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Web service is becoming a major technique for building loosely-
coupled distributed systems. Service-oriented architecture (SOA)
has been widely employed in e-business, e-government, automo-
tive systems, multimedia services, process control, finance, and
a lot of other domains. Quality-of-Service (QoS) is usually em-
ployed for describing the non-functional characteristics of Web
services and employed as an important differentiating point of
different Web services. With the prevalence of Web services on
the Internet, Web service QoS management is becoming more
and more important.

In this thesis, we first propose a distributed QoS evaluation
framework for Web services, named WS-DREAM. Inspired by
the recent success of Web 2.0, our evaluation framework em-
ploys the concept of user-collaboration. In our framework, users
in different geographic locations collaborative with each other
to evaluate the target Web services and share their observed
Web service QoS information. Based on our Web service evalu-
ation framework, several large-scale distributed evaluations are
conducted on 5,825 real-world Web services and the detailed
evaluation results are publicly released for future research.

Web service evaluation is time and resource consuming. More-
over, in some scenarios, Web service evaluation may not be pos-
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sible (e.g., the Web service invocation is charged, too many ser-
vice candidate, etc.). Therefore, Web service QoS prediction
approaches are becoming more and more attractive. In order
to prediction the Web service QoS as accurate as possible, we
propose three prediction methods. The first prediction method
employs the information of neighborhoods for making missing
value prediction. The second method engages matrix factoriza-
tion techniques to enhance the prediction accuracy. The third
method predicts the ranking of the target Web services instead
of QoS values.

The predicted Web service QoS values can be employed to
build fault-tolerant service-oriented systems. In the area of ser-
vice computing, the cost for developing multiple redundant com-
ponents is greatly reduced, since the functionally equivalent Web
services are provided by different organizations and are accessi-
ble via Internet. Hence, based on the predicted QoS values, we
propose two methods for building fault tolerance Web services.
Firstly, we propose an adaptive fault tolerance strategy for Web
services. Then, we present an optimal fault tolerance strategy
selection framework for Web services.
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論文題目： 作者  ： 學校  ： 學系  ： 修讀學位： 摘要  ： 
Web 服務質量管理 鄭子彬 香港中文大學 計算器科學及工程學系 哲學博士  Web 服務是構建鬆散耦合分佈式系統的主要技術。面向服務架構（SOA）已被廣泛運用在電子商務，電子政務，汽車系統，多媒體服務，過程控制，金融和其他的很多領域。質量服務（QoS）的通常被用於描述 Web 服務的非功能特性，並作為重要的區分不同的 Web 服務的考量因素。隨著 Web 服務在因特網上面的盛行，Web 服務質量管理變得越來越重要。 在這篇論文中，我們首先提出了一種分佈式的 Web 服務 QoS 評價框架，命名為 WS–DREAM。受到最近 Web 2.0 成功的啟發，我們在評估框架中採用了用戶協作的概念。在我們的框架中，位於不同地理位置的用戶相互協作，共同評估目標Web 服務並分享他們獲取的 Web 服務的 QoS 信息。基於我們的 Web 服務評價框架，我們對 5825 實際的 Web 服務進行了幾個大型的分佈式評價並公開發表了詳細的評估結果，方便後面的研究使用。 Web 服務的評價是很耗費時間和資源。另外在某些特定情況下，Web 服務的評價可能無法進行（例如 Web 服務調用需要收費，太多的候選服務等等）。因       iii



此，Web 服務的 QoS 預測方法變得越來越具有吸引力。為了使得 Web 服務的 QoS預測盡可能的準確，我們提出三種 Web 服務 QoS 值的預測方法。第一個預測方法採用了相似用戶的信息來進行預測。第二種預測方法使用了矩陣分解技術來提高了預測精度和速度。第三種預測方法沒有進行具體的 QoS 值的預測，而是預測目標 Web 服務的 QoS 排序。 Web 服務 QoS 的預測值可以被用來構建面向服務的容錯系統。在服務計算領域，開發多種冗余組件的成本大大降低，因為大量同等或類似功能的 Web 服務是由不同的組織提供的。這些 Web 服務通過互聯網就可以方便的訪問。因此，基於Web 服務 QoS 的預測值，我們提出兩種建設服務 Web 服務系統的方法。我們首先提出了一個 Web 服務的自適應容錯策略。接著，我們又提出了一個 Web 服務最佳的容錯策略的選擇框架。            iv
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Chapter 1

Introduction

1.1 Overview

Web services are self-contained and self-describing computa-
tional Web components designed to support machine-to-machine
interaction by programmatic Web method calls [106]. Web ser-
vices are becoming a major technique for building loosely-coupled
distributed systems. Examples of service-oriented systems span
a variety of diversified application domains, such as e-commerce,
automotive systems [91], multimedia services [84], etc.

As shown in Fig. 1.1, in the service-oriented environment,
complex distributed systems are dynamically composed by dis-
covering and integrating distributed Web services, which are
provided by different organizations. The distributed Web ser-
vices are usually employed by more than one service users (i.e.,
the service-oriented systems). The performance of the service-
oriented systems is highly relying on the performance of the
employed Web services. Quality-of-Service (QoS) is usually en-
gaged for describing the non-functional characteristics of Web
services. QoS management of Web services refers to the activ-
ities in QoS specification, evaluation, prediction, aggregation,
and control of resources to meet end-to-end user and applica-
tion requirements. With the prevalence of Web services on the
Internet, investigating Web service QoS is becoming more and

1
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more important. Hotel Web ServicesAirline Web ServicesCredit Card Web Services
Travel Agency Web Site 1
Travel Agency Web Site 2
Figure 1.1: Example of Service-Oriented System

In recent years, a number of QoS-aware approaches have been
comprehensively studied for Web services. However, there is
still a lack of real-world Web service QoS datasets for validat-
ing new QoS-driven techniques and models. Without convinc-
ing and sufficient real-world Web service QoS datasets, charac-
teristics of real-world Web service QoS cannot be fully mined
and the performance of various recently proposed QoS-based
approaches cannot be justified. To collect sufficient Web service
QoS data, evaluations from different geographic locations un-
der various network conditions are usually required. However,
it is not an easy task to conduct large-scale distributed Web
service evaluations in reality. Effective and efficient Web service
distributed evaluation mechanism is consequently required.

The Web service evaluation approaches attempt to obtain
the Web service QoS values by monitoring the target Web ser-
vice. However, in some scenarios, a comprehensive Web ser-
vice evaluation may not be possible (e.g., when the Web service
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invocation is charged; there are too many service candidates,
etc.). Therefore, Web service QoS prediction approaches, which
require no additional real-world Web service invocations, are
becoming more and more attractive. Web service QoS predic-
tion aims at making personalized QoS value prediction for the
service users by employing the partially available information
(e.g., QoS information of other users, characteristics of the cur-
rent user, historical QoS performance of the target Web services,
etc.). To predict the Web service QoS values as accurate as pos-
sible, comprehensive investigations on the prediction approaches
are needed.

Employing the evaluated/predicted Web service QoS values,
QoS-aware fault-tolerant service-oriented systems can be built
using redundant Web services in the Internet. Due to the cost of
developing redundant components, traditional software fault tol-
erance [58] is usually employed only for critical systems. In the
area of service-oriented computing, however, the cost for devel-
oping multiple redundant components is greatly reduced, since
the functionally equivalent Web services are provided by differ-
ent organizations and are accessible via Internet. These Web
services can be employed as alternative components for building
fault-tolerant service-oriented systems. Although a number of
fault tolerance strategies [28, 56, 107] have been proposed for
Web services, the highly dynamic Internet environment requires
smarter and more adaptive fault tolerance strategies. Dynamic
selection and reconfiguration of the optimal fault tolerance strat-
egy becomes a necessity in service computing.

Based on the above analysis, in order to improve QoS man-
agement of Web services, we need to provide efficient Web ser-
vice QoS evaluation mechanisms, accurate Web service QoS pre-
diction approaches, and robust QoS-aware fault tolerance strate-
gies for Web services. In this thesis, we propose six approaches
to attack these challenging research problems.
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The first approach is targeted at Web service evaluation by
proposing a distributed Web service QoS evaluation framework.
After that, the next three approaches address the Web ser-
vice QoS prediction problem by employing neighborhood-based,
model-based, and ranking-based collaborative filtering techniques.
The last two approaches focus on QoS-aware fault tolerance Web
services by designing adaptive fault tolerance strategy and opti-
mal fault tolerance strategy selection framework. The detailed
contributions and organizations of these approaches will be pre-
sented in Section 1.2 and Section 1.3 respectively.

1.2 Thesis Contributions

The main contributions of this thesis can be described as follows:

(1) QoS Evaluation of Web Services
In order to achieve efficient Web service evaluation, we
propose a distributed QoS evaluation framework for Web
services. This framework employs the concept of user-
collaboration, which is the key concept of Web 2.0. In
our framework, users in different geographic locations share
their observed Web service QoS information. These infor-
mation are stored in a centralized server and will be reused
for other users. Several large-scale distributed evaluations
are conducted on real-world Web services and detailed eval-
uation results are publicly released for future research1.
Our released Web service QoS datasets have been down-
loaded by more than 40 research institutes worldwide.

(2) Neighborhood-based QoS Prediction of Web Ser-
vices
To accurately predict the Web service QoS values, we pro-
pose a neighborhood-based collaborative filtering approach

1http://www.wsdream.net
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for predicting the QoS values for the current user by em-
ploying historical Web service QoS data from other simi-
lar users. Our approach systematically combines the user-
based approach and the item-based approach. Our ap-
proach requires no Web service invocations and can help
service users discover suitable Web services by analyzing
QoS information from their similar users. Moreover, we
conduct a large-scale real-world experimental analysis for
verifying our QoS prediction result. involving 100 real-
world Web services in 22 countries and 150 service users
in 24 countries. The experimental results show that com-
bining the user-based and item-based prediction approaches
can achieve more accurate QoS value prediction.

(3) Model-based QoS Prediction of Web Services
The neighborhood-based QoS prediction approach has sev-
eral drawbacks, including (1) the computation complexity
is too high, and (2) it is not easy to find similar users/items
when the user-item matrix is very sparse. To address these
drawbacks, we propose a neighborhood-integrated matrix
factorization (NIMF) approach for Web service QoS value
prediction. Our approach explores the social wisdom of ser-
vice users by systematically fusing the neighborhood-based
and the model-based collaborative filtering approaches to
achieve higher prediction accuracy. Moreover, we conduct
large-scale experiments involving 339 distributed service
users and 5,825 real-world Web services. The extensive
experimental investigations show that our NIMF approach
can achieve higher prediction accuracy than neighborhood-
based approaches. The complexity of our method is much
better than that of the neighborhood-based prediction ap-
proach, hence it is scalable to large datasets.

(4) Ranking-based QoS Prediction of Web Services
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The neighborhood-based and model-based collaborative fil-
tering approaches usually try to predict the missing values
in the user-item matrix as accurately as possible. However,
in the ranking-oriented scenarios, accurate missing value
prediction may not lead to accurate ranking. To enable
accurate Web service QoS ranking, we propose a ranking-
based QoS prediction approach. The contributions of this
chapter include: (1) identifying the critical problem of per-
sonalized quality ranking for Web services and proposing
a collaborative QoS-driven quality ranking framework to
achieve personalized Web service quality ranking; and (2)
conducting extensive real-world experiments to study the
ranking performance of our proposed algorithm compared
with other competing algorithms. The experimental results
show the effectiveness of our approach.

(5) QoS-Aware Fault Tolerance for Web Services
The highly dynamic Internet environment makes traditional
fault tolerance strategies difficult to be used in the service-
oriented environment. In this chapter, we propose an adap-
tive fault tolerance strategy for Web services . The contri-
butions of this chapter are two-fold: (1) a QoS-aware mid-
dleware for achieving fault tolerance by employing user-
participation and collaboration. By encouraging users to
contribute their individually-obtained QoS information of
the target Web services, more accurate evaluation on the
Web services can be achieved; and (2) an adaptive fault
tolerance strategy. We propose an adaptive fault tolerance
strategy for automatic system reconfiguration at runtime
based on the subject user requirements and objective QoS
information of the target Web services.

(6) QoS-Aware Selection Framework for Web Services
This chapter aims at advancing the current state-of-the-
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art in software fault tolerance for Web services by propos-
ing a systematic and extensible framework. The contri-
butions of this chapter are three-fold: (1) We propose the
first comprehensive fault tolerance strategy selection frame-
work for systematic design, composition, and evaluation of
service-oriented systems. Our framework determines op-
timal fault tolerance strategy dynamically based on the
quality-of-service (QoS) performance of Web services as
well as the preferences of service users. (2) Different from
the previous approaches which mainly focus on stateless
Web services, we apply software fault tolerance strategies
for the stateful Web services, where multiple tasks have
state dependency and must be performed by the same Web
services. (3) Large-scale experiments are conducted to ver-
ify the proposed selection approach. The experimental re-
sults show the effectiveness of our QoS-aware fault tolerance
selection framework for Web services.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2
In this chapter, we briefly review some background knowl-
edge and related work on QoS management of Web services.

• Chapter 3
In this chapter, we present a distributed fault tolerance
strategy evaluation and selection framework for Web ser-
vices, which is designed and implemented as WS-DREAM
(Distributed REliability Assessment Mechanism for Web
Service) [109, 110, 112]. We first introduce a QoS model
of Web service and the system architecture. Then, sev-
eral large-scale evaluations are conduct on real-world Web
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services, including six functionally equivalent Amazon Web
services, and 5,825 publicly available Internet Web services.
These evaluations show the effectiveness of our evaluation
approach. Reusable Web service QoS datasets are released
for future research.

• Chapter 4
In this chapter, we present a neighborhood-based collab-
orative filtering approach for providing personalized QoS
prediction of Web services [115, 117, 118]. Our approach
includes 4 phases: (1) user similarity computation; (2) sim-
ilar user selection; (3) missing value prediction of the user-
item matrix; and (4) personalized QoS value prediction. In
our approach, similar service users are defined as the ser-
vice users who have similar historical QoS experience on the
same set of commonly-invoked Web services with the cur-
rent user. Based on the QoS values from similar users, the
missing QoS value for the current user can be accurately
predicted. We conduct experiments employing real-world
Web service QoS data. The experimental results show the
effectiveness of our neighborhood-based QoS prediction ap-
proach.

• Chapter 5
In this chapter, we propose a neighborhood-integrated ma-
trix factorization (NIMF) approach by systematically fus-
ing the neighborhood-based and the model-based collabo-
rative filtering approaches [116]. We first describe the re-
search problem by a toy example. After that, neighborhood
similarity computation approaches are presented. By inte-
grating the neighborhood-based prediction approach into
the traditional matrix factorization model, we formulate
our NIMF prediction approach. Comprehensive complexity
analysis of the NIMF approach is provided. Extensive ex-
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periments are conducted to study the impact of various pa-
rameters and the prediction accuracy. The experimental re-
sults show that the NIMF approach achieves better predic-
tion accuracy than other neighborhood-based approaches.

• Chapter 6
In this chapter, we propose a ranking-based QoS prediction
approach for Web services [119]. Our ranking approach is
designed as a four-phase process. In Phase 1, we calcu-
late the similarity of the users with the current user based
on their rankings on the commonly-invoked components.
Then, in Phase 2, a set of similar users are identified. After
that, in Phase 3, a preference function is defined to present
the quality priority of two components. Finally, in Phase 4,
a greedy order algorithm is proposed to rank the employed
components as well as the unemployed components based
on the preference function and making use of the past usage
experiences of other similar users. The experimental results
show that our proposed approach achieves better ranking
accuracy than the rating-based collaborative filtering ap-
proaches. Comprehensive investigations on the impact of
the algorithm parameters are also provided in this chapter.

• Chapter 7
This chapter presents adaptive fault tolerance strategy for
automatic system reconfiguration at runtime based on the
user requirements and Web service QoS information. We
first introduce a QoS-aware middleware for user Web ser-
vice QoS information sharing. Then, various fault tolerance
strategies, as well as user requirements and QoS models are
presented. After that, an adaptive fault tolerance strategy
is proposed for Web services. A number of experiments
are conducted in this chapter. The experimental results
show that our QoS-aware adaptive fault tolerance strategy
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provides better system reliability performance.

• Chapter 8
This chapter proposes a systematic and extensible frame-
work for QoS-aware fault tolerance strategy selection. The
main features of this framework are: (1) an extensible QoS
model of Web services, (2) various fault tolerance strategies,
(3) a QoS composition model of Web services, (4) a con-
sistency checking algorithm for complex service plans, and
(5) various QoS-aware algorithms for optimal fault toler-
ance strategy determination for both stateless and stateful
Web services. Motivating examples and detailed implemen-
tations are also presented. The experimental results show
that our framework can efficiently determine the most suit-
able fault tolerance strategies for a service-oriented system
at runtime.

• Chapter 9
The last chapter summarizes this thesis and provides some
future directions that can be further explored.

In order to make each of these chapters self-contained, some
critical contents, e.g., model definitions or motivations having
appeared in previous chapters, may be briefly reiterated in some
chapters.

2 End of chapter.



Chapter 2

Background Review

2.1 QoS Evaluation of Web Services

In the field of service computing [106], Web service QoS have
been discussed in a number of research investigations for pre-
senting the non-functional characteristics of the Web services
[39, 66, 70, 71, 76, 92]. Zeng et al. [105] employ five generic QoS
properties (i.e. execution price, execution duration, reliability,
availability, and reputation) for dynamic Web service compo-
sition. Ardagna et al. [4] use five QoS properties (i.e., execu-
tion time, availability, price, reputation, and data quality) when
making adaptive service composition in flexible processes. Al-
rifai et al. [2] propose an efficient service composition approach
by considering both generic QoS properties and domain-specific
QoS properties.

QoS measurement of Web services has been used in the Ser-
vice Level Agreement (SLA) [57], such as IBMs WSLA frame-
work [42] and the work from HP [77]. In SLA, the QoS data
are mainly for the service providers to maintain a certain level
of service to their clients and the QoS data are not available to
others. In this thesis, we mainly focus on encouraging the service
users to share their individually-obtained QoS data of the Web
services, making efficient and effective Web service evaluation
and selection.

11
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Based on the QoS performance of Web services, various ap-
proaches have been proposed for Web service selection [8, 9,
16, 34, 104, 110], Web service composition [2, 4, 15, 16, 105],
fault-tolerant Web services [28, 56, 107, 111, 113, 114, 121],
Web service recommendation [20, 117, 118], Web service reli-
ability prediction [17, 22, 30, 32, 33, 100, 115], Web service
search citeZhang10icws, and so on. Various QoS-aware ap-
proaches, such as QoS-aware middleware [105], adaptive service
composition [4], efficient service selection algorithms [104], rep-
utation conceptual model [64], and Bayesian network based as-
sessment model [97], have been proposed recently. Some recent
work also take subjective information (e.g.,provider reputations,
user requirements, etc.) into consideration to enable more accu-
rate Web service selection [26, 76]. Although various QoS-aware
approaches have been comprehensively studied for Web services,
there is a lack of real-world Web service QoS dataset for veri-
fying these approaches. To obtain the Web service QoS values
for a certain user, distributed Web service evaluations from the
client-side are usually required [26, 64, 97].

Web service evaluation is a task to evaluate the discovered
Web services with respect to user requests. Real-world Web ser-
vice evaluations from distributed locations is not an easy task.
In our previous work [109, 110, 112], a real-world Web service
evaluation has been conducted by 5 service users on 8 publicly
accessible Web services. Since the scale of this experiment is
too small, the experimental results are not scalable for future
research. Al-Masri et al. [1] release a Web service QoS dataset
which is observed by only 1 service user on 2,507 Web services.
The fact that different users will observe quite different QoS of
the sameWeb service limits the applicability of this dataset. Our
recently released datasets [120], on the other hand, include QoS
information observed from distributed service users. Moreover,
the scales of our datasets are much larger (339× 5825). Vieira et
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al. [94] conduct an experimental evaluation of security vulnera-
bilities in 300 publicly available Web services. Security vulnera-
bilities usually exist at the server-side and are user-independent
(different users observe the same security vulnerabilities on the
target Web service). Different from Vieira’s work [94], this thesis
mainly focuses on investigating performance of user-dependent
QoS properties (e.g., failure probabilities, response time, and
throughput, etc.), which can vary widely among different users.

2.2 QoS Prediction of Web Services

Collaborative filtering methods are widely adopted in recom-
mender systems [12, 60, 75]. There types of collaborative filter-
ing approaches are widely studied: neighborhood-based (memory-
based), model-based, and ranking-based.

The most analyzed examples of memory-based collaborative
filtering include user-based approaches [11, 36, 40], item-based
approaches [27, 52, 83], and their fusion [96, 118]. User-based
approaches predict the ratings of active users based on the rat-
ings of their similar users, and item-based approaches predict
the ratings of active users based on the computed information
of items similar to those chosen by the active users. User-based
and item-based approaches often use the PCC algorithm [75] and
the VSS algorithm [11] as the similarity computation methods.
PCC-based collaborative filtering generally can achieve higher
performance than VSS, since it considers the differences in the
user rating style. Wang et al. [96] combined user-based and
item-based collaborative filtering approaches for movie recom-
mendation.

In the model-based collaborative filtering approaches, train-
ing datasets are used to train a predefined model. Examples of
model-based approaches include the clustering model [99], as-
pect models [37, 38, 88] and the latent factor model [14]. Kohrs
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and Merialdo [44] present an algorithm for collaborative filtering
based on hierarchical clustering, which tries to balance robust-
ness and accuracy of predictions, especially when few data are
available. Hofmann [37] proposes an algorithm based on a gener-
alization of probabilistic latent semantic analysis to continuous-
valued response variables. Recently, several matrix factorization
methods [61, 74, 78, 79] have been proposed for collaborative
filtering. These methods focus on fitting the user-item matrix
with low-rank approximations, which is engaged to make fur-
ther predictions. The premise behind a low-dimensional factor
model is that there is only a small number of factors influencing
the values in the user-item matrix, and that a user’s factor vec-
tor is determined by how each factor applies to that user. The
neighborhood-based methods utilize the values of similar users
or items (local information) for making value prediction, while
model-based methods, like matrix factorization models, employ
all the value information of the matrix (global information) for
making value prediction.

The neighborhood-based and model-based collaborative fil-
tering approaches usually try to predict the missing values in
the user-item matrix as accurately as possible. However, in
the ranking-oriented scenarios, accurate missing value prediction
may not lead to accuracy ranking. Therefore, ranking-oriented
collaborative filtering approaches are becoming more and more
attractive. Liu et al. [53] propose a ranking-oriented collabora-
tive filtering approach to rank movies. Yang et al. [101] propose
another ranking-oriented approach for ranking books in digital
libraries.

There is limited work in the literature employing collabora-
tive filtering methods for Web service QoS value prediction. One
of the most important reasons that obstruct the research is that
there is no large-scale real-world Web service QoS datasets avail-
able for studying the prediction accuracy. Without convincing
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and sufficient real-world Web service QoS data, the character-
istics of Web service QoS information cannot be fully mined
and the performance of the proposed algorithms cannot be jus-
tified. A few approaches [41, 89] mention the idea of applying
neighborhood-based collaborative filtering methods for Web ser-
vice QoS value prediction. However, these approaches simply
employ a movie rating dataset, i.e., MovieLens [75], for experi-
mental studies, which is not convincing enough. Shao et al. [86]
propose a user-based PCCmethod for the Web service QoS value
prediction. However, only 20 Web services are involved in the
experiments. In this thesis, we propose various approaches to
address the problem of Web service QoS prediction, including
neighborhood-based [117, 118], model-based [116], and ranking-
based approaches [119].

2.3 Fault-Tolerant Web Services

Software fault tolerance is widely employed for building reliable
stand-alone systems as well as distributed system [31]. The ma-
jor software fault tolerance techniques includes recovery block [73],
N-Version Programming (NVP) [6], N self-checking program-
ming [46], distributed recovery block [43], and so on.

In the area of service-oriented computing, the cost of develop-
ing redundant components are greatly reduced, since the func-
tionally equivalent Web services can be employed for building
diversity-based fault-tolerant service-oriented systems [28, 54].
A number of service fault tolerance strategies have been pro-
posed in the recent literature [19, 18, 29, 81, 113]. The ma-
jor fault tolerance strategies for Web services can be divided
into passive strategies and active strategies. Passive strate-
gies have been discussed in FT-SOAP [28], FT-CORBA [87],
and in work [21]. Active strategies have been investigated in
FTWeb [82], Thema [68], WS-Replication [80], SWS [51], and
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Perpetual [72].
Work [81] employs a rigorous development process to build

reliable connector, which is a critical component. The connec-
tor is implemented as a Web service using the original WSDL
description of the Web service replicas. Within the connector,
lots of fault tolerance strategies can be implemented (e.g., ac-
tive or passive replication strategies). FTWeb [82] proposes a
WSDispatcher to make parallel Web service invocations and to
return the final result to the users. Work [51] proposes a sur-
vivable Web Service framework named SWS. In SWS, each Web
service is replicated and deployed onto a set of nodes to form
a Web service group. All the replicas are invoked to process
the same user request independently. Value faults can thus be
tolerated by majority voting. Moreover, SWS supports contin-
uous operation in the presence of Byzantine faults [45]. Ye et
al. [103] propose a middleware, PWSS, to support client trans-
parent active replication strategy. When a client sends a request
r, r is first sent to a PWSS. The PWSS then multicasts r to all
the other PWSSs. After agreeing a total order on threads ex-
ecution, all the replicas process the client’s request and return
the response a PWSS which first receive the client. This PWSS
then return a result to the client’s invocation after running a
voting strategy on all the responses it received. Thema [67] is
a Byzantine Fault Tolerant(BFT) middleware for Web services
which supports three-tiered application model. 3f +1 Web ser-
vice replicas in the server-side need to invoke an external Web
service for accomplishing their executions.

Different from these previous work, in this thesis, we will
present an adaptive fault tolerance strategy for Web services [111,
114], and propose a QoS-aware selection framework for fault-
tolerant Web services [113].

2 End of chapter.



Chapter 3

QoS Evaluation of Web Services

3.1 Overview

Web services have been emerging in recent years and are by
now one of the most popular techniques for building versatile
distributed systems. The performance of the service-oriented
systems is highly relying on the performance of the employed
Internet Web services. With the prevalence of Web services on
the Internet, investigating quality of Web services is becoming
more and more important.

Quality-of-Service (QoS), which is usually employed for de-
scribing the non-functional characteristics of Web services, has
become an important differentiating point of different Web ser-
vices [66]. Different Web service QoS properties can be di-
vided into user-independent QoS properties and user-dependent
QoS properties. Values of the user-independent QoS properties
(e.g., price, popularity, etc.) are usually advertised by service
providers and identical for different users. On the other hand,
values of the user-dependent QoS properties (e.g., failure prob-
ability, response time, throughput, etc.) can vary widely for
different users influenced by the unpredictable Internet connec-
tions and the heterogeneous user environments.

In the field of service computing [106], a number of QoS-
aware approaches have been comprehensively studied. However,

17
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there is still a lack of real-world Web service QoS datasets for
validating new QoS driven techniques and models. To provide
comprehensive studies of the user-independent QoS properties
of real-world Web services, evaluations from different geographic
locations under various network conditions are usually required.
However, it is difficult to conduct large-scale Web service evalu-
ations from distributed locations, since Web service invocations
consume resources of the service providers and impose costs for
the service users. Moreover, it is difficult to collect Web service
QoS data from the distributed service users.

To attack this critical challenge, we propose a distributed
evaluation framework for Web services and conduct several large-
scale distributed evaluations on real-world Web services. The
evaluation results (e.g., Web service addresses, WSDL files, all
the evaluation results, etc.) are publicly released for future re-
search1. The released datasets can be employed by a lot of
QoS-aware research topics on Web services.

The rest of this chapter is organized as follows: Section 3.2
introduces our distributed Web service QoS evaluation frame-
work, Section 3.3 presents our primary evaluation results on the
Amazon Web services, Section 3.4 shows our large-scale eval-
uation on the publicly available Web services, and Section 3.5
concludes this chapter.

3.2 Distributed QoS Evaluation Framework

3.2.1 QoS Model of Web Services

In the presence of multiple service candidates with identical
or similar functionalities, quality-of-service (QoS) provides non-
functional characteristics for the optimal candidate selection.
Based on the previous investigations [4, 66, 105], we identify

1http://www.wsdream.net
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the most representative QoS properties of Web services in the
following:

1. Availability (av) q1: the percentage of time that a Web
service is operating during a certain time interval.

2. Price (pr) q2: the fee that a service user has to pay for
invoking a Web service.

3. Popularity (po) q3: the number of received invocations
of a Web service during a certain time interval.

4. Data-size (ds) q4: the size of the Web service invocation
response.

5. Failure probability (fp) q5: the probability that a re-
quest is failed. q5 = failedInvocationNum

totalInvocationNum . In this thesis, failure
probability and failure-rate are interchangeable.

6. Response-time (rt) q6: the time duration between a ser-
vice user sending a request and receiving a response. In
this thesis, response time and RTT (round-trip-time) are
interchangeable.

In the above QoS model, q1-q4 are user-independent QoS
properties, which are provided by the service providers and are
the same for all the service users. q5 and q6 are user-dependent
QoS properties, which should be measured at the client-side
since they are affected by the communication links. This QoS
model is extensible, where more quality properties can be added
in the future without fundamental changes. Given the above
QoS properties, the QoS performance of a Web service can be
presented as q = (q1, ..., q6).
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3.2.2 System Architecture

Since the service providers may not deliver the QoS they de-
clared and some QoS properties (e.g., response-time and fail-
ure probability) are highly related to the locations and network
conditions of service users, Web service evaluation can be per-
formed at the client-side to obtain more accurate QoS perfor-
mance [97, 105]. However, several challenges have to be solved
when conducting Web service evaluation at the client-side: (1)
It is difficult for the service users to make professional evaluation
on the Web services themselves, since the service users are usu-
ally not experts on the Web service evaluation, which includes
WSDL file analysis, test case generation, evaluation mechanism
implementation, test result interpretation and so on; (2) It is
time-consuming and resource-consuming for the service users to
conduct a long-duration evaluation on many Web service can-
didates themselves; and (3) The common time-to-market con-
straints limit an in-depth and accurate evaluation of the target
Web services.

To address these challenges, we propose a distributed evalu-
ation framework for Web services, together with its prototyp-
ing system WS-DREAM [110, 112], as shown in Figure 3.1.
This framework employs the concept of user-collaboration, which
has contributed to the recent success of BitTorrent [10] and
Wikipedia (www.wikipedia.org). In this framework, users in
different geographic locations share their observed QoS perfor-
mance of Web services by contributing them to a centralized
server. Historical evaluation results saved in a data center are
available for other service users. In this way, QoS performance of
Web services becomes easy to be obtained for the service users.

As shown in Figure 3.1, the proposed distributed evaluation
framework includes a centralized server with a number of dis-
tributed clients. The overall procedures can be explained as
follows.
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Figure 3.1: Distributed Evaluation Framework

1. Registration: Service users submit evaluation requests
with related information, such as the target Web service
addresses, to the WS-DREAM server.

2. Client-side application loading: A client-side evalua-
tion application is loaded to the service user’s computer.

3. Test case generation: The TestCase Generator in the
server automatically creates test cases based on the inter-
face of the target Web Services (WSDL files).

4. Test coordination: Test tasks are scheduled based on the
number of current users and test cases.

5. Test cases retrieval: The distributed client-side evalua-
tion applications get test cases from the centralized server.

6. Test cases execution: The distributed client-side appli-
cations execute the test cases to conduct testing on the
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target Web services.

7. Test result collection: The distributed client-side appli-
cations send back the test results to the server, and repeat
the steps 5, 6 and 7 to retrieval and execute more test cases.

8. Test result analysis: The TestResult Analyzer in the
server-side is engaged to process the collected data and send
back the detailed evaluation results to the service user.

The advantages of this user-collaborated evaluation frame-
work include:

1. This framework can be implemented and launched by a
trust-worthy third-party to help service users conduct ac-
curate and efficient Web service evaluation in an easy way,
without requiring service users to have professional knowl-
edge on evaluation design, test case generation, test result
interpretation, and so on.

2. The historical evaluation results on the same Web services
can be reused, making the evaluation more efficient and
save resource for both the service users and service providers.

3. The overall evaluation results from different service users
can be used as useful information for optimal Web service
selection. The assumption is that the Web service, which
has good historical performance observed by most of the
service users, has higher probability to provide good service
to the new service users.

By this framework, evaluation on Web services becomes accu-
rate, efficient and effective. Employing this distributed Web ser-
vice QoS evaluation framework, we conduct several large-scale
evaluations on real-world Web services, including the Amazon
Web services and a lot of other publicly available Internet Web
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services. The evaluation results will be introduction in Sec-
tion 3.3 and Section 3.4.

3.3 Evaluation 1: Amazon Web Services

Table 3.1: The Redundant Web Service Candidates

WS Group WSID Provider Location

a1 Amazon US

a2 Amazon Japan

a3 Amazon Germany

a4 Amazon Canada

a5 Amazon France
ECommerceService

a6 Amazon UK

This section presents our distributed evaluation results on six
AmazonWeb services2. As shown in Table 3.1, these functionally-
equivalent Web services are deployed in different locations by
Amazon.

Table 3.2 and Figure 3.2 shows the experiment results from
the six distributed service users (US, HK, SG, CN, TW and AU)
on the Amazon Web services (a1–a6 ). In Table 3.2, under the
Location column, U stands for user-locations and WS presents
the Web services. cn, tw, au, sg, hk, us present the six user-
locations conducting the evaluation. As shown in Table 3.1, a1,
a2, a3, a4, a5 and a6 stand for the six Amazon Web Services,
which are located in US, Japan, Germany, Canada, France, and
UK, respectively. The Cases column shows the failure prob-
ability (F% ), which is the number of failed invocations (Fail)
divided by the number of all invocations (All). The RTT col-
umn shows the average (Avg) and standard deviation (Std) of
the response-time/Round-Trip-Time (RTT ) performance. The

2http://aws.amazon.com/associates
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(b) Failure-rate

Figure 3.2: Response-time and Failure-rate Performance

ProT column shows the average (Avg) and standard deviation
(Std) of the process-time (ProT ), which is the time consumed
by the Web service server for processing the request (time du-
ration between the Web service sever receives and request and
sends out the corresponding response).

The experimental results in Table 3.2 and Figure 3.2 show:

• As shown in Figure 3.2 (a), the response-time (RTT ) per-
formance of the target Web services change dramatically
from user to user. For example, invoking a-us only needs 74
milliseconds on average from the user location of us, while it
requires 4184 milliseconds on average from the user-location
of cn.

• As indicated by the Std values in Table 3.2, even in the same
location, the RTT performance vary drastically from time
to time. For example, in the user-location of cn, the RTT
values of invoking a1 vary from 562 milliseconds to 9906
milliseconds in our experiment. The unstable RTT per-
formance degrades service quality and makes the latency-
sensitive applications easy to fail.

• The ProT values in Table 3.2 indicate that the response-
times of the Amazon Web services are mainly consist of
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Table 3.2: Evaluation Results of the Amazon Web Services

Location Cases RTT (ms) ProT(ms)

U WS All Fail F% Avg Std Avg Std

a1 484 109 22.52 4184 2348 42 19

a2 482 128 26.55 3892 2515 46 27

a3 487 114 23.40 3666 2604 42 17

a4 458 111 24.23 4074 2539 45 21

a5 498 96 19.27 3654 2514 43 18

cn

a6 493 100 20.28 3985 2586 45 20

a1 1140 0 0 705 210 42 16

a2 1143 0 0 577 161 44 29

a3 1068 0 0 933 272 45 115

a4 1113 0 0 697 177 42 17

a5 1090 0 0 924 214 44 23

au

a6 1172 3 0.25 921 235 44 24

a1 21002 81 0.38 448 304 42 21

a2 20944 11 0.05 388 321 44 33

a3 21130 729 3.45 573 346 43 18

a4 21255 125 0.58 440 286 43 20

a5 21091 743 3.52 575 349 44 20

hk

a6 20830 807 3.87 570 348 43 20

a1 2470 0 0 902 294 44 22

a2 2877 1 0.03 791 315 44 40

a3 2218 0 0 1155 355 44 17

a4 2612 5 0.19 899 300 43 20

a5 2339 0 0 1144 370 44 21

tw

a6 2647 1 0.03 1150 363 45 23

a1 1895 0 0 561 353 44 19

a2 1120 0 0 503 322 43 33

a3 1511 0 0 638 409 43 20

a4 1643 0 0 509 240 44 15

a5 1635 0 0 638 310 44 24

sg

a6 1615 0 0 650 308 43 16

a1 3725 0 0 74 135 42 18

a2 3578 0 0 317 224 43 33

a3 3766 0 0 298 271 43 16

a4 3591 0 0 239 260 43 19

a5 3933 0 0 433 222 44 30

us

a6 3614 0 0 293 260 44 19
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network-latency rather than server processing-time. Since
the average process-times of all the six Amazon Web ser-
vices are all less than 50 milliseconds, which is very small
compared with the RTT values shown in Table 3.2.

• Users under poor network conditions are more likely to
suffer from unreliable service, since unstable RTT perfor-
mance degrades service quality and even leads to timeout
failures. Figure 3.2 (b), which illustrates the failure proba-
bility of the Web services, shows that the service user with
the worst RTT performance (cn) has the highest failure
probability, while the service user with the best RTT per-
formance (us) has the lowest failure probability.

3.4 Evaluation 2: Internet Web Services

This section presents our distributed QoS evaluation results on
a large number of real-world Web services. The detailed ex-
perimental raw data (e.g., Web service requests, lists of service
users and Web services, Web service invocation results, etc.) are
freely provided online3 for future research.

3.4.1 Information of Web Services

Crawling Web Service Information

Web services can be discovered from UDDI (Universal Descrip-
tion, Discovery and Integration, which is an XML-based reg-
istry enabling companies to publish and discover Web services
on the Internet), Web service portals (e.g., xmethods.net, web-
servicex.net, webservicelist.com, etc.), and Web service searching
engines [47] (e.g., seekda.com, esynaps.com, etc.). By crawling
Web service information with these mechanisms at Aug. 2009,

3http://www.wsdream.net
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Figure 3.3: Locations of Web Services
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Figure 3.4: Distribution of Web Services

we obtain 21,358 addresses of WSDL (Web Service Description
Language) files, which provides XML-based descriptions of Web
service interfaces. Seekda.com [47] reports that there are totally
28,529 public Web services in the Internet. We believe that the
21,358 Web services in our experiments already cover most of
the real-world Web services which are publicly available on the
Internet.

By analyzing WSDL files, locations of the Web services can
be identified. As shown in Figure 3.3, these Web services are dis-
tributed all over the world, while most Web services are located
in North America and Europe. Figure 3.4 shows the number of
Web services provided by different countries. As shown in Fig-
ure 3.4, the Web service numbers of different countries follow the
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Table 3.3: WSDL File Download Failures
Code Description # WS Percent

400 Bad Request 173 3.57%

401 Unauthorized 106 2.19%

403 Forbidden 153 3.16%

404 File Not Found 1468 30.31%

405 Method Not Allowed 1 0.02%

500 Internal Server Error 505 10.43%

502 Bad Gateway 51 1.05%

503 Service Unavailable 22 0.45%

504 Gateway Timeout 788 16.27%

505 HTTP Version Not Support 1 0.02%

N/A Connection Timed Out 774 15.98%

N/A Read Timed Out 787 16.25%

N/A Unknown Host 12 0.25%

N/A Redirected Too Many Times 3 0.06%

Total 4844 100.00%

heavy-tailed distribution. Most countries provide a small num-
ber of Web services, while a small number of countries providing
a large number of Web services. Among all the 89 countries, the
top 3 countries provide 55.5% of the 21,358 obtained Web ser-
vices. These 3 countries are United States (8,867 Web services),
United Kingdom (1,657 Web services), and Germany (1,246 Web
services). More detailed information of these Web services (e.g.,
addresses, locations, provider name, etc.) are available in our
released datasets.

Obtaining WSDL Files

By establishing HTTP connections to the 21,358 WSDL ad-
dresses obtained in Section 3.4.1, we successfully download 16,514
(77.32%) WSDL files. The WSDL download failures are summa-
rized in Table 3.3, where the first column lists the HTTP code
indicating different types of failures. The HTTP codes of the
last four failure types in Table 3.3 are non-available (N/A), since
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Figure 3.5: Distribution of WSDL File Sizes

we fail to establish HTTP connections and thus unable to obtain
the server returned HTTP codes. As shown in Table 3.3, there
are totally 4,844 failures. 48.49% of these failures are timeout
failures caused by network connection problems, including 788
(16.27%) Gateway Timeout, 774 (15.98%) Connection Timed
out, and 787 (16.25%) Read Timed out. Beside the timeout fail-
ures, there is also a lot of File Not Found failures (30.31%) and
Internal Server Error failures (10.43%). The File Not Found
failures are caused by the removal of WSDL files or update of
WSDL addresses, while the Internal Server Error failures are
caused by the fact that the servers encountered unexpected con-
ditions which prevented them from fulfilling the request. The
various types of WSDL file download failures shown in Table 3.3
indicate that WSDL files on the Internet can become unavail-
able easily. This highly unavailability of WSDL files are caused
by the facts that: (1) the Internet is highly dynamic and un-
predictable, (2) the Web service information on the Internet are
out-of-date, and (3) many Web services made for experimental
purposes.

The WSDL file size distribution can provide an approximate
overview of the current status of real-world WSDL files. To
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67%3%30% Microsoft PHP Java and others
Figure 3.6: Development Technologies

achieve this task, we calculate the sizes of the 16,514 down-
loaded WSDL files and plot the histogram of the WSDL file
size distribution in Figure 3.5. The average size of the obtained
WSDL files is 21.981 KBytes. As shown in Figure 3.5, 90.5%
WSDL files are between 2 KBytes to 64 KBytes in size, while
there are only 676 WSDL files smaller than 2 KBytes and 883
WSDL files larger than 64 KBytes in size.

Although Web services are black-box to service users without
any internal design and implementation details, we can deter-
mine their development technologies by analyzing URLs of the
WSDL files. For example, WSDL documents generated by Mi-
crosoft .NET are usually ended with ”.asmx?WSDL”. We find
out that the majority of the collected 16,514 Web services are
implemented by Microsoft .NET technology. As shown in Fig-
ure 3.6, 67% of the Web services are implemented by Microsoft
.NET technology, 3% are developed by PHP technology, and
30% are implemented by Java and other technologies.

3.4.2 Generating Java Codes for Web Services

Employing Axis24, we successfully generate client-side Web ser-
vice invocation Java codes for 13,108 (79.38%) Web services

4http://ws.apache.org/axis2
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Table 3.4: Java Code Generation Failures
Failure Type # WS Percent

Empty File 249 7.31%

Invalid File Format 1232 36.17%

Error Parsing WSDL 1135 33.32%

Invocation Target Exception 764 22.43%

Null QName 22 0.65%

Databinding Unmatched Type Exception 4 0.12%

Total 3406 100%

among all the 16,514 Web services. Totally 235,262,555 lines
of Java codes are produced. There are 3,406 code generation
failures, which are summarized in Table 3.4. As shown in Ta-
ble 3.4, among all the 3,406 generation failures, 249 Empty File
failures are caused by the fact that the obtained WSDL files
are empty; 1,232 Invalid File Format failures are due to that
these WSDL files do not follow standard WSDL format; and
1,135 Error Parsing failures are caused by the syntax errors of
the WSDL files. There are also 22 Null QName failures and 4
Databinding Unmatched Type failures. These generation failures
indicate that the WSDL files on the Internet are fragile, which
may contain empty content, invalid formats, invalid syntaxes,
and other various types of errors.

3.4.3 Failure Probability

Dataset Description

To provide objective evaluations on failure probability of the
real-world Web services, we randomly select 100 Web services
from the 13,108 Web services obtained in Section 3.4.2 without
any personal selection judgments. To conduct distributed eval-
uations on the selected Web services, we employ 150 computers
in 24 countries from PlanetLab [23], which is a distributed test-
bed made up of computers all over the world. To make our
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Table 3.5: Statistics of the Dataset 1
Statistics Values

Num. of Web Service Invocations 1,542,884

Num. of Service Users 150

Num. of Web Services 100

Num. of User Countries 24

Num. of Web Service Countries 22

Range of Failure Probability 0-100%

Mean of Failure Probability 4.05%

Standard Deviation of Failure Probability 17.32%
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85.68% values are smaller than 0.01

8.34% values are larger than 0.16

Figure 3.7: Distribution of Failure Probabilities

Web service evaluation reproducible, Axis2 is employed for gen-
erating client-side Web service invocation codes and test cases
automatically. In this experiment, each service user invokes all
the 100 selected Web services for about 100 times and records
the non-functional performance (i.e., response time, response
data size, response HTTP code, failure message, etc.). Totally
1,542,884 Web service invocation results are collected from the
service users.

By processing the experimental results, we obtain a 100×150
failure probability matrix, where an entry fa,i in the matrix is
the failure probability of Web service i observed by the service
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Figure 3.8: Three Users’ Failure Probabilities

user a. In this chapter, failure probability fa,i is defined as the
probability that an invocation on Web service i by user a will
fail. Value of fa,i can be approximately calculated by dividing
the number of failed invocations by the total number of invo-
cations conducted by user a on Web service i. As shown in
Table 3.5, the range of failure probability is from 0 to 100%,
where 0 means that no invocation fails and 100% indicates that
all invocations fail. The mean and standard deviation of all the
15,000 failure probabilities observed by 100 users on 150 Web
services are 4.05% and 17.32%, respectively, indicating that the
failure probabilities of different Web services observed by dif-
ferent service users exhibit a great variation. Figure 4.3 shows
the value distribution of failure probabilities. As shown in Fig-
ure 4.3, although 85.68% of all the failure probability values are
smaller than 1%, a large part (8.34%) of failure probabilities still
encounter poor performance with values larger than 16%.

To provide more comprehensive illustration of the Web ser-
vice failure probabilities observed by different service users, we
randomly select three service users (User 1 in US, User 2 in Fin-
land, and User 3 in Germany) from the 150 service users in this
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Figure 3.9: Average Failure Probabilities

experiment and plot their observed failure probabilities of the
100 Web services in Figure 3.8. As shown in Figure 3.8, these
service users have quite different usage experiences on the same
Web services. Failure probabilities of user 1, user 2 and user 3
are around 40%, 10%, and 0% on most of the Web services. The
high failure probability of user 1 is caused by the poor client-side
network condition. This experimental observation indicates that
different users may have quite different usage experiences on the
same Web services, influenced by the network connections.

Overall Failure Probability

To investigate the overall failure probabilities of different Web
services, mean of failure probability of Web service i is calculated
by:

fi =
1

m

m∑
a=1

fa,i, (3.1)

where fa,i is the failure-probability of Web service i observed by
the service user a, m is the number of service users (m = 150
in this experiment), and fi is the average failure probability of
Web service i. Standard deviation of failure probability of Web
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service i is calculated by:

si =

√√√√ 1

m

m∑
a=1

(fa,i − fi)2, (3.2)

where fi is the average failure probability of Web service i and
si is the standard deviation of failure probability of Web service
i.

Similarly, the average failure probability of a service user a
can be calculated by:

fa =
1

n

n∑
i=1

fa,i, (3.3)

where n is the number of Web services (n = 100 in this experi-
ment) and fa is the mean of service user a. Standard deviation
of failure probability of service user a can be calculated by:

sa =

√√√√1

n

n∑
i=1

(fa,i − fa)2, (3.4)

where fa is the mean of service user a and sa is the standard
deviation of service user a.

Figures 3.9(a) and (b) show the mean and standard deviation
of the 100 Web services and 150 service users, respectively, where
the x axis of the figure is the mean value and the y axis is the
standard deviation value. Figure 3.9(a) shows that: (1) Average
failure probabilities of all of the 100 Web services are larger than
0, indicating that 100% invocation success rate is very difficult
to achieve in the unpredictable Internet environment, since Web
service invocation failures can be caused by client-side errors,
network errors, or server-side errors. (2) The standard devia-
tion first becomes larger with the increase of mean and begins
to decrease after a certain threshold. This is because the Web
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services with very large average failure probabilities are usually
caused by the server-side errors. The value variation of these
Web services to different users is thus not large. For example,
there is a Web service with 100% failure probability (caused by
the unavailability of that Web service) in Figure 3.9(a). The
standard deviation of this Web service is 0, since all the users
obtained the same failure probability, i.e., 100%. (3) Although
average failure probabilities of most Web services are small, the
standard deviations are quite large, indicating that failure prob-
ability values of the same Web service observed by different ser-
vice users can vary widely.

Figure 3.9(b) shows that: (1) Average failure probabilities
of all of the 150 service users are all larger than 0, although
the they are in different locations under various network con-
ditions. This observation indicates that Web service invocation
failures are difficult to be avoided on the Internet environment.
(2) There is an outlier in Figure 3.9(b) which has large mean
value (0.412) and very small standard deviation value (0.12).
This is because most failures (i.e., UnknownHostException) of
this service user happen to all the other Web services, making
the observed failure probabilities on different Web services quite
similar. (3) Although average failure probabilities of most ser-
vice users are small, the standard deviations of most of them
are quite large, indicating that failure probability of different
Web services observed by the same service user are also quite
different.

Failure Types

To investigate different Web service invocation failures, HTTP
codes of the Web service responses are employed for the fail-
ure detection (i.e., HTTP code 200 indicates invocation success
while other codes and exceptions stand for various types of fail-
ures). In some special cases, Web service responses with HTTP
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Table 3.6: Failures of the Dataset 1
Descriptions Number

(400)Bad Request 3

(500)Internal Server Error 26

(502)Bad Gateway 33

(503)Service Unavailable 609

java.net.SocketException: Network is unreachable 3

java.net.SocketException: Connection reset 1175

java.net.NoRouteToHostException: No route to host 415

java.net.ConnectException: Connection refused 619

java.net.SocketTimeoutException: Read timed out 4606

java.net.UnknownHostException 5847

java.net.SocketTimeoutException: Connect timed out 44809

Other errors 39

Total 58184

code 200 may include functional failure information (e.g., invalid
parameter, etc.). Such Web service invocations are considered
successful, since the target Web services are operating correctly.
Since this chapter only focuses on non-functional performance
evaluation, functional testing of Web services is not considered.
As shown in Table 3.6, among all the 1,542,884 Web service
invocations, there are 58,184 invocation failures. The detailed
failures information are summarized in Table 3.6 and descrip-
tions of different failure types are introduced as follows:

• (400)Bad Request : The Web server was unable to under-
stand the request since the client request did not respect
the HTTP protocol completely.

• (500)Internal Server Error : The Web server encountered
an unexpected condition that prevented it from fulfilling
the client request.

• (502)Bad Gateway : A gateway or proxy server received
an invalid response from an upstream server it accessed to
fulfill the request.
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• (503)Service Unavailable: The Web server was unable to
handle the HTTP request due to a temporary overloading
or maintenance of the server.

• Network is unreachable: A socket operation was attempted
to an unreachable network, it didn’t get a response and
there was no default gateway.

• Connection reset : The socket was closed unexpectedly from
the server side.

• NoRouteToHostException: Socket connection failed caused
by intervening firewall or intermediate router errors.

• Connection refused : An error occurred while attempting to
connect a socket to a remote address and port. Typically,
the connection was refused remotely (e.g., no process was
listening on the remote address/port).

• Read timed out : Timeout occurred on socket read

• UnknownHostException: The IP address of a host could
not be determined.

• Connect timed out : A timeout has occurred on a socket
connect.

• Other failures: The type of these invocation failures cannot
be identified due to lack of failure information.

As shown in Table 3.6, about 85% of these failures are due to
socket connection problems, including 44,809 connect timed out
and 4,606 read timed out. These timed out exceptions are caused
by network connection problems during socket connection and
socket read. In this experiment, all Web service invocations are
configured with a timeout of 20 seconds, which is the default
setting of Axis2. By setting a larger timeout value, the number
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of invocation failures may decrease. The investigations of invo-
cation timeout settings will be conducted in our future work.
Besides the timeout exceptions, there are also a lot of other
failures caused by network errors, including 33 bad gateway, 3
network is unreachable, 415 no route to host, and 5847 unknown
host. These failures together with the timeout failures account
for a large percentage (95.5%) of the Web service invocation
failures, indicating that the Web service invocation failures are
mainly caused by network errors. Some failures in Table 3.6 are
caused by server-side errors, including 3 bad request, 26 inter-
nal server error, 608 service unavailable, 1175 connection reset,
and 619 connection refused. Compared with the failures caused
by network errors, the number of failures caused by server-side
errors is very small.

These experimental observations on invocation failures show
us that: (1) Web service invocations can fail easily, which can be
caused by gateway errors, networking errors, and server errors.
(2) In the service-oriented environment, providing reliable Web
services is not enough for building reliable service-oriented sys-
tem, since most invocation failures are caused by network errors.
(3) Since the Web service invocation failures are unavoidable in
the unpredictable Internet environment, service fault tolerance
approaches [81, 113] are becoming important for building reli-
able service-oriented systems. (4) To tolerate invocation failures
caused by network errors, service fault tolerance mechanisms
should be developed at the client-side.

3.4.4 Response-time and Throughput

Dataset Description

This experiment focuses on investigating the response time and
throughput of different Web services and service users. Response
time is defined as the time duration between a service user send-
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Table 3.7: Statistics of the Dataset 2
Statistics Values

Num. of Web Service Invocations 1,974,675

Num. of Service Users 339

Num. of Web Services 5,825

Num. of User Countries 30

Num. of Web Service Countries 73

Mean of Response Time 1.43 s

Standard Deviation of Response Time 31.9 s

Mean of Throughput 102.86 kbps

Standard Deviation of Throughput 531.85 kbps

ing a request and receiving the corresponding response, while
throughput is defined as the average rate of successful message
size (here in bits) delivery over a communication channel per sec-
ond. This experiment is conducted at Aug. 2009. As shown in
Table 3.7, totally 1,974,675 real-world Web service invocations
are executed by 339 service users from 30 countries on 5,825
real-world Web services from 73 countries in this experiment.

By processing the Web service invocation results, we obtain
two 339× 5825 matrices for response time and throughput, re-
spectively. Each entry in a matrix represents the response time
or throughput value observed by a user on a Web service. As
shown in Table 3.7, the mean and standard deviation of re-
sponse time is 1.43 seconds and 31.9 seconds, respectively, while
the mean and standard deviation of throughput is 102.86 kbps
and 531.85 kbps, respectively.

Overall Response-time and Throughput

Figure 3.10(a) and (b) show the overall response time of Web
services and service users, respectively. From Figure 3.10(a),
we observe that: (1) Web services with large average response
time tend to have large performance variance to different users,
since the standard deviation increases with the mean value in
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Figure 3.10: Overall Response Time

Figure 3.10(a). (2) Large response time of a Web service can be
caused by the long data transferring time or the long request pro-
cessing time at the server-side. For example, the largest response
time (1535 seconds) shown in Figure 3.10(a) is mainly caused
by large size data transferring (12 MBytes data are transferred),
while the response time of the outlier (mean = 5.3 seconds, std
= 0.0003) in Figure 3.10(a) is mainly caused by the long request
processing time at the server-side. When the response time of
a Web service is mainly due to the server-side processing time,
different users will receive similar response time, the standard
deviation value will thus be small.

Figure 3.10(b) shows that: (1) Service users with large re-
sponse time are more likely to observe greater response time
variance on different Web services, since the standard deviation
increases with the mean value in Figure 3.10(b). (2) Influenced
by the client-side network conditions, different service users ob-
serve quite different average response time on the same Web ser-
vices. Although most service users get good average response
time, there is still a small part of service users that receive very
large average response time.

Figure 3.11(a) and Figure 3.11(b) show the overall through-
put value of different Web services and service users, respec-
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Figure 3.11: Overall Throughput

tively. Figure 3.11(a) shows that: (1) Similar to the response
time, standard deviation of throughput increases with the mean
value. (2) Influenced by the poor server-side network conditions,
there is a small part of Web services providing a very poor av-
erage througput (<1 kbps). Figure 3.11(b) shows that: (1) In-
fluenced by the client-side network conditions, different service
users receive quite different average throughput on the target
Web services. (2) Service users with large average throughput
values are more likely to observe large throughput variance on
different Web services, since the standard deviation increases
with the mean value.

In Figure 3.11(a) and Figure 3.11(b), Two linear functions
are fitted to the observed value points. Their equations are also
provided. By these equations, performance variance of a Web
service (or a service user) can be predicted by their throughput
values.

3.5 Summary

In this chapter, we propose a distributed evaluation framework
for Web services and conducts several large-scale evaluations
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on real-world Web services from distributed locations. A large
number of Web service invocations are executed by service users
under heterogenous environments. Comprehensive experimental
results are presented and reusable datasets are released.

2 End of chapter.



Chapter 4

Neighborhood-based QoS Prediction of Web

Services

4.1 Overview

With the number increasing of Web services, Quality-of-Service
(QoS) is usually employed for describing non-functional charac-
teristics of Web services [105]. Among different QoS properties
of Web services, some QoS properties are user-dependent and
have different values for different users (e.g., response time, in-
vocation failure probability, etc.). Obtaining values of the user-
dependent QoS properties is a challenging task. Real-world Web
service evaluation in the client-side [26, 97, 110] is usually re-
quired for measuring performance of the user-dependent QoS
properties of Web services. Client-side Web service evaluation
requires real-world Web service invocations and encounters the
following drawbacks:

• Firstly, real-world Web service invocations impose costs
for the service users and consume resources of the ser-
vice providers. Some Web service invocations may even
be charged.

• Secondly, there may exist too many Web service candidates
to be evaluated and some suitable Web services may not be

44
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discovered and included in the evaluation list by the service
users.

• Finally, most service users are not experts on Web ser-
vice evaluation and the common time-to-market constraints
limit an in-depth evaluation of the target Web services.

However, without sufficient client-side evaluation, accurate
values of the user-dependent QoS properties cannot be obtained.
Optimal Web service selection and recommendation are thus dif-
ficult to achieve. To attack this critical challenge, we propose a
neighborhood-based collaborative filtering approach for making
personalized QoS value prediction for the service users. Collab-
orative filtering [36] is the method which automatically predicts
values of the current user by collecting information from other
similar users or items. Well-known neighborhood-based collab-
orative filtering methods include user-based approaches [11, 40,
99] and item-based approaches [27, 52, 83]. Due to their great
successes in modeling characteristics of users and items, collab-
orative filtering techniques have been widely employed in fa-
mous commercial systems, such as Amazon1, Ebay2, etc. In this
chapter, we systematically combine the user-based approach and
item-based approach for predicting the QoS values for the cur-
rent user by employing historical Web service QoS data from
other similar users and similar Web services. Similar service
users are defined as the service users who have similar histori-
cal QoS experience on the same set of commonly-invoked Web
services with the current user.

Different from traditional Web service evaluation approaches
[26, 97, 110], our approach predicts user-dependent QoS values
of the target Web services without requiring real-world Web
service invocations. TheWeb service QoS values obtained by our

1http://www.amazon.com
2http://www.half.ebay.com
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approach can be employed by other QoS driven approaches (e.g.,
Web service selection [104, 105], fault-tolerant Web service [113],
etc.).

The rest of this chapter is organized as follows. Section 4.2
introduces a user-collaborative QoS data collection mechanism.
Section 4.3 presents the similarity computation method. Sec-
tion 4.4 proposes a Web service QoS value prediction approach.
Section 4.5 shows the implementation and experiments. Sec-
tion 4.6 concludes this chapter.

4.2 User-Collaborative QoS Collection

To make accurate QoS value prediction of Web services without
real-world Web service invocations, we need to collect past Web
service QoS information from other service users. However, it is
difficult to collect Web service QoS information from different
service users due to: (1) Web services are distributed over the
Internet and are hosted by different organizations. (2) Service
users are usually isolated from each other. (3) The current Web
service architecture does not provide any mechanism for the Web
service QoS information sharing.

Inspired by the recent success of YouTube3 and Wikipedia4,
we propose the concept of user-collaboration for the Web ser-
vice QoS information sharing between service users. The idea
is that, instead of contributing videos (YouTube) or knowledge
(Wikipedia), the service users are encouraged to contribute their
individually observed past Web service QoS data. Figure 4.1
shows the procedures of our user-collaborative QoS data collec-
tion mechanism, which are introduced as follows:

1. A service user contributes past Web service QoS data to
a centralized server WSRec [118]. In the following of this

3http://www.youtube.com
4http://www.wikipedia.org
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Figure 4.1: Procedures of QoS Value Prediction

chapter, the service users who require QoS value prediction
services are named as active users.

2. WSRec selects similar users from the training users for the
active user (technique details will be introduced in Sec-
tion 4.3). Training users represent the service users whose
QoS values are stored in the WSRec server and employed
for making value predictions for the active users.

3. WSRec predicts QoS values of Web services for the active
user (technique details will be introduced in Section 4.4).

4. WSRec makes Web service recommendation based on the
predicted QoS values of different Web services (will be dis-
cussed in Section 4.4.4).

5. The service user receives the predicted QoS values as well as
the recommendation results, which can be employed to as-
sist decision making (e.g., service selection, composite ser-
vice performance prediction, etc.).

In our user-collective mechanism, the active users who con-
tribute more Web service QoS data will obtain more accurate
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QoS value predictions (details will be explained in Section 4.4).
By this way, the service users are encouraged to contribute their
past Web service QoS data. More architecture and implemen-
tation details of WSRec will be introduced in Section 4.5.1.

4.3 Similarity Computation

This section introduces the similarity computation method of
different service users as well as different Web services (Step 2
of Figure 4.1).

4.3.1 Pearson Correlation Coefficient

Given a recommender system consisting of M training users and
N Web service items, the relationship between service users and
Web service items is denoted by an M × N matrix, called the
user-item matrix. Every entry in this matrix ru,i represents a
vector of QoS values (e.g., response time, failure probability,
etc.) that is observed by the service user u on the Web ser-
vice item i. If user u did not invoke the Web service item i
before, then ru,i = null. In the case that a Web service includes
multiple operations, each item (column) of the user-item matrix
represents a Web service operation instead of a Web service.

Pearson Correlation Coefficient (PCC) has been introduced
in a number of recommender systems for similarity computa-
tion, since it can be easily implemented and can achieve high
accuracy. In user-based collaborative filtering methods for Web
services, PCC is employed to calculate the similarity between
two service users a and u based on the Web service items they
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commonly invoked using the following equation:

Sim(a, u) =

∑
i∈I

(ra,i − ra)(ru,i − ru)√∑
i∈I

(ra,i − ra)2
√∑

i∈I

(ru,i − ru)2
, (4.1)

where I = Ia ∩ Iu is the subset of Web service items which both
user a and user u have invoked previously, ra,i is a vector of
QoS values of Web service item i observed by service user a,
and ra and ru represent average QoS values of different Web
services observed by service user a and u, respectively. From
this definition, the similarity of two service users, Sim(a, u),
is in the interval of [-1,1], where a larger PCC value indicates
that service user a and u are more similar. When two service
users have null Web service intersection (I = null), the value
of Sim(a, u) cannot be determined (Sim(a, u) = null), since we
do not have information for the similarity computation.

Item-based collaborative filtering methods using PCC [27, 83]
are similar to the user-based methods. The difference is that
item-based methods employ the similarity between the Web ser-
vice items instead of the service users. The similarity computa-
tion of two Web service items i and j can be calculated by:

Sim(i, j) =

∑
u∈U

(ru,i − ri)(ru,j − rj)√∑
u∈U

(ru,i − ri)2
√∑

u∈U

(ru,j − rj)2
, (4.2)

where Sim(i, j) is the similarity between Web service item i and
j, U = Ui ∩ Uj is the subset of service users who have invoked
both Web service item i and Web service item j previously, and
ri represents the average QoS values of the Web service item
i observed by different service users. Sim(i, j) is also in the
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interval of [−1, 1]. When two Web service items have null service
user intersection (U = null), the value of Sim(i, j) cannot be
computed (Sim(i, j) = null).

4.3.2 Significance Weighting

Although PCC can provide accurate similarity computation, it
will overestimate the similarities of service users who are actually
not similar but happen to have similar QoS experience on a
few co-invoked Web services [65]. To address this problem, we
employ a significance weight to reduce the influence of a small
number of similar co-invoked items. An enhanced PCC for the
similarity computation between different service users is defined
as:

Sim′(a, u) =
2× |Ia ∩ Iu|
|Ia|+ |Iu|

Sim(a, u), (4.3)

where Sim′(a, u) is the new similarity value, |Ia ∩ Iu| is the
number of Web service items that are employed by both the two
users, and |Ia| and |Iu| are the number of Web services invoked
by user a and user u, respectively. When the co-invoked Web
service number |Ia∩ Iu| is small, the significance weight 2×|Ia∩Iu|

|Ia|+|Iu|
will decrease the similarity estimation between the service users
a and u. Since the value of 2×|Ia∩Iu|

|Ia|+|Iu| is between the interval of

[0, 1] and the value Sim(a, u) is in the interval of [−1, 1], the
value of Sim′(a, u) is in the interval of [−1, 1].

Just like the user-based methods, an enhanced PCC for the
similarity computation between different Web service items is
defined as:

Sim′(i, j) =
2× |Ui ∩ Uj|
|Ui|+ |Uj|

Sim(i, j), (4.4)

where |Ui ∩Uj| is the number of service users who invoked both
Web service item i and item j previously. Similar to Sim′(a, u),
the value of Sim′(i, j) is also in the interval of [−1, 1].
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As will be shown in our experimental results in Section 4.5.5,
the similarity weight enhances the QoS value prediction accu-
racy of Web services. Based on the above similarity computa-
tion approach, if an active user provides more past QoS values
of Web services to WSRec, the similarities computation will be
more accurate, which will consequently improve the QoS value
prediction accuracy. By this way, the service users are encour-
aged to provide more Web service QoS data.

4.4 QoS Value Prediction

In reality, the user-item matrix is usually very sparse [83], which
will greatly influence the prediction accuracy. Predicting miss-
ing values for the user-item matrix can improve the prediction
accuracy of active users [90]. Consequently, we propose a miss-
ing value prediction approach for making the matrix denser. The
similar users or items of a missing value in the user-item matrix
will be employed for predicting the value. By this approach,
the user-item matrix becomes denser. This enhanced user-item
matrix will be employed for the missing value prediction for the
active users.

4.4.1 Similar Neighbors Selection

Before predicting the missing values in the user-item matrix,
the similar neighbors of an entry, which include a set of similar
users and a set of similar items, need to be identified. Simi-
lar neighbors selection is an important step for making accurate
missing value prediction, since dissimilar neighbors will decrease
the prediction accuracy. Traditional Top-K algorithms rank the
neighbors based on their PCC similarities and select the top k
most similar neighbors for making missing value prediction. In
practice, some entries in the user-item matrix have limited sim-
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ilar neighbors or even do not have any neighbors. Traditional
Top-K algorithms ignore this problem and still include dissim-
ilar neighbors to predict the missing value, which will greatly
reduce the prediction accuracy. To attack this problem, we pro-
pose an enhanced Top-K algorithm, where neighbors with PCC
similarities smaller or equal to 0 will be excluded.

To predict a missing value ru,i in the user-item matrix, a set
of similar users S(u) can be found by the following equation:

S(u) = {ua|ua ∈ T (u), Sim′(ua, u) > 0, ua ̸= u}, (4.5)

and a set of similar Web service items S(i) can be found by the
following equation:

S(i) = {ik|ik ∈ T (i), Sim′(ik, i) > 0, ik ̸= i}, (4.6)

where T (u) is a set of top k similar users to the user u and
T (i) is a set of top k similar items to the item i. By this way,
the null intersection neighbors and the dissimilar neighbors with
negative correlations will be discarded from the similar neighbor
sets.

4.4.2 Missing Value Prediction

User-based collaborative filtering methods [11] (named as UPCC
for ease of presentation) apply similar users to predict the miss-
ing QoS values by the following equation:

P (ru,i) = u+

∑
ua∈S(u)

Sim′(ua, u)(rua,i − ua)∑
ua∈S(u)

Sim′(ua, u)
, (4.7)

where P (ru,i) is a vector of predicted QoS values of the missing
value ru,i in the user-item matrix, u is a vector of average QoS
values of different Web services observed by the active user u,
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and ua is a vector of average QoS values of different Web services
observed by the similar service user ua.

Similar to the user-based methods, item-based collaborative
filtering methods [83] (named as IPCC) engage similar Web ser-
vice items to predict the missing value by employing the follow-
ing equation:

P (ru,i) = i+

∑
ik∈S(i)

Sim′(ik, i)(ru,ik − ik)∑
ik∈S(i)

Sim′(ik, i)
, (4.8)

where P (ru,i) is a vector of predicted QoS values of the entry
ru,i and i is a vector of average QoS values of Web service item
i observed by different service users.

When a missing value does not have similar users, we use
the similar items to predict the missing value, and vice versa.
When S(u) ̸= ∅ ∧ S(i) ̸= ∅, predicting the missing value only
with user-based methods or item-based methods will potentially
ignore valuable information that can make the prediction more
accurate. In order to predict the missing value as accurate as
possible, we systematically combine user-based and item-based
methods to fully utilize the information of the similar users and
similar items.

Since user-based method and item-based method may achieve
different prediction accuracy, we employ two confidence weights,
conu and coni, to balance the results from these two predic-
tion methods. Confidence weights are calculated by considering
the similarities of the similar neighbors. For example, assum-
ing a missing value in the user-item matrix has three similar
users with PCC similarity {1,1,1} and has three similar items
with PCC similarity {0.1, 0.1, 0.1}. In this case, the prediction
confidence by user-based method is much higher than the item-
based method, since the similar users have higher similarities
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(PCC values) comparing with the similar items. Consequently,
conu is defined as:

conu =
∑

ua∈S(u)

Sim′(ua, u)∑
ua∈S(u) Sim

′(ua, u)
× Sim′(ua, u), (4.9)

and coni is defined as:

coni =
∑

ik∈S(i)

Sim′(ik, i)∑
ik∈S(i) Sim

′(ik, i)
× Sim′(ik, i), (4.10)

where conu and coni are the prediction confidence of the user-
based method and item-based method, respectively, and a higher
value indicates a higher confidence on the predicted value P (ru,i).

Since different datasets may inherit their own data distri-
bution and correlation natures, a parameter λ (0 ≤ λ ≤ 1)
is employed to determine how much our QoS value prediction
approach relies on the user-based method and the item-based
method. When S(u) ̸= ∅ ∧ S(i) ̸= ∅, our method predicts the
missing QoS value ru,i by employing the following equation:

P (ru,i) = wu × (u+

∑
ua∈S(u)

Sim′(ua, u)(rua,i − ua)∑
ua∈S(u)

Sim′(ua, u)
) +

wi × (i+

∑
ik∈S(i)

Sim′(ik, i)(ru,ik − ik)∑
ik∈S(i)

Sim′(ik, i)
), (4.11)

where wu and wi are the weights of the user-based method and
the item-based method, respectively (wu+wi = 1). wu is defined
as:

wu =
conu × λ

conu × λ+ coni × (1− λ)
, (4.12)

and wi is defined as:

wi =
coni × (1− λ)

conu × λ+ coni × (1− λ)
, (4.13)
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where both wu and wi are the combinations of the confidence
weights (conu and coni) and the parameter λ. The prediction
confidence of the missing value P (ru,i) by our approach using
Eq. (4.11) can be calculated by equation:

con = wu × conu + wi × coni. (4.14)

When S(u) ̸= ∅ ∧ S(i) = ∅, since there are no similar items,
the missing value prediction degrades to the user-based approach
by employing Eq. (4.7), and the confidence of the predicted value
is con = conu. Similarly, when S(u) = ∅ ∧ S(i) ̸= ∅, the missing
value prediction relies only on the similar items by employing
Eq. (4.8), and the confidence of the predicted value is con =
coni. When S(u) = ∅ ∧ S(i) = ∅, since there are no similar
users or items for the missing value ru,i, we do not predict the
missing value in the user-item matrix. The prediction of P (ru,i)
is defined as:

P (ru,i) = null. (4.15)

By the above design, instead of predicting all the missing val-
ues in the user-item training matrix, we only predict the missing
values, which have similar users or similar items. The consider-
ation is that no prediction is better than bad prediction, since
the user-item matrix will be involved for predicting QoS values
for the active users and bad prediction will decrease the predic-
tion accuracy for the active users. We also propose confidence
weights (conu and coni) to balance the user-based prediction and
the item-based prediction automatically. Moreover, a parameter
λ is employed to enhance the feasibility of our method to differ-
ent datasets. These designs are different from all other existing
prediction methods and the experimental results in Section 4.5
show that these designs can significantly enhance the QoS value
prediction accuracy of Web services.
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4.4.3 Prediction for Active Users

After predicting missing values in the user-item matrix, we ap-
ply the matrix for predicting QoS values for active users. The
prediction procedures are similar to the missing value predic-
tion in Section 4.4.2. The only difference is that when S(u) =
∅ ∧ S(i) = ∅, we predict the QoS values by employing the user-
mean (UMEAN) and item-mean (IMEAN), where UMEAN is a
vector of average QoS values of different Web services observed
by the service user a and IMEAN is a vector of average QoS
values of the Web service item i observed by different service
users. The prediction formula is defined as:

P (ra,i) = wu × ra + wi × ri, (4.16)

where ra is the UMEAN and ri is the IMEAN. In this case, the
confidence of the predicted value is con = 0.

4.4.4 Web Service Recommendation

After predicting the QoS values of Web services for an active
user, the predicted QoS values can be employed by the following
ways: (1) For a set of functionally equivalent Web services, the
optimal one can be selected out based on their predicted QoS
performance and the prediction confidence. (2) For the Web
services with different functionalities, the top k best performing
Web services can be recommended to the service users to help
them discover potential good performing Web services. (3) The
top k active service users, who have good predicted QoS values
on a Web service, can be recommended to the corresponding
service provider to help the provider find its potential customers.

Different from all other existing prediction methods, our method
not only provides the predicted QoS values for the active users,
but also includes the prediction confidences, which can be em-
ployed by the service users for better Web service selection.
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4.4.5 Computational Complexity Analysis

This section discusses the upper bound on the worst-case com-
putational complexity of the QoS value prediction algorithms.
We assume there are m service users and n Web services in the
training matrix.

Complexity of Similarity Computation

In Section 4.3, the computational complexity of Sim(a, u) is
O(n), since there are at most n intersecting Web services be-
tween service user a and service user u. The computational
complexity of Sim(i, j) is O(m), since there are at most m in-
tersecting service users between Web service i and Web service
j.

Complexity of UPCC

When predicting the missing values for an active user employ-
ing user-based PCC algorithm (Eq. (4.7)), we need to compute
similarities of the active user with all the m training users in
the training matrix (totally m similarity computations). As dis-
cussed in Section 4.4.5, the computational complexity of each
similarity computation is O(n). Therefore, the computational
complexity of similarity computation is O(mn).

The computational complexity of each missing value predic-
tion for the active user is O(m), since at most m similar users
will be employed for the prediction. There are at most n miss-
ing values in an active user, so the computational complexity of
the value prediction for an active user is O(mn). Therefore, the
total computational complexity of UPCC (including similarity
computation and value prediction) is O(mn).
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Complexity of IPCC

When predicting the missing values for an active Web service
employing item-based PCC algorithm (Eq. (4.8)), we need to
compute similarities of the current Web service with all the n
Web services in the training matrix (totally n similarity compu-
tations). As discussed in Section 4.4.5, the computational com-
plexity of each similarity computation is O(m). Therefore, the
computational complexity of similarity computation is O(mn).

After the similarity computation, for each missing value of an
active Web service, the value prediction computational complex-
ity is O(n), since at most n similar Web services will be employed
for the value prediction. There are at most m missing values in
an active Web service, so the computational complexity of value
prediction for an active Web service is O(mn). Therefore, the
same as UPCC, the computational complexity of IPCC is also
O(mn).

Complexity of Training Matrix Prediction

In Section 4.4.2, we predict the missing values in the training
matrix. When employing UPCC approach, the computational
complexity is O(m2n) since there are at most m rows (users)
to be predicted. When employing IPCC approach, the com-
putational complexity is O(mn2) because there are at most n

columns (Web services) to be predicted.
Since our approach is a linear combination of the UPCC

and IPCC approaches, the computational complexity of our ap-
proach is O(m2n +mn2). Because the value prediction for the
training matrix can be precomputed and recomputation is re-
quired only when the training matrix is updated, it will not
influence the real-time prediction performance for active users.
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Figure 4.2: Architecture of WSRec

Complexity of Active User Prediction

As discussed in Section 4.4.5, the computational complexity of
UPCC for predicting values of an active user is O(mn). When
employing IPCC, the similarities of different columns (Web ser-
vices) can be precomputed and there are at most n missing val-
ues in the active user. For the prediction of each missing value,
the computational complexity is O(n), since at most n similar
Web services will be employed for the prediction. Therefore, the
computational complexity of IPCC for an active user is O(n2).

Since our QoS value prediction approach is a linear combina-
tion of UPCC and IPCC, the computational complexity of our
approach for an active user is O(mn+ n2).
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4.5 Implementation and Experiments

4.5.1 Implementation

A prototype named WSRec [118] is implemented with JDK,
Eclipse, Axis25, and Apache Tomcat. In our prototype design,
WSRec controls a number of distributed computers in different
countries from Planet-lab6 for monitoring the publicly available
real-world Web services and collecting their QoS performance
data. These collected real-world Web service QoS data are em-
ployed for studying the performance of our prediction approach.
Figure 8.2 shows the architecture of WSRec, which includes the
following components:

• The Input Handler receives and processes the Web service
QoS values provided by an active service user.

• The Find Similar Users module finds similar users from the
training users of WSRec for the active user.

• The Predict Missing Data module predicts the missing QoS
values for the active user using our approach and saves the
predicted values.

• The Recommender module employs the predicted QoS val-
ues to recommend optimal Web services to the active user.
This module also returns all predicted values to the active
user.

• The Test Case Generator generates test cases for the Web
service evaluations. Axis2 is employed for generating test
cases automatically in our implementation.

5http://ws.apache.org/axis2
6http://www.planet-lab.org
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• The Training Data stores the collected Web service QoS
values, which will be employed for predicting missing values
of the active user.

• The Test Result Handler collects the Web service evalua-
tion results from the distributed computers.

• The Web Service Monitor controls a set of distributed com-
puters to monitor the Web services and record their QoS
performance.

We randomly select 100 Web services which are located in 22
countries for our experiments. Some of the initially selected Web
services have to be replaced due to: (1) authentication required,
(2) permanent invocation failure (e.g., the Web service is shut-
down), and (3) too long processing duration. 150 computers in
24 countries from Planet-Lab [23] are employed to monitor and
collect QoS information on the selected Web services. About
1.5 millions Web service invocations are executed and the test
results are collected.

By processing the experimental results, we obtain a 150×100
user-item matrix, where each entry in the matrix is a vector
including two QoS values, i.e., response time and failure proba-
bility. Response time represents the time duration between the
client sending a request and receiving a response, while failure
probability represents the ratio between the number of invoca-
tion failures and the total number of invocations. In our ex-
periments, each service user invokes each Web service for 100
times. Figure 4.3(a) and Figure 4.3(b) show the value distri-
butions of response time and failure probability of the 15,000
entries in the matrix, respectively. Figure 4.3(a) shows that the
means of response times of most entries are smaller than 5000
milliseconds and different Web service invocations contain large
variances in real environment. Figure 4.3(b) shows that failure
probabilities of most entries (85.68%) are smaller than 1%, while
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Figure 4.3: Value Distributions of the User-Item Matrix

Table 4.1: Experimental Parameter Descriptions

Symbols Descriptions

Given number
the number of QoS values provided by an active

user

Density the density of the training matrix

Training users the number of training users

Top-K
the number of similar neighbors employed for

the value prediction

λ
determines how much our approach relies on the

user-based approach or item-based approach

failure probabilities of a small part of entries (8.34%) are larger
than 16%. In the following sections, the unit of response time
is milliseconds.

4.5.2 Experimental Setup

We divide the 150 service users into two parts, one part as train-
ing users and the other part as active users. For the training
matrix, we randomly remove entries to make the matrix sparser
with different density (e.g., 10%, 20%, ect.). For an active user,
we also randomly remove different number of entries and name
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the number of remaining entries as given number, which denotes
the number of entries (QoS values) provided by the active user.
Different methods are employed for predicting the QoS values of
the removed entries. The original values of the removed entries
are used as the expected values to study the prediction accu-
racy. The experimental parameters and their descriptions are
summarized in Table 4.1.

We use Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) metrics to measure the prediction quality of our
method in comparison with other collaborative filtering meth-
ods. MAE is defined as:

MAE =

∑
i,j |ri,j − r̂i,j|

N
, (4.17)

and RMSE is defined as:

RMSE =

√∑
i,j(ri,j − r̂i,j)2

N
, (4.18)

where ri,j denotes the expected QoS value of Web service j ob-
served by user i, r̂i,j is the predicted QoS value, and N is the
number of predicted values.

4.5.3 Performance Comparison

To study the prediction performance, we compare our approach
(named asWSRec) with four other well-known approaches: user-
mean (UMEAN ), item-mean (IMEAN ), user-based prediction
algorithm using PCC (UPCC ) [11], and item-based algorithm
using PCC (IPCC ) [83]. UMEAN employs the average QoS
performance of the current service user on other Web services
to predict the QoS performance of other Web services, while
IMEAN employs the average QoS performance of the Web ser-
vice observed by other service users to predict the QoS perfor-
mance for the current active user. UPCC only employs sim-
ilar users for the QoS performance prediction by employing
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Table 4.2: MAE and RMSE Comparison With Basic Approaches (A smaller
MAE or RMSE value means a better performance)

Training Users = 100

Response Time Failure ProbabilityMetric Density Methods
G10 G20 G30 G10 G20 G30

UMEAN 1623 1539 1513 5.71% 5.58% 5.53%

IMEAN 903 901 907 2.40% 2.36% 2.46%

UPCC 1148 877 810 4.85% 4.20% 3.86%

IPCC 768 736 736 2.24% 2.16% 2.21%10%

WSRec 758 700 672 2.21% 2.08% 2.08%

UMEAN 1585 1548 1508 5.74% 5.53% 5.51%

IMEAN 866 859 861 2.36% 2.34% 2.29%

UPCC 904 722 626 4.40% 3.43% 2.85%

IPCC 606 610 639 2.01% 1.98% 1.98%20%

WSRec 586 551 546 1.93% 1.80% 1.70%

UMEAN 1603 1543 1508 5.64% 5.58% 5.56%

IMEAN 856 854 853 2.26% 2.29% 2.30%

UPCC 915 671 572 4.25% 3.25% 2.58%

IPCC 563 566 602 1.84% 1.83% 1.86%

MAE

30%

WSRec 538 504 499 1.78% 1.69% 1.63%

UMEAN 3339 3250 3192 15.47% 15.04% 14.74%

IMEAN 1441 1436 1442 5.61% 5.58% 5.85%

UPCC 2036 1455 1335 10.84% 7.51% 6.55%

IPCC 1335 1288 1278 5.36% 5.27% 5.53%10%

WSRec 1329 1247 1197 5.31% 5.12% 5.11%

UMEAN 3332 3240 3211 15.49% 15.05% 14.80%

IMEAN 1269 1252 1257 4.67% 4.62% 4.54%

UPCC 1356 1128 1019 8.07% 5.31% 4.58%

IPCC 1020 1016 1056 4.15% 4.13% 4.12%20%

WSRec 997 946 937 4.04% 3.83% 3.67%

UMEAN 3336 3246 3197 15.49% 15.00% 14.68%

IMEAN 1207 1209 1203 4.21% 4.23% 4.22%

UPCC 1267 1035 924 7.72% 5.09% 4.15%

IPCC 950 957 995 3.72% 3.71% 3.75%

RMSE

30%

WSRec 921 884 869 3.64% 3.46% 3.37%
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Eq. (4.7), while IPCC only employs similar Web services for
the prediction by employing Eq. (4.8).

Table 4.2 shows the MAE and RMSE results of different pre-
diction methods on response time and failure probability em-
ploying 10%, 20%, and 30% densities of the training matrix,
respectively. For the active users, we vary the number of pro-
vided QoS values (given number) as 10, 20 and 30 by randomly
removing entries (named as G10, G20, and G30, respectively,
in Table 4.2). We set the number of training users to be 100,
and set λ = 0.1, since the item-based approach achieves better
prediction accuracy than the user-based approach in our Web
service QoS dataset. The detailed investigation of the λ value
setting will be shown in Section 4.5.8. Each experiment is run for
50 times and the average MAE and RMSE values are reported.
We did not report the confidence interval of the experiments
since those values are very small.

The experimental results of Table 4.2 shows that:

• Under all experimental settings, our WSRec method ob-
tains smaller MAE and RMSE values consistently, which
indicates better prediction accuracy.

• The MAE and RMSE values ofWSRec become smaller with
the increase of the given number from 10 to 30, indicating
that the prediction accuracy can be improved by providing
more QoS values.

• When increasing the the training matrix density from 10%
to 30%, the prediction accuracy is also enhanced signifi-
cantly, since denser training matrix provides more informa-
tion for the prediction.

• The item-based approaches (IMEAN, IPCC) outperform
the user-based approaches (UMEAN, UPCC). This obser-
vation indicates that similar Web services provide more in-
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formation than similar users for the prediction in our user-
item matrix.

4.5.4 Impact of the Missing Value Prediction

The missing value prediction in Section 4.4.2 makes use of the
similar users and similar items to predict the missing values of
the training matrix to make it more denser. OurWSRec method
alleviates the potential negative influences of bad prediction on
the missing data by not predicting the missing value if it has
neither similar users nor similar items. To study the impact
of the missing value prediction, we implement two versions of
WSRec. One version employs missing value prediction while the
other version does not. In the experiments, we vary the given
number of the active users from 5 to 50 with a step value of 5
and vary the values of training users from 20 to 140 with a step
value of 20. In reality, the training matrix is usually very sparse,
therefore, we set the density = 10% to make the training matrix
sparser. We also set Top-K = 10, which means that the top 10
similar neighbors will be employed for value prediction.

Figure 4.4 shows the experimental results, where Figure 4.4(a)
- Figure 4.4(d) show the experimental results of response time
and Figure 4.4(e) - Figure 4.4(h) show the experimental results
of failure probability. Figure 4.4 indicates that:

• WSRec with missing value prediction outperforms WSRec
without missing value prediction consistently in all experi-
mental settings, indicating that by predicting missing val-
ues for the training matrix, we are able to obtain more
accurate prediction results.

• The prediction accuracies of both the two versions of WS-
Rec enhance with the increase of given number and training
user number. Since more QoS values and a larger training
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Figure 4.4: Impact of the Training Matrix Prediction
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matrix provide more information for the missing value pre-
diction.

• The same as the results shown in Table 4.2, the results of
RMSE is following the same trend of MAE. Due to space
limitation, in the following experiments, we only report the
experimental results of MAE.

4.5.5 Impact of the Significance Weight
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Figure 4.5: Impact of the Significance Weight

Significance weight makes the similarity computation more
reasonable in practice by devaluing the similarities which look
similar but are actually not. To study the impact of the signif-
icance weight, we implement two versions of WSRec, one ver-
sion employs significance weight for the similarity computation,
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while the other version does not. In the experiment, we set given
number = 5, λ = 0.1, and training users = 140. We vary the
density of the training matrix from 5% to 50% with a step value
of 5%. We do not study the density value of 0, since in that
case the training matrix contains no information and cannot be
employed for the QoS value prediction.

Figure 4.5(a) and Figure 4.5(c) employ Top-K = 5, while
Figure 4.5(b) and Figure 4.5(d) employ Top-K = 10. Figure 4.5
shows that WSRec with significance weight obtains better pre-
diction accuracy consistently than WSRec without significance
weight. The improvement is not significant since the improve-
ment of excluding dissimilar neighbors is alleviated by a lot of
normal cases. The cases of excluding dissimilar neighbors do
not happen very often comparing with the normal cases in our
experiments.

As shown in Figure 4.5, when the training matrix density
increase, the prediction improvement of employing significance
weight becomes more significant. Since with denser training
matrix, more similar users will be found for the current user
and the influence of excluding dissimilar users is thus becoming
more significant.

4.5.6 Impact of the Confidence Weight

Confidence weight determines how to make use of the predicted
values from the user-based method and the item-based method
to achieve higher prediction accuracy automatically. To study
the impact of the confidence weight, we also implement two ver-
sions of WSRec, one version employs confidence weight, while
the other version does not. In the experiments, Top-K = 10
and training users = 140. We also set λ = 0.5, so that how to
combine the user-based results and item-based results is not in-
fluenced by λ and is determined by the confidence weight alone.
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Figure 4.6: Impact of the Confidence Weight

Figures 4.6(a) and 4.6(c) show the experimental results with
given number change, while Figures 4.6(b) and 4.6(d) show the
experimental results with training matrix density change. As
shown in Figure 4.6, WSRec with confidence weight outperforms
WSRec without confidence weight for both the response time and
failure probability. Figure 4.6 also shows that the MAE values
become smaller with the increase of the given number and the
training matrix density, which is consistent with the observation
from Table 4.2.

4.5.7 Impact of Enhanced Top K

In our WSRec prediction method, we exclude dissimilar users
with negative PCC values from the Top-K similar neighbors by
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Figure 4.7: Impact of the Enhanced Top K

using an enhanced Top-K algorithm. To study the impact of
our enhanced Top-K algorithm on the prediction results, we im-
plement two versions of WSRec. One version employs enhanced
Top-K, while the other does not. Figures 4.7(a) and 4.7(c) show
the experimental results of response time and failure probabil-
ity with given number change under the experimental settings
of density = 10%, training users = 140, λ = 0.1, and Top-K =
10. Figures 4.7(b) and 4.7(d) show the MAE values with top k
value change under the experimental settings of density = 10%,
given number = 5, training users = 140.

Figure 4.7 shows that WSRec with the enhanced Top-K out-
performs WSRec without the enhanced Top-K for both the re-
sponse time and failure probability. The prediction performance
of WSRec without the enhanced Top-K is not stable, since it
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may include dissimilar neighbors, which will greatly influence
the prediction accuracy. Moreover, as shown in Figures 4.7(a)
and 4.7(c), while the given number increases, differences of the
two WSRec versions in MAE decrease. Since with larger given
number, more similar users can be found for the current active
user, the probability of selecting dissimilar users with negative
PCC values as the top 10 similar user (Top-K = 10 in the ex-
periment) is small. Our enhanced Top-K algorithm works only
at situations that the number of similar users is smaller than
the value of Top-K. Figure 4.7 shows that the parameter Top-K
can be set to be a large value for obtaining optimal performance
in our WSRec approach.

4.5.8 Impact of λ

Different datasets may have different data correlation character-
istics. Parameter λ makes our prediction method more feasible
and adaptable to different datasets. If λ = 1, we only extract in-
formation from the similar users, and if λ = 0, we only consider
valuable information from the similar items. In other cases, we
fuse information from both similar users and similar items based
on the value of λ to predict the missing value for active users.

To study the impact of the parameter λ to our collaborative
filtering method, we set Top-K = 10 and training users = 140.
We vary the value of λ from 0 to 1 with a step value of 0.1. Fig-
ures 4.8(a) and 4.8(c) show the results of given number = 10,
given number = 20 and given number = 30 with 20% density
training matrix of response time and failure probability, respec-
tively. Figures 4.8(b) and 4.8(d) show the results of density =
10%, density = 20% and density = 30% with given number =
20 of response time and failure probability, respectively.

Observing from Figure 4.8, we draw the conclusion that the
value of λ impacts the recommendation results significantly, and
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Figure 4.8: Impact of the Lambda

a suitable λ value will provide better prediction accuracy. An-
other interesting observation is that, in Figure 4.8(a), with the
given number increasing from 10 to 30, the optimal value of λ,
which obtains the minimal MAE values of the curves in the fig-
ure, shifts from 0.1 to 0.3. This indicates that the optimal λ
value is influenced by the given number. Similar to the obser-
vation in Figure 4.8(a), in Figure 4.8(c), the optimal value of
λ for failure probability shifts from 0 to 0.7, indicating that the
optimal λ value is influenced not only by the given number, but
also by the nature of datasets. For both the response time and
failure probability, the similar items are more important than
the similar users when limited Web service QoS values are given
by the active users, while the similar users become more impor-
tant when more QoS values are available from the active users.
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This observation is also confirmed by the experimental results
reported in Table 4.2, where the IPCC outperforms the UPCC
for all the given number = 10, given number = 20, and given
number = 30. This is reasonable, since with limited user-given
QoS values, the UMEAN prediction method, which employs the
mean of the user-given QoS values to predict the QoS values of
other Web services for this user, exhibits higher probability to
be inaccurate. This will influence the prediction performance of
UPCC, which is based on the value predicted by UMEAN for
the missing value prediction as shown in Eq. (4.7).

As shown in Figure 4.8(b) and Figure 4.8(d), with the given
number of 20, all the three curves (Density 10%, 20% and 30% )
of response time and failure probability obtain the best predic-
tion performance with the same λ value (λ = 0.2 for response
time and λ = 0 for failure probability), indicating that the opti-
mal λ value is not influenced by the training matrix density.

4.6 Summary

In this chapter, we propose a neighborhood-based approach for
predicting QoS values of Web services by systematically combin-
ing the user-based PCC approach and the item-based PCC ap-
proach. Large-scale real-world experiments are conducted and
the comprehensive experimental results show the effectiveness
and feasibility of our approach.

Our ongoing research includes collecting QoS performance
of more real-world Web services from more service users. More
investigations will be conducted for QoS value updates, since the
QoS values of Web services are changing from time to time in
reality. In our Web service evaluations reported in this chapter,
to reduce the effect of the Web service invocations to the real-
world Web services, we only selected one operation from a Web
service for making evaluations and employ the performance of
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this operation to present the performance of the Web service.
More investigations will be conducted on different operations of
the same Web service in our future work.

2 End of chapter.



Chapter 5

Model-based QoS Prediction of Web Services

5.1 Overview

The neighborhood-based QoS prediction approach has several
drawbacks, including (1) the computation complexity is too
high, and (2) it is not easy to find similar users/items when the
user-item matrix is very sparse. To address these drawbacks, we
propose a neighborhood-integrated matrix factorization (NIMF)
approach for Web service QoS value prediction in this chapter.
The idea is that client-side Web service QoS values of a service
user can be predicted by taking advantage of the social wisdom
of service users, i.e., the past Web service usage experiences
of other service users. By the collaboration of different service
users, the QoS values of a Web service can be effectively pre-
dicted in our approach even the current user did not conduct any
evaluation on the Web service and has no idea on its internal
design and implementation details.

In this chapter, firstly, we propose a neighborhood-integrated
matrix factorization (NIMF) approach for personalized Web ser-
vice QoS value prediction. Our approach explores the social wis-
dom of service users by systematically fusing the neighborhood-
based and the model-based collaborative filtering approaches to
achieve higher prediction accuracy compared with the neighborhood-
based prediction approach. Secondly, we conduct large-scale

76
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(a) Locations of Service Users

(b) Locations of Web Services

Figure 5.1: Location Information: (a) Locations of service users, totally 339
service users from 30 countries are plotted; (b) locations of Web services,
totally 5,825 real-world Web services from 73 countries are plotted. Each
user in (a) invoked all the Web services in (b). Totally 1,974,675 Web service
invocation results are collected.

experiments and release a real-world Web service QoS dataset
for future research. To the best of our knowledge, the scale of
our released Web service QoS dataset (including 339 distributed
service users and 5,825 real-world Web services as shown in Fig-
ure 5.1) is the largest in the field of service computing. Based
on this dataset, extensive experimental investigations are con-
ducted to study the QoS value prediction accuracy of our ap-
proach.

The rest of this chapter is organized as follows: Section 5.2
presents our QoS value prediction approach. Section 5.3 de-
scribes our experiments and Section 5.4 concludes this chapter.
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Figure 5.2: A Toy Example

5.2 Model-based QoS Prediction

Based on the collected Web service QoS values from different
service users, in this section, we first describe the Web service
QoS value prediction problem in Section 5.2.1, and then propose
a solution in Section 5.2.2 to Section 5.2.4.

5.2.1 Problem Description

The process of Web service QoS value prediction usually includes
a user-item matrix as shown in Figure 5.2(a), where each entry
in this matrix represents the value of a certain QoS property
(e.g., response-time in this example) of a Web service (e.g., i1 to
i6) observed by a service user (e.g., u1 to u5). As shown in Fig-
ure 5.2(a), each service user has several response-time values of
their invoked Web services. Similarities between two different
users in the matrix can be calculated by analyzing their QoS
values on the same Web services. Pearson Correlation Coeffi-
cient (PCC) [75] is usually employed for the similarity compu-
tation. As shown in the similarity graph in Figure 5.2(b), totally
5 users (nodes u1 to u5) are connected with 10 edges. Each edge
is associated with a PCC value in the range of [−1, 1] to specify
the similarity between user ui and user uj, where larger PCC
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value stands for higher similarity. The symbol N/A means that
the similarity between user ui and user uj is non-available, since
they do not have any commonly invoked Web services. The
problem we study in this chapter is how to accurately predict
the missing QoS values in the user-item matrix by employing the
available QoS values. By predicting the Web service QoS values
in the user-item matrix, we can provide personalized QoS value
prediction on the unused Web services for the service users, who
can employ these Web service QoS values for making service
selection, service ranking, automatic service composition, etc.

To obtain the missing values in the user-item matrix, we can
employ the Web service QoS values observed by other service
users for predicting the Web service performance for the current
user. However, since service users are in different geographic lo-
cations and are under different network conditions, the current
user may not be able to experience similar QoS performance as
other service users. To address this challenging Web service QoS
value prediction problem, we propose a neighborhood-integrated
matrix factorization (NIMF) approach, which makes the best
utilization of both the local information of similar users and the
global information of all the available QoS values in the user-
item matrix to achieve better prediction accuracy. Our approach
is designed as a two-phase process. In phase 1, we calculate the
user similarities using PCC and determine a set of Top-K similar
users for the current user. Then, based on the neighborhood in-
formation, we propose a neighborhood-integrated matrix factor-
ization approach to predict the missing values in the user-item
matrix in phase 2. Details of these two phases are presented at
Section 5.2.2 and Section 5.2.3, respectively.
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5.2.2 Neighborhood Similarity Computation

Given an m× n user-item matrix R consists of m service users
and n Web services, each entry in this matrix Rij represents
the value of a certain client-side QoS property of Web service
j observed by service user i. If user i did not invoke the Web
service j before, then Rij = null. Employing the available Web
service QoS values in the user-item matrix, which are collected
from different service users, the similarities between different
service users can be computed by Pearson Correlation Coeffi-
cient (PCC). PCC is widely employed in a number of recom-
mender systems for similarity computation. We adopt PCC
for the neighborhood similarity computation in our approach
since it considers the differences in the user value style and can
achieve high accuracy. Employing PCC, the similarity between
two users i and k can be computed based on their observed QoS
values on the commonly invoked Web services with the following
equation:

PCC(i, k) =

∑
j∈J

(Rij −Ri)(Rkj −Rk)√∑
j∈J

(Rij −Ri)2
√∑

j∈J

(Rkj −Rk)2
, (5.1)

where J is the subset of Web services which are invoked by
both user i and user k, Rij is the QoS value of Web service j
observed by service user i, and Ri and Rk are the average QoS
values of different Web services observed by service user i and k,
respectively. From this definition, the similarity of two service
users i and k, PCC(i, k), is in the interval of [-1,1], where a
larger PCC value indicates higher user similarity.

After calculating the similarities between the current user and
other users, a set of Top-K similar users can be identified based
on the PCC values. In practice, a service user may have limited
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number of similar users. Traditional Top-K algorithms ignore
this problem and still include dissimilar users with negative PCC
values, which will greatly influence the prediction accuracy. In
our approach, we exclude the dissimilar service users who have
negative correlations (negative PCC values). For a service user
i, a set of similar users T (i) can be therefore identified by the
following equation:

T (i) = {k|k ∈ Top-K(i), PCC(i, k) > 0, i ̸= k}, (5.2)

where Top-K(i) is a set of the Top-K similar users to the current
user i and PCC(i, k) is the PCC similarity value between user
i and user k, which can be calculated by Eq. (5.1). Note that
the Top-K relations are not symmetrical. User k is in the Top-
K neighbors of user i does not necessary indicate that user i is
also in the Top-K neighbors of user k. With the neighborhood
information, we can now design our neighborhood-integrated
matrix factorization model for the QoS value prediction.

5.2.3 Neighborhood-Integrated Matrix Factorization

A popular approach to predict missing values is to fit a factor
model to the user-item matrix, and use this factor model to make
further predictions. The premise behind a low-dimensional fac-
tor model is that there is a small number of factors influencing
the QoS usage experiences, and that a user’s QoS usage experi-
ence on a Web service is determined by how each factor applies
to the user and the Web service.

Consider an m×n user-item matrix R, the matrix factoriza-
tion method employs a rank-l matrix X = UTV to fit it, where
U ∈ Rl×m and V ∈ Rl×n. From the above definition, we can
see that the low-dimensional matrices U and V are unknown,
and need to be estimated. Moreover, this feature representa-
tions have clear physical meanings. In this linear factor model,
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a user’s Web service QoS values correspond to a linear combina-
tion of the factor vectors, with user-specific coefficients. More
specifically, each column of U performs as a “feature vector” for
a user, and each column of V is a linear predictor for a Web ser-
vice, predicting the entries in the corresponding column of the
user-item matrix R based on the “features” in U . By adding
the constraints of the norms of U and V to penalize large values
of U and V , we have the following optimization problem [78]:

min
U,V

L(R,U, V ) =
1

2

m∑
i=1

n∑
j=1

IRij (Rij − UT
i Vj)

2

+
λU

2
∥U∥2F +

λV

2
∥V ∥2F , (5.3)

where IRij is the indicator function that is equal to 1 if user
ui invoked Web service vj and equal to 0 otherwise, ∥ · ∥2F de-
notes the Frobenius norm, and λU and λV are two parameters.
The optimization problem in Eq. (5.3) minimizes the sum-of-
squared-errors objective function with quadratic regularization
terms. It also has a probabilistic interpretation with Gaussian
observation noise, which is detailed in [78].

The above approach utilizes the global information of all the
available QoS values in the user-item matrix for predicting miss-
ing values. This approach is generally effective at estimating
overall structure (global information) that relates simultane-
ously to all users or items. However, this model are poor at de-
tecting strong associations among a small set of closely related
users or items (local information), precisely where the neigh-
borhood models would perform better. Normally, the available
Web service QoS values in the user-item matrix are very sparse;
hence, neither of the matrix factorization or neighborhood-based
approaches can generate optimal QoS values. In order to pre-
serve both global information and local information mentioned
above, we employ a balance parameter to fuse these two types
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of information. The idea is that every time when factorizing a
QoS value, we treat it as the ensemble of a user’s information
and the user’s neighbors’ information. The neighbors of the
current user can be obtained by employing Eq. (5.2). Hence,
we can minimize the following sum-of-squared-errors objective
functions with quadratic regularization terms:

L(R, S, U, V )

=
1

2

m∑
i=1

n∑
j=1

IRij (Rij − (αUT
i Vj + (1− α)

∑
k∈T (i)

SikU
T
k Vj))

2

+
λU

2
∥U∥2F +

λV

2
∥V ∥2F , (5.4)

where T (i) is a set of Top-K similar users of user ui and Sik

is the normalized similarity score between user ui and user uk,
which can be calculated by:

Sik =
PCC(i, k)∑

k∈T (i)

PCC(i, k)
(5.5)

A local minimum of the objective function given by Eq. (5.4)
can be found by performing gradient descent in Ui, Vj,

∂L
∂Ui

=α
n∑

j=1

IRijVj((αU
T
i Vj + (1− α)

∑
k∈T (i)

SikU
T
k Vj)−Rij)

+ (1− α)
∑
p∈B(i)

n∑
j=1

IRpjSpiVj((αU
T
p Vj + (1− α)

∑
k∈T (p)

SpkU
T
k Vj)

−Rpj) + λUUi,

∂L
∂Vj

=
m∑
i=1

IRij ((αU
T
i Vj + (1− α)

∑
k∈T (i)

SikU
T
k Vj)−Rij)

× (αUi + (1− α)
∑

k∈T (i)

SikU
T
k ) + λV Vj, (5.6)
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where B(i) is the set that includes all the users who are the
neighbors of user ui. In order to reduce the model complexity,
in all of the experiments we conduct, we set λU = λV .

5.2.4 Complexity Analysis

The main computation of the gradient methods is to evalu-
ate the object function L and its gradients against the vari-
ables. Because of the sparsity of matrices R and S, the com-
putational complexity of evaluating the object function L is
O(ρRl + ρRKl), where ρR is the number of nonzero entries in
the matrix R, and K is the number of similar neighbors. K is
normally a small number since a large number of K will intro-
duce noise, which will potentially hurt the prediction accuracy.
The computational complexities for the gradients ∂L

∂U and ∂L
∂V in

Eq. (5.6) are O(ρRK l+ρRK
2l) and O(ρRl+ρRKl), respectively.

Therefore, the total computational complexity in one iteration is
O(ρRKl+ρRK

2l), which indicates that theoretically, the compu-
tational time of our method is linear with respect to the number
of observations in the user-item matrix R. This complexity anal-
ysis shows that our proposed approach is very efficient and can
scale to very large datasets.

5.3 Experiments

In this section, we conduct experiments to compare the predic-
tion accuracy of our NIMF approach with other state-of-the-art
collaborative filtering methods. Our experiments are intended
to address the following questions: (1) How does our approach
compare with the published state-of-the-art collaborative filter-
ing algorithms? (2) How does the model parameter α affect
the prediction accuracy? (3) What is the impact of the matrix
density, Top-K values, and dimensionality on the prediction ac-
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Table 5.1: Statistics of the WS QoS Dataset

Statistics Values

Num. of Service Users 339

Num. of Web Services 5,825

Num. of Web Service Invocations 1,974,675

Range of Response-time 1-20 s

Range of Throughput 1-1000 kbps
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Figure 5.3: Value Distributions

curacy?

5.3.1 Dataset Description

We implement a WSCrawler and a WSEvaluator employing
JDK 6.0, Eclipse 3.3, and Axis 21. Employing our WSCrawler,
addresses of 5,825 openly-accessible Web services are obtained
by crawling Web service information from www.seekda.com, a
well-known Web service search engine. Axis2 is employed to
generate client-side Web service invocation codes and test cases
automatically. Totally 78,635 Java Classes and 13,644,507 lines
of Java codes are generated in our experiments.

1http://ws.apache.org/axis2
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To evaluate the QoS performance of real-world Web services
from distributed locations, we deploy our WSEvaluator to 339
distributed computers of PlanetLab2, which is a distributed test-
bed made up of computers all over the world. In our exper-
iment, each PlanetLab computer invokes all the Web services.
As shown in Figure 5.1, totally 1,974,675 real-world Web service
invocation results are collected from these 339 service users on
5,825 real-world Web services. The scale of our real-world Web
service evaluation is the largest among the published work of
service computing as far as we know.

By processing the invocation results, we obtain two 339×5825
user-item matrices. One matrix contains response-time values,
while the other one contains throughput values. The statistics
of our Web service QoS dataset is summarized in Table 5.1, the
distributions of response-time and throughput values are shown
in Figure 5.3, and more experimental details (e.g., detailed list
of service users and Web services, the user-item matrix, the
detailed Web service invocation results, etc.) are released on-
line3 for future research. As shown in Table 5.1, the ranges of
response-time and throughput are 0-20 seconds and 0-1000 kbps
(kilo bits per second), respectively. Figure 5.3(a) shows that 91%
of the response-time values are smaller than 2 seconds, and Fig-
ure 5.3(b) shows that 89.5% of the throughput values are smaller
than 100 kbps.

5.3.2 Metrics

We use Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) metrics to measure the prediction quality of our
method in comparison with other collaborative filtering meth-

2http://www.planet-lab.org
3http://www.wsdream.net
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ods. MAE is defined as:

MAE =

∑
i,j |Rij − R̂ij|

N
, (5.7)

and RMSE is defined as:

RMSE =

√∑
i,j(Rij − R̂ij)2

N
, (5.8)

where Rij denotes the expected QoS value of Web service j

observed by user i, R̂ij is the predicted QoS value, and N is the
number of predicted values.

5.3.3 Comparison

In this section, in order to show the prediction accuracy of our
NIMF approach, we compare our method with the following
approaches.

1. UMEAN (User Mean): This method employs a service
user’s average QoS value on the used Web services to pre-
dict the QoS values of the unused Web services.

2. IMEAN (Item Mean): This method employs the average
QoS value of the Web service observed by other service
users to predict the QoS value for a service user who never
invoke this Web service previously.

3. UPCC (User-based collaborative filtering method using Pear-
son Correlation Coefficient): This method is a very classical
method. It employs similar users for the QoS value predic-
tion [11, 86].

4. IPCC (Item-based collaborative filtering method using Pear-
son Correlation Coefficient): This method is widely used in
industry company like Amazon. It employs similar Web
services (items) for the QoS value prediction [75].
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Table 5.2: Performance Comparison
Matrix Density=5% Matrix Density=10% Matrix Density=15%

QoS Methods
MAE RMSE MAE RMSE MAE RMSE

UMEAN 0.8785 1.8591 0.8783 1.8555 0.8768 1.8548

IMEAN 0.7015 1.5813 0.6918 1.5440 0.6867 1.5342

UPCC 0.6261 1.4078 0.5517 1.3151 0.5159 1.2680

IPCC 0.6897 1.4296 0.5917 1.3268 0.5037 1.2552

UIPCC 0.6234 1.4078 0.5365 1.3043 0.4965 1.2467

NMF 0.6182 1.5746 0.6040 1.5494 0.5990 1.5345

Response-time

PMF 0.5678 1.4735 0.4996 1.2866 0.4720 1.2163

(0-20 s)

NIMF 0.5514 1.4075 0.4854 1.2745 0.4534 1.1980

UMEAN 54.0084 110.2821 53.6700 110.2977 53.8792 110.1751

IMEAN 27.3558 66.6344 26.8318 64.7674 26.6239 64.3986

UPCC 26.1230 61.6108 21.2695 54.3701 18.7455 50.7768

IPCC 29.2651 64.2285 27.3993 60.0825 26.4319 57.8593

UIPCC 25.8755 60.8685 19.9754 54.8761 17.5543 47.8235

NMF 25.7529 65.8517 17.8411 53.9896 15.8939 51.7322

Throughput

PMF 19.9034 54.0508 16.1755 46.4439 15.0956 43.7957

(0-1000 kbps)

NIMF 17.9297 51.6573 16.0542 45.9409 14.4363 43.1596

5. UIPCC: This method combines the user-based and item-
based collaborative filtering approaches and employs both
the similar users and similar Web services for the QoS value
prediction [115].

6. NMF (Non-negative Matrix Factorization): This method is
proposed by Lee et al. in [48, 49]. It differs from other ma-
trix factorization methods in that it enforces the constraint
that the factorized factors must be non-negative. NMF is
also widely used in collaborative filtering community.

7. PMF (Probabilistic Matrix Factorization): This method is
proposed by Salakhutdinov and Minh in [78]. It uses user-
item matrix for the recommendations, and it is based on
probabilistic matrix factorization.

In the real-world, the user-item matrices are usually very
sparse since a service user usually only invokes a small number
of Web services. In order to conduct our experiments realisti-
cally, we randomly remove entries from the user-item matrix to
make the matrix sparser with different density (i.e., 5%, 10%,
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and 15%). Matrix density 5%, for example, means that we ran-
domly select 5% of the QoS entries to predict the remaining 95%
of QoS entries. The original QoS values of the removed entries
are used as the expected values to study the prediction accuracy.
The above seven methods together with our NIMF method are
employed for predicting the QoS values of the removed entries.
The parameter settings of our NIMF method are α=0.4, Top-
K=10, λU = λV = 0.001, and dimensionality=10 in the experi-
ments. The experimental results are shown in Table 5.2, and the
detailed investigations of parameter settings will be provided in
Section 5.3.4 to Section 5.3.7.

From Table 5.2, we can observe that our NIMF approach ob-
tains smaller MAE and RMSE values (indicating better predic-
tion accuracy) consistently for both response-time and through-
put with different matrix densities. The MAE and RMSE val-
ues of throughput in Table 5.2 are much larger than those of
response-time, since the range of throughput is 0-1000 kbps,
while the range of response-time is only 0-20 seconds. With the
increase of matrix density from 5% to 15%, the MAE and RMSE
values of our NIMF method become smaller, since denser ma-
trix provides more information for the missing value prediction.
Among all the prediction methods, our NIMF method generally
achieves better performance on both MAE and RMSE, indicat-
ing that integrating the neighborhood information into matrix
factorization model can achieve higher value prediction accu-
racy. These experimental results demonstrate that our interpre-
tation on the formation of QoS values is realistic and reasonable.

5.3.4 Impact of Parameter α

In our NIMF method, the parameter α controls how much our
method relies on the users themselves and their similar users. If
α=1, we only employ the users’ own characteristics for making
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Figure 5.4: Impact of Parameter α (Dimensionality = 10)
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prediction. If α=0, we predict the users’ QoS values purely by
their similar users’ characteristics. In other cases, we fuse the
users’ own characteristics with the neighborhood information for
missing QoS value prediction.

Figure 5.4 shows the impacts of parameter α on the prediction
results. We observe that optimal α value settings can achieve
better prediction accuracy, which demonstrates that fusing the
matrix factorization methods with neighborhood-based methods
will improve the prediction accuracy. No matter for response-
time or throughput, as α increases, the MAE and RMSE values
decrease (prediction accuracy increases) at first, but when α sur-
passes a certain threshold, the MAE and RMSE values increase
(prediction accuracy decreases) with further increase of the value
of α. This phenomenon confirms the intuition that purely us-
ing the matrix factorization method or purely employing the
neighborhood-based method cannot generate better QoS value
prediction performance than fusing these two favors together.

From Figure 5.4(a) and Figure 5.4(b), when using user-item
matrix with 10% density, we observe that our NIMF method
achieves the best performance when α is around 0.3, while smaller
values like α=0.1 or larger values like α=0.7 can potentially de-
grade the model performance. In Figure 5.4(c) and Figure 5.4(d),
when using user-item matrix with 20% density, the optimal value
of α is also around 0.3 for MAE and around 0.6 for RMSE. The
optimal values of MAE and RMSE are different since MAR and
RMSE are different metrics following different evaluation crite-
ria. As the same with Figure 5.4(a) to Figure 5.4(d), the opti-
mal α values of Figure 5.4(e) to Figure 5.4(h) are all between
0.3 to 0.6. This observation indicates that optimally combining
the two methods can achieve better prediction accuracy than
purely or heavily relying one kind of method, and this is why
we use α=0.4 as the default settings in other experiments. The
same as Table 5.2, another observation from Figure 5.4 is that
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Figure 5.5: Impact of Matrix Density (Dimensionality = 10, α = 0.4)

denser matrix provides better prediction accuracy.

5.3.5 Impact of Matrix Density

As shown in Table 5.2 and Figure 5.4, the prediction accuracy of
our NIMF method is influenced by the matrix density. To study
the impact of the matrix density on the prediction results, we
change the matrix density from 2% to 20% with a step value of
2%. We set Top-K=10, dimensionality=10, and α=0.4 in this
experiment.

Figure 5.5 shows the experimental results, where Figure 5.5(a)
and Figure 5.5(b) are the experimental results of response-time,
and Figure 5.5(c) and Figure 5.5(d) are the experimental results
of throughput. Figure 5.5 shows that when the matrix density is
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Figure 5.6: Impact of Parameter Top-K (Dimensionality = 10, α = 0.4)

increased from 2% to 4%, the prediction accuracy of the NIMF
method is significantly enhanced. With the further increase of
matrix density, the speed of prediction accuracy enhancement
slows down. This observation indicates that when the matrix is
very sparse, the prediction accuracy can be greatly enhanced by
collecting more QoS values to make the matrix denser.

5.3.6 Impact of Top-K

The Top-K value determines the number of similar users em-
ployed in our NIMF method. To study the impact of the Top-K
values on the prediction results, we vary the values of Top-K
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from 10 to 50 with a step value of 10. We set dimensional-
ity=10, α=0.4, and matrix density=10 in this experiment.

Figure 5.6(a) and Figure 5.6(b) show the MAE and RMSE
results of response-time, while Figure 5.6(c) and Figure 5.6(d)
show the MAE and RMSE results of throughput. Figure 5.6
shows that the MAE and RMSE values slightly increase (pre-
diction accuracy decrease) when the Top-K value is increased
from 10 to 50. This is because too large Top-K value will in-
troduce noise (dissimilar users), which will potentially hurt the
prediction accuracy. In all the four figures from Figure 5.6(a)
to Figure 5.6(d), the Top-K value of 10 obtains the best predic-
tion accuracy, and this is why we use Top-K=10 as the default
experimental settings in other experiments.

5.3.7 Impact of Dimensionality

Dimensionality determines how many latent factors are used to
factorize the user-item matrix. To study the impact of the di-
mensionality, we vary the values of dimensionality from 10 to
100 with a step value of 10. We set Top-K=10, α=0.4, and
matrix density=10 in this experiment.

Figure 5.7(a) and Figure 5.7(b) show the experimental results
of response-time, while Figure 5.7(c) and Figure 5.7(d) show the
experimental results of throughput. As shown in Figure 5.7, the
values of MAE and RMSE decrease (prediction accuracy in-
creases) when the dimensionality is increased from 10 to 100.
These observed results coincide with the intuition that relative
larger values of dimensions generate better recommendation re-
sults. However, as discussed in Section 5.2.4, larger dimension-
ality values will require longer computation time. Moreover, the
dimensionality cannot be set to a very high value since it will
cause the overfitting problem, which will potentially hurt the
recommendation quality.
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Figure 5.7: Impact of Dimensionality (α = 0.4, Matrix Density = 10%)

5.4 Summary

Based on the intuition that a user’s Web service QoS usage ex-
periences can be predicted by both the user’s own characteristics
and the past usage experiences of other similar users, we pro-
pose a neighborhood-integrated matrix factorization approach
for making personalized QoS value prediction. Based on the so-
cial wisdom of service users, our approach systematically fuses
the neighborhood-based and model-based collaborative filtering
approaches to achieve higher prediction accuracy. The extensive
experimental analysis shows the effectiveness of our approach.

Since the Internet environment is highly dynamic, the QoS
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performance of Web services may change over time (e.g., due to
changes of network traffic, changes of server workload, updates
of software implementation, etc.). In our current approach, if
the user-contributed Web service QoS values are observed over a
long duration, the average QoS performance of the unused Web
services can be predicted. Since the average Web service QoS
performance is relatively stable, the predicted QoS values by our
approach provide valuable information for the service users. By
taking advantages of the latest advanced technologies in machine
learning, we will design an online version of our algorithm to
effectively handle this dynamic QoS changing problem in our
future work.

After obtaining the predicted QoS values on the unused Web
services, most service users will make invocations to the selected
Web services. The QoS values of these Web service invocations
contain valuable information for improving the QoS prediction
accuracy. We plan to design better incentive mechanisms and
automatic approaches to enable the real-time sharing of these
Web service usage experiences among service users. Moreover,
we plan to apply our approach to the cloud computing envi-
ronments, where the Web service QoS value collection becomes
easier, since the user applications which invoke the Web services
are usually deployed and running on the cloud.

We are currently collecting data on failure-probabilities of the
real-world Web services, which requires long observation dura-
tion and sufficient Web service invocations for accurate value
measurements. More experimental studies on the failure-probability
and other Web service QoS properties will be conducted in our
future work.

2 End of chapter.



Chapter 6

Ranking-based QoS Prediction of Web

Services

6.1 Overview

The neighborhood-based and model-based QoS prediction ap-
proaches aim at predicting the Web service QoS values for dif-
ferent service users. These predicting approaches are also named
rating-based approaches. The predicted QoS values can be em-
ployed to rank the target Web services. In some cases (e.g.,
Web service search, Web service ranking), the users only need
the quality ranking of the target Web services instead of the
detailed QoS values. Ranking-based QoS prediction approaches
aim at predicting the quality ranking of the target Web services
instead of the detailed QoS values. The major challenge for
making QoS-driven Web service quality ranking is that the Web
service quality ranking of a user cannot be transferred directly
to another user, since the user locations are quite different. Per-
sonalized Web service quality ranking is therefore required for
different service users.

The most straightforward approach of personalized Web ser-
vice ranking is to evaluate all the Web services at the user-side
and rank the Web services based on the observed QoS perfor-
mance. However, this approach is impractical in reality, since
conducting Web services evaluation is time consuming and re-
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source consuming. Moreover, it is difficult for the service users
to evaluate all the Web services themselves, since there may
exist a huge number of Web services in the Internet.

To attack this critical challenge, we propose a ranking-based
QoS prediction framework in this chapter to predict the quality
ranking of Web services without requiring additional real-world
Web service invocations from the intended user.

The rest of this chapter is organized as follows: Section 6.2
describes our collaborative Web service ranking framework. Sec-
tion 6.3 presents experiments, and Section 6.4 concludes the
chapter.

6.2 Quality Ranking Framework

This section presents our collaborative Web service quality rank-
ing framework, which is designed as a four-phase process. In
Phase 1, we calculate the similarity of the users with the cur-
rent user based on their rankings on the commonly-invoked Web
services. Then, in Phase 2, a set of similar users are identified.
After that, in Phase 3, a preference function is defined to present
the quality priority of two Web services. Finally, in Phase 4, a
greedy order algorithm is proposed to rank the employed Web
services as well as the unemployed Web services based on the
preference function and making use of the past usage experiences
of other similar users. Details of these phases are presented at
Section 6.2.1 to Section 6.2.4, respectively.

6.2.1 Ranking Similarity Computation

In our approach, the ranking similarity between users is de-
termined by comparing their personalized Web service quality
rankings on the commonly-invoked services. Suppose we have a
set of three Web services, on which two users have observed
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response-times (seconds) of {1, 2, 4} and {2, 4, 5}, respec-
tively. The response-time values on these Web services by the
two users are clearly different; nevertheless their rankings are
very close as the Web services are ordered in the same way,
based on the response-time values. Given two rankings on the
same set of Web services, the Kendall rank correlation coefficient
(KRCC) [63] evaluates the degree of similarity by considering
the number of inversions of Web service pairs which would be
needed to transform one rank order into the other. The KRCC
value of user a and user u can be calculated by :

Sim(u, v) =
C −D

N(N − 1)/2
, (6.1)

where N is the number of Web services, C is the number of
concordant pairs between two lists, and D is the number of
discordant pairs. Since C = N(N − 1)/2−D, Eq. (6.1) is equal
to Sim(u, v) = 1− 4D

N(N−1) . Employing Kendall rank correlation
coefficient, the similarity between two Web service rankings can
be calculated by:

Sim(u, v) = 1−

4×
∑

i,j∈Iu∩Iv

Ĩ((qu,i − qu,j) (qv,i − qv,j))

|Iu ∩ Iv| × (|Iu ∩ Iv| − 1)
, (6.2)

where Iu ∩ Iv is the subset of Web services commonly invoked
by user u and user v, qu,i is the QoS value (e.g., response-time,
throughput, etc.) of Web service i observed by user u, and Ĩ(x)
is an indicator function defined as:

Ĩ(x) =

{
1 if x < 0

0 otherwise
. (6.3)

From above definition, the ranking similarity between two
rankings, Sim(u, v), is in the interval of [-1,1], where -1 is ob-
tained when the order of user u is the exact reverse of user v,
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and 1 is obtained when order of user u is equal to the order of
user v. Since KRCC compares Web service pairs, the intersec-
tion between two users has to be at least 2 (|Iu ∩ Iv| ≥ 2) for
the similarity computation.

6.2.2 Find Similar Users

By calculating the KRCC similarity values between the current
user and other users, the users similar to the current user can be
identified. Previous ranking approaches [53, 101] usually employ
information of all the users for making ranking prediction for
the current user, which may include dissimilar users. However,
employing QoS values of dissimilar users will greatly influence
the prediction accuracy for the current user. To address this
problem, our approach employs only the top-K similar users for
making ranking prediction and excludes the users with negative
correlations (negative KRCC values). In our approach, a set of
similar users S(u) is identified for the current user u by:

N(u) = {v|v ∈ Tu, Sim(u, v) > 0, v ̸= u}, (6.4)

where Tu is a set of the top-K similar users to the user u and
Sim(u, v) > 0 excludes the dissimilar users with negative KRCC
values. The value of Sim(u, v) in Eq. (6.4) can be calculated by
Eq. (6.2).

6.2.3 Preference Function

A user’s preference on a pair of Web services can be modeled in
the form of Ψ : I × I → R [53], where Ψ(i, j) > 0 means that
quality of Web service i is higher than Web service j and is thus
more preferable for the user and vice versa. The value of the
preference function Ψ(i, j) indicates the strength of preference
and a value of zero means that there is no preference between
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the two Web services. The preference function Ψ(i, j) is anti-
symmetric, i.e. Ψ(i, j) = −Ψ(j, i). We set Ψ(i, i) = 0 for all
i ∈ I.

Given the user-observed QoS values on two Web services, the
preference between these two Web services can be easily derived
by comparing the QoS values, where Ψ(i, j) = qi−qj. To obtain
preference information regarding the pairs of Web services that
have not been invoked/observed by the current user, the QoS
values of similar users S(u) is employed. The basic idea is that
the more often the similar users in S(u) observe Web service i as
higher quality than Web service j, the stronger the evidence for
Ψ(i, j) > 0 and Ψ(j, i) < 0 for the current user. This leads to
the following formula for estimating the value of the preference
function Ψ(i, j), where Web service i and Web service j are not
explicitly observed by the current user u:

Ψ(i, j) =
∑

v∈N(u)ij

wv(qv,i − qv,j), (6.5)

where v is a similar user of the current u, N(u)ij is a subset of
similar users, who obtain QoS values of both Web service i and
j, and wv is a weigh factor which can be calculated by:

wv =
Sim(u, v)∑

v∈N(u)ij Sim(u, v)
. (6.6)

wv makes sure that a similar user with higher similarity has
greater impact on the preference value prediction for the current
user u.

By Eq. (6.5) and Eq. (6.6), the preference value between a
pair of Web services can be obtained by taking advantage of
the past usage experiences of the similar users. Assuming there
are n Web services to be ranked and user u already obtains
QoS values of a Web services, the total number of Web service
pairs that can be derived explicitly is a(a− 1)/2, and the total



Chapter 6. Ranking-based QoS Prediction of Web Services 102

number of pairs that needs to be predicted from similar users is:
n(n− 1)/2− a(a− 1)/2.

6.2.4 Greedy Order Algorithm

Given a preference function Ψ which assigns a score to every pair
of Web services i, j ∈ I, we want to choose a quality ranking of
Web services in I that agrees with the pairwise preferences as
much as possible. Let ρ be a ranking of Web services in I such
that ρ(i) > ρ(j) if and only if i is ranked higher than j in the
ranking ρ. We can define a value function V Ψ(ρ) as follows that
measures the consistency of the ranking ρ with the preference
function:

V Ψ(ρ) =
∑

i,j:ρ(i)>ρ(j)

Ψ(i, j). (6.7)

Our goal is to produce a ranking ρ∗ that maximizes the above
objective value function. One possible approach to solve the
Web service ranking problem is to search through the possible
rankings and select the optimal ranking ρ∗ that maximizes the
value function defined in Eq. (6.7). However, there are n! pos-
sible rankings for n Web services. It is impossible to search all
the rankings when the value of n is large. Cohen et al. [24] have
showed that finding the optimal ranking ρ∗ is an NP-Complete
problem.

To enhance the calculation efficiently, we propose a greedy or-
der algorithm in Algorithm 1 (named as CloudRank) for finding
an approximately optimal ranking:

Algorithm 1 includes the following steps:

• Step 1 (lines 1 - 6): Rank the employed Web services in E
based on the observed QoS values. ρe(t) stores the ranking,
where t is a Web service and the function ρe(t) returns the
corresponding order of this Web service. The values of ρe(t)
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Algorithm 1: Greedy Order Algorithm: CloudRank

Input: an employed Web service set E, a full Web service set I, a
preference function Ψ

Output: a Web service ranking ρ̂
F = E;1

while F ̸= ∅ do2

t = arg maxi∈F qi;3

ρe(t) = |E| − |F |+ 1;4

F = F − {t};5

end6

foreach i ∈ I do7

π(i) =
∑

j∈I Ψ(i, j);8

end9

n = |I|;10

while I ̸= ∅ do11

t = arg maxi∈I π(i);12

ρ̂(t) = n− |I|+ 1;13

I = I − {t};14

foreach i ∈ I do15

π(i) = π(i)−Ψ(i, t)16

end17

end18

while E ̸= ∅ do19

e = arg mini∈E ρei;20

index = mini∈E ρ̂(i);21

ρ̂(e) = index;22

E = E − {e};23

end24
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are in the range of [1, |E|], where a smaller value indicates
higher quality.

• Step 2 (lines 7 - 9): For each Web service in the full Web
service set I, calculate the sum of preference values with all
other Web services by π(i) =

∑
j∈I Ψ(i, j). As introduced

in Section 6.2.3, Ψ(i, i) = 0. Therefore, including Ψ(i, i) in
the calculation does not influence the results. Larger π(i)
value indicates more Web services are less preferred than i
(i.e., Ψ(i, j) > 0). In other word, Web service i should be
ranked in higher position.

• Step 3 (lines 10 - 18): Components are ranked from the
highest position to the lowest position by picking the Web
service t that has the maximum π(t) value. The selected
Web service is assigned a rank equal to n−|I|+1 so that it
will be ranked above all the other remaining Web services
in I. The ranks are in the range of [1, n] where n is the
number of Web services and a smaller value indicates higher
quality. The selected Web service t is then deleted from I
and the preference sum values Ψ(i) of the remaining Web
services are updated to remove the effects of the selected
Web service t.

• Step 4 (lines 19 - 24): Step 3 treats the employed Web
services in E and the non-employed Web service in I − E
identically which may incorrectly rank the employed Web
services. In this step, the initial Web service ranking ˆρ(i)
is updated by correcting the rankings of the employed Web
services in E. By replacing the ranking results in ρ̂i with
the corresponding correct ranking of ρe(t), our approach
makes sure that the employed Web services in E are cor-
rectly ranked.

Algorithm 1 has a time complexity of O(n2), where n is the
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number of Web services. Compared with the other greedy algo-
rithm [24], our approach guarantee that the employed Web ser-
vices are correctly ranked. As will be shown in the experiments,
our approach provides better ranking accuracy more consistently
than the greedy algorithm in [24].

6.3 Experiments

6.3.1 Dataset Description

We evaluate the ranking algorithms using our WS-DREAM1

Web service QoS dataset [115]. The WS-DREAM dataset in-
cludes QoS performance of about 1.5 million real-world Web
service invocations of 100 publicly available Web services ob-
served by 150 distributed users. The QoS values of the 100 Web
services observed by the 150 service users can be presented as
a 150 × 100 user-item matrix, where each entry in the matrix
is a vector including values of different QoS properties. In the
experiment, the response-time and throughput QoS values are
employed independently to rank the Web services.

6.3.2 Evaluation Metric

To evaluate the Web service ranking performance, we employ
the Normalized Discounted Cumulative Gain(NDCG) [5] met-
ric, which is popular metric for evaluating ranked results in
information retrieval. Given an ideal descending Web service
ranking and a predicted descending Web service ranking, the
NDCG performance of the top-K ranked Web services can be
calculated by:

NDCGk =
DCGk

IDCGk
, (6.8)

1http://www.wsdream.net
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where DCGk and IDCGk are the discounted cumulative gain
(DCG) values of the top-K Web services of the predicted Web
service ranking and ideal Web service ranking, respectively. The
value of DCGp can be calculated by:

DCGk = rel1 +
k∑

i=2

reli
log2i

, (6.9)

where reli is the graded relevance (QoS value) of the Web ser-
vice at position i in the ranking. The premise of DCG is that
high quality Web service appearing lower in a the ranking list
should be penalized as the graded relevance value is reduced
logarithmically proportional to the position of the result. The
DCG value is accumulated cumulatively from the top of the re-
sult list to the bottom with the gain of each result discounted
at lower ranks. The ideal rank achieves the highest gain among
all different rankings. The NDCGk value is on the interval of
0.0 to 1.0, where larger value stands for better ranking accuracy
since the predicted ranking is more near the ideal ranking. The
value of p is on the interval of 1 to number of Web services.

6.3.3 User-based and Item-based Models

Before conducting performance comparison of our approach with
other approaches, we first briefly introduce some well-known
neighbor-hood based collaborative filtering approaches in this
section. Assume that there are m users, n Web services, and the
relationship between users and Web services is denoted by an
m×n user-item matrix. Each entry qa,i in the matrix represents
the QoS value of Web service i observed by user a. qa,i = null
if user a did not invoke Web service i previously.

Vector similarity (VS) views each user as a vector in a high
dimensional vector space based on his/her QoS values. The
cosine of the angle between the two corresponding vectors is
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used to measure the similarity between user a and user u:

Sim(a, u) =

∑
i∈Ia∩Iu

qa,iqu,i√ ∑
i∈Ia∩Iu

q2a,i
∑

i∈Ia∩Iu

q2u,i

, (6.10)

where Ia∩Iu is a set of commonly invoked Web services by both
user a and user u, qa,i is the QoS value of Web service i observed
by the user a.

Pearson Correlation Coefficient (PCC), another popular sim-
ilarity computation approach, employs the following equation to
compute the similarity between service user a and service user
u based on their commonly invoked Web services:

Sim(a, u) =

∑
i∈Ia∩Iu

(qa,i − qa)(qu,i − qu)√ ∑
i∈Ia∩Iu

(qa,i − qa)2
√ ∑

i∈Ia∩Iu

(qu,i − qu)2
, (6.11)

where qa is the average QoS value of all the Web services invoked
by user a.

Employing the similar users, the user-based collaborative fil-
tering approaches [11, 86] predict a missing value qu,i in the
matrix by the following equation:

qu,i = qu +

∑
a∈S(u) Sim(a, u)(qa,i − qa)∑

a∈S(u) Sim(a, u)
, (6.12)

where Sim(a, u) can be calculated by VS or PCC, and qu and
qa are the average QoS values of different Web services observed
by user u and a, respectively.

Similar to the user-base approaches, Eq.(6.10) and Eq.(6.11)
(VS and PCC) can also be employed to calculate the simi-
larity between two items (Web services). The item-based ap-
proaches [75] predict the missing value employing the similar
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Table 6.1: NDCG Comparison of Response Time (Larger value indicates
better ranking accuracy)

Matrix Density = 10% Matrix Density = 30% Matrix Density = 50%

Methods NDCG3 NDCG10 NDCG100 NDCG3 NDCG10 NDCG100 NDCG3 NDCG10 NDCG100

UVS: 0.9491 0.9104 0.9514 0.9689 0.9476 0.9726 0.9547 0.9408 0.9663

UPCC: 0.9347 0.8968 0.9414 0.9696 0.9489 0.9729 0.9541 0.9417 0.9666

IVS: 0.9710 0.9308 0.9637 0.9689 0.9442 0.9690 0.9548 0.9417 0.9661

IPCC: 0.9737 0.9359 0.9656 0.9688 0.9466 0.9702 0.9588 0.9484 0.9695

UIVS: 0.9719 0.9304 0.9639 0.9689 0.9441 0.9696 0.9553 0.9423 0.9663

UIPCC: 0.9730 0.9354 0.9653 0.9691 0.9477 0.9711 0.9584 0.9482 0.9695

Greedy 0.9789 0.9523 0.9755 0.9816 0.9728 0.9860 0.9939 0.9843 0.9921

CloudRank 0.9792 0.9532 0.9763 0.9854 0.9760 0.9888 0.9959 0.9864 0.9947

0.63% 1.85% 1.11% 1.63% 2.85% 1.63% 3.87% 4.01% 2.60%

Table 6.2: NDCG Performance Comparison of Throughput
Matrix Density = 10% Matrix Density = 30% Matrix Density = 50%

Methods NDCG3 NDCG10 NDCG100 NDCG3 NDCG10 NDCG100 NDCG3 NDCG10 NDCG100

UVS: 0.8588 0.8644 0.9096 0.9164 0.9075 0.9431 0.9061 0.9165 0.9447

UPCC: 0.8473 0.8547 0.9010 0.9173 0.9141 0.9456 0.9152 0.9241 0.9504

IVS: 0.8752 0.8778 0.9193 0.9173 0.9112 0.9454 0.9133 0.9288 0.9522

IPCC: 0.8731 0.8736 0.9185 0.9163 0.9207 0.9482 0.9249 0.9438 0.9603

UIVS: 0.8793 0.8800 0.9219 0.9184 0.9100 0.9453 0.9100 0.9236 0.9492

UIPCC: 0.8789 0.8772 0.9217 0.9176 0.9215 0.9487 0.9227 0.9406 0.9583

Greedy 0.8951 0.9002 0.9325 0.9109 0.9274 0.9493 0.9229 0.9411 0.9596

CloudRank 0.8984 0.9020 0.9341 0.9198 0.9351 0.9551 0.9411 0.9528 0.9689

2.17% 2.49% 1.33% 0.15% 1.48% 0.68% 1.75% 0.95% 0.90%

items. The user-based and item-based approaches can be com-
bined for making missing value prediction [115]:

qu,i = λq1u,i + (1− λ)q2u,i, (6.13)

where q1u,i is predicted by the user-based approach and q2u,i is
predicted by the item-based approach.

These above collaborative filtering approaches are rating-oriented,
since they first predict the missing values in the matrix be-
fore making Web service ranking. Different from these rating-
oriented approaches, our approach rank the items directly with-
out predicting the missing values in the matrix.

6.3.4 Performance Comparison

To study the personalized Web service ranking performance,
we compare our ranking approach (named as CloudRank) with
seven other approaches:
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• UVS (User-based collaborative filtering method using Vec-
tor Similarity): This method employs vector similarity for
calculating the user similarities and uses the similar users
for the QoS value prediction.

• UPCC (User-based collaborative filtering method using Pear-
son Correlation Coefficient): This is a very classical method.
It employs PCC for calculating the user similarities and em-
ploys the similar users for the QoS value prediction [11, 86].

• IVS (Item-based collaborative filtering method using Vec-
tor Similarity): This method employs vector similarity for
computing the item (Web services) similarity when making
QoS value prediction.

• IPCC (Item-based collaborative filtering method using Pear-
son Correlation Coefficient): This method is widely used in
industry company like Amazon. It employs similar items
(Web services) for the QoS value prediction [75].

• UIVS (User-based and item-based Collaborative filtering
using Vector Similarity): This method combines the user-
based and item-based collaborative filtering approaches and
employs the vector similarity for the similarity computation
for users and items.

• UIPCC (User-based and item-based Collaborative filtering
using Pearson Correlation Coefficient): This method com-
bines the user-based and item-based collaborative filtering
approaches and employs PCC for the similarity computa-
tion [115].

• Greedy: This method is proposed for ranking a set of items,
which treats the explicitly rated items and the unrated
items equally [24]. It doesn’t guarantee that the explicitly
rated items will be ranked correctly.



Chapter 6. Ranking-based QoS Prediction of Web Services 110

In real-world, the user-item matrices are usually very sparse
since a user usually only employs a small number of Web ser-
vices. In order to conduct our experiments realistically, we ran-
domly remove entries from the user-item matrix to make the
matrix sparser with different density. Matrix density (i.e. pro-
portion of nonzero entries) 10%, for example, means that we
randomly select 10% of the QoS entries to predict the quality
rankings of the users. The rankings based on the original full ma-
trix are employed as ideal rankings to study the ranking perfor-
mance. The above seven methods together with our CloudRank
method are employed for making quality Web services rankings
based on the incomplete information. We set top-K=10 in our
CloudRank method in the experiments. Detailed investigations
of the parameter settings (e.g., top-K values) will be conducted
in Section 6.3.5. The experimental results are shown in Table 6.1
and Table 6.2.

Table 6.1 and Table 6.2 show the NDCG performance of
response-time and throughput, respectively employing 10%, 30%
and 50% density user-item matrices. In the second row of the
table, NDCG3 indicates that the ranking accuracy of the top 3
items is investigated. The value of NDCG3 can be calculated by
Eq. (6.8). The first six methods in the table are rating-oriented
methods, while the last two methods are ranking-oriented meth-
ods. For each column in the Tables, we have highlighted the best
performer among all methods and the best performer among all
the rating-based methods. The values shown in the bottom row
are the performance improvements achieved by the best meth-
ods over the best rating-oriented methods.

Table 6.1 and Table 6.2 show that:

• Among all the ranking methods, our CloudRank approach
obtains better prediction accuracy (larger NDCG values)
for both response-time and throughput under all the ex-
perimental settings consistently.
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• The improvements on NDCG3, NDCG5 and NDCG100 of
the best method over the best rating oriented method are
1.92%, 2.27% and 1.38% on average.

• Compared with the Greedy approach, our CloudRank method
consistently achieves better ranking performance on NDCG3,
NDCG10 and NDCG100. As introduced in Section 6.2.4,
our CloudRank approach makes sure that the employed
Web services are correctly ranked.

• When the density of the user-item matrix is increased from
10% to 50%, the ranking accuracy (NDCG values) is also
enhanced, since denser user-item matrix provides more in-
formation for the missing value prediction.

• The approaches that combine user-based and item-based
approaches (UIVS and UIPCC) outperform the user-based
approaches (UVS and UPCC) and item-based approaches
(IVS and IPCC) under most experimental settings. This
observation indicates that by combining the user-based and
item-based approaches, better Web service ranking perfor-
mance can be achieved.

6.3.5 Impact of Parameters

Impact of Top-K

The Top-K value determines the number of similar users em-
ployed in our CloudRank method. To study the impact of the
parameter Top-K on the ranking results, we vary the values of
Top-K from 1 to 10 with a step value of 1. We set matrix
density=20% in this experiment. Two CloudRank versions are
implemented, where the first one employs the enhanced Top-K
algorithm proposed in Section 6.2.2 and the second one employs
traditional Top-K algorithm without excluding dissimilar users.
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Figure 6.1: Impact of Top-K

Figure 6.1(a) and Figure 6.1(b) show the NDCG5 and NDCG100
results of response-time, while Figure 6.1(c) and Figure 6.1(d)
show the NDCG5 and NDCG100 results of throughput. Fig-
ure 6.1 shows that the NDCG performance of traditional Top-K
algorithm of both response-time and throughput decreases when
the Top-K value is increased from 1 to 10. This is because large
Top-K value will introduce noise and include dissimilar users,
which will hurt the ranking accuracy. In all the four figures
from Figure 6.1(a) to Figure 6.1(d), our enhanced Top-K algo-
rithm obtains stable NDCG performance and outperform the
traditional Top-K algorithm consistently.
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Figure 6.2: Impact of Matrix Density

The ranking accuracy is influenced by the matrix density. To
study the impact of the matrix density on the ranking results,
we change the matrix density from 5% to 50% with a step value
of 5%. We set Top-K=10 in this experiment. Two ranking-
based methods (i.e., CloudRank and Greedy) are compared in
this experiment.

Figure 6.2 shows the experimental results, where Figure 6.2(a)
and Figure 6.2(b) are the NDCG5 and NDCG100 results of
response-time, and Figure 6.2(c) and Figure 6.2(d) are the NDCG5
and NDCG100 results of throughput. Figure 6.2 shows that
when the matrix density is increased from 5% to 50%, the rank-
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ing accuracies of both the CloudRank and Greedy methods are
significantly enhanced. This observation indicates that the pre-
diction accuracy can be greatly enhanced by collecting more QoS
values to make the matrix denser, especially when the matrix is
very sparse. In all the figures from Figure 6.2(a) to Figure 6.2(d),
our CloudRank method outperforms the Greedy method consis-
tently.

6.4 Summary

In this chapter, we propose a ranking-based QoS prediction
framework for Web services. By taking advantage of the past
usage experiences of other users, our ranking approach identifies
and aggregates the preferences between pair of Web services to
produce a ranking of Web services. We propose a greedy method
for computing the Web service ranking based on the Web service
preferences. Experimental results show that our approach out-
performs existing rating-based collaborative filtering approaches
and the traditional greedy method.

For future work, we would like to investigate different tech-
niques proposed for improving the ranking accuracy (e.g., data
smoothing, random walk, utilizing content information, etc.).
We will also conduct more investigations on the correlations and
combinations of different QoS properties (our current approach
ranks different QoS properties independently).

2 End of chapter.



Chapter 7

QoS-Aware Fault Tolerance for Web Services

7.1 Overview

The compositional nature of Web services and the unpredictable
nature of Internet pose a new challenge for building reliable SOA
systems, which are widely employed in critical domains such as
e-commerce and e-government. In contrast to traditional stand-
alone systems, an SOA system may break down due to: 1) the
errors of the SOA system itself, 2) Internet errors (e.g., connect
break off, packet loss, etc.), and 3) remote Web service problems
(e.g., too many users, crashes of the Web services, etc.).

There are four technical areas to build reliable software sys-
tems, which are fault prevention [59], fault removal [108], fault
tolerance [58], and fault forecasting [59]. Since it is difficult to
completely remove software faults, software fault tolerance [58] is
an essential approach to building highly reliable systems. Critics
of software fault tolerance state that developing redundant soft-
ware components for tolerating faults is too expensive and the
reliability improvement is questionable when comparing to a sin-
gle system, considering all the overheads in developing multiple
redundant components. In the modern era of service-oriented
computing, however, the cost of developing multiple component
versions is greatly reduced. This is because the functionally
equivalent Web services designed/developed independently by
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different organizations can be readily employed as redundant al-
ternative components for building diversity-based fault-tolerant
systems.

A number of fault tolerance strategies for Web services have
been proposed in the recent literature [18, 29, 93, 110]. However,
most of these strategies are not feasible enough to be applied to
various systems with different performance requirements, espe-
cially the service-oriented Internet systems in the highly dy-
namic environment. There is an urgent need for more gen-
eral and “smarter” fault tolerance strategies, which are context-
aware and can be dynamically and automatically reconfigured
for meeting different user requirements and changing environ-
ments. Gaining inspiration from the user-participation and user-
collaboration concepts of Web 2.0, we design an adaptive fault
tolerance strategy and propose a user-collaborated QoS-aware
middleware in making fault tolerance for SOA systems efficient,
effective and optimal.

This chapter aims at advancing the current state-of-the-art
of fault tolerance in the field of service reliability engineering.
The contributions of this chapter are two-fold: (1) A QoS-
aware middleware for achieving fault tolerance by employing
user-participation and collaboration. By encouraging users to
contribute their individually-obtained QoS information of the
target Web services, more accurate evaluation on the Web ser-
vices can be achieved; (2) an adaptive fault tolerance strategy.
We propose an adaptive fault tolerance strategy for automatic
system reconfiguration at runtime based on the subject user re-
quirements and objective QoS information of the target Web
services.

The rest of this chapter is organized as follows: Section 7.2
introduces the QoS-aware middleware design and some basic
concepts. Section 7.3 presents various fault tolerance strate-
gies. Section 7.4 designs models for user requirements and QoS.



Chapter 7. QoS-Aware Fault Tolerance for Web Services 117

Section 7.5 proposes the adaptive fault tolerance strategy. Sec-
tion 7.6 presents a number of experiments, and Section 7.7 con-
cludes the chapter.

7.2 QoS-Aware Middleware

In this section, some basic concepts are explained and the ar-
chitecture of our QoS-aware middleware for fault-tolerant Web
services is presented.

7.2.1 Basic Concepts

We divide faults into two types based on the cause of the faults:

• Network faults. Network faults are generic to all Web
services. For example, Communication Timeout, Service
Unavailable (http 503), Bad Gateway (http 502), Server
Error (http 500), and so on, are network faults. Network
faults can be easily identified by the middleware.

• Logic faults. Logic faults are specific to different Web
services. For example, calculation faults, data faults, and
so on, are logic faults. Also, various exceptions thrown
by the Web service to the service users are classified into
the logic-related faults. It is difficult for the middleware to
identify such type of faults.

In this chapter, atomic services present Web services which
provide particular services to users independently. Atomic ser-
vices are self-contained and do not rely on any other Web ser-
vices. On the other hand, composite services presents Web ser-
vices which provide services to users by integrating and calling
other Web services [7, 105].

With the popularization of service-oriented computing, vari-
ous Web services are continuously emerging. The functionalities
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and interfaces defined by the Web Service Description Language
(WSDL) are becoming more and more complex. Machine learn-
ing techniques [81, 98] are proposed to identify Web services with
similar or identical functionalities automatically. However, the
effect and accuracy of these approaches are still far from practi-
cal usage. Since functionally equivalent Web services, which are
developed independently by different organizations, may appear
with completely different function names, input parameters and
return types, it is really difficult for machines to know that these
services are actually providing the same functionalities.

To solve the problem of identical/similar Web services iden-
tification, a service community defines a common terminology
that is followed by all participants, so that the Web services,
which are developed by different organizations, can be described
in the same interface [7, 105]. Following a common terminol-
ogy, automatical Web service composition by programs can be
achieved, which will attract more users and make the develop-
ment of the community better.

Companies can enhance their business benefit by joining into
communities, since a lot of service users will go to the commu-
nities to search for suitable services. The coordinator of the
community maintains a list of the registered Web services of the
community. Before joining the community, a Web service has
to follow the interface definition requirements of the community
and registers with the community coordinator. By this way, the
service community makes sure that various Web services from
different organizations in the community come with the same
interface.

In this chapter, we focus on engaging the Web services in
the service communities for fault tolerance and performance en-
hancement purposes. The design and development of the service
communities, which have been discussed in [105], are out of our
scope. We use the word replica to represent the functionally
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equivalent Web services within the same service community.

7.2.2 Middleware ArchitectureApplication 1QoS-Aware Middleware Web Service A2Web Service A1Web Service AnWeb Service B2Web Service B1Web Service Bm
Service Community A

Service Community B Coordinator A
Coordinator B

Service Community BrokerUDDI RegistryAuto-updaterDynamic SelectorCommunicatorApplication 2Middleware Application nMiddleware Internet
Figure 7.1: Architecture of the Middleware

The architecture of the proposed QoS-aware middleware for
fault-tolerant Web services is presented in Figure 7.1. The work
procedure of this middleware is described as follows:

(1). From the Universal Description, Discovery and Integration
(UDDI), the middleware obtains the addresses of the ser-
vice community coordinators.

(2). By contacting the community coordinator, the middleware
obtains an address list of the replicas in the community and
the overall QoS information of these replicas. The overall
QoS information will be used as the initial values in the
middleware for optimal fault tolerance strategy configura-
tion. Detailed design of the QoS-model of Web services will
be introduced in Section 7.4.2.
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(3). The proposed QoS-aware middleware determines the opti-
mal fault tolerance strategy dynamically based on the user
QoS requirements and the QoS information of the target
replicas.

(4). The middleware invokes certain replicas with the optimal
fault tolerance strategy and records down the QoS perfor-
mance of the invoked replicas.

(5). The middleware dynamically adjusts the optimal fault tol-
erance strategy based on the overall QoS information and
the individually recorded QoS information of the replicas.

(6). As shown in Figure 7.2, in order to obtain the most up-
to-date QoS information of the target replicas for better
optimal fault tolerance strategy determination, the middle-
ware will send its individually obtained replica QoS infor-
mation to the community coordinators in exchange for the
newest overall replica QoS information from time to time.
By the design of this QoS information exchange mechanism,
the community coordinator can obtain replica QoS infor-
mation from various service users in different geographical
locations, and use it for providing the overall replica QoS
information to the service users.

As shown in Figure 7.1, the middleware includes the following
three parts:

• Dynamic selector: in charge of determining the optimal
fault tolerance strategy, based on user requirements and the
QoS information of replicas dynamically.

• Auto updater: updating the newest overall replica QoS
information from the community coordinator and provid-
ing the obtained QoS information to the coordinator. This
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mechanism promotes user collaboration to achieve more ac-
curate optimal fault tolerance strategy selection.

• Communicator: in charge of invoking certain replicas
with the optimal fault tolerance strategy.ApplicationMiddleware Coordinator ACoordinator BReplica list, Overall QoS Information of ReplicasIndividual QoS Information (A1-An)Replica list, Overall QoS Information of ReplicasIndividual QoS Information (B1-Bm)

Figure 7.2: Interaction between the Middleware and the Coordinators

7.3 Basic Fault Tolerance Strategies

When applying Web services to critical domains, reliability be-
comes a major issue. With the popularization of Web ser-
vices, more and more functionally equivalent Web services are
diversely designed and developed by different organizations, mak-
ing software fault tolerance an attractive choice for service reli-
ability improvement.

There are two major types of fault tolerance strategies: se-
quential and parallel. Retry [18] and Recovery Block (RB) [73]
are two major sequential approaches that employ time redun-
dancy to obtain higher reliability. On the other hand, N-Version
Programming (NVP) [6] and Active [81] strategies are two ma-
jor parallel strategies that engage space/resource redundancy for
reliability improvement.

In the following, we provide detailed introductions and for-
mula of response time and failure-rate for these basic fault tol-
erance strategies. As discussed in the work [50], we assume that
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each request is independent, and the Web service fails at a fix
rate. Here, we use RTT (Round-Trip-Time) to represent the
time duration between sending out a request and receiving a
response of a service user.

• Retry: As shown in Figure 7.3(1), the original Web service
will be retried for a certain number of times when it fails.
Eq. (7.1) is the formula for calculating failure-rate f and
RTT t, where m is the number of retries, f1 is the failure-
rate of the target Web service, and ti is the RTT of the ith

request.

f = fm
1 ; t =

m∑
i=1

ti(f1)
i−1 (7.1)

• RB: As shown in Figure 7.3(2), another standby Web ser-
vice (A2) will be tried sequentially if the primary Web ser-
vice fails.

f =
m∏
i=1

fi; t =
m∑
i=1

ti

i−1∏
k=1

fk (7.2)

• NVP: As shown in Figure 7.3(3), NV P invokes different
replicas at the same time and determines the final result
by majority voting. It is usually employed to mask logicalA1 A2If failnA1If fail SuccessA1A2An(3). NVP                                                (4). Active

(1). Retry                                                 (2).  Recovery BlockVoting 1A1A2An
Figure 7.3: Basic Fault Tolerance Strategies
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faults. In Eq. (7.3), n, which is an odd number, represents
the total replica number. F (i) represents the failure-rate
that i (i ≤ n) replicas fail. For example, assuming n = 3,
then f =

∑3
i=2 F (i) = F (2) + F (3) = f1 × f2 × (1− f3) +

f2 × f3 × (1− f1) + f1 × f3 × (1− f2) + f1 × f2 × f3.

f =
n∑

i=n/2+1

F (i); t = max({ti}ni=1) (7.3)

• Active: As shown in Figure 7.3(4), Active strategy invokes
different replicas in parallel and takes the first properly-
returned response as the final result. It is usually employed
to mask network faults and to obtain better response time
performance. In Eq. (7.4), Tc is a set of RTTs of the
properly-returned responses. u is the parallel replica num-
ber.

f =
u∏

i=1

fi; t =

{
min(Tc) : |Tc| > 0

max(T ) : |Tc| = 0
(7.4)

The highly dynamic nature of Internet and the compositional
nature of Web services make the above static fault tolerance
strategies unpractical in real-world environment. For exam-
ple, some replicas may become unavailable permanently, while
some new replicas may join in. Moreover, Web service soft-
ware/hardware may be updated without any notification, and
the Internet traffic load and server workload are also changing
from time to time. These unpredictable characteristics of Web
services provide a challenge for optimal fault tolerance strategy
determination. To attack this critical challenge, we propose the
following two dynamic fault tolerance strategies, which are more
adaptable and can be automatically configured by a QoS-aware
middleware in runtime. These two dynamic strategies will be
employed in our dynamic fault tolerance strategy selection algo-
rithm in Section7.5.3.
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Figure 7.4: Dynamic Fault Tolerance Strategies

• Dynamic Sequential Strategy: As shown in Figure
7.4(1), the dynamic sequential strategy is the combination
of Retry and RB strategies. When the primary replica
fails, our algorithm will dynamically determine whether to
employ Retry or RB at runtime based on the QoS of the
target replicas and the requirements of service users. The
determination algorithm will be introduced in Section 7.5.3.
In Eq. (7.5), mi is the number of retries of the ith replica,
and n is the total replica quantity. This strategy equals RB
when mi = 1, and equals Retry when m1 = ∞.

f =
n∏

i=1

fmi

i ; t =
n∑

i=1

((

mi∑
j=1

tif
j−1
i )

i−1∏
k=1

fmi

k ) (7.5)

• Dynamic Parallel Strategy: As shown in Figure 7.4(2),
the dynamic parallel strategy is the combination of NV P
and Active. It will invoke u replica at the same time
and employ the first v (v is an odd number, and v ≤
u) properly-returned responses for majority voting. This
strategy equals Active when v = 1, and equals NV P when
v = u. Note middle(v, Tc) is employed to calculate the
RTT of invoking u replica in parallel and includes the first
v for voting, which is equal to the RTT of the vth properly-
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returned response.

f =
v∑

i=v/2+1

F (i); t =

{
middle(v, Tc) : |Tc| ≥ v

max(T ) : |Tc| < v
(7.6)

7.4 User Requirements and QoS model

7.4.1 User Requirement Model

Optimal fault tolerance strategies for SOA systems vary from
case to case, which are influenced not only by the QoS of the tar-
get replicas, but also by the characteristics of the SOA systems.
For example, realtime systems may prefer parallel strategies for
better response time performance, while resource-constrained
systems (e.g., mobile applications) may prefer sequential strate-
gies for better resource conservation.

It is usually difficult for a middleware to automatically de-
tect the characteristics of an SOA system, such as whether it
is latency-sensitive or resource-constrained. The strategy selec-
tion accuracy will be greatly enhanced if the service users can
provide some concrete requirements/constraints. However, it
is impractical and not user-friendly to require the service users,
who are often not familiar with fault tolerance strategies, to pro-
vide detailed technical information. To address this problem, we
design a simple user requirement model for obtaining necessary
requirement information from the users. In this model, the users
are required to provide the following four values:

1. tmax: the largest RTT that the application can afford. tmax

with a smaller value means higher requirement on response
time, indicating that the application is more latency-sensitive.
If the response-time of a Web service invocation is larger
than tmax, the invocation is regarded as TimeOut failure to
the service user.
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2. fmax: the largest failure-rate that the application can af-
ford. If the failure-rate of a Web service is larger than
fmax, it is not suitable to be employed without fault toler-
ance strategies.

3. rmax: the largest resource consumption constraint. The
amount of parallel connection is used to approximately quan-
tify the resource consumption, since connecting more Web
services in parallel will consume more computing and net-
working resources. rmax with a smaller value indicates that
the application is resource-constraint.

4. mode: the mode can be set by the service users to be
sequential, parallel, or auto. Sequential means invok-
ing the replicas sequentially (e.g., for the payment-oriented
Web services). Parallel means that the user prefers invok-
ing the target replicas in parallel. Auto means that the
users let the middleware determine the optimal mode auto-
matically. We need the service users to provide this mode
information, because the middleware may not be smart
enough to detect whether the target replicas are payment-
oriented services or not.

The user requirements obtained by this model will be used
in our dynamic fault tolerance strategy selection algorithm in
Section 7.5.3.

7.4.2 Service community

In addition to the subjective user requirements, the objective
QoS information of the target Web service replicas are also
needed for the optimal fault tolerance strategy determination.
A lot of previous tasks are focused on building the QoS model
for Web services [26, 64, 97]. However, there are still several
challenges to be solved:
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• It is difficult to obtain performance information of
the target Web services. Service users do not always
record the QoS information of the target replicas, such as
RTT, failure-rate and so on. Also, most of the service users
are unwilling to share the QoS information they obtain.

• Distributed geographical locations of users make
evaluation on target Web services difficult. Web ser-
vice performance is influenced by the communication links,
which may cause performance evaluation results provided
by one user to be inapplicable to others. For example, a
user located in the same local area network (LAN) with the
target Web service is more likely to yield good performance.
The optimistic evaluation result provided by this user may
misguide other users who are not in the same LAN as the
target Web service.

• Lack of a convenient mechanism for service users
to obtain QoS information of Web services. QoS
information can help service users be aware of the quality
of a certain Web service and determine whether to use it or
not. However, in reality, it is very difficult for the service
users to obtain accurate and objective QoS information of
the Web services.

To address the above challenges, we design a QoS model for
Web services employing the concept of user-participation and
user-collaboration, which is the key innovation of Web2.0. The
basic idea is: by encouraging users to contribute their individ-
ually obtained QoS information of the target replicas, we can
collect a lot of QoS data from the users located in different ge-
ographical locations under various network conditions, and en-
gage these data to make the objective overall evaluation on the
target Web services.
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Based on the concept of service community and the archi-
tecture shown in Figure 7.1, we use the community coordinator
to store the overall QoS information of the replicas. Users will
periodically send their individually-obtained replica QoS infor-
mation to the service community in exchange for the the newest
overall replica QoS information, which can be engaged for bet-
ter optimal strategy determination. Since the middleware will
record QoS data of the replicas and exchange it with the coor-
dinator automatically, updated replica QoS information is con-
veniently available for service users.

For a single replica, the community coordinator will store the
following information:

• tavg : the average RTT of the target replica.

• tstd : the standard deviation of RTT of the target replica.

• fl : the logic failure-rate of the target replica.

• fn : the network failure-rate of the target replica.

Currently, we only consider the most important QoS proper-
ties in our QoS model, which includes RTT, logic faults, network
faults and resource consumption. Other QoS properties, how-
ever, can be easily included in the future. For those users who
are not willing to exchange QoS data with the community co-
ordinator, they can simply close the exchange functionality of
the middleware, although this will reduce the dynamic optimal
strategy selection performance. This is similar to BitTorrent [10]
download, where stopping uploading files to others will hurt the
download speed of the user.
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7.5 Adaptive Fault Tolerance Strategy Con-

figuration

7.5.1 Notations

The notations used in this chapter are listed as follows:

• {wsi}ni=1: a set of functionally equivalent replicas.

• {cij}k+2
j=1 : a set of (k+2) counters for the wsi.

• {pij}k+2
j=1 : the probability of an RTT belonging to different

categories for wsi.

• {ti}ki=1: a set of time values, where ti is the presentative

time of the ith time-slot. ti =
tmax×(i−0.5)

k

• RTTv = {rttj}vj=1: a set of RTT values of the v replicas.

7.5.2 Scalable RTT Prediction

Accurate RTT prediction is important for the optimal fault tol-
erance strategy selection. Assuming, for example, that there are
totally n replicas {ws}ni=1 in the service community. We would
like to invoke v (v ≤ n) replicas in parallel and use the first
properly-returned response as the final result. The question is,
then, how to find out the optimal set of replicas that will achieve
the best RTT performance?

To solve this problem, we need the RTT distributions of all
the replicas. In our previous work [110], all the historical RTT
results are stored and employed for RTT performance predic-
tion. However, sometimes it is impractical to require the users
to store all the past RTT results, which are ever growing and
will consume a lot of storage memory. On the other hand, with-
out historical RTT performance information of the replicas, it is
extremely difficult to make an accurate prediction. To address
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this challenge, we propose a scalable RTT prediction algorithm,
which scatters the RTT distributions of a replica to reduce the
required data storage.

We divide the user required maximum response-time tmax,
which is provided by the service user, into k time slots. Instead
of storing all the detailed historical RTT results, the service user
only needs to store k + 2 distribution counters {ci}k+2

i=1 for each
replica, where c1–ck are used to record the numbers of the Web
service invocations which fit into the corresponding time slots,
ck+1 is used to record network-related faults fn, and ck+2 is for
recording logic-related faults fl. By describing the RTT distri-
bution information by these counters, Eq. (7.7) can be employed
to predict the probability that a future Web service invocation
belonging to a category, where p1 to pk are the probabilities that
the invocation will fit into the corresponding time-slots, pk+1 is
the probabilities that a Web service invocation will fail due to
network-related faults, and pk+2 is the probability that an invo-
cation will fail due to logic-related faults.

pi =
ci∑k+2
i=1 ci

(7.7)

By the above design, we can obtain approximate RTT dis-
tribution information of a replica by storing only k + 2 coun-
ters. The values of time-slot number k can be set to be a larger
value for obtaining more detailed distribution information, mak-
ing this algorithm scalable.

The approximate RTT distributions of the replicas, which
are obtained by the above approach, can be engaged to predict
RTT performance of a particular set of replicas {wsi}vi=1. We use
rtti == tj to present that an RTT value belongs to the jth time-
slot. Assuming that the RTT values of future invocations of the
selected v replicas are RTTv = {rtti}vi=1. The probability that
rtti fits into a certain time-slot tj (rtti == tj) is provided by pij.
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For Active strategy, the problem of predicting RTT performance
of invoking a set of replicas at the same time can be formulated
as Eq. (7.8), where rttx = min{RTTv} and RTTv = {rtti}vi=1.

r̃tt =
k∑

i=1

(p(rttx == ti)× ti); (7.8)

Eq. (7.9) is employed for calculating the value of p(rttx ==
ti), which is needed in Eq. (7.8).

p(rttx == ti) = p(rttx ≤ ti)− p(rttx ≤ ti−1); (7.9)

Therefore, the RTT prediction problem becomes calculating
the values of p(rttx ≤ ti). Eq. (7.10) is employed for calculating
the value of p(rttx ≤ ti), where p(rttv ≤ ti) is the probability
that the RTT value rttv of the last Web service wsv is smaller

than ti, which can be calculated by p(rttv ≤ ti) =
i∑

k=1

pvk. If

rttv is smaller than ti, then rttx = min(RTTv) will be smaller
than ti; otherwise, the remaining Web services wsi–wsv−1 will
be calculated by the same procedure recursively.

p(rttx ≤ ti) = p(rttv ≤ ti)+ p(rttv > ti)× p(min(RTTv−1) ≤ ti);
(7.10)

By the above calculation, the RTT performance of the Active
strategy, which invokes the given replicas in parallel and em-
ploys the first returned response as final result, can be predicted.
By changing the rttx = min(RTTv) to rttx = max(RTTv), the
above calculation procedure can be used to predict the RTT
performance of the NV P strategy, which needs to wait for all
responses of replicas before the majority voting. By changing
the min(RTTv) tomiddle(RTTv, y), which means the RTT value
of the yth returned response, the above algorithm can be used
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to predict the RTT performance of the Dynamic parallel strat-
egy. For example, in the Dynamic parallel strategy, if we invoke
6 replicas in parallel and employ the first 3 returned responses
for voting, then the RTT performance of the whole strategy is
equal to the RTT of the 3rd returned response.

Therefore, to solve the problem proposed in the beginning of
this section, we can predict the RTT performance of different
replica sets with v replicas from all the n replicas {ws}ni=1 and
select the set with the best RTT performance.

7.5.3 Adaptive Fault Tolerance Strategy

By employing and integrating the user requirement model de-
signed in Section 7.4.1, the QoS model of Web services designed
in Section 7.4.2, and the RTT prediction algorithm designed
in Section 7.5.2, we propose a dynamic fault tolerance strat-
egy selection algorithm in this section. As shown in Algorithm
2, the whole selection procedure is composed of three parts: se-
quential or parallel strategies determination, dynamic sequential
strategy determination, and dynamic parallel strategy determi-
nation. The detailed descriptions of these three sub-components
are presented in the following sections.

Sequential or Parallel Strategy Determination

If the value of the attribute mode in the user requirement model
equals to auto, we need to conduct sequential or parallel strat-
egy determination based on the QoS performance of the target
replicas and the subjective requirements of the users. Eq. (7.11)
is used to calculate the performance of different strategies, where
w1–w3 are the user defined weights for different QoS properties.

si = w1
ti

tmax
+ w2

fi
fmax

+ w3
ri

rmax
; (7.11)
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Algorithm 2: The Optimal Fault Tolerance Strategy Determination
Algorithm

Data: tmax, fmax, rmax, QoS of the replicas
Result: Optimal fault tolerance strategy
Sequential or parallel strategy determination;1

if sequential then2

d = 1
m
× ( ti+1−ti

tmax
+ fi+1−fi

fmax
);3

if d > e then4

Retry;5

else6

RB (try another replica);7

end8

else9

calculate performance of the parallel strategies with different v10

values;
select the strategy with minimize si value as optimal strategy;11

end12

return optimal fault tolerance strategy;13

The underlying consideration is that the performance of a
particular response time is related to the user requirement. For
example, 100 ms is a large latency for the latency-sensitive ap-
plications, while it may be negligible for non-latency-sensitive
applications. By using ti

tmax
, where tmax represents the user re-

quirement on response time, we can have a better representation
of the response time performance for service users with different
requirements. Failure-rate fi and resource consumption ri are
similarly considered.

By employing Eq. (7.11), the performance of sequential strate-
gies and parallel strategies can be computed and compared. For
sequential strategies, the value of ti can be calculated by Eq.
(7.5), where the value of fi can be obtained from the middle-
ware and the value of ri is 1 (only one replica is invoked at
the same time). For parallel strategies, the value of ti can be
estimated by using the RTT prediction algorithm presented in
Section 7.5.2, where the value of fi can be obtained from the
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middleware, and the value of ri is the number of parallel invo-
cation replicas. From the sequential and parallel strategies, the
one with smaller si value will be selected.

Dynamic Sequential Strategy Determination

If the value of the attribute mode provided by the service user
is equal to sequential, or the sequential strategy is selected by
the above selection procedure conducted by the middleware, we
need to determine the detailed sequential strategy dynamically
based on the user requirements and the QoS values of replicas.

d = 1
m × ( ti+1−ti

tmax
+ fi+1−fi

fmax
) is used to calculate the performance

difference between two replicas, where 1
m is a degradation fac-

tor for the Retry strategy and m is the retried times. When
d > e, where e is the performance degradation threshold, the
performance difference between the two selected replicas is large,
therefore, retrying the original replica is more likely to obtain
better performance. By increasing the number of retries m, d
will become smaller and smaller, reducing the priority of Retry
strategy and raising the probability that RB will be selected.

If the primary replica fails, the above procedure will be re-
peated until either a success or the time expires (RTT ≥ tmax).

Dynamic Parallel Strategy Determination

If the value of the attribute mode provided by the service user
is equal to parallel, or the parallel strategy is selected by the
middleware, we need to determine the optimal parallel replica
number n and the NVP number v (v ≤ n) for the dynamic
parallel strategy.

By employing the RTT prediction algorithm presented in Sec-
tion 7.5.2, we can predict the RTT performance of various com-
binations of the value v and n. The number of all combinations
can be calculated by Cv

n = n!
v!×(n−v)! , and the failure-rate can be



Chapter 7. QoS-Aware Fault Tolerance for Web Services 135

calculated with Eq. (7.6). By employing Eq. (7.11), the perfor-
mance of different n and v combination can be calculated and
compared. The combination with the minimal p value will be
selected and employed as the optimal strategy.

7.6 Experiments

A series of experiments is designed and performed for illustrat-
ing the QoS-aware middleware and the dynamic fault tolerance
selection algorithm. In the experiments, we compare the per-
formance of our dynamic fault tolerance strategy (denoted as
Dynamic) with other four traditional fault tolerance strategies
Retry, RB, NV P , and Active.

7.6.1 Experimental Setup

Our experimental system is implemented and deployed with
JDK6.0, Eclipse3.3, Axis2.0 [3], and Tomcat6.0. We develop six
Web services following an identical interface to simulate replicas
in a service community. These replicas are employed for evalu-
ating the performance of various fault tolerance strategies under
different situations. The service community coordinator is im-
plemented by Java Servlet. The six Web services and the com-
munity coordinator are deployed on seven PCs. All PCs have
the same configuration: Pentium(R) 4 CPU 2.8 GHz, 1G RAM,
100Mbits/sec Ethernet card and a Windows XP operating sys-
tem. In the experiments, we simulate network-related faults
and logic-related faults. All the faults are further divided into
permanent faults (service is down permanently) and temporary
faults (faults occur randomly). The fault injection techniques
are similar to the ones proposed in [55, 95].

In our experimental system, service users, who will invoke the
six Web service replicas, are implemented as Java applications.
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Table 7.1: Requirements of Service Users

Users tmax fmax rmax Focus

User 1 1000 0.1 50 RTT

User 2 2000 0.01 20 RTT, Fail

User 3 4000 0.03 2 RTT, Fail, Res

User 4 10000 0.02 1 Res

User 5 15000 0.005 3 Fail, Res

User 6 20000 0.0001 80 Fail

We first provide six service users with representative require-
ment settings as typical examples for investigating performance
of different fault tolerance strategies in different situations. The
detailed user requirements are shown in Table 7.1. We then
study the influence of parameters of the user requirements and
report the experimental results.

In the experiments, failures are counted when service users
cannot get a proper response. For each service request, if the
response time is larger than tmax, a timeout failure is counted.

Our experimental environment is defined by a set of param-
eters, which are shown in Table 7.2. The permanent fault prob-
ability means the probability of permanent faults among all the
faults, which includes network-related faults and logic-related
faults. The performance degradation threshold is employed by
the dynamic strategy selection algorithm, which has been intro-
duced in Section 7.5.3. Dynamic degree is used to control the
QoS changing of replicas in our experimental system, where a
larger number means more serious changing of QoS properties.

7.6.2 Studies of the Typical Examples

The experimental results of the six service users employing dif-
ferent types of fault tolerance strategies are shown in Tables
3-8. The results include the employed fault tolerance strategy
(Strategies), the number of all requests (All), the average RTT
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Table 7.2: Parameters of Experiments

Parameters Setting

1 Number of replicas 6

2 Network fault probability 0.01

3 Logic fault probability 0.0025

4 Permanent fault probability 0.05

5 Number of time slots 20

6 Performance degradation threshold (e) 2

7 Dynamic degree 20

8 w1 1/3

9 w2 1/3

10 w3 1/3

of all requests (RTT), the number of failure (Fail), the average
consumed resource (Res), and the overall performance (Perf, cal-
culated by Eq. (7.11)). The time units of RTT is in milliseconds
(ms).

Table 7.3: Experimental Results of User 1

U Strategies All RTT Fail Res Perf

Retry 50000 420 2853 1 1.011

RB 50000 420 2808 1 1.002

NVP 50000 839 2 5 0.939

Active 50000 251 110 6 0.393
1

Dynamic 50000 266 298 2.34 0.372

In the following, we provide detailed explanation on the ex-
perimental results of Service User 1. As shown in Table 7.1, the
requirements provided by User 1 are: tmax = 1000, fmax = 0.1
and rmax = 50. These requirement settings indicate that User
1 cares more on the response time than the failure-rate and re-
sources, because 1000 ms maximal response time setting is tight
in the high dynamic Internet environment, and the settings of
failure-rate and the resource consumption are loose. As shown
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in Table 7.3, among all the strategies, the RTT performance of
the NV P strategy is the worst since it needs to wait for all par-
allel responses before voting; the RTT performance of the Active
strategy is the best, since it employs the first properly-returned
response as the final result. The Dynamic strategy can provide
good RTT performance, which is near the performance of the
Active strategy.

The Fail column in Table 7.3 shows the fault tolerance per-
formance of different strategies. The failure-rates of the Retry
and RB strategies are not good, because these strategies are
sequential and the setting of tmax = 1000ms leads to a lot of
timeout failures. Among all the strategies, NV P obtains the
best fault tolerance performance. This is not only because NV P
can tolerate logic-related faults by majority voting, but also be-
cause NV P invokes 5 replicas in parallel in our experiments,
which greatly reduces the number of timeout failures. For ex-
ample, if one replica does not respond within the required time
period tmax, NV P can still get the correct result by conducting
majority voting using the remaining responses. The fault tol-
erance performance of the Dynamic strategy is not good com-
paring with NV P . However, this fault tolerance performance
is already good enough for User 1, who does not care so much
about the failure-rate by setting fmax = 0.1.

The Res column in Table 7.3 shows the resource consumption
information of different fault tolerance strategies. We can see

Table 7.4: Experimental Results of User 2

U Strategies All RTT Fail Res Perf

Retry 50000 471 285 1 5.985

RB 50000 469 283 1 5.944

NVP 50000 855 0 5 0.677

Active 50000 253 126 6 2.946
2

Dynamic 50000 395 3 4.03 0.459
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Table 7.5: Experimental Results of User 3

U Strategies All RTT Fail Res Perf

Retry 50000 458 155 1 0.717

RB 50000 457 149 1 0.713

NVP 50000 845 1 5 2.712

Active 50000 248 138 6 3.154
3

Dynamic 50000 456 141 1 0.708

Table 7.6: Experimental Results of User 4

U Strategies All RTT Fail Res Perf

Retry 50000 498 145 1 1.194

RB 50000 493 131 1 1.180

NVP 50000 868 1 5 5.087

Active 50000 251 119 6 6.144
4

Dynamic 50000 494 109 1 1.158

that the resource consumption of Retry and RB strategies are
equal to 1, because these two strategies invoke only one replica
at the same time. In our experiments, the version number of
NV P strategy is set to be 5 and the parallel invocation number
of Active strategy is set to be 6. Therefore, the Res of these
two strategies are 5 and 6, respectively. The Dynamic strategy
invokes 2.34 replicas in parallel on average. The Perf column
shows the overall performance of different strategies calculated
by Eq. (7.11). We can see that the Dynamic strategy achieves
the best overall performance among all the strategies (smaller
value for better performance). Although the Active strategy
also achieves good performance for User 1, in the following ex-
periments, we can see that it cannot always provide good overall
performance under different environments.

As shown in Table 7.4 to Table 7.8, for other service users, the
Dynamic strategy can also provide a suitable strategy dynam-
ically to achieve good performance. As shown in Figure 7.5,
the Dynamic strategy provides the best overall performance
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Table 7.7: Experimental Results of User 5

U Strategies All RTT Fail Res Perf

Retry 50000 454 115 1 0.823

RB 50000 450 121 1 0.847

NVP 50000 779 0 5 1.718

Active 50000 249 125 6 2.516
5

Dynamic 50000 489 60 1.46 0.759

Table 7.8: Experimental Results of User 6

U Strategies All RTT Fail Res Perf

Retry 50000 470 146 1 29.236

RB 50000 468 119 1 23.835

NVP 50000 839 1 5 0.304

Active 50000 249 132 6 26.487
6

Dynamic 50000 473 1 3.56 0.268

among all the fault tolerance strategies for all the six service
users. This is because the Dynamic strategy considers user
requirements and can adjust itself for optimal strategy dynami-
cally according to the change of QoS values of the replicas. The
other four traditional fault tolerance strategies perform well in
some situations; however, they perform badly in other situa-
tions, because they are too static. Our experimental results
indicate that the traditional fault tolerance strategies may not
be good choices in the field of service-oriented computing, which
is highly dynamic. The experimental results also indicate that
our proposed Dynamic fault tolerance strategy is more adapt-
able and can achieve better overall performance compared with
traditional fault tolerance strategies.

7.6.3 Studies of Different User Requirements

In this section, we conduct experiments with different user re-
quirement settings to study the influence of different require-
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Figure 7.5: Overall Performance of Different Fault Tolerance Strategies

ment parameters (tmax, fmax and rmax). Each experiment is run
for 5000 times and the experimental results are shown in Figure
7.6.
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Figure 7.6: Strategy Performance with Different tMax

Figure 7.6(a) shows the influence of the user requirement
tmax, where the x-axis shows the different tmax settings (1000–
10000 ms) and y-axis is the performance of different fault toler-
ance strategies calculated by Eq. (7.11). The settings of fmax

and rmax are: fmax = 0.1, rmax = 6. Figure 7.6(a) shows that:
1) the performance of the sequential strategies Retry and RB
are worse than the parallel strategies (NV P and Active) when
the tmax is small (e.g., tmax = 1000), since the response-time
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performance of the sequential strategies are not good; 2) when
tmax > 2000 ms, sequential fault tolerance strategies achieve
better performance than the parallel strategies, since the user
requirement on response-time is not tight; and 3) the Dynamic
strategy, which is more adaptable, can provide the best perfor-
mance under all the different tmax settings in our experiments.

Figure 7.6(b) shows the influence of the user requirement
fmax, where the x-axis shows the different fmax settings (0.05–
0.5). The settings of tmax and rmax are: tmax = 1000 and
rmax = 6. Figure 7.6(b) shows that: 1) the performance of the
sequential strategies Retry and RB are not good when fmax is
small, since the sequential strategies have a lot of time out fail-
ures caused by the setting of tmax = 1000; 2) the performance of
the sequential strategies increases with the increasing of fmax,
since large fmax value indicates that the user requirement on
the failure-rate is loose; 3) parallel strategies can provide steady
performance in our experiments; and 4) the Dynamic strategy
can provide the best performance under all the different fmax

settings.
Figure 7.6(c) shows the influence of the user requirement

rmax, where the x-axis shows different rmax settings (1–46). The
settings of tmax and fmax are: tmax = 1000 and rmax = 0.1.
Figure 7.6(c) shows that: 1) the performance of the parallel
strategies enhance with the increasing of rmax, since the user
can afford more resource consuming; and 2) the Dynamic strat-
egy provides the best performance under all the different fmax

settings.
The above experimental results show that the traditional

fault tolerance strategies can provide good performance in some
environments. However, with the changing of user requirements,
the performance of traditional fault tolerance strategies cannot
be guaranteed since these strategies cannot be auto-adapted to
different environments. The Dynamic fault tolerance strategy,
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on the other hand, provides the best overall performance with
different tmax, fmax and rmax settings in our experiments.

7.6.4 Studies of Different Faults

In this section, we study the performance of different fault tol-
erance strategies under various faults. The user requirements in
these experiments are: tmax = 2000, fmax = 0.1, rmax = 6. The
experimental results are shown in Figure 7.7.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.5

1

1.5

2

2.5

3

(a) Network Faults (fn)

P
er

fo
rm

an
ce

(fl=0.0025, fp=0.05)

 

 

Retry
RB
NVP
Active
Dynamic

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.5

1

1.5

2

2.5

3

(b) Logic Faults (fl)

P
er

fo
rm

an
ce

(fn=0.01, fp=0.05)

 

 

Retry
RB
NVP
Active
Dynamic

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

(c) Permenant Faults (fp)
P

er
fo

rm
an

ce

(fn=0.01, fl=0.0025)

 

 

Retry
RB
NVP
Active
Dynamic

Figure 7.7: Strategy Performance under Different Level of Faults

Figure 7.7(a) shows the performance of different fault toler-
ance strategies under different level of network faults (the x-
axis), which is from 1%–10%. Figure 7.7(a) shows that: 1) the
performance of the NV P strategy is not good, since the user
requirement on the resource is tight (rmax = 6); 2) the perfor-
mance of the sequential strategies degrades with the increasing
of network faults, since more timeout errors occur (response time
larger than tmax); and 3) the Dynamic strategy can provide the
best performance under different levels of network faults.

Figure 7.7(b) shows the performance of different fault toler-
ance strategies under different level of logic faults (1%–10%).
Figure 7.7(b) shows that: 1) with the increasing of the logic
faults, the performance of the Active strategy degrades, since
Active cannot tolerate logic faults; 2) NV P can tolerate logic
faults; however, it invokes 5 replicas in parallel in our experi-
ments, which consumes a lot of resource; and 3)the Dynamic
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strategy can provide the best performance under different levels
of logic faults.

Figure 7.7(c) shows the performance of different fault toler-
ance strategies under different levels of permanent faults (5%–
50%). Figure 7.7(c) shows that theDynamic strategy can steadily
provide the best performance under different levels of permanent
faults.

The above experimental results show that the Dynamic fault
tolerance strategy can provide the best overall performance un-
der different levels of network faults, logic faults and permanent
faults.

7.7 Summary

This chapter proposes a QoS-aware adaptive fault tolerance strat-
egy for Web services, which employs both objective replica QoS
information as well as subjective user requirements for optimal
strategy configuration determination. Based on a QoS-aware
middleware, service users share their individually-obtained Web
service QoS information with each other via a service community
coordinator. Experiments are conducted and the performances
of various fault tolerance strategies under different environments
are compared. The experimental results indicate that the pro-
posed Dynamic strategy can obtain better overall performance
for various service users compared with traditional fault toler-
ance strategies.

More QoS properties will be involved in our QoS model for
Web services in the future. More investigations are needed for
the fault tolerance of stateful Web services, which need to main-
tain states across multiple tasks.

2 End of chapter.



Chapter 8

QoS-Aware Selection Framework for Web

Services

8.1 Overview

In the service-oriented environment, complex distributed sys-
tems can be dynamically composed by discovering and inte-
grating Web services provided by different organizations. As
service-oriented architecture (SOA) is becoming a large part of
IT infrastructures, building reliable service-oriented systems is
more and more important. However, comparing the traditional
stand-alone software systems, building reliable service-oriented
systems is much more challenging, because: (1) Web services
are usually distributed across the unpredictable Internet; (2) re-
mote Web services are developed and hosted by other providers
without any internal design and implementation details; (3) per-
formance of Web services may change frequently (e.g., caused
by workload change of servers, internal updates of Web services,
performance update of communication links, etc.); and (4) the
remote Web services may even become unavailable without any
advance notifications.

An important approach for building reliable systems, software
fault tolerance [58], makes the system more robust by masking
faults instead of removing faults. One approach of software fault
tolerance, also known as design diversity, is to employ func-

145
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tionally equivalent yet independently designed components to
tolerate faults [58]. Duo to the cost of developing redundant
components, traditional software fault tolerance is usually em-
ployed only for critical systems. In the area of service-oriented
computing [106], however, the cost for developing multiple re-
dundant components is greatly reduced, since the functionally
equivalent Web services are provided by different organizations
and are accessible via Internet. These Web services can be em-
ployed as alternative components for building diversity-based
fault-tolerant service-oriented systems.

A number of fault tolerance strategies have been proposed
for Web services in the recent literature, which can be divided
into passive replication strategies and active replication strate-
gies. Passive strategies [28, 81, 87] employ a primary service to
process the request and invoke another alternative backup ser-
vice when the primary service fails, while Active strategies [56,
68, 72, 80, 82] invoke all the functionally equivalent service can-
didates in parallel. Complementary to the previous approaches
which mainly focus on designing various fault tolerance strate-
gies, we propose a systematic framework for optimal fault tol-
erance strategy selection, which has never been explored before.
Our framework determines optimal fault tolerance strategy dy-
namically based on the quality-of-service (QoS) performance of
Web services as well as the preferences of service users. More-
over, different from the previous approaches which mainly fo-
cus on stateless Web services, we apply software fault tolerance
strategies for the stateful Web services, where multiple tasks
have state dependency and must be performed by the same Web
services. Moreover, the past research on fault-tolerant Web ser-
vices [28, 56, 68, 72, 80, 81, 82, 87] only consider one single
metric (i.e., reliability). This chapter investigates the optimal
fault tolerance strategy selection not only by system reliability,
but also by a lot of other QoS properties(e.g., response-time,
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cost, etc.), transactional properties, and user preferences. In
our framework, we model the optimal fault tolerance strategy
selection problem as an optimization problem, where the user
preferences/constaints can be expressed by local constraints and
global constraints [113]. By solving the optimization problem,
the optimal system fault tolerance configuration can be obtained
and dynamically system reconfiguration can be achieved.

This chapter aims at advancing the current state-of-the-art in
software fault tolerance for Web services by proposing a system-
atic and extensible framework. More fault tolerance strategies
and more QoS properties and be plug into our framework easily
in the future.

The rest of this chapter is organized as follows: Section 8.2
introduces the motivating example. Section 8.3 presents the sys-
tem architecture. Section 8.4 proposes selection algorithms for
determining optimal fault tolerance strategy. Section 8.5 shows
our implementation and experiments, and Section 8.6 concludes
the chapter.

8.2 Motivating Example

We begin by a motivating example to show the research prob-
lems. In this chapter, an atomic service is a self-contained Web
service which provides service to users independently without re-
lying on any other Web services, a composite service represents
a Web service which provides service by integrating other Web
services, a stateless service is a service that does not maintain
state information between different invocations (each invocation
is independent of the history of client invocations), and a stateful
service is a service that requires session data maintenance across
multiple invocations. A service plan is an abstract description
of activities for a business process, which is defined as:
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Figure 8.1: A Motivating Example

Definition 1. A service plan SP is a triple (T, P, B), where
T = {ti}ni=1 is a set of tasks, P is a set of settings in the ser-
vice plan (e.g. execution probabilities of the branches and loops
structures), and B provides the structure information of the ser-
vice plan, which can be specified by XML based languages, such
as BPEL [62].

Figure 8.1 shows a simple service plan which includes six ab-
stract tasks. Each task ti can be executed by invoking a remote
Web service. Following the same assumption of work [4, 7, 104],
we assume that for each task in a service plan, there are mul-
tiple functionally equivalent Web service candidates that can
be adopted to fulfill the task. These functionally equivalent
Web services can be obtained from service communities [7, 105],
which define common terminologies to guarantee that Web ser-
vices developed by different organizations have the same inter-
face.

For the example shown in Figure 8.1, there are several chal-
lenges to be addressed: (1) There are a number of Web service
candidates for the stateless task t1 (GetWeather). Which can-
didate would be optimal? Does task t1 requires fault tolerance
strategy? If so, which fault tolerance strategy is suitable? (2)
Assuming that task t3 (Payment) is non-refundable, and task t4
(Delivery) is unreliable. The failure of t4 (Delivery) will lead to
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inconsistency of the process, since the user has paid the money
(cannot be refunded) but cannot get the good due to delivery
fails. How do we detect and avoid such kinds of consistency-
violations in complex service plans? (3) Task t3 and t4 are
stateful tasks, which need to maintain states across two invo-
cations. Therefore, it is incorrect to pay one company (e.g.,
Ebay.Payment()) and require another company who did not re-
ceive any money to deliver the good (e.g., Amazon.Deliver()).
How to apply fault tolerance strategy for such kind of stateful
tasks? (4) Service users have different preference and may pro-
vide constraints for a single task (named as local constraints),
such as response-time of t1 should be less than 1 second. Ser-
vice users can also provide constraints for a whole service plan
(named as global constraints), such as the execution success-
probability of the whole service plan should be higher than 99%.
Under both the local constraints and global constraints, how do
we determine optimal service candidates as well as optimal fault
tolerance strategy for both the stateless and stateful tasks?

This chapter addresses the above challenges by proposing a
systematic fault tolerance strategy selection framework, which
defines various properties of Web services, identifies commonly-
used fault tolerance strategies, and designs novel algorithms to
attack these challenges.

8.3 System Architecture

Figure 8.2 shows the system architecture of our fault tolerance
selection framework for service-oriented systems. Figure 8.2 in-
cludes a number of service users, a communication bus (usually
the Internet), and a lot of Web services. The execution engines
of the service users are in charge of selecting and invoking op-
timal Web services to fulfill the abstract tasks in the service
plans. The execution engine includes several components: QoS
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Figure 8.2: System Architecture

model, Fault Tolerance Strategies, Compositional Model, Con-
sistency Checking, and Optimal Fault Tolerance Strategy Selec-
tion. Details of the first four components will be introduced in
Section 8.3.1 to Section 8.3.4, respectively, and various optimal
fault tolerance strategy selection algorithms will be presented in
Section 8.4.

The work procedures of our framework are as follows: (1) a
service provider obtains the address of a certain service commu-
nity from the UDDI and register its Web service in the service
community, (2) a service user (usually the developer of SOA
systems) designs a service plan, (3) the execution engine ob-
tains a list of candidates with QoS performance for each task
in the service plan from the corresponding service communities,
(4) the consistency checking module checks whether the service
plan will cause inconsistency, (5) the optimal selection module
determines optimal fault tolerance strategy for the stateless and
stateful tasks in the service plan, (6) the execution engine ex-
ecutes the service plan by invoking selected Web services and
activate the selected fault tolerance strategy to mask faults,
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Table 8.1: Composition Formulas for Fault Tolerance Strategies
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and (7) the execution engine records the QoS performance of
the invoked Web services and exchanges this information with
the community coordinators for updated QoS information from
other service users from time to time.

8.3.1 QoS Properties of Web Services

In the presence of multiple service candidates with identical
or similar functionalities, quality-of-service (QoS) provides non-
functional characteristics for the optimal candidate selection as
well as optimal fault tolerance strategy selection. The most rep-
resentative QoS properties of Web services including availabil-
ity, reliability, price, popularity, datasize, response time, failure
probability, etc. Given a set of QoS properties, the QoS per-
formance of a Web service can be presented as q = (q1, ..., qm),
where m is the number of QoS properties.

8.3.2 Fault Tolerance Strategies

To build dependable service-oriented systems, the functionally
equivalent service candidates can be employed for tolerating
faults [81]. The well-known fault tolerance strategies for Web
services are identified in the following and the formulas for calcu-
lating the QoS values of the fault tolerance strategies are listed
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in Table 8.1.

• Retry. The original Web service will be tried for a certain
number of times if it fails. In Table 8.1, m (m ≥ 2) is
the maximal execution times of the original Web service.
pi is the probability that the Web service will be executed
for i times, where the first i − 1 executions are failed and
the ith execution success. pi can be calculated by pi =
(1 − q51)

(i−1) × q51, where q51 is the success-probability of the
original Web service.

• Recovery Block (RB). Another standby service candi-
date will be invoked sequentially if the primary Web ser-
vice fails. In Table 8.1, m (m ≤ number of candidates) is
the maximal recovery times, and pi is the probability that
the ith candidate will be executed. pi can be calculated by
pi = (

∏i−1
j=1 1− q5j )× q5i .

• N-Version Programming (NVP). All the m function-
ally equivalent service candidates are invoked in parallel
and the final result will be determined by majority voting.

• Active. All the m service candidates are invoked in paral-
lel and the first returned response without communication
errors will be employed as the final result. Active strategy
can be employed for improving response-time performance.

Using the formulas in Table 8.1, the aggregated QoS values of
different fault tolerance strategies can be calculated. The QoS
properties are divided into three groups in Table 8.1 based on
their own features. For example, for the Active strategy, the ag-
gregated QoS values of price (q2), popularity (q3) and data-size
(q4) are the value sum of its parallel Web services, while the ag-
gregated QoS values of response-time (q6) and overall response-
time (q8) are the minimum values of its parallel Web services.
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Table 8.2: Formulas for Basic Compositional Structures
QoS Basic Compositional Structures

Properties Sequence Parallel Branch Loop

av, sp, osp
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8.3.3 Service Composition Model

Atomic services can be aggregated by different compositional
structures (i.e., sequence, branch, loop, and parallel) which de-
scribe the order in which a collection of tasks is executed. These
basic compositional structures are included in BPMN [69] and
BPEL [62]. The QoS values of the composite services by these
structures can be calculated by the formulas in Table 8.2. In
the branch structure, {pi}ni=1 is a set of branch execution prob-
abilities, where

∑n
i=1 pi = 1. In the loop structure, {pi}ni=0 is a

set of probabilities of executing the loop for i times, where n

is the maximum loop times and
∑n

i=0 pi = 1. In the parallel
structure, the response-time (rt) is the maximum value of the
n parallel branches and the parallel structure is counted as a
success if and only if all the n branches succeed.

The basic structures can be nested and combined in arbitrary
ways. For calculating the aggregated QoS values of a service
plan, we decompose the service plan to basic structures hierar-
chically. As the example shown in Figure 8.3, a service plan is
decomposed into basic compositional structures, which will em-
ploy the formulas in Table 8.2 to calculate the aggregated QoS
values. Algorithm 3 is designed to decompose a service plan into
different sub-plans and to calculate the aggregated QoS values



Chapter 8. QoS-Aware Selection Framework for Web Services 15411t1 t4t3 t2 t6t5 t7 t8P1 P2 2Service Plan
SP1 SP2 SP3 SP4 SP5SP1SP2 SP1SP2SP1P2
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Figure 8.3: Example of Service Plan Decomposition

hierarchically.
The QoS values of the sub-plans can be stored for reducing

the recalculation time when QoS performance of some tasks in
the service plan are updated. For example, when the QoS values
of t3 in Figure 8.3 are updated, we only need to recalculate the
QoS values of the block B5, B2, and B1. The QoS values of B3

and B4 do not need recalculation, since their values remain the
same. This design will greatly speedup the QoS recalculation,
especially when the task QoS values are updated frequently.

8.3.4 Consistency Checking

To detect inconsistency problems in complex service plans, we
propose two transactional properties for the tasks in the service
plans:

1. Compensable: A task is compensable if its effects can
be undone after committing. In case the overhead or cost
of compensating the task is unacceptable, the task is non-
compensable. For example, a payment task is non-compensable
if it is non-refundable.
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Algorithm 3: flowQoS
Input: SP : a service plan
Output: q: QoS values of the service plan
switch structure type do1

case atomic task ti2
return qi;3

case sequence4
// SPi is the sub service plans in the sequence.

foreach SPi do qi = flowQoS(SPi);5
// k is the number of sub service plans.

q = sequence(q1, ..., qk);6
return q;7

case branch-split8
foreach SPi do qi = flowQoS(SPi);9
q = branch(P1, q1, ..., qk);10
return q;11

case Parallel-split12
foreach SPi do qi = flowQoS(SPi);13
q = parallel(q1, ..., qk);14
return q;15

case loop-enter16
q1 = flowQoS(SP1);17
q = loop(P, q1);18
return q;19

end20

end21

2. Reliable: A task is reliable if its execution success-probability
is higher than a predefined threshold θ.

The compensable and reliable transactional properties of a
task ti are presented as C(ti) and R(ti), respectively, where
C(ti) = ture means the task is compensable and vice-versa. Dif-
ferent from the previous approach [35, 102], our reliable property
is quantified, which makes our consistency checking approach
more realistic and practical. In our approach, the service users
can present their judgement on whether a task is reliable or not
by setting a user-defined threshold θ. Moreover, when a certain
fault tolerance strategy is applied to a task, our approach is able
to determine whether the task is reliable or not by employing
the formulas in Table 8.1 to calculate the aggregated execution
success-probability of the whole fault tolerance strategy.

Before proposing our consistency checking algorithm, we first
simplify a service plan by transforming the loop structures to
branch structures using the loops peeling technique [4], where
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Algorithm 4: Consistency Checking of a Service Plan
Input: a service plan SP
Output: true or false, and the violation task pairs if false
SR= get a set of sequential routes from SP ;1

int routeNumber = |SR| ;2

for (i = 1; i ≤ routeNumber; i++) do3

if check(SRi) == false then4

return false;5

end6

end7

return true;8

Function check(SequentialRoute SRi)

T = get the tasks from SRi;1

int taskNumber = |T |;2

for (i = 1; i ≤ taskNumber; i++) do3

if (C(ti)==true) then4

continue;5

end6

for (j = i+ 1; j ≤ taskNumber; j++) do7

if (R(ti)==false) then8

print ti and tj ;9

return false;10

end11

end12

end13

return true;14

loop iterations are presented as a sequence of branches and each
branch condition indicates whether the loop has to continue or
has to exit. We then decompose a service plan to different exe-
cution routes. A execution route is defined as:

Definition 2. Execution route (ERi) is a sub service plan (ERi ⊆
SP ) which includes only one branch in each branch structure.
Each execution route has an execution probability pro(ERi), which
is the product of all probabilities of the selected branches in the
route.
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Each execution route is further decomposed into a set of se-
quential routes. A sequential route is defined as:

Definition 3. Sequential route (SRi) is a sub service plan which
includes only one branch in each parallel structure and only one
branch in each branch structure of a service plan, SRi ⊆ SP .

By this way, a service plan is decomposed into a set of se-
quential routes. Each sequential route includes a set of tasks
which are executed sequentially. A service plan satisfies consis-
tency checking if and only if no unreliable tasks are executed
after non-compensable tasks in every sequential route, which is
formalized as follows:

Definition 4. φ is a predicate of a sequential route. φ(SRi) is
true if and only if: ¬∃ta, tb ∈ SRi : C(ta) = false ∧ R(tb) =
false ∧ b > a.

The predicate φ is true whenever the sequential route SRi

satisfies the consistency checking, and a service plan satisfies
the consistency checking if and only if all its sequential routes
satisfy the consistency checking. Algorithm 4 is designed to
check whether a service plan satisfies the consistency. By the
above design, a service designer can discover the consistency
violation of a service plan at the design time and improve the
design before causing any inconsistency problems.

8.4 Fault Tolerance Strategy Selection

8.4.1 Notations and Utility Function

The notations used in the following of this chapter are defined
in Table 8.3. Given a service plan SP , T is a set of stateless
(SLT ) and stateful tasks (SFT ) in SP . For a task ti, there is
a set of candidates Si. Each candidate sij has a quality vector
qij = (qkij)

c
k=1 presenting the nonfunctional QoS characteristics,
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Table 8.3: Notations of the Selection Algorithm
Symbol Description

SP a service plan, which is a triple (T, P,B).

ER a set of execution routes of SP , ER = {ERi}ne
i=1.

pro(ERi) the execution probability of ERi.

SR a set of sequential routes of SP , SR = {SRi}ns
i=1.

T a set of tasks in the service plan, T = SLT ∪ SFT .

SLT a set of stateless tasks, SLT={ti}nl
i=1.

SFT a set of stateful tasks, SFT={SFTi}ni=nl

SFTi a set of related tasks of the ith stateful task.

Si a set of candidates for ti,Si={sij}mi
j=1.

LCi local constraints for task ti, LCi={lcik}ck=1.

GC global constraints for SP , GC = {gck}ck=1.

qij a quality vector for sij , qij=(qkij)
c
k=1.

θ user defined threshold for the reliable property.

ρi the optimal candidate index for ti.

where c is the number of QoS properties. We assume that val-
ues of QoS properties are real numbers in a bounded range with
minimum and maximum values. Since some QoS properties are
positive (a larger value presents higher quality, e.g. availabil-
ity and popularity), while some QoS properties are negative (a
smaller value presents better quality, e.g., price and response-
time), we transform all the positive QoS properties to negative
ones using:

qkij = max qk − qkij (8.1)

We then normalize the values of the QoS properties, which have
different scales, to be within the interval of [0,1] by employing
the Simple Additive Weighting technique [13]:

qkij =

{
qkij−min qk

max qk−min qk
if max qk ̸= min qk

1 if max qk = min qk
(8.2)

where min qk and max qk are the minimum and maximum QoS
values of the kth QoS property, respectively.



Chapter 8. QoS-Aware Selection Framework for Web Services 159

By the above transformation, in the following of this chap-
ter, the value of the kth QoS property of the jth candidate for
the ith task is presented by qkij, which is in the interval of [0,1]
and a smaller value presents better quality. To quantify the
performance of a candidate, a utility function is defined as:

uij = utility(tij) =
c∑

k=1

wk × qkij, (8.3)

where uij is the utility value of the jth candidate of task i and wk

is the user-defined weight of the kth candidate (
∑c

k=1wk = 1).
By setting the values of wk, the users (usually developer of the
service-oriented systems) can describe priorities of different QoS
properties.

8.4.2 Selection Candidates

For each abstract task in a service plan, there are two types
of candidates that can be adopted for implementing the task:
(1) Atomic services without any fault tolerance strategies, and
(2) Fault tolerance strategies (e.g., Retry, RB, NVP and Ac-
tive). In a service plan, a task ti is abortable if it is designed for
non-critical purposes and can be aborted if it fails. Abortable
tasks require no fault tolerance strategies. Therefore, the can-
didate set Si of an abortable task includes only atomic service
candidates, while the candidate set for the non-abortable tasks
include both atomic service candidates and fault tolerance strat-
egy candidates.

The fault tolerance strategies have a number of variations
based on different configuration. For the Retry strategy, there
are totally (r − 1)e variations, where r is the maximal execu-
tion times of Retry and e is the number of alternative atomic
services. For the RB, NVP and Active strategies, there are
(e − 1) variations for each, which are a strategy with the top
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x (2 ≤ x ≤ e) best performing atomic services. Therefore, the
number of candidates for a non-abortable task ti in a service
plan can be calculated by mi=atomicService+basicFTStrategies
= e + ((r − 1)e + 3(e − 1)). In reality, the values of r and e
are usually very small, making the total number of candidates
acceptable. If there are too many atomic services (the value if e
is too large), we can reduce the value of e by only considering a
subset of the best performing candidates based on their utility
values.

By solving the optimal candidate selection problem, the op-
timal candidates are selected for the tasks. In case the selec-
tion result for a task is an atomic service, it indicates that no
fault tolerance strategy is required for this task, which may be
because that the task is abortable or the service candidate is
already good performing enough. Our selection framework is
extensible, where the current candidates can be updated and
new candidates (e.g., new atomic services or new fault tolerance
strategies) can be added easily in the future without fundamen-
tal changes.

8.4.3 Optimal Selection with Local Constraints

Local constraints (LCi = {lcki }ck=1) specify user requirements for
a single task ti in a service plan. For example, response-time of
the task ti has to be smaller than 1000 milli-seconds is a local
constraint. For each task, there are c local constraints for the
c QoS properties, respectively. Since service users may only set
a subset of all the local constraints, the untouched local con-
straints are set to be +∞ by default, so that all the candidates
meet the constraints. The optimal candidate selection problem
for a single stateless task ti with local constraints can be formu-
lated mathematically as:

Problem 1. Minimize:
mi∑
j=1

uijxij
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Subject to:

•
mi∑
j=1

qkijxij ≤ lcki (k = 1, 2, ..., c)

•
mi∑
j=1

xij = 1

• xij ∈ {0, 1}

In problem 1, xij is set to 1 if the candidate sij is selected
and 0 otherwise, qij = (qkij)

c
k=1 is the QoS vector of candidate

sij, uij is the utility value of the candidate sij calculated by Eq.
(8.3), and mi = |Si| is the number of candidates of task ti.

To solve Problem 1, for a task ti, we first use the formulas in
Table 8.1 to calculate the aggregated QoS values of the fault tol-
erance strategy candidates. Then the candidates which cannot
meet the local constraints are excluded. After that, the utility
values of the candidates are calculated by Eq. (8.3). Finally,
the candidate six with the smallest (best) utility value will be
selected as the optimal candidate for ti by setting ρi = x, where
ρ is the index of the optimal candidate for task ti.

In a service plan SP , a stateful task SFTi includes a set
of state-related tasks and the optimal candidate selection for
a single task is influenced by other state related tasks. For
example, we can assume a stateful task as: (1)Login, (2)Buy
a book, (3)Logout, and there are two candidates, i.e., Amazon
and Ebay, for this stateful task. If we select optimal candi-
dates for these three state-related tasks independently, the se-
lection results may be: (1)Ebay.login(), (2)Amazon.buybook(),
(3)Ebay.logout(). However, since the state-related tasks need to
maintain states across multiple tasks, it is impossible to login
in Ebay and buy books from Amazon. Therefore, the optimal
candidates for the state-related tasks of a stateful task should
be provided by the same provider, such as (1)Amazon.login(),
(2)Amazon.buybook(), (3)Amazon.logout().

Algorithm 6 is designed to select optimal candidates for a
service plan, which includes stateless tasks (SLT ) as well as
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Algorithm 6: Optimal Candidate Selection with LC
Input: Service plan SP , local constraints LC, candidates S
Output: Optimal candidate index ρ for SP .
nl=|SLT |; nf=|SFT |; n=nl+nf ; ni=|SFTi|; mi=|Si|;1

for (i = 1; i ≤ nl; i++) do2

for (j = 1; j ≤ mi; j++) do3

if ∀x(qxij ≤ lcxi ) then uij = utility(qij);4

end5

if no candidate meet lci then Throw exception;6

Select uix which has minimal utility value uij ;7

ρi = x;8

end9

for (i=nl + 1; i≤ n; i++) do10

for (j=1; j ≤ mi; j++) do11

if ∀x∀y(qxiyj ≤ lcxiy) then12

q = flowQoS(SP, qi1j , .., qinij);13

uij = utility(q);14

end15

end16

if no candidate meet lci then Throw exception;17

Select uix which has minimal utility value uij ;18

forall tasks in SFTi do ρik = x;19

end20

stateful tasks (SFT ). Algorithm 6 first selects optimal candi-
dates for the stateless tasks. Then, for each stateful task SFTi,
the overall QoS values of the whole service plan with different
candidate-sets (operations of the same Web service) are calcu-
lated by Algorithm 3, and the utility values of the whole service
plan with different candidate-set is calculated by Eq. (8.3). Fi-
nally, the candidate-set which meets all the local constraints
with the best utility performance will be selected as the optimal
candidate-set for SFTi.

8.4.4 Optimal Selection with Global Constraints

Local constraints require service users to provide detailed con-
straint settings for individual tasks, which is time consuming
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and requires good knowledge of the tasks. Moreover, local con-
straints cannot specify user requirements for the whole service
plan, such as the response-time of the whole service plan should
be smaller than 5000 milli-seconds. To address these drawbacks,
we employ global constraints (GC = {gc}ci=1) for specifying user
constraints for a whole service plan.

As shown in Section 8.3.4, a service plan may include multi-
ple execution routes. To ensure that the service plan meets the
global constraints, each execution route should meet the global
constraints. For determining optimal candidates for a service
plan under global constraints, the simplest way is employing an
exhaustive searching approach to calculate utility values of all
candidate combinations and select out the one which meets all
the constraints and with the best utility performance. However,
the exhaustive searching approach is impractical when the task
number or candidate number is large, since the number of can-
didate combinations

∏n
i=1mi is increasing exponentially, where

mi is the candidate number for task ti and n is the task number
in the service plan.

To determine the optimal candidates for a service plan un-
der both global and local constraints, we model the optimal
candidate selection problem as a 0-1 Integer Programming (IP)
problem in the following:

Problem 2. Minimize: ∑
ERk∈SP

freqk × utility(ERk) (8.4)

Subject to:

∀k,
∑

i∈ERk

∑
j∈Si

qyijxij ≤ gcy, (y = 2, 3, 4) (8.5)

∀k,
∑

i∈SRk

∑
j∈Si

qyijxij ≤ gcy, (y = 6, 8) (8.6)

∀k,
∏

i∈ERk

∏
j∈Si

(qyij)
xij ≤ gcy, (y = 1, 5, 7) (8.7)
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∀SFTi, xy1j = xy2j = ... = xynij
(tyi ∈ SFTi) (8.8)

∀i,
∑
j∈Si

xij = 1 (8.9)

xij ∈ {0, 1} (8.10)

In Problem 2, Eq. (8.4) is the objective function, where freqk
and utility(ERk) are the execution frequency and utility value
of the kth execution route, respectively. The detailed defini-
tion of utility(ERk) will be introduced in the later part of this
section. Eq. (8.5) is the global constraints for the price, popu-
larity and date-size (qy, y = 2, 3, 4), where the aggregated QoS
values of an execution route are the sum of all tasks within
the route. Eq. (8.6) is the global constraints for response-time
and overall response-time (qy, y = 6, 8), where the aggregated
QoS values of a sequential route are the sum of all tasks within
the route. For q6 and q8, all sequential routes should meet the
global constraints to make sure that every execution of the ser-
vice plan meets the global constraints. Eq. (8.7) is the global
constraints for the availability, success-probability and overall
success-probability (qy, y = 1, 5, 7), where the aggregated QoS
values of an execution route are the product of all tasks within
the route. In Eq. (8.7), xij is employed as an indicator. If
xij = 0, then (qyij)

xij = 1, indicating that the candidate is not
selected. Eq. (8.8) is employed to ensure that a set of state-
related tasks (SFTi) will employ operations of the same Web
service (the same candidate index j). Eq. (8.9) and Eq. (8.10)
are employed to ensure that only one candidate will be selected
for each task in the service plan, where xij = 1 and xij = 0
indicate that a candidate j is selected and not selected for task
i, respectively.

In Integer Programming, the objective function and constraint
functions should be linear. Therefore, we need to transform
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Eq. (8.7) from non-linear to linear. By applying the logarithm
function to Eq. (8.7), we obtain a linear equation:

∀k,
∑
i∈ERk

∑
j∈Si

xijln(q
y
ij) ≤ ln(gcy)(y = 1, 5, 7) (8.11)

The objective function needs to be changed accordingly. We
define the execution route utility function in the new objective
function as:

utility(ERk) =
c∑

y=1

wy × q̃yERk
, (8.12)

where c is the number of QoS properties, wy is the user-defined
weight, and q̃yERk

is the aggregated QoS value of the execution
path, which can be calculated by:

q̃yERk
=


∑

i∈ERi

∑
j∈Si

xijln(q
y
ij), (y = 1, 5, 7)

∑
i∈ERk

∑
j∈Si

xijq
y
ij, (y ̸= 1, 5, 7)

(8.13)

In this way, the optimal fault tolerance strategy selection
problem is formulated as a 0-1 IP problem. Using the well-
known Branch-and-Bound algorithm [85], the selection problem
can be solved and the optimal candidates can be identified for
a service plan.

8.4.5 Heuristic Algorithm FT-HEU

For a service plan, a solution is a set of candidate selection re-
sults for the tasks in the service plan. A solution is a feasible
solution if the selected candidates meet all its corresponding lo-
cal constraints as well as all the global constraints. Otherwise,
it is an infeasible solution. The IP problem is NP-Complete [25].
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Algorithm 7: EH-BABHEU
Input: SP , GC, LC, S
Output: ρ // Optimal candidate indexes for SP

// Find an initial solutions

ρ = findInitSol(SP , GC, LC, S);1

// Get aggregated QoS of the solution

qall = flowQoS(SP, q1ρ1 , ..., qnρn);2

// If infeasible, change solution

while ∃x( q
x
all
gcx > 1) do3

S′=findExCandidate(SP , GC, LC, S, ρ);4

if |S′| == 0 then5

throw exception FeasibleSolutionNotFound6

else7

forall sxy ∈ S′ do ρx = y;8

end9

qall = flowQoS(SP, ρ1, ..., ρn);10

end11

// If feasible, upgrade the solution

repeat12

ρ=feasibleUpgrade(SP , GC, LC, S, ρ);13

until ρ do not change ;14

return ρ;15

The problem solving time increases exponentially with the prob-
lem size, which makes runtime reconfiguration impractical for
complex service plans. To speedup the selection procedure, we
design a heuristic algorithm FT-HEU in Algorithm 7, which in-
cludes the following steps:

Step 1 (lines 1): The function findInitialSol() is invoked
to find an initial solution for the service plan SP .

Step 2 (lines 2-11): The Function flowQoS() is employed
to get the aggregated QoS values of the initial solution. If the
initial solution cannot meet the global constraints (infeasible),
then the findExCandidate() function is invoked to find an ex-
changeable candidate to improve the solution. If such an ex-
changeable candidate cannot be found, then a FeasibleSolution-
NotFound exception will be thrown to the user. Otherwise, the
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above candidate-exchanging procedures will be repeated until a
feasible solution becomes available.

Step 3 (lines 12-15): Iterative improvement of the feasible
solution by invoking the feasibleUpgrade() function. The final
solution will be returned when the values of ρ do not change in
the iterations.

In the following, we provide detailed introduction on the func-
tions of these steps.

Find Initial Solution: findInitialSol()

Function findInitSol(SP , GC, LC, S)

n=|SLT |+|SFT |; mi=|Si| ;1

Initialization;2

for (i=1; i ≤ n; i++) do3

for (j=1; j ≤ mi; j++) do4

qall = flowQoS(SP, ρ1, ..., ρi−1, j);5

wt =

{
1
c if qall = 0
qtall
gct /

∑c
k=1

qkall
gck

if qall ̸= 0
;

6

if ∀x(qxij ≤ lcxij&&qxall ≤ gcx) then7

λij =
∑c

t=1wt
qtall
gct ;8

end9

end10

λix = min{λij};11

ρi = x;12

end13

return ρ;14

The Initalization operation in the findInitialSol() function
sets the QoS values of all the tasks to be the optimal values
(e.g., response-time to be 0, availability to be 1, etc.), so that
the function flowQoS() can be employed for calculating the
accumulated QoS values for the selected tasks. For example,
when the candidates first two tasks are selected, flowQoS()
will return accumulated QoS values of the first two tasks, since
the values of other unselected tasks are set to be optimal.
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For ease of presentation, we present a stateful task (a set
of state-related tasks) in the same format as a stateless task.
For example, in the findInitialSol() function, when a task is
a stateful task SFTi, qxij ≤ lcxij represents that all the state-
related tasks meet their corresponding local constraints, qall =
flowQoS(SP, ρ1, ..., ρi−1, j) means the accumulated QoS values
of the service plan employing the jth candidates for all the
related-tasks in SFTi, and ρi = x represents that the xth candi-
dates are selected for all the state-related tasks of SFTi.

An accumulated feasible value λij is defined to quantify the
feasibility degree of the jth candidate for the ith task:

λij =
c∑

t=1

wt
qtac
gct

wt =

{
1
c if qac = 0
qtac
gct/

∑c
k=1

qkac
gck

if qac ̸= 0

, (8.14)

where qkac is the accumulated QoS values of the selected can-
didates, wt is the weight for the corresponding QoS property,
and a smaller λij value means the candidate is more suitable.
wt is calculated based on the accumulated values of different
QoS properties. When the value of qkac

gck
is near 1, it means that

the QoS property qk is more dangerous and needs more atten-
tion (larger wk). For a task in the service plan, by calculating
the λ values of all its candidates, we can determine a suitable
candidate for the task as initial solution.

Find Exchange Candidate: findExCandidate()

If the initial solution is infeasible, the function findExCandidate()
will be invoked to find an exchangeable candidate. For an infea-
sible solution, the infeasible factor, which is calculated by

qxall
gcx , is

employed to quantify the degree of infeasibility of the infeasible
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Function findExCandidate(SP , GC, LC, S, ρ)

n=|SLT |+|SFT |; mi=|Si|; S′ = {};1

qold = flowQoS(SP, ρ1, ..., ρn);2

// the maximum infeasible factor
qxold
gcx = max(

q1old
gc1

, ...,
qcold
gcc );3

for (i=1; i ≤ n; i++) do4

for (j=1; j ≤ mi; j++) do5

if j==ρi then Continue;6

if ∃y(qyij > lcyij) then Continue;7

qnew = flowQoS(SP, ρ1, .., j, .., ρn);8

if ( q
x
new
gcx <

qxold
gcx ) and ∀y( q

y
new
gcy ≤ qyold

gcy &&y ̸= x&&
qyold
gcy > 1 and9

∀y( q
y
new
gcy ≤ 1&&

qyold
gcy ≤ 1) then

gij =
qxiρi

−qxij
gcx ;10

end11

end12

end13

gxy = max{gij};14

Add sxy to S′;15

return S′;16
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solution. The exchangeable candidate should meet the following
requirements:

• It will decrease the highest infeasible factor of the quality

properties, qxnew
gcx <

qxold
gcx , where

qxold
gcx = max(

q1old
gc1 , ...,

qcold
gcc ) and

qxold
gcx > 1.

• It will not increase the infeasible factor of any other pre-

viously infeasible properties, ∀y(q
y
new

gcy ≤ qyold
gcy ), where

qyold
gcy > 1

and y ̸= x.

• It will not make any previously feasible quality properties

become infeasible, ∀y(q
y
new

gcy ≤ 1), where
qyold
gcy ≤ 1.

If there are more than one exchangeable candidates which
meet the above requirements, we will select the one with best
infeasible factor improvement, which can be calculated by:

gij =
qxiρi − qxij

gcx
, (8.15)

where gij represents the infeasible factor improvement of chang-
ing the value of ρi to j, qxiρi and qxij are the QoS values of the
original candidate and the new candidate, respectively, x is the
QoS property with maximum infeasible factor.

Feasible Upgrade: feasibleUpgrade()

If the solution is feasible, the feasibleUpgrade() function is in-
voked to iteratively improve the feasible solution. In the func-
tion, the QoS saving vij is defined as:

vij =
c∑

k=1

wk
qknew − qkold

gck
, (8.16)

where wk is also introduced in Eq. (8.14). Utility gain presents
the utility value improvement of the new solution comparing
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Function feasibleUpgrade(SP , GC, LC, S, ρ)

n=|SLT |+|SFT |; mi=|Si|;1

qold = flowQoS(SP, ρ1, ..., ρn);2

uold = utility(qold);3

for (i=1; i ≤ n; i++) do4

for (j=1; j ≤ mi; j++) do5

if j==ρi then Continue;6

if ∃x( qx

lcxij
> 1) then Continue;7

qnew = flowQoS(SP, ρ1, .j.., ρn);8

if ∃x( q
x
new
gcx > 1) then Continue;9

uij = utility(qnew);10

wt =

{
1
a if qold = 0
qtold
gct /

∑c
t=1

qtold
gct if qold ̸= 0

;
11

vij =
∑c

t=1wt
qtnew−qtold

gct ;12

end13

end14

if ∃xy(uxy < uold&&vxy < 0&&vxy = min(vij)) then15

ρx = y;16

else if ∃xy(uxy < uold&&
uold−uxy

vxy
= max(

uold−uij

vij
)) then17

ρx = y;18

end19

return ρ20
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with the old solution, which can be calculated by utility(qold)−
utility(qnew).

The feasible upgrade procedure includes the following steps:
(1) If there exists at least one feasible upgrade (unew < uold)
which provides QoS savings vij < 0, the candidate with maximal
QoS savings (minimal vij value) is chosen for exchanging; and (2)
if no feasible upgrade with QoS saving exists, then the candidate
with maximal utility-gain per QoS saving is selected, which is
calculated by

uold−uxy

vxy
.

Computational Complexity of FT-HEU

The FT-HEU algorithm has convergence property, since (1) Step
2 never makes any feasible property to become infeasible or in-
feasible property to be more infeasible, (2) for each exchange
in Step 2, the property with the maximal infeasible factor will
be improved, and (3) Step 3 always upgrades the utility value
of the solution, which cannot cause any infinite looping, since
there are only a finite number of feasible solutions.

For calculating the upper bound of the worst-case computa-
tional complexity of the FT-HEU algorithm, we assume there
are n tasks, m candidates for each task and c quality proper-
ties. In Step 1, when finding the initial solution, the computa-
tion of λij is O(nm). In Step 2, finding an exchange candidate
requires maximal n(m − 1) calculations of the alternative can-
didates, where each calculation will invoke a function flowQoS
with computation complexity of O(nc). Therefore, the com-
putation complexity is O(n2(m − 1)c) for each exchange. The
findExCandidate() function will be invoked at most n(m −
1) times since there are at most (m − 1) upgrades for each
task. Therefore, the total computation complexity of Step 2
is O(n3(m− 1)2c).

In Step 3, for each upgrade, there are n(m − 1) iterations
for the alternative candidates. For each iteration, the flowQoS
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function with computation complexity O(nc) is invoked. Thus,
the computation complexity of each upgrade is O(n2)(m− 1)c.
Since there are maximal n(m−1) upgrades for the whole service
plan, the total computation complexity of Step 3 is O(n3(m −
1)2c). Since Step 1, Step 2 and Step 3 are executed in sequence,
the combined complexity of the whole EH-HEU algorithm is
O(n3(m− 1)2c).

8.4.6 Dynamic Reconfiguration

The service-oriented environment is highly dynamic, where the
QoS performance of candidates may change unexpectedly due
to internal change or workload fluctuations. Moreover, new can-
didates may become available and requirements of service users
may also update. Dynamic reconfiguration of the optimal fault
tolerance strategy make the system more adaptive to the dy-
namic environment. The reconfiguration procedures are as fol-
lows: (1) the initial optimal fault tolerance strategy is calculated
by employing our optimal candidate selection approach; (2) the
service-oriented application invokes the remote Web services
with the selected fault tolerance strategy, and records their ob-
served QoS performance (e.g., response-time, failure-rate, etc.)
of the invoked Web services; (3) the service-oriented application
reconfigures the optimal candidates for the tasks when the per-
formance of system is unacceptable, the renewal time is reached,
new candidates become available, or the user requirements are
updated.

By the above reconfiguration approach, service users can han-
dle the frequent changes of the candidates as well as the user
requirements. When a Web service undergoes a major internal
upgrade with explicit version number change, it will be treated
as a new service candidate. The reconfiguration frequency is
application-dependent and controlled by the service users, which
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can be further investigated but is out of the scope of this chapter.

8.5 Experiments

In this section, we first illustrate our optimal fault tolerance
strategy selection approach by a case study. Then, the compu-
tational time and selection accuracy of various selection algo-
rithms are studied extensively.

8.5.1 Case Study 11t1 t3t2 t5 t62t4Book search Login LogoutAdd a book    SaveEdit personal info
Figure 8.4: Service Plan for Case Study

In this section, we illustrate the optimal fault tolerance strat-
egy selection procedure via a case study: A service user in
China (CN) plans to build a simple service-oriented application
as shown in Figure 8.4, where t1 is a stateless task and t2–t6 is a
stateful task that includes five state-related tasks. There are six
functionally equivalent Amazon Web services, which are located
in US, Japan, Germany, Canada, France and UK, respectively,
that can be employed for executing the tasks in Figure 8.4.

Researchers in different geographic locations (NASA@US, CUHK@HK,
NTU@SG, SYSU@CN, NTHU@TW, and SUT@AU) are invited
to run our WS-DREAM evaluation program for conducting real-
world experiments. Benefiting from the user-collaboration fea-
ture of our Web service evaluation mechanism, the user in CN
can obtain the Web service QoS information contributed by
other service users as shown in Table 8.4 and Table 8.5. In
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these two tables, the aus,...,auk in the first column present the
six functionally equivalent Amazon Web services in different ge-
ographic locations. In the first row of the tables, Q presents
the QoS properties, CN,...,HK present the locations of the ser-
vice users, and Avg presents the overall response-time (ort) and
overall success-probability (osp).

Table 8.4: QoS Values of the Stateless Task (t1)
WS Q CN AU US SG TW HK Avg

rt 3659 1218 121 544 934 491 681
aus sp 0.819 1.000 1.000 1.000 1.000 0.977 0.989

rt 3310 1052 338 472 824 469 686
ajp sp 0.788 1.000 1.000 1.000 1.000 0.980 0.987

rt 3233 1476 303 596 1178 612 846
ade sp 0.813 1.000 1.000 1.000 1.000 0.973 0.987

rt 3530 1190 130 456 916 509 714
aca sp 0.807 1.000 1.000 1.000 0.998 0.983 0.988

rt 3289 1309 306 600 1193 630 864
afr sp 0.844 0.998 1.000 1.000 1.000 0.974 0.989

rt 3550 1326 305 671 1178 633 862
auk sp 0.837 0.997 1.000 1.000 1.000 0.971 0.988

Table 8.4 and Table 8.5 show that: (1) response-time per-
formance is greatly influenced by the communication links (e.g.,
the response-time performance of the user in US is much better
than the user in CN in our experiment); (2) optimal service can-
didates are different from user to user (e.g, aus for US and ajp
for AU ); and (3) invocation success-probabilities are also differ-
ent from user to user. In our experiment, the success-probability
of US and SG are 100%, while the success-probability of CN is
less than 85% for the stateless task (t1) and less than 50% for
the stateful task (t2–t6). The success-probability of the stateful
task is much lower, since the stateful task is counted as a success
only if all the state-related tasks t2–t6 are success. These exper-
imental results show the influence of the unpredictable Internet
on the dependability of SOA systems and indicates the necessity
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Table 8.5: Aggregated QoS Values of the Stateful Task (t2–t6)
WS Q CN AU US SG TW HK Avg

rt 16434 5625 717 2708 4166 2328 3297
aus sp 0.450 1.000 1.000 1.000 1.000 0.972 0.940

rt 14763 4980 1751 2505 3730 2058 3335
ajp sp 0.450 1.000 1.000 1.000 0.998 0.973 0.944

rt 14640 6718 1646 3038 5209 2730 3985
ade sp 0.438 1.000 1.000 1.000 1.000 0.972 0.935

rt 15602 5527 1403 2488 4150 2305 3427
aca sp 0.452 1.000 1.000 1.000 0.996 0.979 0.944

rt 14560 5983 2211 3009 5175 2862 4045
afr sp 0.496 0.992 1.000 1.000 1.000 0.969 0.937

rt 15898 6066 1630 3044 5209 2819 4048
auk sp 0.484 0.988 1.000 1.000 0.998 0.970 0.939

of selecting optimal fault tolerance strategy for different service
users based on the their observed Web service QoS performance.

To determine the optimal fault tolerance strategy, we set the
weights of the eight QoS properties proposed in Section 8.3.1 as:
(0, 0.2, 0, 0.2, 0.2, 0.2, 0.1, 0.1). The weights of q1 (availability)
and q3 (popularity) are set to be 0, since the service provider
Amazon does not provide these information. Since the six Ama-
zon Web Services are independent systems and t2–t6 are state-
related tasks, the optimal candidates for these state-related tasks
should be provided by the same Web service. After calculating
the candidate utility values, the FT-BAB algorithm is employed
to determine the optimal candidates for the stateless and state-
ful tasks. The selection results are as follows: an active strategy
with the top 2 performing replicas for t1, and an active strategy
with 3 parallel branches for the stateful tasks t2–t6. This result
is reasonable, since the user in CN is under poor network con-
dition in the experiment, and the active strategy can improve
response-time performance (by employing the first response as
final result and improve success-probability since it fails only if
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Figure 8.5: Performance of Computation Time

all the replicas fail.
By employing our proposed optimal fault tolerance selection

approach, service users can determine optimal fault tolerance
strategies for both the stateless and stateful tasks easily. More-
over, the optimal candidates can be easily and dynamically re-
calculated when the Web service QoS performance is updated.

8.5.2 Performance Study

To study the performance of different selection algorithms (i.e.,
FT-Local, FT-ALL, FT-BAB, and FT-HEU), we randomly se-
lect different number of Web services to create service plans
with different compositional structures and execution routes.
FT-Local is the selection algorithm with local constraints pro-
posed in Algorithm 6, FT-ALL represents the exhaustive search-
ing approach introduced in Section 8.4.4, FT-BAB represents
the Branch-and-Bound algorithm for solving the IP problem,
and FT-HEU represents the heuristic algorithm shown in Algo-
rithm 7. All the algorithms are implemented in the Java lan-
guage and the LP-SOLVE package (lpsolve.sourceforge.net) is
employed for the implementation of FT-BAB algorithm. The
configurations of the computers for running the experiments are:
Intel(R) Core(TM)2 2.13G CPU with 1G RAM, 100Mbits/sec
Ethernet card, Window XP and JDK 6.0.
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Figure 8.6: Performance of Selection Results

Computation Time

Figures 8.5(a), 8.5(b), and 8.5(c) shows the computation time
performance of different algorithms with different number of the
tasks, candidates and QoS properties, respectively. The exper-
imental result shows: (1) the computation time of FT-ALL in-
creases exponentially even with very small problem size (the
curve of FT-ALL is almost overlap with the y-axis); (2) the
computation time of FT-BAB is acceptable when the problem
size is small; however, it increases quickly when the number of
tasks, candidates and QoS properties is large; (3) the computa-
tion time of FT-HEU is very small in all the experiments even
with large problem size; and (4) the computation time perfor-
mance of FT-Local is the best (near zero); however, FT-Local
cannot support global constraints.

Selection Results

Figure 8.6 compares the selection results of FT-BAB and FT-
HEU algorithms with different number of tasks, candidates and
QoS properties. The y-axis of Figure 8.6 is the values of Util-
ity(BAB)/Utility(HEU), which are the utility ratios of the two
algorithms, where the value of 1 means the selection results by
FT-HEU is identical to the optimal result obtained by FT-BAB.

Figures 8.6(a) and 8.6(b) show the experimental results of
FT-BAB and FT-HEU with different number of tasks and can-
didates, respectively. The experimental results show that: (1)
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under different number of QoS properties (10, 20, 30 and 40 in
the experiment), the utility values of FT-HEU are near FT-BAB
(larger than 0.975 in the experiment) with different number of
tasks and candidates; (2) with the increasing of the task num-
ber, the performance of FT-HEU becomes better. Figure 8.6(c)
shows the selection result of FT-BAB and FT-HEU with dif-
ferent number of QoS properties. The result shows that per-
formance of FT-HEU is steady with different number of QoS
properties.

The experimental results show that FT-HEU algorithm can
provide near optimal selection result with excellent computa-
tion time performance even under a large problem size. The
FT-HEU algorithm enables dynamic fault tolerance strategy
reconfiguration. FT-HEU can be employed in different environ-
ments, such as real-time applications (requiring quick-response),
mobile Web services (with limited computation resource), and
large-scale service-oriented systems (with large problem size).

8.6 Summary

In this chapter, we have proposed a fault tolerance strategy se-
lection framework for building dependable service-oriented sys-
tems. The main features of this framework are: (1) an extensible
QoS model of Web services, (2) various fault tolerance strategies,
(3) a QoS composition model of Web services, (4) a consistency
checking algorithm for complex service plans, and (5) various
QoS-aware algorithms for optimal fault tolerance strategy de-
termination for both stateless and stateful Web services.

In this chapter, we employ the average values of historical
QoS data for making selection, more comprehensive investiga-
tions will be made on other characteristics of the QoS value dis-
tributed, such as standard deviation, worst performance, mov-
ing average, etc. When calculating the aggregated execution
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success-probability, we assume that the failures are independent
of each other, more studies will be carried out on the correlative
failures of different Web services. Our on-going research also
includes the design of state synchronization mechanisms for the
alternative stateful Web services, and the investigations of more
QoS properties of Web services.

2 End of chapter.



Chapter 9

Conclusion and Future Work

9.1 Conclusion

The thesis consists of three parts: the first part deals with Web
service QoS evaluation, the second part focuses on Web service
QoS prediction, and the third part concentrates on QoS-aware
fault-tolerant Web services. All of the approaches proposed in
this thesis are aiming at improving QoS management of Web
services.

In the first part, we present a distributed QoS evaluation
mechanism for Web services. In order to speedup Web service
evaluation, the service users are encouraged to collaborate with
each other and share their individually obtained evaluation re-
sults. Employing this evaluation mechanism, several real-world
Web service evaluations are conducted. The obtained Web ser-
vice QoS values are released as archival research datasets for
other researchers.

In the second part, we propose three QoS prediction ap-
proaches for Web services. We first combine the user-based and
item-based collaborative filtering approaches to achieve higher
prediction accuracy. After that, a neighborhood integrated model-
based approach is proposed. The experimental results show that
this model-based approach provides higher prediction accuracy
than neighborhood-based approaches. Moreover, this model-

181
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based approach is scalable to very large datasets, since compu-
tation complexity is much smaller than that of neighborhood-
based approaches. Finally, we propose a ranking-based QoS
prediction approach for ranking the Web services. Instead of
predicting the QoS values, our ranking-based approach predict
the Web services QoS ranking. The experimental results show
that the proposed ranking-based approach achieves better pre-
diction accuracy in the ranking scenarios.

In the third part, we conduct two studies on fault-tolerant
Web services. We first design an adaptive fault tolerance strat-
egy for Web services, which can be dynamically and automat-
ically updated based on the Web service QoS values as well as
the user requirements. After that, we present a systematic and
extensible framework for selecting the optimal fault tolerance
strategies for Web services. Our selection framework can be
employed for both stateless and stateful Web services.

In general, the goal of this thesis is to evaluate, predict, and
use Web service QoS as efficient and effective as possible. Our re-
leased real-world Web service datasets provide valuable research
resource for other researchers.

9.2 Future Work

There are several research directions which require further in-
vestigations in the future.

For the Web service QoS evaluation, we plan to design more
incentive mechanism to encourage service users to share their
observed Web service QoS values. Moreover, since the Web ser-
vices are highly dynamic, their QoS values may change over
time. More investigations are required to study the temporal
correlations and periodicity features of the Web service QoS val-
ues.

For the Web service QoS value prediction, we plan to con-
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duct more research on the correlation and combination of differ-
ent QoS properties, since our current approaches consider dif-
ferent QoS properties independently. Another direction worthy
of investigation is exploring the relationship between user in-
formation and Web service information, since our studies show
that combining these two kinds of information generates better
prediction accuracy.

For the QoS-aware fault-tolerant Web services, more studies
will be carried out on the correlative failures of different Web
services, since our current approaches assume that failures of
different Web services are independent of each other. More re-
search can be conducted on the design of state synchronization
mechanisms for the alternative stateful Web services.

Strongly promoted by the leading industrial companies, cloud
computing is quickly becoming popular in recent years. In cloud
computing, shared resources, software and information are pro-
vided to computers and other devices on-demand, like a public
utility. QoS management of cloud computing (e.g., cloud QoS
evaluation, prediction, QoS-aware fault-tolerant cloud, etc.) is
becoming more and more important. We plan to conduct more
studies and extend some of our work to cloud computing.

2 End of chapter.
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