Brief Introduction of FPGA And Neural Network Deployment

Zhang Bin

FPGA---Field Programmable Gate Array

• Field:

- In the field
- Programmable:
 - Re-Configurable Change Logic Functions
- Gate Array:

• Reference to ASIC (Application specific integrated circuits) internal architecture

Parallelism!

Parallelism!

Why FPGA?

Parallelism!

Parallelism!

Programmable? How?

Logic elements

FGPA Implementation

Programmable? How? Logic Block Switch Block Wire Segment Programmable Switch Wire Segment Potential Connection Logic Block Pin Routing Wire

FPGA vs. CPU vs. GPU

--Architecture

- CPU
 - Complex internal structure
- GPU
 - A large-scale data which is highly unified and mutually independent and normally operate in a pure computing environment with limited external interrupts.

FPGA vs. GPU (Image processing)

- GPU
 - Suitable for a real time image processing system requires high resolution and complex calculations.
 - SIMD
- FPGA
 - If the system only requires convolution based on low level algorithms, FPGA becomes more suitable.

Compare to FPGA, GPU has higher power consumption, but better calculation ability.

FPGA

- GPU
 - Suitable for a real time image processing system requires high resolution and complex calculations.
 - SIMD
- FPGA
 - If the system only requires convolution based on low level algorithms, FPGA becomes more suitable.

Compare to FPGA, GPU has higher power consumption, but better calculation ability.

Embeded system & FPGA SoC

Processing System (PS)

Features	Zynq-7000S Zynq-7000				
Devices	Z-7007S, Z-7012S, Z-7014S	Z-7010, Z-7015, Z-7020	Z-7030, Z-7035, Z-7045, Z-7100		
Processor Core	Single-core ARM® Cortex™-A9 MPCore™	Dual-core ARM Cortex-A9 MPCore			
Maximum Frequency	Up to 766MHz	Up to 866 MHz	Up to 1GHz		
External Memory Support	DDR3, DDR3L, DDR2, LPDDR2				
Key Peripherals	USB 2.0, Gigabit Ethernet, SD/SDIO				
Dedicated Peripheral Pins	Up to 128	Up to 128	128		

FPGA Develop Workflow

SmartMøre 問语

FPGA Pros & Cons Disadvantages

- Limited resources. Need to choose different FPGA models based on design needs.
- Compare to ASIC:
 - a. High power consumption
 - b. Only suitable for low quality production, because of the high expense
- Compare to GPU:
 - a. Relatively low calculation ability.

b. Low generality.

• HDL (Hardware Description Language). Long development period.

FPGA Pros & Cons

Advantages

- Flexibility
 - a. Programmable after manufacturing.
 - b. Customization
- Massively parallel
- Low latency

Mission-critical applications require very low-latency. (autonomous vehicles and manufacturing operations)

X14220

Example 1

int foo (char x, char a, char b, char c) {

chary;

 $y = x^*a + b + c;$

return y

}

void foo(int in[3], char a, char b, char c, int out[3])

Figure 1-3: Latency and Initiation Interval Example

Example 2

Calculation of an addition of two 32-bits floating-point numbers

 $\mathsf{C}=\mathsf{A}+\mathsf{B}$

Functions need to be designed.

- Same exponents -- compare unit, shift unit
- 2's complement -- adder
- add {1, fractions}-- adder
- carry? -- adder
- overflow or underflow
- Infinity, Zero or Nan -- IEEE 754

Example 2

Design flow

- Arrangement of operation functions
 - Special numbers bypass
 - Predict overflow/underflow
- Optimize
- Timing analysis

- Same exponents -- compare unit, shift unit
- 2's complement -- adder
- Add {1, fractions}-- adder
- Carry? -- adder
- Overflow/Underflow
- Infinity, Zero or Nan -- IEEE 754

FPGA Deployment of Neural Network

Task pipeline --- Efficient Improvement

Controller design?

FPGA + ARM

A typical FPGA-based neural network accelerator system

Computation and parameter of a typical NN model SmartMore 開調

Convolution and FC is the mainly computation. Matrix Multiplication

Resource consumption of mul-add operation

	Xilinx Logic			Xilinx DSP			
	multiplier		adder		multiply & add		
	LUT	FF	LUT	FF	LUT	FF	DSP
fp32	708	858	430	749	800	1284	2
fp16	221	303	211	337	451	686	1
fixed32	1112	1143	32	32	111	64	4
fixed16	289	301	16	16	0	0	1
fixed8	75	80	8	8	0	0	1
fixed4	17	20	4	4	0	0	1

Floating-point number computation cost is much higher than fixed-point number

Neural Networks Implementation

Build operations in the network

Neural Networks Implementation

Parallel operations (Operation channels)

Neural Networks Implementation

Data transactions, storage. (Calculation data, parameters)

Challenges

- Variety networks.
 - SR: High data bandwidth. High calculation resources needed.

Challenges

Low-latency models. E.g. autonomous vehicles and manufacturing operations.

- Hight frequency.
- Low latency design.

Challenges

Performance and Resources balance

- Computation-limited
- Memory bandwidth-limited

Computation Resource				
Inter- connect				
On-chip memory				
buffer1	buffer2			
Off-chip Bus				
External Memory				

Resolutions

Resolutions

Optimize operation implementation.

• Better structure. (e.g. Mat-mul: systolic array)

Resolutions

Optimize storage strategy

Resolutions

Optimize based on network needs.

- Speed
- Resources usage
- Power consumption
- ...

Resolutions

Design automation (under exploratior

• Model to Verilog (Zebra)

SmartMøre **開**福

Role in product development

Model -> RTL design -> FPGA -> ASIC

Feel free to contact me if you have any further questions. vince.zhang@smartmore.com

Thank you!