strings)

–DNA sequences (A, C, G, T)
• E.g., TATACATTAG

–RNA sequences (A, C, G, U)
• E.g., UAUACAUUAG

–Protein sequences (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y)
• E.g., YTL

–...
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Sequence similarity

• General assumption: Sequences with more similar text strings also have 
more similar biological properties

• Why?
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Sequence similarity

–Evolutionarily: Either

•They have diverged from a common ancestor for a shorter time 

or they have still preserved their original properties

•“Selective pressure” – conservation suggests importance (changes are 
unfavorable)

–At the molecular level:

•Structures are more similar

•Containing similar functional units (domains)

•...

• General assumption: Sequences with more similar text strings also have 
more similar biological properties

• Why?
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Computational problems

1. Biological question: “How similar are the genomes of humans and mice?”
— Computational question: Given two sequences r and s, compute their similarity, sim(r, s)
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Computational problems

1. Biological question: “How similar are the genomes of humans and mice?”
— Computational question: Given two sequences r and s, compute their similarity, sim(r, s)

2. Biological question: “This gene causes obesity in mice. Do humans have 

the same gene?”
— Computational question: Given a sequence r (the mouse gene) and a database D of sequences 

(all human genes), find sequences s in D where sim(r, s) is above a threshold
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Computational problems

1. Biological question: “How similar are the genomes of humans and mice?”
— Computational question: Given two sequences r and s, compute their similarity, sim(r, s)

2. Biological question: “This gene causes obesity in mice. Do humans have 

the same gene?”
— Computational question: Given a sequence r (the mouse gene) and a database D of sequences 

(all human genes), find sequences s in D where sim(r, s) is above a threshold

— The simplest way is to compute sim(r, s) for each s one by one
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3. Biological question: “We know some mutations of this gene cause sickle-cell 
anemia. We have the sequences of 100 patients and 100 normal people. 
Let’s find out the disease-causing mutations.”

—Computational question: Given two sets of sequences of different lengths, find an alignment
that maximizes the overall similarity (so that nucleotides in a column were likely originated 
from the same nucleotide in their ancestral sequence). Then look for mutations that are 
unique to one group.

Computational problems
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3. Biological question: “We know some mutations of this gene cause sickle-cell 
anemia. We have the sequences of 100 patients and 100 normal people. 
Let’s find out the disease-causing mutations.”

—Computational question: Given two sets of sequences of different lengths, find an alignment
that maximizes the overall similarity (so that nucleotides in a column were likely originated 
from the same nucleotide in their ancestral sequence). Then look for mutations that are 
unique to one group.

Patients ACGCGT

CGCGT

ACGCGA

Controls AGCTT

ACGCTT

ACGCTA

Computational problems
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3. Biological question: “We know some mutations of this gene cause sickle-cell 
anemia. We have the sequences of 100 patients and 100 normal people. 
Let’s find out the disease-causing mutations.”

—Computational question: Given two sets of sequences of different lengths, find an alignment
that maximizes the overall similarity (so that nucleotides in a column were likely originated 
from the same nucleotide in their ancestral sequence). Then look for mutations that are 
unique to one group.

ACGCGT

_CGCGT

ACGCGA

A_GCTT

ACGCTT

ACGCTA

Patients ACGCGT

CGCGT

ACGCGA

Controls AGCTT

ACGCTT

ACGCTA

Computational problems
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3. Biological question: “We know some mutations of this gene cause sickle-cell 
anemia. We have the sequences of 100 patients and 100 normal people. 
Let’s find out the disease-causing mutations.”

—Computational question: Given two sets of sequences of different lengths, find an alignment
that maximizes the overall similarity (so that nucleotides in a column were likely originated 
from the same nucleotide in their ancestral sequence). Then look for mutations that are 
unique to one group.

ACGCGT

_CGCGT

ACGCGA

A_GCTT

ACGCTT

ACGCTA

ACGCGT

_CGCGT

ACGCGA

A_GCTT

ACGCTT

ACGCTA

Patients ACGCGT

CGCGT

ACGCGA

Controls AGCTT

ACGCTT

ACGCTA

Performing the 
alignment makes it 
easy to compute the 
similarity between two 
sequences.

Computational problems
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Commonality

• In all these problems, we need to get either

–The similarity of sequences OR

–The alignment of sequences

• Similarity can be easily computed after performing an alignment

–We will study how it can be done in general

• Therefore, sequence alignment is a core topic in the study of sequences



SEQUENCE ALIGNMENT

Part 2
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Sequence alignment

• Definition:
–Given a set of sequences, an alignment is the same set of sequences with 

zero or more gaps inserted into them so that

1. They all have the same length afterwards

2. For each column (also called a position or a site), at least one of the 
resulting sequences is not a gap
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Sequence alignment

• Definition:
–Given a set of sequences, an alignment is the same set of sequences with 

zero or more gaps inserted into them so that

1. They all have the same length afterwards

2. For each column (also called a position or a site), at least one of the 
resulting sequences is not a gap

• Example and terminology:

CGGTCACTTGA

CGGTCCTTGT
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Sequence alignment

• Definition:
–Given a set of sequences, an alignment is the same set of sequences with 

zero or more gaps inserted into them so that

1. They all have the same length afterwards

2. For each column (also called a position or a site), at least one of the 
resulting sequences is not a gap

• Example and terminology:

CGGTCACTTGA

CGGTCCTTGT

CGGTCACTTGA

CGGTC_CTTGT
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Sequence alignment

• Definition:
–Given a set of sequences, an alignment is the same set of sequences with 

zero or more gaps inserted into them so that

1. They all have the same length afterwards

2. For each column (also called a position or a site), at least one of the 
resulting sequences is not a gap

• Example and terminology:

CGGTCACTTGA

CGGTCCTTGT

CGGTCACTTGA

CGGTC_CTTGT

Mismatch 
(substitution)

Match
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Sequence alignment

• Definition:
–Given a set of sequences, an alignment is the same set of sequences with 

zero or more gaps inserted into them so that

1. They all have the same length afterwards

2. For each column (also called a position or a site), at least one of the 
resulting sequences is not a gap

• Example and terminology:

CGGTCACTTGA

CGGTCCTTGT

CGGTCACTTGA

CGGTC_CTTGT

Gap 
(“indel”)

Mismatch 
(substitution)

Match
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Sequence alignment

• Definition:
–Given a set of sequences, an alignment is the same set of sequences with 

zero or more gaps inserted into them so that

1. They all have the same length afterwards

2. For each column (also called a position or a site), at least one of the 
resulting sequences is not a gap

• Example and terminology:

• A good alignment is one with few substitutions and indels

— the sequence alignment problem is to find out the optimal alignment,

i.e., the one with the highest score (to be defined)

CGGTCACTTGA

CGGTCCTTGT

CGGTCACTTGA

CGGTC_CTTGT

Gap 
(“indel”)

Mismatch 
(substitution)

Match

http://ureply.mobi/mobile_index.php
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Sequence alignment problems

• Number of sequences

– 2 sequences: Pairwise sequence alignment

– >2 sequences: Multiple sequence alignment

TACCG

CAC_T

TACCG

CAC_T

T_CCT
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Sequence alignment problems

• Number of sequences

– 2 sequences: Pairwise sequence alignment

– >2 sequences: Multiple sequence alignment

• Which part to align

–Whole sequences: Global alignment

–Parts of sequences: Local alignment

1 TACCG 5

1 CAC_T 4

2 AC 3

2 AC 3

TACCG

CAC_T

TACCG

CAC_T

T_CCT
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Sequence alignment problems

• Number of sequences

– 2 sequences: Pairwise sequence alignment

– >2 sequences: Multiple sequence alignment

• Which part to align

–Whole sequences: Global alignment

–Parts of sequences: Local alignment

• How to compute similarity

–Ways to compute substitution scores

–Ways to compute gap penalties

1 TACCG 5

1 CAC_T 4

2 AC 3

2 AC 3

TACCG

CAC_T

TACCG

CAC_T

T_CCT
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A simple situation

• Consider a simple setting:

–2 sequences (pairwise alignment)

–Align whole sequences (global alignment)

–Alignment score
Match: +1 alignment score;
Otherwise (mismatch or indel): -1 alignment score
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An example

• ACG vs. AGG
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An example

• ACG vs. AGG
–A possible alignment:
AC_G

AGG_

Alignment score = -2
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An example

• ACG vs. AGG
–A possible alignment:
AC_G

AGG_

Alignment score = -2

–Another possible alignment:
ACG

AGG

Alignment score = 1
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An example

• ACG vs. AGG
–A possible alignment:
AC_G

AGG_

Alignment score = -2

–Another possible alignment:
ACG

AGG

Alignment score = 1

• Questions:
1. How can we find out the optimal alignment(s), i.e., the one(s) with highest alignment score?

2. If the two sequences have lengths m and n respectively, how many possible alignments are there? 
(If the number is small, we can simply enumerate all possible alignments in a brute-force manner 
to find out the best one(s).)

http://ureply.mobi/mobile_index.php
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Difficulty

• Example:

ACG

AGG
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Difficulty

• Example:

ACG

AGG

ACG

AGG

No gaps
(1 case)
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Difficulty

• Example:

ACG

AGG

ACG

AGG

No gaps
(1 case)

_ACG

A_GG

_ACG

AG_G

_ACG

AGG_

A_CG

_AGG

A_CG

AG_G

A_CG

AGG_
1 gap

(12 cases)
AC_G

_AGG

AC_G

A_GG

AC_G

AGG_

ACG_

_AGG

ACG_

A_GG

ACG_

AG_G

Note: Here we consider 
them as different alignments
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Difficulty

• Example:

ACG

AGG

ACG

AGG

No gaps
(1 case)

_ACG

A_GG

_ACG

AG_G

_ACG

AGG_

A_CG

_AGG

A_CG

AG_G

A_CG

AGG_
1 gap

(12 cases)
AC_G

_AGG

AC_G

A_GG

AC_G

AGG_

ACG_

_AGG

ACG_

A_GG

ACG_

AG_G

__ACG

AG__G

2 gaps (30 cases)

__ACG

AG_G_

__ACG

AGG__

_A_CG

A_G_G

_A_CG

A_GG_

_A_CG

AGG__

_AC_G

A__GG

_AC_G

A_GG_

_AC_G

AG_G_

_ACG_

A__GG

_ACG_

A_G_G

_ACG_

AG__G

A__CG

_AG_G

A__CG

_AGG_

A__CG

AGG__

A_C_G

_A_GG

A_C_G

_AGG_

A_C_G

AG_G_

A_CG_

_A_GG

A_CG_

_AG_G

A_CG_

AG__G

AC__G

__AGG

AC__G

_AGG_

AC__G

A_GG_

AC_G_

__AGG

AC_G_

_AG_G

AC_G_

A_G_G

ACG__

__AGG

ACG__

_A_GG

ACG__

A__GG

Note: Here we consider 
them as different alignments
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Difficulty

• Example:

ACG

AGG

ACG

AGG

No gaps
(1 case)

_ACG

A_GG

_ACG

AG_G

_ACG

AGG_

A_CG

_AGG

A_CG

AG_G

A_CG

AGG_
1 gap

(12 cases)
AC_G

_AGG

AC_G

A_GG

AC_G

AGG_

ACG_

_AGG

ACG_

A_GG

ACG_

AG_G

__ACG

AG__G

2 gaps (30 cases)

__ACG

AG_G_

__ACG

AGG__

_A_CG

A_G_G

_A_CG

A_GG_

_A_CG

AGG__

_AC_G

A__GG

_AC_G

A_GG_

_AC_G

AG_G_

_ACG_

A__GG

_ACG_

A_G_G

_ACG_

AG__G

A__CG

_AG_G

A__CG

_AGG_

A__CG

AGG__

A_C_G

_A_GG

A_C_G

_AGG_

A_C_G

AG_G_

A_CG_

_A_GG

A_CG_

_AG_G

A_CG_

AG__G

AC__G

__AGG

AC__G

_AGG_

AC__G

A_GG_

AC_G_

__AGG

AC_G_

_AG_G

AC_G_

A_G_G

ACG__

__AGG

ACG__

_A_GG

ACG__

A__GG

___ACG

AGG___

3 gaps (20 cases)

__A_CG

AG_G__

__AC_G

AG__G_

__ACG_

AG___G

_A__CG

A_GG__

_A_C_G

A_G_G_

_A_CG_

A_G__G

_AC__G

A__GG_

_AC_G_

A__G_G

_ACG__

A___GG

A___CG

_AGG__

A__C_G

_AG_G_

A__CG_

_AG__G

A_C__G

_A_GG_

A_C_G_

_A_G_G

A_CG__

_A__GG

AC___G

__AGG_

AC__G_

__AG_G

AC_G__

__A_GG

ACG___

___AGG

Note: Here we consider 
them as different alignments
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Difficulty

• Example:

ACG

AGG

ACG

AGG

No gaps
(1 case)

_ACG

A_GG

_ACG

AG_G

_ACG

AGG_

A_CG

_AGG

A_CG

AG_G

A_CG

AGG_
1 gap

(12 cases)
AC_G

_AGG

AC_G

A_GG

AC_G

AGG_

ACG_

_AGG

ACG_

A_GG

ACG_

AG_G

__ACG

AG__G

2 gaps (30 cases)

__ACG

AG_G_

__ACG

AGG__

_A_CG

A_G_G

_A_CG

A_GG_

_A_CG

AGG__

_AC_G

A__GG

_AC_G

A_GG_

_AC_G

AG_G_

_ACG_

A__GG

_ACG_

A_G_G

_ACG_

AG__G

A__CG

_AG_G

A__CG

_AGG_

A__CG

AGG__

A_C_G

_A_GG

A_C_G

_AGG_

A_C_G

AG_G_

A_CG_

_A_GG

A_CG_

_AG_G

A_CG_

AG__G

AC__G

__AGG

AC__G

_AGG_

AC__G

A_GG_

AC_G_

__AGG

AC_G_

_AG_G

AC_G_

A_G_G

ACG__

__AGG

ACG__

_A_GG

ACG__

A__GG

63 possible 
alignments
Best: no gaps 
(score = 1)

___ACG

AGG___

3 gaps (20 cases)

__A_CG

AG_G__

__AC_G

AG__G_

__ACG_

AG___G

_A__CG

A_GG__

_A_C_G

A_G_G_

_A_CG_

A_G__G

_AC__G

A__GG_

_AC_G_

A__G_G

_ACG__

A___GG

A___CG

_AGG__

A__C_G

_AG_G_

A__CG_

_AG__G

A_C__G

_A_GG_

A_C_G_

_A_G_G

A_CG__

_A__GG

AC___G

__AGG_

AC__G_

__AG_G

AC_G__

__A_GG

ACG___

___AGG

Note: Here we consider 
them as different alignments
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Number of possible alignments [optional]

• Given first sequence of length m and second sequence of length n (m  n)
–Minimum number of gaps added to first sequence: n-m

–Maximum number of gaps added to first sequence: n

–For x gaps inserted into the first sequence:
• There are x+mCx ways to insert the gaps

•Need to insert x+m-n gaps into the second sequence

•Can only insert at places that are not gaps in the first sequence. mCx+m-n ways

–Therefore, the total number of possible alignments is

–E.g., when m=n=3,

 
 𝑥 + 3 !

𝑥! x!  3 − 𝑥 !

3

𝑥=0

=
 0 + 3 !

0! 0!  3 − 0 !
+

 1 + 3 !

1! 1!  3 − 1 !
+

 2 + 3 !

2! 2!  3 − 2 !
+

 3 + 3 !

3! 3!  3 − 3 !
= 1 + 12 + 30 + 20 = 63 

  
𝑥 + 𝑚
𝑥

  
𝑚

𝑥 + 𝑚 − 𝑛
 

𝑛

𝑥=𝑛−𝑚

=  
 𝑥 + 𝑚 !

𝑥!𝑚!

𝑚!

 𝑥 + 𝑚 − 𝑛 !  𝑛 − 𝑥 !

𝑛

𝑥=𝑛−𝑚

=  
 𝑥 + 𝑚 !

𝑥!  𝑥 + 𝑚− 𝑛 !  𝑛 − 𝑥 !

𝑛

𝑥=𝑛−𝑚
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So, how large is it?

• Exponential growth (see Covington, Journal of Quantitative Linguistics

11(3):173-182, 2004 for the counts for other definitions of unique alignments)

m
n

1 2 3 4 5 6 7 8 9 10

1 3

2 5 13

3 7 25 63

4 9 41 129 321

5 11 61 231 681 1683

6 13 85 377 1289 3653 8989

7 15 113 575 2241 7183 19825 48639

8 17 145 833 3649 13073 40081 108545 265729

9 19 181 1159 5641 22363 75517 224143 598417 1462563

10 21 221 1561 8361 36365 134245 433905 1256465 3317445 8097453

  
𝑥 + 𝑚
𝑥

  
𝑚

𝑥 + 𝑚 − 𝑛
 

𝑛

𝑥=𝑛−𝑚

=  
 𝑥 + 𝑚 !

𝑥!𝑚!

𝑚!

 𝑥 + 𝑚 − 𝑛 !  𝑛 − 𝑥 !

𝑛

𝑥=𝑛−𝑚

=  
 𝑥 + 𝑚 !

𝑥!  𝑥 + 𝑚− 𝑛 !  𝑛 − 𝑥 !

𝑛

𝑥=𝑛−𝑚
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How to find the best alignment then?

• If m and n are not too large (say, <10,000):

–Dynamic programming (for finding optimal alignments, i.e., alignments with highest 
alignment score) – this lecture

•Essentially a smart way to compare all alignments

•Need a smart way because of the exponential number of possible alignments

• If m or n is very large (e.g., whole-genome alignment with m and n at the 
scale of billions):

–Heuristic algorithms (for finding reasonably good alignments that may not be 
optimal) – next lecture
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How to compare all alignments?

• An important concept in computer science is “divide-and-conquer”:

1. Divide a big problem into smaller problems

2. Solve the smaller problems

3. Combine the results to solve the original big problem
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How to compare all alignments?

• An important concept in computer science is “divide-and-conquer”:

1. Divide a big problem into smaller problems

2. Solve the smaller problems

3. Combine the results to solve the original big problem

• In Step 2,

– If a smaller problem is still too difficult to solve, we divide it further into even 
smaller problems

– Otherwise, we solve it directly

• Note: Some people require the sub-problems in divide-and-conquer to be non-
overlapping. Here we use the term in a more relaxed manner.
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Divide-and-conquer: an example

• Suppose we want to align these sequences:
– r = AG

– s = G
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Divide-and-conquer: an example

• Suppose we want to align these sequences:
– r = AG

– s = G

• Possible alignments (we want to find out the best alignment without listing them in this way):

AG  _AG  AG  AG_  A_G

G_  G__  _G  __G  _G_
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Divide-and-conquer: an example

• Suppose we want to align these sequences:
– r = AG

– s = G

• Possible alignments (we want to find out the best alignment without listing them in this way):

AG  _AG  AG  AG_  A_G

G_  G__  _G  __G  _G_

1 3 3 32
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Divide-and-conquer: an example

• Suppose we want to align these sequences:
– r = AG

– s = G

• Possible alignments (we want to find out the best alignment without listing them in this way):

AG  _AG  AG  AG_  A_G

G_  G__  _G  __G  _G_

• Notation: The original problem is to align r[1..2] and s[1..1]

• To solve this problem, we want to see which of the following is the best:
1. Align r[1] with s[1], and find the best way to align the remaining (r[2..2] with , i.e., empty sequence)

2. Align a gap with s[1], and find the best way to align the remaining (r[1..2] with )

3. Align r[1] with a gap, and find the best way to align the remaining (r[2..2] with s[1..1])

1 3 3 32
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Recursion tree

• We can summarize the process by a “tree”:

Original problem:
r[1..2] and s[1..1]
r=AG, s=G

Sub-problem:
r[2..2] and gaps
G, 

Align r[1]
with s[1]
(-1 score)

G

_
score = -1

Optimal alignment of sub-problem:
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Recursion tree

• We can summarize the process by a “tree”:

Original problem:
r[1..2] and s[1..1]
r=AG, s=G

Sub-problem:
r[2..2] and gaps
G, 

Sub-problem:
r[1..2] and gaps
AG, 

Align r[1]
with s[1]
(-1 score)

Align a gap
with s[1]
(-1 score)

G

_

AG

__

score = -1

score = -2

Optimal alignment of sub-problem:

Optimal alignment of sub-problem:
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Recursion tree

• We can summarize the process by a “tree”:

Original problem:
r[1..2] and s[1..1]
r=AG, s=G

Sub-problem:
r[2..2] and gaps
G, 

Sub-problem:
r[2..2] and s[1..1]
G, G

Sub-problem:
r[1..2] and gaps
AG, 

Align r[1]
with s[1]
(-1 score)

Align r[1]
with a gap
(-1 score)

Align a gap
with s[1]
(-1 score)

G

_

AG

__

score = -1

score = -2

Align r[2]
with s[1]
(+1 score)

Align a gap
with s[1]
(-1 score)

Align r[2]
with a gap
(-1 score)

Sub-problem:
r[2..2] and gaps
G, 

Sub-problem:
gaps and s[1..1]
, G

G

_
score = -1

_

G
score = -1

Optimal alignment of sub-problem:

Optimal alignment of sub-problem:

No sub-problems
score = 0

Optimal alignment of 
sub-problem:

Optimal alignment of 
sub-problem:
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Original problem:
r[1..2] and s[1..1]
r=AG, s=G

Sub-problem:
r[2..2] and gaps
G, 

Sub-problem:
r[2..2] and s[1..1]
G, G

Sub-problem:
r[1..2] and gaps
AG, 

Align r[1]
with s[1]
(-1 score)

Align r[1]
with a gap
(-1 score)

Align a gap
with s[1]
(-1 score)

G

_

AG

__

score = -1

score = -2

Align r[2]
with s[1]
(+1 score)

Align a gap
with s[1]
(-1 score)

Align r[2]
with a gap
(-1 score)

Sub-problem:
r[2..2] and gaps
G, 

Sub-problem:
gaps and s[1..1]
, G

G

_
score = -1

No sub-problems
score = 0

Optimal alignment of  
sub-problem:

G

G
score = 1

Optimal alignment of 
sub-problem:

AG

_G
score = 0

Optimal alignment:

Optimal alignment of sub-problem:

Optimal alignment of sub-problem:

Optimal alignment of 
sub-problem:

_

G
score = -1

Recursion tree

• We can summarize the process by a “tree”:
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Divide-and-conquer

• Basically, divide-and-conquer is a systematic way to compare all possible alignments 
to find out the best one

• Why is it a good idea?
–It compares groups of alignments at the same time without the need to consider individual 

alignments one by one

–For example, when aligning r=ACG and s=AGG, once we know the best alignment for r[2..3]=CG

and s[3..3]=G is         (and thus        is better than       ), we immediately know that             is better 

than            ,            is better than             , and so on, without considering these individual 

alignments one by one.

• In general, the recursion tree will look like the one on the next page:

CG

_G

CG

_G

CG

G_

A_CG

AG_G

A_CG

AGG_

_ACG

AG_G

_ACG

AGG_
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Recursion tree

r[1..m] and s[1..n]

r[2..m] and s[2..n]

r[1..m] and s[2..n]

r[2..m] and s[1..n]

r[3..m] and s[3..n]

r[2..m] and s[3..n]

r[3..m] and s[2..n]

r[2..m] and s[3..n]

r[1..m] and s[3..n]

r[2..m] and s[2..n]

r[3..m] and s[2..n]

r[2..m] and s[2..n]

r[3..m] and s[1..n]

...
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Recursion tree

• Is it really a good idea?
–It seems that there is an exponential number of sub-problems to solve?

–Not really, because different branches share common problems

r[1..m] and s[1..n]

r[2..m] and s[2..n]

r[1..m] and s[2..n]

r[2..m] and s[1..n]

r[3..m] and s[3..n]

r[2..m] and s[3..n]

r[3..m] and s[2..n]

r[2..m] and s[3..n]

r[1..m] and s[3..n]

r[2..m] and s[2..n]

r[3..m] and s[2..n]

r[2..m] and s[2..n]

r[3..m] and s[1..n]

...
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Redundancy

• Important observation: many sub-problems are the same

r[1..m] and s[1..n]

r[2..m] and s[2..n]

r[1..m] and s[2..n]

r[2..m] and s[1..n]

r[3..m] and s[3..n]

r[2..m] and s[3..n]

r[3..m] and s[2..n]

r[2..m] and s[3..n]

r[1..m] and s[3..n]

r[2..m] and s[2..n]

r[3..m] and s[2..n]

r[2..m] and s[2..n]

r[3..m] and s[1..n]

...
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Reusing results

• Idea: Store the intermediate results and reuse them

–Note that each sub-problem involves a suffix of r and a suffix of s

r[1..m] and s[1..n]

r[2..m] and s[2..n]

r[1..m] and s[2..n]

r[2..m] and s[1..n]

r[3..m] and s[3..n]

r[2..m] and s[3..n]

r[3..m] and s[2..n]

r[2..m] and s[3..n]

r[1..m] and s[3..n]

r[2..m] and s[2..n]

r[3..m] and s[2..n]

r[2..m] and s[2..n]

r[3..m] and s[1..n]

...
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Systematic analysis

• So, the key point is to store and reuse the alignment scores between the suffixes

• How many suffixes are there?
–m+1 for r: r[1..m], r[2..m], ..., r[m..m],  (just gaps)

–n+1 for s: s[1..n], s[2..n], ..., s[n..n],  (just gaps)

• How many alignment problems are there?
– (m+1)(n+1) – 1 = mn + m + n  mn for large m, n

• -1 because it is meaningless to align two empty strings

• Polynomial, instead of exponential

•Much smaller than the total number of alignments

–E.g., when m=10 and n=10:

»There are 8,097,453 possible alignments

»These alignments only share (11)(11)-1 = 120 unique sub-problems

• Some are extremely easy to solve. For example, aligning  and s[1..x] is to simply align everything in the 
second sequence with gaps, for all x between 1 and n
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Lecture goals

• Based on these ideas, we are going to study a method called dynamic 
programming for finding optimal alignments

• It is a bit complicated when you first learn it, but after having some exercises, 
you should be able to solve problems using it

• Our goals:

–Everyone: Understanding the high-level concepts

–Everyone: Knowing how to fill in the numbers in the dynamic programming table

–Some (hopefully most or even all) of you: Understanding why the numbers should 
be filled in that way
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Dynamic programming

• Dynamic programming is a systematic way to reuse the results of 
sub-problems
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Dynamic programming

• Dynamic programming is a systematic way to reuse the results of 
sub-problems

• Define a (m+1)(n+1) table V, where V(i, j) equals the optimal (i.e., 
highest) alignment score of the suffixes r[i..m] and s[j..n]

–r[m+1] = 

–s[n+1] = 

• Fill in the values by making use of other values already filled in

• The final answer is read from the cell corresponding to the 
alignment of r[1..m] and s[1..n], i.e., V(1, 1)

Make sure you 
remember the 
definition of V(i, j)
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s

r

A G G 

A Best 
alignment 
score 
between 
ACG and 
AGG

Best 
alignment 
score 
between 
ACG and 
GG

Best 
alignment 
score 
between 
ACG and G

Best 
alignment 
score 
between 
ACG and 

C Best 
alignment 
score 
between 
CG and 
AGG

Best 
alignment 
score 
between 
CG and GG

Best 
alignment 
score 
between 
CG and G

Best 
alignment 
score 
between 
CG and 

G Best 
alignment 
score 
between G 
and AGG

Best 
alignment 
score 
between G 
and GG

Best 
alignment 
score 
between G 
and G

Best 
alignment 
score 
between G 
and 

 Best 
alignment 
score 
between 
and AGG

Best 
alignment 
score 
between 
and GG

Best 
alignment 
score 
between 
and G

Best 
alignment 
score 
between 
and 

s

r

A G G 

A Best 
alignment 
between 
ACG and 
AGG

Best 
alignment 
between 
ACG and 
GG

Best 
alignment 
between 
ACG and G

Best 
alignment 
between 
ACG and 

C Best 
alignment 
between 
CG and 
AGG

Best 
alignment 
between 
CG and GG

Best 
alignment 
between 
CG and G

Best 
alignment 
between 
CG and 

G Best 
alignment 
between G 
and AGG

Best 
alignment 
between G 
and GG

Best 
alignment 
between G 
and G

Best 
alignment 
between G 
and 

 Best 
alignment 
between 
and AGG

Best 
alignment 
between 
and GG

Best 
alignment 
between 
and G

Best 
alignment 
between 
and 

Best alignments
(No need to construct, for illustration here only)

Best alignment scores
(The V table that needs to be constructed)

A simple example
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A simple example

s

r

A G G 

A

C

G



s

r

A G G 

A

C

G



？

V(i, j) equals the optimal (i.e., highest) alignment score of the suffixes r[i..m] and s[j..n]

？

？
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A simple example

s

r

A G G 

A

-3

C

-2

G

-1



-3 -2 -1 0

s

r

A G G 

A ACG

___

C CG

__

G G

_

 ___

AGG

__

GG

_

G

Red arrow: Pointing from a sub-problem P1 to another sub-problem P2, where the 
optimal score of P2 is due to P1.

V(i, j) equals the optimal (i.e., highest) alignment score of the suffixes r[i..m] and s[j..n]
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s

r

A G G 

A

-3

C

-2

G

-1



-3 -2 -1 0

s

r

A G G 

A ACG

___

C CG

__

G r[3..3] 
and 
s[3..3]

G

_

 ___

AGG

__

GG

_

G

A simple example
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s

r

A G G 

A

-3

C

-2

G

-1



-3 -2 -1 0

s

r

A G G 

A ACG

___

C CG

__

G r[3..3] 
and 
s[3..3]

G

_

 ___

AGG

__

GG

_

G

Case 1: Align r[3] with s[3]
G
G
New sub-problem : nil
Result: +1 from diagonal (0+1=1)

+1

A simple example
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s

r

A G G 

A

-3

C

-2

G

-1



-3 -2 -1 0

s

r

A G G 

A ACG

___

C CG

__

G r[3..3] 
and 
s[3..3]

G

_

 ___

AGG

__

GG

_

G

Case 1: Align r[3] with s[3]
G
G
New sub-problem : nil
Result: +1 from diagonal (0+1=1)

Case 2: Align gap with s[3]
_
G
New sub-problem: align r[3..3] and 
Result: -1 from right (-1-1=-2)

+1

-1

A simple example
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s

r

A G G 

A

-3

C

-2

G

-1



-3 -2 -1 0

s

r

A G G 

A ACG

___

C CG

__

G r[3..3] 
and 
s[3..3]

G

_

 ___

AGG

__

GG

_

G

Case 1: Align r[3] with s[3]
G
G
New sub-problem : nil
Result: +1 from diagonal (0+1=1)

Case 2: Align gap with s[3]
_
G
New sub-problem: align r[3..3] and 
Result: -1 from right (-1-1=-2)

Case 3: Align r[3] with gap
G
_
New sub-problem: align  and s[3..3]
Result: -1 from bottom (-1-1=-2)

+1-1

-1

A simple example
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s

r

A G G 

A

-3

C

-2

G

1 -1



-3 -2 -1 0

s

r

A G G 

A ACG

___

C CG

__

G G

G

G

_

 ___

AGG

__

GG

_

G

Case 1: Align r[3] with s[3]
G
G
New sub-problem : nil
Result: +1 from diagonal (0+1=1)

Case 2: Align gap with s[3]
_
G
New sub-problem: align r[3..3] and 
Result: -1 from right (-1-1=-2)

Case 3: Align r[3] with gap
G
_
New sub-problem: align  and s[3..3]
Result: -1 from bottom (-1-1=-2)

+1-1

-1

A simple example



66

s

r

A G G 

A

-3

C

-2

G

1 -1



-3 -2 -1 0

s

r

A G G 

A ACG

___

C r[2..3] 
and 
s[3..3]

CG

__

G G

G

G

_

 ___

AGG

__

GG

_

G

Case 1: Align r[2] with s[3]
C
G
New sub-problem : align r[3..3] and 
Result: -1 from diagonal (-1-1=-2)

Case 2: Align gap with s[3]
_
G
New sub-problem: align r[2..3] and 
Result: -1 from right (-2-1=-3)

Case 3: Align r[2] with gap
C
_
New sub-problem: align r[3..3] and s[3..3]
Result: -1 from bottom (1-1=0)

-1-1

-1

+1-1

-1

A simple example
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s

r

A G G 

A

-3

C

0 -2

G

1 -1



-3 -2 -1 0

s

r

A G G 

A ACG

___

C CG

_G

CG

__

G G

G

G

_

 ___

AGG

__

GG

_

G

Case 1: Align r[2] with s[3]
C
G
New sub-problem : align r[3..3] and 
Result: -1 from diagonal (-1-1=-2)

Case 2: Align gap with s[3]
_
G
New sub-problem: align r[2..3] and 
Result: -1 from right (-2-1=-3)

Case 3: Align r[2] with gap
C
_
New sub-problem: align r[3..3] and s[3..3]
Result: -1 from bottom (1-1=0)

-1-1

-1

+1-1

-1

A simple example
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s

r

A G G 

A

1 -1 -1 -3

C

-1 0 0 -2

G

-1 0 1 -1



-3 -2 -1 0

s

r

A G G 

A ACG

AGG

ACG ACG

G_G _GG

ACG

__G

ACG

___

C CG_ C_G

AGG AGG

_CG

AGG

CG

GG

CG

_G

CG

__

G _G_ __G

AGG AGG
G_ _G

GG GG
G

G

G

_

 ___

AGG

__

GG

_

G

-1-1

-1

+1-1

-1

-1-1

-1

-1-1

-1

+1-1

-1

-1-1

-1

-1-1

-1

-1-1

-1

+1-1

-1

A simple example
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Final answer
s

r

A G G 

A

1 -1 -1 -3

C

-1 0 0 -2

G

-1 0 1 -1



-3 -2 -1 0

s

r

A G G 

A ACG

AGG

ACG ACG

G_G _GG

ACG

__G

ACG

___

C CG_ C_G

AGG AGG

_CG

AGG

CG

GG

CG

_G

CG

__

G _G_ __G

AGG AGG
G_ _G

GG GG
G

G

G

_

 ___

AGG

__

GG

_

G

-1-1

-1

+1-1

-1

-1-1

-1

-1-1

-1

+1-1

-1

-1-1

-1

-1-1

-1

-1-1

-1

+1-1

-1
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• Dynamic programming is a systematic way to reuse the results of 
sub-problems

• Define a (m+1)(n+1) table V, where V(i, j) equals the optimal (i.e., 
highest) alignment score of the suffixes r[i..m] and s[j..n]

–r[m+1] = 

–s[n+1] = 

• Fill in the values by making use of other values already filled in

• The final answer is read from the cell corresponding to the 
alignment of r[1..m] and s[1..n], i.e., V(1, 1)

Make sure you 
remember the 
definition of V(i, j)

Dynamic programming
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Dynamic programming

• Value of V(i,j) based on V(i+1,j+1), V(i+1,j) and V(i,j+1):

Alignment score between r[i] and s[j] +
Optimal alignment score between 
r[i+1..m] and s[j+1..n]

𝑉 𝑖, 𝑗 = max

 
 

 
𝑉 𝑖 + 1, 𝑗 + 1 + 1 if 𝑟 𝑖 = 𝑠 𝑗 

𝑉 𝑖 + 1, 𝑗 + 1 − 1 if 𝑟 𝑖 ≠ 𝑠 𝑗 

𝑉 𝑖, 𝑗 + 1 − 1  

𝑉 𝑖 + 1, 𝑗 − 1  

  

Optimal alignment score 
between r[i..m] and s[j..n]
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Dynamic programming

• Value of V(i,j) based on V(i+1,j+1), V(i+1,j) and V(i,j+1):

Alignment score between r[i] and s[j] +
Optimal alignment score between 
r[i+1..m] and s[j+1..n]

𝑉 𝑖, 𝑗 = max

 
 

 
𝑉 𝑖 + 1, 𝑗 + 1 + 1 if 𝑟 𝑖 = 𝑠 𝑗 

𝑉 𝑖 + 1, 𝑗 + 1 − 1 if 𝑟 𝑖 ≠ 𝑠 𝑗 

𝑉 𝑖, 𝑗 + 1 − 1  

𝑉 𝑖 + 1, 𝑗 − 1  

  

Optimal alignment score 
between r[i..m] and s[j..n]

Alignment score between a gap and s[j] +
Optimal alignment score between r[i..m] 
and s[j+1..n]
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Dynamic programming

• Value of V(i,j) based on V(i+1,j+1), V(i+1,j) and V(i,j+1):

Alignment score between r[i] and s[j] +
Optimal alignment score between 
r[i+1..m] and s[j+1..n]

𝑉 𝑖, 𝑗 = max

 
 

 
𝑉 𝑖 + 1, 𝑗 + 1 + 1 if 𝑟 𝑖 = 𝑠 𝑗 

𝑉 𝑖 + 1, 𝑗 + 1 − 1 if 𝑟 𝑖 ≠ 𝑠 𝑗 

𝑉 𝑖, 𝑗 + 1 − 1  

𝑉 𝑖 + 1, 𝑗 − 1  

  

Optimal alignment score 
between r[i..m] and s[j..n]

Alignment score between a gap and s[j] +
Optimal alignment score between r[i..m] 
and s[j+1..n]

Alignment score between r[i] and a gap +
Optimal alignment score between 
r[i+1..m] and s[j..n]
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Remarks

• Sometimes there are multiple alignments with the same best score

• Usually only the score matrix is filled. The best alignment(s) is obtained 
by tracing the “red arrows” backward from V(1, 1)

• In general, after filling the dynamic programming table V, 

to find out the optimal global alignment:
–Start from the upper-left corner

–Follow the red arrow backward

• If there are multiple of them, each time follow one

• Each will lead to a new set of optimal alignments

–Until reaching the lower-right corner
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Final answer

s

r

A G G 

A

1 -1 -1 -3

C

-1 0 0 -2

G

-1 0 1 -1



-3 -2 -1 0

s

r

A G G 

A ACG

AGG

ACG ACG

G_G _GG

ACG

__G

ACG

___

C CG_ C_G

AGG AGG

_CG

AGG

CG

GG

CG

_G

CG

__

G _G_ __G

AGG AGG
G_ _G

GG GG
G

G

G

_

 ___

AGG

__

GG

_

G

-1-1

-1

+1-1

-1

-1-1

-1

-1-1

-1

+1-1

-1

-1-1

-1

-1-1

-1

-1-1

-1

+1-1

-1
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A slightly more complex example

• r: ATGCGT

• s: ACGGCGT

s

r

A C G G C G T 

A
3 2 2 2 0 -2 -4 -6

T
1 2 3 3 1 -1 -3 -5

G
1 2 3 4 2 0 -2 -4

C
-1 0 1 2 3 1 -1 -3

G
-3 -2 -1 0 1 2 0 -2

T
-5 -4 -3 -2 -1 0 1 -1


-7 -6 -5 -4 -3 -2 -1 0

Best alignment score: 3
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• r: ATGCGT

• s: ACGGCGT

s

r

A C G G C G T 

A
3 2 2 2 0 -2 -4 -6

T
1 2 3 3 1 -1 -3 -5

G
1 2 3 4 2 0 -2 -4

C
-1 0 1 2 3 1 -1 -3

G
-3 -2 -1 0 1 2 0 -2

T
-5 -4 -3 -2 -1 0 1 -1


-7 -6 -5 -4 -3 -2 -1 0

Best alignment score: 3
Best alignment 1:
r A_TGCGT

s ACGGCGT

How to read off the alignment?
Consider the arrow point into V(i,j)

Consume both r[i] and s[j]
Consume s[j] (i.e., add a gap to r
to align with s[j])
Consume r[i] (i.e., add a gap to s
to align with r[i])

A slightly more complex example
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• r: ATGCGT

• s: ACGGCGT

s

r

A C G G C G T 

A
3 2 2 2 0 -2 -4 -6

T
1 2 3 3 1 -1 -3 -5

G
1 2 3 4 2 0 -2 -4

C
-1 0 1 2 3 1 -1 -3

G
-3 -2 -1 0 1 2 0 -2

T
-5 -4 -3 -2 -1 0 1 -1


-7 -6 -5 -4 -3 -2 -1 0

Best alignment score: 3
Best alignment 1:
r A_TGCGT

s ACGGCGT

Best alignment 2:
r AT_GCGT

s ACGGCGT

How to read off the alignment?
Consider the arrow point into V(i,j)

Consume both r[i] and s[j]
Consume s[j] (i.e., add a gap to r
to align with s[j])
Consume r[i] (i.e., add a gap to s
to align with r[i])

A slightly more complex example
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• r: ATGCGT

• s: ACGGCGT

s

r

A C G G C G T 

A
3 2 2 2 0 -2 -4 -6

T
1 2 3 3 1 -1 -3 -5

G
1 2 3 4 2 0 -2 -4

C
-1 0 1 2 3 1 -1 -3

G
-3 -2 -1 0 1 2 0 -2

T
-5 -4 -3 -2 -1 0 1 -1


-7 -6 -5 -4 -3 -2 -1 0

Best alignment score: 3
Best alignment 1:
r A_TGCGT

s ACGGCGT

Best alignment 2:
r AT_GCGT

s ACGGCGT

Best alignment 3:
r ATG_CGT

s ACGGCGT

How to read off the alignment?
Consider the arrow point into V(i,j)

Consume both r[i] and s[j]
Consume s[j] (i.e., add a gap to r
to align with s[j])
Consume r[i] (i.e., add a gap to s
to align with r[i])

A slightly more complex example
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Needleman-Wunsch algorithm

• Proposed by Saul B. Needleman and Christian D. Wunsch in 1970 
(Needleman and Wunsch, J. Mol. Biol. 48(3):443-453, 1970) for 
protein sequences

• Slightly more general than what we have been using so far: match, 
mismatch and indel scores are defined by a scoring matrix 

–The scoring matrix we have been using:

 A C G T _

A 1 -1 -1 -1 -1

C -1 1 -1 -1 -1

G -1 -1 1 -1 -1

T -1 -1 -1 1 -1

_ -1 -1 -1 -1 N/A
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• Here: A slight variation of the original algorithm

• Update formula:

• Boundary conditions:
–V(m+1, n+1) = 0

–V(i, n+1) = V(i+1, n+1) + (r[i], ‘_’), for all i[1, m]

• All characters in r[i..m] are aligned with gaps

–V(m+1, j) = V(m+1, j+1) + (‘_’, s[j]), for all j[1, n]

• All characters in s[j..n] are aligned with gaps

• Optimal alignment score: V(1, 1)

𝑉 𝑖, 𝑗 = max 

𝑉 𝑖 + 1, 𝑗 + 1 + σ 𝑟 𝑖 , 𝑠 𝑗  

𝑉 𝑖, 𝑗 + 1 + σ ′_′, 𝑠 𝑗  

𝑉 𝑖 + 1, 𝑗 + σ 𝑟 𝑖 , ′_′ 

  

Needleman-Wunsch algorithm

http://ureply.mobi/mobile_index.php
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Remarks

• Need time and space proportional to mn if we ignore lower-order terms, 
i.e., in “Big-O notation”: O(mn).



• r: ATGCGT

• s: ACGGCGT

s

r

A C G G C G T 

A
3 2 2 2 0 -2 -4 -6

T
1 2 3 3 1 -1 -3 -5

G
1 2 3 4 2 0 -2 -4

C
-1 0 1 2 3 1 -1 -3

G
-3 -2 -1 0 1 2 0 -2

T
-5 -4 -3 -2 -1 0 1 -1


-7 -6 -5 -4 -3 -2 -1 0

Best alignment score: 3
Best alignment 1:
r A_TGCGT

s ACGGCGT

Best alignment 2:
r AT_GCGT

s ACGGCGT

Best alignment 3:
r ATG_CGT

s ACGGCGT

How to read off the alignment?
Consider the arrow point into V(i,j)

Consume both r[i] and s[j]
Consume s[j] (i.e., add a gap to r
to align with s[j])
Consume r[i] (i.e., add a gap to s
to align with r[i])

A slightly more complex example



• Need time and space proportional to mn if we ignore lower-order terms, 
i.e., in “Big-O notation”: O(mn).

• If we only need to get the alignment score, the space needed can be 
greatly reduced by discarding an old row/column once the values of a 
new row/column has been filled up.

• Many improvements and extensions have been proposed. Also possible 
to get the optimal alignments (in additional to alignment score) using 
less space.

Remarks



Scoring matrix

• What would be a good scoring matrix?

1. Gives higher scores for more similar characters

2. Handles gaps properly

• How to construct a scoring matrix?

– Based on evolutionary models

– Parameters estimated from large sequence databases

• High-level introduction here. Will go slightly deeper when we study 
phylogenetic trees
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Character similarity

• Example 1: DNA sequences

– Recall that A and G have two carbon rings (the “purines”), while C and T have 
only one (the “pyrimidines”)

– Milder consequences for changes to the same type (purine to purine or 
pyrimidine to pyrimidine): “transition”

– More drastic consequences for changes to the other type (purine to pyrimidine 
or pyrimidine to purine): “transversion”

Image credit: Wikipedia

Adenine (A) Cytosine (C) Guanine (G) Thymine (T)

Transitions

Transversions
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Character similarity

• Example 1: DNA sequences

– Recall that A and G have two carbon rings (the “purines”), while C and T have 
only one (the “pyrimidines”)

– Milder consequences for changes to the same type (purine to purine or 
pyrimidine to pyrimidine): “transition”

– More drastic consequences for changes to the other type (purine to pyrimidine 
or pyrimidine to purine): “transversion”

Image credit: Wikipedia

Adenine (A) Cytosine (C) Guanine (G) Thymine (T)

Transitions

Transversions

 A C G T _

A 1 -2 -1 -2 -3

C -2 1 -2 -1 -3

G -1 -2 1 -2 -3

T -2 -1 -2 1 -3

_ -3 -3 -3 -3 N/A

A possible scoring matrix:
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Character similarity

• Example 2: Protein sequences

– Milder consequences if the new amino acid has properties similar to the 
original one (size, polarity, charge, hydrophobicity, ...)

Amino Acid
Side-chain 
polarity

Side-chain charge 
(pH 7.4)

Hydropathy 
index

Alanine nonpolar neutral 1.8

Arginine polar positive −4.5

Asparagine polar neutral −3.5

Aspartic acid polar negative −3.5

Cysteine polar neutral 2.5

Glutamic acid polar negative −3.5

Glutamine polar neutral −3.5

Glycine nonpolar neutral −0.4

Histidine polar
positive(10%) 
neutral(90%)

−3.2

Isoleucine nonpolar neutral 4.5

Information source: Wikipedia

Amino Acid
Side-chain 
polarity

Side-chain charge 
(pH 7.4)

Hydropathy 
index

Leucine nonpolar neutral 3.8

Lysine polar positive −3.9

Methionine nonpolar neutral 1.9

Phenylalanine nonpolar neutral 2.8

Proline nonpolar neutral −1.6

Serine polar neutral −0.8

Threonine polar neutral −0.7

Tryptophan nonpolar neutral −0.9

Tyrosine polar neutral −1.3

Valine nonpolar neutral 4.2

Note the similarity between leucine 
and isoleucine
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Commonly-used matrices

• DNA (see http://en.wikipedia.org/wiki/Models_of_DNA_evolution)

–The Jukes-Cantor model: Equal probability of changing to the other three bases

–Kimura model: Differentiating between transition and transversion

• Protein (see http://www.genome.jp/aaindex/AAindex/list_of_matrices for a list of 94 
matrices)

–PAM (Point Accepted Mutation) series: Based on substitution rate

–BLOSUM (BLOck SUbstitution Matrix) series: Based on blocks of conserved 
sequences

• They are either used directly as , or to derive 

• Will study them in more detail later
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Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro S er Thr Trp Tyr Val

A R N D C Q E G H I L K M F P S T W Y V

Ala A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0

Arg R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3

Asn N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3

Asp D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3

Cys C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1

Gln Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2

Glu E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2

Gly G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3

His H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3

Ile I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3

Leu L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1

Lys K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2

Met M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1

Phe F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1

Pro P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2

S er S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2

Thr T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0

Trp W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3

Tyr Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1

Val V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

The BLOSUM62 matrix

• Will explain what the name means in a later lecture

90



Handling gaps

• What would be a reasonable way to handle gaps?

–There are more single nucleotide polymorphisms (SNPs) than small indels
 Higher penalty for gaps than for mismatches

–Small indels are more common than large indels 
 Higher penalty for larger gaps

–More likely to have a large gap (possibly due to a single mutation event) than 

multiple small gaps with the same total size (possibly due to multiple mutation events)
 Higher penalty for gap opening than gap extension
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Affine gap penalty

• “Affine” means a straight line that may not pass through the origin

• Mathematical formula: y = -a – bx

–Here, we can use it to define the gap penalty

•y: Final gap score (a negative number)

•x: Size of gap (i.e., number of consecutive ‘_’s)

•-a: Gap opening penalty

•-b: Gap size penalty
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Difficulty

• What is the main difficulty if affine gap penalty is to be applied?

–Without affine gap penalty, the penalty for a gap is fixed and does not 

depend on other positions

–With affine gap penalty, the penalty for a gap depends on whether it is the 
last position of the gap (in which case gap opening cost needs to be added)

• How to deal with this issue?
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Global alignment with affine gap penalty [optional]

• Main idea: Use different tables to store different cases, in order to 
calculate gap size

–V0(i, j): Optimal alignment score between r[i..m] and s[j..n] with r[i] aligning to s[j]

–V1(i, j): Optimal alignment score between r[i..m] and s[j..n] with r[i] aligning to a gap

–V2(i, j): Optimal alignment score between r[i..m] and s[j..n] with s[j] aligning to a gap

• Their update formulas are slightly different because of the affine gap 
penalty model

• The final optimal alignment score is the maximum of the three cases
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Global alignment with affine gap penalty [optional]

• Update formulas:
– V(i, j) = max {V0(i, j), V1(i, j), V2(i, j)}
– V0(i, j) = V(i+1, j+1) + (r[i], s[j]) // No gap penalty
– V1(i, j) = max { V0(i+1, j) – a – b, // Open a new gap on the second seq.

V1(i+1, j) – b, // Extend a gap on the second seq.
V2(i+1, j) – a – b} // Open a new gap on the second seq.

// (and close the one on the first seq.)
– V2(i, j) = max { V0(i, j+1) – a – b, // Open a new gap on the first seq.

V1(i, j+1) – a – b, // Open a new gap on the first seq.
// (and close the one on the second seq.)

V2(i, j+1) – b} // Extend a gap on the first seq.

• Boundary cases:
– V(m+1, n+1) = V1(m+1, n+1)  = V2(m+1, n+1) =0 // Nothing aligned
– V0(i, n+1) = -, for all i [1, m+1] // Invalid case: s[n+1] not a non-gap char.
– V0(m+1, j) = -, for all j [1, n+1] // Invalid case: r[m+1] not a non-gap char.
– V1(m+1, j) = -, for all j [1, n] // Invalid case: r[m+1] not a non-gap char.
– V1(i, n+1) = -a – (m-i+1)b, for all i[1, m] // A gap of size (m-i+1) on the 2nd seq.
– V2(i, n+1) = -, for all i [1, m] // Invalid case: s[n+1] not a non-gap char.
– V2(m+1, j) = -a – (n-j+1)b, for all j[1, n] // A gap of size (n-j+1) on the 1st seq.
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Revision questions

1. What are the two key ideas behind dynamic programming?
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Revision questions

1. What are the two key ideas behind dynamic programming?

2. What is the meaning of the entry at the i-th row and j-th column of the 
dynamic programming table for global alignment?
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Revision questions

1. What are the two key ideas behind dynamic programming?

2. What is the meaning of the entry at the i-th row and j-th column of the 
dynamic programming table for global alignment?

3. How do we calculate the value of the cell on the upper-left corner for global 
alignment? (Match: +1 score, mismatch: -1 score, indel: -2 score)

s
r

G T 

A
-1 -4

T
-1 1 -2


-4 -2 0
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Local alignment

• Some sequences share common functional domains

–The sequences are similar within the domains

–They may not be similar outside the domains

Image credit: Plasterer et al., Genome Biology 2:research0021 (2001)
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Local alignment

• We may want to consider the conserved part only when aligning two 
sequences
– Since we do not really know where it is, we allow some characters at the 

beginning and some characters at the end of each sequence to be not aligned

• Problem definition:
–Given a set of sequences, a local alignment is a set of subsequences each extracted 

from one of the original sequences, with zero or more gaps inserted into these 
subsequences so that

1. They all have the same length afterwards

2. For each position, at least one of the extracted sub-sequences is not a gap

• Seems a much harder problem, but surprisingly it can be solved in a 
way similar to global alignment
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Local alignment

• Inputs

—Sequence r of length m

—Sequence s of length n

• Outputs

—The alignment(s) each aligning a subsequences of r and a subsequence of s, which

has the highest score among all possible subsequence pairs and all possible ways

to align them.

- text in red: different from global alignment

- a subsequence is a middle part of the sequence, or the empty string

— The corresponding highest alignment score



Local alignment

• Example:
–r: ATGCGT

–s: ACGGCGT

–Match: +1; Otherwise: -1 (not considering affine gap penalty here)

• Global alignment (we have done it before)
–Optimal alignments:

A_TGCGT   AT_GCGT   ATG_CGT

ACGGCGT   ACGGCGT   ACGGCGT

–Optimal score: 3

• Local alignment
–GCGT (Good to show the occurrence positions: 3 GCGT 6)
GCGT (Good to show the occurrence positions: 4 GCGT 7) 

–Optimal score: 4
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Smith-Waterman algorithm

• Proposed by Temple F. Smith and Michael S. Waterman in 1981 (Smith 
and Waterman, J. Mol. Biol. 147(1):195-197, 1981)

• A modification of the Needleman-Wunsch dynamic programming 
algorithm to allow unaligned regions at two ends
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Smith-Waterman algorithm

• Similar to global alignment, we define a table V to store and reuse
results of sub-problems

• Define a (m+1)(n+1) table V, where V(i, j) equals the optimal alignment 
score among all the prefixes of r[i..m] and s[j..n]
–r[m+1] = 

–s[n+1] = 

• Fill in the values by making use of other values already filled in

• Key concept: a subsequence is a prefix of a suffix
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V table: Global vs. local

Global alignment:
Best alignment score between 
CG and AGG

s

r

A G G 

A

C

G



Local alignment:
Best alignment score between all prefixes or CG
and AGG, i.e.,
Best alignment score among (CG and AGG), (CG
and AG), (CG and A), (CG and ), (C and AGG), (C
and AG), (C and A), (C and ), ( and AGG), ( and 
AG), ( and A) and ( and )
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Smith-Waterman algorithm

• Initialization:

–V(i, n+1) = 0, for all i[1, m]

•All characters in r[i..m] are aligned with gaps: Do not include them in the optimal alignment

–V(m+1, j) = 0, for all j[1, n]

•All characters in s[j..n] are aligned with gaps : Do not include them in the optimal alignment

• Recursive formula:

• Optimal alignment score: maxi,j V(i, j)

𝑉 𝑖, 𝑗 = max 

𝑉 𝑖 + 1, 𝑗 + 1 + σ 𝑟 𝑖 , 𝑠 𝑗  

𝑉 𝑖, 𝑗 + 1 + σ ′_′, 𝑠 𝑗  

𝑉 𝑖 + 1, 𝑗 + σ 𝑟 𝑖 , ′_′ 

0
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Local alignment example

• r: ATGCGT

• s: ACGGCGT

• Match: +1; Otherwise: -1

s

r

A C G G C G T 

A
3 2 2 2 0 0 0 0

T
1 2 3 3 1 0 1 0

G
1 2 3 4 2 1 0 0

C
1 2 1 2 3 1 0 0

G
0 0 1 1 1 2 0 0

T
0 0 0 0 0 0 1 0


0 0 0 0 0 0 0 0

Alignment score: 4
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Local alignment example

• r: ATGCGT

• s: ACGGCGT

• Match: +1; Otherwise: -1

Alignment score: 4
Best alignment:
r 3 GCGT 6

s 4 GCGT 7

s

r

A C G G C G T 

A
3 2 2 2 0 0 0 0

T
1 2 3 3 1 0 1 0

G
1 2 3 4 2 1 0 0

C
1 2 1 2 3 1 0 0

G
0 0 1 1 1 2 0 0

T
0 0 0 0 0 0 1 0


0 0 0 0 0 0 0 0
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Why does the algorithm work?

• r: ATGCGT

• s: ACGGCGT

• Match: +1; Otherwise: -1

s

r

A C G G C G T 

A
3 2 2 2 0 0 0 0

T
1 2 3 3 1 0 1 0

G
1 2 3 4 2 1 0 0

C
1 2 1 2 3 1 0 0

G
0 0 1 1 1 2 0 0

T
0 0 0 0 0 0 1 0


0 0 0 0 0 0 0 0

Highest score among the optimal 
alignment scores of the followings:
A. r[5..6]:GT vs. s[7..7]:T
B. r[5..6]:GT vs. s[7..]:
C. r[5..5]:G vs. s[7..7]:T
D. r[5..5]:G vs. s[7..]:
E. r[5..]: vs. s[7..7]:T
F. r[5..]: vs. s[7..]:

Highest score among the optimal 
alignment scores of the followings:
I. r[5..6]:GT vs. s[7..]:
J. r[5..5]:G vs. s[7..]:
K. r[5..]: vs. s[7..]:

Highest score among the optimal 
alignment scores of the followings:
L. r[6..6]:T vs. s[7..7]:T
M. r[6..6]:T vs. s[7..]:
N. r[6..]: vs. s[7..7]:T
O. r[6..]: vs. s[7..]:

Highest score among the optimal 
alignment scores of the followings:
G. r[6..6]:T vs. s[7..]:
H. r[6..]: vs. s[7..]:

A=Max{G-1, I-1, L-1}
B=Max{ M-1}
C=Max{H-1, J-1, N-1}
D=Max{ O-1}
E=Max{ K-1}
F=Max{0}

Max{A,B,C,D,E,F}
= Max{
Max{G-1,I-1, L-1},
Max{ M-1},
Max{H-1,J-1, N-1},
Max{ O-1},
Max{ K-1},
Max{0}
}
= Max{
Max{G-1, H-1},
Max{I-1, J-1, K-1},
Max{L-1, M-1, N-1, O-1},
0}
= Max{V[6,8]-1, V[5,8]-1, 
V[6,7]-1, 0}
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Trace back

• In general, after filling the dynamic programming table V, to find out the 
optimal local alignment:

–Start from the cell with the highest score

•If there are multiple of them, each will lead to a different set of optimal local 
alignments

–Follow the red arrow backward

•If there are multiple of them, each time follow one

–Output the current alignment if the current cell has a score of 0

–Until reaching a cell with no incoming red arrows (i.e., cannot go any further)
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Trace back example

• Alignment between r=ACAGC and s=ACTAG:
–Match: +1; mismatch: -1; indel: -2

–Optimal alignments:
r 1 AC 2  1 AC_AG 4  3 AG 4

s 1 AC 2  1 ACTAG 5  4 AG 5

s

r

A C T A G 

A
2 0 0 1 0 0

C
0 1 1 0 0 0

A
1 0 0 2 0 0

G
0 0 0 0 1 0

C
0 1 0 0 0 0


0 0 0 0 0 0

Notes:
1. May have multiple starting 

points.
2. An optimal path may 

contain multiple 0’s. 
Should output an 
alignment for each 0.
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Global vs. local alignment

• r: ATGCGT

• s: ACGGCGT

• Match: +1; Otherwise: -1

s

r

A C G G C G T 

A
3 2 2 2 0 -2 -4 -6

T
1 2 3 3 1 -1 -3 -5

G
1 2 3 4 2 0 -2 -4

C
-1 0 1 2 3 1 -1 -3

G
-3 -2 -1 0 1 2 0 -2

T
-5 -4 -3 -2 -1 0 1 -1


-7 -6 -5 -4 -3 -2 -1 0

s

r

A C G G C G T 

A
3 2 2 2 0 0 0 0

T
1 2 3 3 1 0 1 0

G
1 2 3 4 2 1 0 0

C
1 2 1 2 3 1 0 0

G
0 0 1 1 1 2 0 0

T
0 0 0 0 0 0 1 0


0 0 0 0 0 0 0 0

Global alignment (Needleman-Wunsch) Local alignment (Smith-Waterman)
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Check list

• Number of sequences

–2 sequences: Pairwise sequence alignment

–>2 sequences: Multiple sequence alignment

• Which part to align

–Whole sequences: Global alignment

–Parts of sequences: Local alignment

• How to compute similarity

–Substitution score

–Gap penalty
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Optimal multiple sequence alignment [optional]

• Can also be solved by dynamic programming

• Global alignment for three sequences [optional]:

–V(i, j, k) = max { V(i+1, j+1, k+1) + (r[i], s[j], t[k]),
V(i+1, j+1, k) + (r[i], s[j], ‘_’),
V(i+1, j, k+1) + (r[i], ‘_’, t[k]),
V(i, j+1, k+1) + (‘_’, s[j], t[k]),
V(i+1, j, k) + (r[i], ‘_’, ‘_’),
V(i, j+1, k) + (‘_’, s[j], ‘_’),
V(i, j, k+1) + (‘_’, ‘_’, t[k]) }

• Too many tables and each is too large. Quickly becoming infeasible

–Need heuristics (to be discussed in next lecture)
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Epilogue

Case Study, Summary and Further Readings
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Case study: Novel flu virus

“In articles published online in The 
New England Journal of Medicine, 
virologists from the Centers for 
Disease Control and Prevention 
described those cases, most of them 
in young people in the Midwest who 
touched or were near pigs. All had a 
“triple reassortant” virus that 
combined human, swine and avian 
flu genes.”

Image credit: New York Times, May 7, 2009
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Case study: Novel flu virus

Image credit: Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, The New England Journal of Medicine 360:2605-2615, (2009)
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Case study: Novel flu virus

Image credit: Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, The New England Journal of Medicine 360:2605-2615, (2009)
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Image source: http://www.iayork.com/MysteryRays/2009/04/29/more-swine-flu-genome/

Sequences of the HA proteins from the virus extracted from several 
human individuals in 2009 (blue) are more similar to that from a 2007 
swine flu virus strain (green) than some older ones (black)



Summary

• Core of computational problems related to sequences: sequence alignment

• Problem components
–Two or more sequences
–Global or local alignment
–Substitution matrix
–Gap penalty model

• An optimal sequence alignment algorithm always returns the alignment(s) with 
the highest alignment score

• Impossible to find optimal alignment by brute-force enumeration due to 
exponential number of possible alignments

• Two key ideas behind dynamic programming:
–Divide-and-conquer
–Reusing the results of sub-problems
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Further readings

• Chapter 2 of Algorithms in Bioinformatics: A Practical Introduction

–Algorithms that use less space and time

–Methods for defining the scoring matrix (we will also study this topic later)

–Free slides available

• Chapter 3 of Algorithms in Bioinformatics: A Practical Introduction

–A data structure for fast searching of sub-sequences

–Free slides available
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http://www.comp.nus.edu.sg/~ksung/algo_in_bioinfo/slides/Ch2_sequence_similarity.pdf
http://www.comp.nus.edu.sg/~ksung/algo_in_bioinfo/slides/Ch3_suffix_tree.pdf


Research readings

• Li and Homer, A Survey of Sequence Alignment Algorithms for Next-
Generation Sequencing. Briefings in Bioinformatics 11(5):473-483, (2010)

–A review of some recent methods for performing optimal sequence alignments for 
high-throughput sequencing reads

–Some of the methods mentioned in this paper are discussed in CSCI3220
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