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Abstract of thesis entitled:

Coverage-oriented Network Scheduling and Location-directed

Data Collection: Towards Energy-efficient Wireless Sensor Net-

works

Submitted by ZHOU, Yangfan

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in September 2009

This thesis investigates various techniques to achieve energy-

efficient Wireless Sensor Networks (WSNs) applied in environ-

mental event detection and data collection.

We focus on two coverage-oriented problems for event moni-

toring WSNs. First, we study how to divide sensor nodes into a

maximum number of disjoint subsets and each subset can main-

tain a required level of event coverage. This problem is impor-

tant in prolonging the network lifetime since each subset can

hence be scheduled to work in turn. We address this problem
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with MAXINE (MAXimizing-ι Node-redundancy Exploiting).

By maximizing ι, a fan-out index that measures the normalized

minimum distance between the nodes, MAXINE well reduces

the coverage redundancy of each subset so as to maximize the

subset number. Second, we study how to schedule sensor nodes

to enable downtime-free migration. We show that the system

downtime, caused by system migration tasks such as software

reprogramming, can be effectively eliminated by partitioning the

sensor nodes into subsets and scheduling them to perform mi-

gration tasks successively with the rest still performing normal

services. Several algorithms are then presented to attack such a

partitioning problem.

For data collection WSNs, we provide a waypoint-based Ge-

ographic Data Reporting Protocol (GDRP), a light-weighted

location-directed data forwarding scheme. GDRP adopts an in-

telligent strategy to select a best set of waypoints via which

packets can well circumvent holes and barriers. It can thus re-

duce the energy of data forwarding.

Besides data forwarding, we also investigate contour map-

ping, an important technique to in-network-abstract the infor-

mation of a monitored field. We design an energy-efficient On-

demand Active Contour Service (OACS). OACS regresses the
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field intensity function with kernel Support Vector Regression

based on the sensor readings and the locations of the sensor

nodes. Through an active and progressive learning algorithm,

OACS determines the best set of nodes that should be turned on

for obtaining sensor readings. It can hence accommodate a wide

range of contour line/map precision requirements adaptively.

We verify our proposed protocols and algorithms with exten-

sive simulation-based experiments, and the results confirm their

advantages in achieving energy-efficient WSNs.

iii



學位論文摘要 
 
學位論文題目： 
面向網路覆蓋的節點調度優化與基於位置信息的節點資料獲取：無線傳感器網路中

的若干節能問題研究 
提交人：周揚帆 
學位：哲學博士 

香港中文大學，二零零九年九月 

 
本文研究無線傳感器網路在事件監測和數據收集應用中的若干節能問題。 
 
對於無線傳感器網路在事件監測的應用，本文研究兩個面向網路覆蓋的節點調度優

化問題。第一，我們研究如何把網路節點分成若干組，同時每組節點都能獨立保證

所需的網路覆蓋指標。根據這個分組結果，我們可以做節點調度，使得每組節點可

單獨工作而其他的組都可以進入節能狀態。很明顯，組數越多，網路可持續工作的

時間越長。因此，我們提出一個稱為 MAXINE 的算法，此算法通過優化一個度量點

的分散性的指標來減少每組的節點冗餘，并據此來優化組數。第二，我們研究如何

調度節點來實現在軟件升級過程中無線傳感器網路還能提供無間歇事件監測服務。

我們指出可以通過分組升級的方式來避免軟件升級導致的系統暫停工作。具體做法

是通過將網路分成若干組，讓每組依次做軟件升級，而其他各組還維持必需的事件

監測服務。為此，我們提出幾個演算法來實現這樣一個分組調度問題。 
 
對於無線傳感器網路在数据收集的應用，我們設計了一個稱為 GDRP 的用節點位置

做導向的数据傳輸協定。GDRP 用一種智能的路點算法來規避網路中的障礙和空

洞，從而縮短傳輸路徑達到節能的效果。 另外，除了数据收集，我們還研究了如何

用等值線圖演算法來實現在網路內對傳感器数据的壓縮，我們設計了一個叫 OACS
的等值線圖算法，OACS 根據節點的讀數和位置用支持向量機做回歸來得到等值線

圖。根據不同的用戶輸入的等值線圖的精度要求，OACS 通過一個主動節點選擇算

法優化出一組需要工作的傳感器節點，而實現節能的效果。 
 
大量的仿真實驗驗證了以上的協議和算法。其結果表明，這些協議和算法有效達到

節省無線傳感器節點電池損耗的設計目標。  
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Chapter 1

Introduction and Background Study

1.1 Wireless Sensor Networks

Recent advances in sensors, wireless technologies, and microcon-

trollers have enabled the integration of these components into

one tiny battery-powered device [5, 49, 76, 83]. Such tiny de-

vices, often referred to as wireless-integrated sensor nodes, or in

short, sensor nodes, can be in-situ deployed to detect certain en-

vironmental events or collect specific environmental data with

their physical sensors. The sensor nodes are capable of form-

ing a wireless sensor network (WSN) with a bunch of layered

standardized protocols, via which the sensor nodes can process

the environmental data collaboratively, and convey the data to

a data sink with multi-hop wireless communications [3, 21, 30].

In-situ sensing with WSNs has long been advocated as a vi-
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able method for environmental event detection and data col-

lection due to their low costs in implementation, deployment,

and maintenance [71, 72]. This section provides a systematic

overview of the in-situ sensing systems with WSNs. We will

first examine the hardware implementations of a typical wireless-

integrated sensor node. Then, we will demonstrate the architec-

ture of a general WSN, which is followed by a summary of the

major characteristics of WSNs.

1.1.1 Wireless-integrated Sensor Nodes

Early implementations of sensor nodes include the µAMPS sen-

sor nodes [76], the WINS sensor nodes [5, 83], the XSM sensor

nodes [28, 33], and the MICA Mote sensor nodes [49]. The

hardware architectures of these implementations are generally

the same, which are followed by most of the current sensor node

implementations. Figure 1.1 overviews the typical hardware ar-

chitecture adopted by most of the state-of-the-art low-end sensor

nodes (e.g., IRIS Mote [20]). It contains the following compo-

nents:

• A Microcontroller Unit (MCU). In general, the MCU adopts

the Harvard architecture, where the storage and signal path-

ways for instructions and data are separated. The MCU
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RAM

Processor

AC/DC Convertor

Sensor

Sensor

Sensor

Batteries
Radio

Transceiver

EEPROM

Flash Memory

Antenna

Microcontroller Unit

Figure 1.1: Typical hardware architecture of sensor node

processes the sensor data, controls and monitors the be-

haviors of the sensor node, and runs the required software

such as the networking protocols. The MCU contains what

follows:

– A processor, which takes charge of the node’s control

and computation operations. Its working frequency

ranges from several to tens of MHz.

– An EEPROM, which saves the program codes. Its ca-

pacity is several KBytes.



Chapter 1. Introduction and Background Study 4

– A RAM, which saves the program run-time data. Its

capacity is several KBytes.

– A flash memory, which can be flexibly used to cache the

sensor data or save the program codes. It has a rela-

tively larger capacity, e.g., 128 KBytes for ATmega128,

an MCU largely adopted by the typical low-end sensor

nodes [20].

• One or more physical sensors. Examples of sensors include

thermoelectrical sensors, photosensitive sensors, barometric

sensors, and humidity sensors to measure the environments;

acoustic sensors to capture the sounds of interest; infrared

sensors to capture the existence of the objects of interest,

and seismic sensors to measure earth vibrations. The types

of sensors employed are determined by the applications of

the in-situ sensing tasks.

• An AC/DC convertor, which converts analog sensor out-

puts to digital signals so that it can be read and processed

by the MCU.

• A radio transceiver, which is IEEE 802.15.4-compliant usu-

ally. It works on 2.4 GHz frequency and its communication

range is tens of meters.
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• The power supply unit, which consists of two AA batteries.

The size of a typical sensor node is comparable to a matchbox.

Figure 1.2 shows the IRIS Mote, a typical commercial sensor

node hardware platform [20].

Figure 1.2: IRIS Mote: A typical low-end sensor node hardware platform

1.1.2 Networking Sensor Nodes

Individual sensor nodes are with low sensing, processing, and

communication capabilities due to their low-cost implementa-

tion and small size. Networking a large number of sensor nodes

can enhance the amount, as well as the accuracy, of the infor-

mation obtained by the sensor nodes [31, 32]. As a result, in

most proposed implementations of in-situ environmental sens-

ing with sensor nodes, a large number of sensor nodes are de-

ployed to form an ad hoc multi-hop wireless network with the

radio transceivers they are equipped. Such wireless networks are

referred to as WSNs [32].
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Figure 1.3: A representative WSN architecture

In WSNs, each sensor node supports a multi-hop routing al-

gorithm, through which the collected data of each node can be

conveyed to a data sink (as known as a base station). The data

sinks are usually more powerful devices with abundant compu-

tational capabilities, e.g., hand-held devices such as PDAs and

laptop computers. They are capable of communicating with

other computers or even connecting to the Internet. The sinks

are where the outside world obtains the data from the sensor

nodes and controls the behaviors of the sensor nodes. Figure

1.3 shows a representative WSN architecture [3].
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1.1.3 Characteristics of WSNs: A Summary

WSNs are similar to Mobile Ad Hoc NETworks (MANETs) as

they are both multi-hop wireless networks. But WSNs are very

different from traditional data networks including MANETs.

This section summarizes the major characteristics of WSNs.

Large-scale, unattended, and self-organizing networks

WSNs are usually with large scale and high node density. The

number of sensor nodes in a network may be several hundred

or even reach over a thousand. Such a large number of sensor

nodes usually work in a human-unattended manner after they

have been deployed. Moreover, in most WSN application sce-

narios, the physical locations of the sensor nodes cannot be pre-

determined. For example, the sensor nodes may be randomly

dropped by an aircraft in a human-inaccessible territory. Hence,

a WSN is required to function in a completely autonomous man-

ner. The WSN protocols should be self-organizing, which can

work without any manual configuration of each individual sensor

node.
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Resource-constraint sensor nodes

First, WSNs suffer from limited energy supply. Sensor nodes

are powered by small irreplaceable batteries. They are usually

working in an human-unattended manner, sometimes even in a

human-inaccessible territory [70, 23]. It is impractical to revive

a sensor node after its battery energy is drained. Hence, the

protocols for WSNs should be energy-efficient so as to extend

the network lifetime. Energy-efficiency must be a major design

consideration of the WSN protocols. Second, WSNs suffer from

low computational capacity. A sensor node has low memory

capacity (usually several KBytes [20]) and its computational

speed is very slow (usually by a CPU working in several MHz

frequency[20]) due to its low-cost design, small size, and energy

constraint. Simplicity is hence another design goal of the WSN

protocols.

Application-specific networks

A WSN may only need to satisfy specific application require-

ments, which is quite different to traditional general-purpose

networks. The protocol design in WSNs is not required to

achieve compatibility to the existing protocols for traditional

general-purpose networks. For example, unlike in MANETs, we
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do not have to build up an IP addressing mechanism for WSNs.

It is not necessary to confine the protocol stack design in WSNs

to traditional TCP/IP layering thought. In other words, the

protocols for WSNs can be totally new. With such flexibility,

We can optimize the WSN protocols based on the characteristics

of the applications running over the networks.

Location-aware networks

A global identity-based addressing mechanism, which is required

by traditional data networks, is unnecessary or even impractical

for WSNs. The applications of WSNs are mainly on environ-

mental data collections and event detections. They would gen-

erally care more about the sensor readings of some particular

locations or whether some specific events have occurred, rather

than which node is currently reporting data. Hence, it is usually

required that each in-network sensor node is aware of its geo-

graphic location as the location information is necessary to tag

the sensor data or to identify/locate physical events. Location

information is obtainable via some localization algorithms (e.g.,

that proposed in [10, 114]).
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In-network sensor data processing

Unlike in wired sensor networks where each sensor node is merely

with sensing functionality, in WSNs each sensor node is equipped

with an MCU. In-network data processing is hence possible in

WSNs, which can be employed to reduce the volume of the data

that need to be reported to the sink.

Stationary networks with one single, possibly mobile, sink

The network traffic feature of WSNs is different to MANETs

where every node may require to communicate with all the oth-

ers ones: traffic is usually in a peer-to-peer manner. In contrast,

WSN traffic is usually in a many-to-one manner. Many nodes

send data packets to one single sink. Moreover, the mobility fea-

ture of WSNs is different to MANETs. Unlike MANETs that

contain mobile devices, WSNs contain stationary sensor nodes.

But, the sink of a WSN may be a hand-held device such as a

PDA or a laptop computer. It may be mobile. For example,

it can be carried to the network area to collect the sensor data

hourly, and each time its location may be different.

The above features of WSNs are the reasons that many net-

work protocols for traditional data networks including MANETs

are not suitable for WSNs. We have to investigate a bunch of
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new network protocols and algorithms for data collection and

network organization in WSNs which take the above network

characteristics into account.

1.2 Applications of Wireless Sensor Networks

Since WSNs are application-specific networks, this section sur-

veys the WSN applications to better understand the design con-

siderations of WSN protocols.

Although the development of WSNs was originally motivated

by military applications such as battlefield surveillance, a great

variety of potential industrial and civilian WSN applications

have been proposed in recent years [87]. Although most of

the proposed applications of WSNs are only in experimental

phase and they just serve as prototypes and test-beds to help

researchers find out the challenges and verify the existing ideas,

real-world applications of WSNs are expected to flourish and

have a great impact in our life in a foreseeable future.

Example WSN applications include environmental monitor-

ing [24, 81, 93, 113] and measurements [121], habitat monitoring

[70], drink water quality monitoring [2, 25], industrial process

monitoring [60, 61], structure health monitoring [58, 82, 117], in-

truder detection [4], and vehicle classification and tracking [27,
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94]. Examples of other related applications include a biomedical

application which aims at turning artificial retina into reality

[92] and a “smart kindergarten” application which introduces

WSNs into childhood education [100]. These applications can

generally be classified into two categories based on their charac-

teristics, namely, event detection and data collection.

In an event detection WSN, each sensor node is responsible

for sensing the phenomena of interest around the node. The

network then coordinates to perform specific event detection

tasks, e.g., whether a certain type of vehicles are passing by

[27] or whether there is an intrusion event [4]. When an event

of interest is successfully detected, the network will report an

alarm to the sink. For such networks, maintaining the necessary

quality of event detection (i.e., coverage) in an energy-efficient

manner is a basic requirement. Forwarding sensor data, on the

other hand, is a light-weighted task since the traffic volume in

such an application is generally low.

For data collection WSN applications, the major task of the

WSNs is to stream the sensor data to a sink so that the sink

can instantly obtain the environmental information of interest.

In contrast to event-monitoring WSNs, data collection WSN

applications generally need to continuously report data to the
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sink. Hence, optimizing the data forwarding scheme is natu-

rally a major concern of such applications to achieve energy

efficiency. Furthermore, since the intensity of a physical field

being monitored is continuous in nature, the readings of nearby

sensor nodes are correlated. In-network data processing can be

employed to reduce such redundancy, and hence to lighten the

traffic from the sensor nodes to the sink, which can save the

energy consumption of data collection.

1.3 Thesis Scope and Contributions

This thesis investigates two major problems, namely, coverage-

oriented network scheduling and location-directed data collec-

tion, for event detection WSNs and data collection WSNs re-

spectively, to achieve energy-efficiency in WSN in-situ sensing.

This thesis is based on our publications in [128, 129, 130, 131,

135].

1.3.1 Coverage-oriented Network Scheduling

Since maintaining a necessary coverage quality is a basic re-

quirement for event detection WSNs, this thesis studies two im-

portant coverage-oriented network scheduling problems. The

first is how to divide a set of sensor nodes into a maximum
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number of disjoint subsets and each subset can cover the entire

network territory. Such a subset number actually indicates the

network life time, since the subsets can then be scheduled to

work in turn. We solve this problem with an effective geometric

algorithm MAXINE (MAXimizing-ι Node-redundancy Exploit-

ing). MAXINE is based on a fan-out index, namely ι, which

measures the normalized minimum distance between the sensor

nodes [126, 136]. We show that by maximizing ι, MAXINE well

exploits the coverage redundancy of each subset so as to maxi-

mize the number of subsets. The performance study of MAXINE

suggests that MAXINE achieves good coverage efficiency with

much lower computational cost. More importantly, it can be

easily extended to a distributed and localized implementation.

Second, we study how to schedule the sensor nodes to enable

downtime-free migration. Current sensor platforms are usually

equipped with reprogramming modules. System migration tasks

such as software reprogramming, however, will interrupt normal

sensing operations of a node and disable the network to detect

critical events, posing a severe threat to many sensitive event

detection applications. We show that such a system downtime

caused by the migration tasks can be effectively eliminated, by

partitioning the sensors into a given number of disjoint subsets
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and scheduling them to perform the migration tasks successively

with the rest still performing normal services. Several effective

algorithms are then presented and we further extend our solution

to a practical decentralized implementation. We demonstrate

that our algorithms achieve good balance between the sensing

quality and system migration time.

1.3.2 Location-directed Data Collection

For data collection WSNs, we study their two major tasks: data

forwarding and in-network data processing.

Since WSNs are generally location-aware networks, the loca-

tion information of the sensor nodes can be employed to design

data forwarding protocols in WSNs. Location-directed data for-

warding is favorable for WSNs due to its simplicity and low-

overhead. However, WSNs are usually subject to complicated

environmental factors. Network holes and barriers are inevitable

in practical deploying environments. A location-directed data

forwarding scheme should well tolerate holes and barriers energy-

efficiently. We hence specifically tailor a waypoint-based Geo-

graphic Data Reporting Protocol (GDRP). As a location-directed

forwarding scheme, GDRP is light-weighted and hence well suits

WSNs. But unlike other approaches that often find suboptimal
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paths, GDRP adopts an intelligent strategy to select a best set

of waypoints via which packets can efficiently circumvent holes

and barriers, and it can thus find better paths.

Besides data forwarding, how to process data in network is

also a critical issue in data collection applications, since this can

reduce the number of packets and thus save energy. As con-

tour mapping is a general technique to abstract the information

of a monitored field, we design an energy-efficient On-demand

Active Contour Service (OACS) for WSNs. OACS regresses

the field intensity function with kernel Support Vector Regres-

sion based on the sensor readings and locations of the sensor

nodes. It can adaptively accommodate a wide range of contour

line/map precision requirements: For applications of low preci-

sion, only a minimum set of nodes are scheduled in the on-duty

mode while others are sleeping for conserving energy. For ap-

plications of high precision, through an active and progressive

learning algorithm, OACS determines the best set of nodes that

should be turned on for improving the contour line/map pre-

cision. Our performance evaluation based on diverse realistic

models demonstrates that it can significantly conserve energy

for various application requirements.
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1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, we investigate

how to divide a set of sensor nodes into a maximum number

of disjoint subsets such that each subset can cover the entire

network territory. Chapter 3 studies how to schedule the sensor

nodes to enable downtime-free migration. Data forwarding is

investigated in Chapter 4, where we propose GDRP. Chapter 5

presents OACS. Finally, we conclude this thesis in Chapter 6.

2 End of chapter.



Chapter 2

Coverage-oriented Network Partitioning in

WSNs

Summary

This chapter addresses a critical coverage-oriented partitioning problem:

How to divide a set of sensor nodes into a maximum number of disjoint

subsets, so that each subset can cover the entire network territory. We

presents a fan-out index ι for geographically-located points, which mea-

sures the normalized minimum distance between the points. Maximizing

ι of the points makes their Delaunay triangulation graph be a lattice of

equilateral triangles. Such a structure achieves the lowest redundancy of

coverage if each point represents the center of a disc, and hence can be

a good measure of coverage efficiency for event detection wireless sen-

sor networks. With this fan-out index ι, we solve the coverage-oriented

partitioning problem through an effective geometric algorithm MAXINE

(MAXimizing-ι Node-redundancy Exploiting). We evaluate the perfor-

mance of MAXINE through extensive simulations and compare it with

existing algorithms. Our solution suggests that MAXINE achieves good

coverage efficiency yet with much lower computational cost.

18
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2.1 Overview

In WSNs, each on-duty node (i.e., a node that is performing

the sensing/communication task) is only responsible for sensing

the physical phenomena within the geographic region around

the node. With the individual sensor readings, the whole net-

work can coordinate to perform certain event detection tasks in

the entire network territory [32]. This motivates a new domain

of coverage-oriented network management issues, where main-

taining a certain degree of network coverage, i.e., a necessary

quality of the event detection, becomes the basic requirement.

It has long been known that to maintain efficient coverage (i.e.,

minimizing the number of the on-duty nodes needed for cover-

age maintenance), the on-duty nodes should be distributed as

evenly as possible [7, 57]. In other words, the on-duty nodes

should fan out well in the network territory. Unfortunately, it

remains unclear how the fan-out of a set of nodes can be evalu-

ated quantitatively.

We propose a fan-out index ι for a set of points [126, 136]. ι

is the minimum distance between each pair of points normalized

by their average distance [126, 136]. We find that maximizing

ι results in an equilateral triangle lattice of points if the points

are moveable. Such a structure gives the best coverage efficiency
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if each point represents a sensor node [7, 57, 115]. Hence, ι of

a set of nodes can serve as a good microscope to indicate the

coverage redundancy of the nodes. This suggests that the idea

of maximizing ι is applicable to the coverage-oriented problems

in WSNs. We demonstrates it through attacking a coverage-

oriented network partitioning problem, i.e., how to divide the

sensor nodes into disjoint subsets such that the subset number is

maximized, while each individual subset can maintain network

coverage.

The coverage-oriented network partitioning problem is im-

portant to WSN management. The low-cost implementations

and the field-working environments (which are sometimes even

hostile, e.g., in battle-field applications) of sensor nodes make

them subject to failures and permanent damages. As a result, a

WSN often contains many redundant nodes for backup purpose

to enhance fault tolerance. To prolong the network lifetime, the

sensor nodes are scheduled so that only a subset of them is on

duty to maintain an acceptable level of network coverage. Obvi-

ously, the number of the subsets determines the WSN lifetime,

and hence should be maximized.

This problem has been addressed through graph-theoretical

approaches in existing works (e.g., [13, 14]). These solutions,
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however, suffer from high computational complexities that do

not suit WSNs well. In contrast, we address this problem in a

geometric perspective by greedily maximizing the ι index of the

nodes in each subset. Through extensive simulation studies with

different sensor coverage models (both a Boolean model and a

collaborative probabilistic model), we demonstrate that our ap-

proach achieves comparably coverage efficiency with much lower

computational cost. Moreover, unlike the existing schemes, our

approach is easy to be implemented in a distributed and local-

ized manner.

The rest of this chapter is organized as follows. Section 2.2

briefly surveys the related work. Section 2.3 formulates the

coverage-oriented network partition problem in WSNs. In Sec-

tion 2.4, we introduce the fan-out index ι for a set of points. We

then illustrate how we solve the coverage-oriented network par-

tition problem with an algorithm based on the ι fan-out index

in Section 2.5. Section 2.6 presents our comprehensive exper-

imental studies. We finally provide the conclusion remarks in

Section 2.7.
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2.2 Related Work

Many approaches target on solving the coverage-oriented net-

work partition problem. In [96], a network territory is divided

into regions. The sensor nodes are grouped with the most-

constrained least-constraining algorithm. It is a greedy algo-

rithm in which the priority of selecting a given sensor is deter-

mined by how many uncovered regions this sensor covers and

the redundancy caused by this sensor. Cardei et al. modeled

the problem as one to find disjoint dominating sets [14]. The

problem is known as NP-complete, and they proposed a graph-

coloring based approximation. A similar problem of covering

target points were studied in [13], which is again NP-complete

and a mixed integer programming (MIP) approximation was

proposed. Unfortunately, the size of such an MIP is usually

very large and it is very time-consuming to solve it. Moreover,

it is not easy to extend these centralized solutions to distributed

and localized implementations that are expected by resource-

constraint WSNs.

There are also many schemes proposed to schedule nodes in

the sleeping/on-duty modes in an on-line manner: A sensor node

determines its sleeping eligibility and the time it can sleep by

querying its neighbors. Yan et al. introduced a differentiated
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service in which a sensor node finds out its responsible on-duty

duration with collaboration of its neighbors to ensure the cover-

age of sampled points [120]. Ye et al. developed the Probing En-

vironment and Adaptive Sleeping (PEAS) algorithm where sen-

sor nodes wake up randomly over time, probe their neighboring

nodes, and decide whether they should start their surveillance

work [122]. Wang et al. designed a Coverage Configuration Pro-

tocol (CCP) [111]. They suggested that the coverage degree of

intersection-points of the neighboring nodes’ sensing-perimeters

indicates the coverage of a convex region. Xing et al. exploited a

probabilistic distributed detection model with a protocol called

Coordinating Grid (Co-Grid) [116].

Finally, there are many existing metrics to evaluate how a

set of points distribute in a space. The Mean Square Error from

these points to their mean location indicates how these points

deviate from their central. In resource-sharing evaluation, the

Global Fairness Index (GFI) is often employed to measure how

even the resource distributes among these points [53], where the

location of each point represents the amount of resource that

belongs to the point. In WSNs, GFI can be used to calculate

how even the remaining energy of sensor nodes is. These metrics,

however, cannot show how well a set of points fan out in the
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space.

2.3 Coverage-oriented Network Partitioning

in Location-aware Wireless Sensor Net-

works

We consider a WSN deployed in a 2-dimensional area φ. There

are totally n in-network sensor nodes denoted by {si}ni=1. Each

node is responsible to monitor a circular area centering at the

node with its radius equal to R. This circular area is called the

sensing region of the node. Also consider that the network is

location-aware: each sensor node si can know its approximate

physical location L(si), which can be obtained by a GPS re-

ceiver or a localization algorithm (e.g., that suggested in [10]).

Location-awareness is crucial for an event detection WSN for

locating the events of interests. It is a general assumption in

existing works on coverage-oriented issues (e.g., [13, 96]).

A WSN generally contains a large number of redundant nodes

so as to achieve fault tolerance. In order to save energy and pro-

long the network lifetime, the sensor nodes can be divided into

disjoint subsets. Each subset is able to maintain the required

sensing tasks. The sensor nodes are scheduled according to the



Chapter 2. Coverage-oriented Network Partitioning in WSNs 25

subset they belong to. These subsets work successively: At any

time, only one subset of sensor nodes are on-duty, while the rest

are sleeping. Let Sj (j = 1, 2, ...,m) denote the jth subset of the

sensor nodes, where m is the total number of disjoint subsets.

The coverage-oriented network partition problem is formulated

as follows.

Problem 2.1: The coverage-oriented network partitioning

problem.

Given:,

• A set of sensor nodes {si}ni=1 and the location L(si) of each

sensor node.

• A sensor coverage model which quantitatively describes how

a point P in φ is covered by the sensor nodes that are

responsible to monitor this point. We call this quantity the

coverage of P .

• A coverage requirement τ . When the coverage of a point is

not smaller than this threshold, we say this point is covered.

Maximize: m, the number of the disjoint subsets.

Subject to:

• {si}ni=1 ⊇ S1 ∪ S2 ∪ ... ∪ Sm

• Sj ∩ Sk = ∅ (∅ denotes an empty set); ∀j, k and j 6= k
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• φ can be covered by the sensor nodes in each subset Sj (∀j).

�

In other words, the coverage-oriented network partitioning

problem is to address how to divide sensor nodes into as many

disjoint subsets as possible, while each subset can maintain the

coverage requirement of the entire network territory. Since the

subsets can be scheduled to work successfully, a larger subset

number implies a longer network lifetime.

For a complete description of the coverage-oriented network

partition problem (i.e., Problem 2.1), a concrete sensor coverage

model should be given. Also we need a criterion to determine

whether φ is covered. We discuss these two issues as follows.

2.3.1 Sensor Coverage Models

We consider two typical sensor coverage models, namely, the

Boolean coverage model and the collaborative probabilistic cov-

erage model.

The widely-adopted Boolean coverage model can largely cap-

ture the general characteristics of WSNs [111, 122]. In this

model, it is assumed that a sensor node can always detect an

event occurring in its responsible sensing region, i.e., a circular

area with radius R centering at the sensor [103, 116, 120]. Such
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a model is similar to the disc-cover model in the geometry liter-

ature (e.g. [57]). Specifically, for a point with physical location

L,

Cj(L) =


1, if ∃si ∈ Sj & ‖L(si)− L‖ < R;

0, otherwise.

(2.1)

where Cj(L) denotes the coverage of Sj at L in the network

territory. In this model, the required coverage τ is equal to 1.

The collaborative probabilistic coverage model considers that

a sensor node detects events based on the signal strength it

senses. Event signals (e.g., electromagnetic, acoustic, or photic

signals) generally fade exponentially with the increasing of their

transmit distance. The larger the distance, the weaker the event

signals that can be sensed by the sensor, which reduces the like-

lihood of the event being detected. Based on this notion, we

consider the probability P(L, si) that an event located at L can

be detected by sensor si is:

P(L, si) =
δ

(‖L(si)− L‖/ε + 1)β
, (2.2)

where δ, β, and ε are constants related to the signal strength

omitted by the event and how it fades. Since the sensor nodes

conduct event-detection in a collaborative manner, an event can
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be detected based on a cumulative probability. According to

Equation (2.2), we have:

Cj(L) =



1−
∏

[1− δ
(‖L(sk)−L‖/ε+1)β

]

(∀sk ∈ Sj & ‖L(sk)− L‖ < R),

if ∃sk ∈ Sj & ‖L(sk)− L‖ < R;

0, otherwise.

(2.3)

where Cj(L) denotes the coverage of Sj at location L in the

network territory. This model is more general than that in [74,

66] which considers coverage as the sum of the sensed signal

strengths of the sensors.

2.3.2 Coverage Sampling

Note that an algorithm in solving Problem 2.1 needs to guaran-

tee to cover the entire network territory. To evaluate the cover-

age of a sensing field, the field can be sampled by some discrete

points in the field. And then given a sensing model, e.g., that

described in Equation (2.1) or Equation (2.3), the coverage of

these points can be quantified. The field is deemed covered if

the coverage of each sampling point is not smaller than the re-

quirement.
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Sampling coverage with discrete points is in fact an approx-

imation approach to ensure that the entire network territory

is covered. Obviously, the larger the number of the sampling

points, the better the approximation of the coverage sampling,

which on the other hand also results in longer convergence time

of the algorithm in solving Problem 2.1. Such tradeoffs are in-

vestigated in our experimental study presented in Section 2.6.

Besides the number of the sampling points, how to gener-

ate them is also an important issue. In this work, we sample

coverage with four methods: 1) regular-lattice-based sampling,

2) random sampling, 3) quasi-random sampling, and 4) sensor-

node-based sampling. Details on these sampling methods and

their impacts will be presented in Section 2.6.

2.4 Normalized Minimum Distance ι: A Fan-

out Index of Points

Under the constraint that the entire network territory is cov-

ered, it is desirable that the on-duty sensor nodes should be

separated from each other as much as possible to achieve low

redundancy. We need to quantize the quality of such separa-

tions. Consider two slightly-different WSN deployments in the
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same territory demonstrated in Figure 2.1. Both can provide an

acceptable level of network coverage. Network 2 in Figure 2.1(b)

has one more node than Network 1 in Figure 2.1(a) in the ellipti-

cal region. The nodes in Network 1 fan out better than those in

Network 2, since the nodes in Network 2 are closer to each other

in the elliptical region. It is straightforward to see that Net-

work 1 is better than Network 2 in terms of coverage efficiency,

i.e., Network 1 is with less node redundancy. This example

shows that a small value of the minimum distance between the

in-network nodes may indicate that the coverage efficiency of a

network is bad somewhere in the network. The minimum dis-

tance between nodes may, to some extent, show how well the

nodes fan out.

This consideration, however, is not complete. For example,

if the minimum distance is 5m, the coverage efficiencies are dif-

ferent for a network with 20 nodes and a network with 25 nodes

that cover the same territory. We should normalize the min-

imum distance such that it can represent how well the nodes

fan out for different network settings. We propose to normalize

the minimum distance with the average distance between nodes.

Such a normalized minimum distance, namely, ι, is formally de-

fined as follows.
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• Sensor Node

(a) (b)
Network 1 (a) and Network 2 (b) are two slightly different WSNs deployed in the same
territory. The nodes in Network 2 are closer to each other in the elliptical region. As a
result, the nodes in Network 1 fan out better than those in Network 2. It is straightforward
to see that Network 1 is better than Network 2 in terms of coverage efficiency, for Network
1 has less node redundancy.

Figure 2.1: A demonstration of coverage efficiency

Suppose there are n points in a Euclidean space Ω with their

coordinates being denoted by xi (i = 1, ..., n). Consider that n

is larger than 2 and not all the points overlap (i.e., we do not

consider the case that xi = xj, ∀ i, j). ι is then calculated by

[126, 136]:

ι =
min(||xi − xj||)

µ
(∀ i, j; and i 6= j), (2.4)

where ||xi − xj|| is the Euclidean distance between points i and

j, the min(·) function calculates the minimum distance between

each pair of points, and µ is the average distance between each
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Figure 2.2: Resulting structures of 3, 4, 5, and 6 points when ι is maximized

pair of points:

µ =

(
∑
∀i

∑
∀j 6=i

||xi − xj||)

n(n− 1)
. (2.5)

Obviously, ι is in interval [0, 1]. In a 2-dimensional space, it

is equal to 1 if and only if n is equal to 3 and these three points

form an equilateral triangle.

Consider that the location of each point xi is a variable. How

does the structure of these n points look like if ι is maximized?

Given n =3, 4, 5, and 6, the graphs in Figure 2.2 are the result-

ing structures when ι is maximized in the 2-dimensional space.

It is interesting to find out that the results are all equilateral tri-

angle lattices. We have also calculated the structures for greater

n’s with a numerical algorithm where ι is maximized greedily.

Again, we can observe that equilateral triangle lattices are al-
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Figure 2.3: Resulting structure of 40 points when ι is maximized with a
greedy algorithm

ways the results. Figure 2.3 shows a resulting structure when

n = 40 as an example. We then draw the following thesis:

The ι-Thesis: Given n points in a 2-dimensional space, ι

of these points reaches the maximum value only if the Voronoi

diagram1 formed by these points is a net of equilateral hexagons,

i.e., these points forms a lattice of equilateral triangles.

Suppose each point represents a sensor node and the sensor

coverage model is the Boolean coverage model [103, 111, 116,

120, 122] with equal sensing radii of all nodes. It can be seen

that such a network topology (i.e., nodes with a honeycomb-

like Voronoi diagram) results in lowest redundancy in coverage

[7, 57]. In other words, a maximum value of ι of the nodes means

the best fan-out of the nodes. Furthermore, ι is also sensitive

1A Voronoi diagram formed by a set of nodes partitions a space into a set of convex
polygons such that points inside a polygon are closest to only one particular node [6].
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to coverage redundancy. Two close nodes will result in small

ι. This enlightens us that ι can be applied to solve coverage-

oriented problems in WSNs. In our following discussions, we will

demonstrate the effectiveness of employing ι in the coverage-

oriented network partition problem formulated in Problem 2.1.

2.5 Maximizing-ι Node-redundancy Exploit-

ing Algorithm for Coverage-oriented Net-

work Partition

Since ι is a good microscope in indicating the coverage redun-

dancy of a set of nodes, it is favorable that each subset in a

solution for Problem 2.1 should have a large ι. Hence, the under-

lying thought of our Maximizing-ι Node-redundancy Exploiting

Algorithm (MAXINE) algorithm is that a subset is formed by

greedily maximizing its ι. In what follows, we first present a

centralized implementation of MAXINE, and then describe how

to extend it to be distributed and localized.

2.5.1 Centralized Implementation of MAXINE

Figure 2.4 illustrates the flow diagram of the centralized version

of MAXINE. We call a node an ungrouped node if the node has
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Figure 2.4: Flow diagram of MAXINE

not been grouped into any subset. Otherwise, we call the node

a grouped node. Initially, all the nodes are ungrouped nodes.

MAXINE tentatively selects all the ungrouped nodes into the

current subset (initially, the subset is an empty subset ∅). And

then, one by one, it removes nodes from the subset until the

deletion of any node in the subset results in uncovered sampling
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points. The selection criteria of the node to be removed are as

follows.

• The deletion of the selected node does not result in any

uncovered sampling points;

• The deletion of the selected node results in the maximum

ι value of the current subset, comparing with the deletion

of any other candidates (i.e., those satisfying the first cri-

terion) in the subset.

In this way, MAXINE first finds a subset that covers the

entire network territory. It then continues to find the next subset

with the same procedure, until the rest of all ungrouped nodes

cannot guarantee to cover of all sampling points. It then stops

with all the successfully-found subsets.

The centralized version of MAXINE runs at the base station

of a WSN. It requires the location information of all in-network

nodes. Such information is obtainable for location-aware WSNs.

Specifically, the node locations may be sent to the base sta-

tion along the shortest-path tree rooted at the base station2 as

follows. The leaf nodes in the tree send their locations first.

When a non-leaf node collects all the location information of its
2Note that such a tree is a prerequisite for a WSN to report the sensing-data from

sensor nodes to a base station, and hence can easily be utilized.
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offspring nodes, it aggregates the locations of all its offspring

nodes together with its own location in one packet and sends

the packet to its parent node. Thus, every node needs to send

only one packet to let the base station obtain all node locations.

Finally, when the base station finishes performing MAXINE,

it can directly send the partitioning results to each in-network

nodes if it is equipped with a powerful-enough antenna, or it

can deliver the partitioning results in a multi-hop manner along

the reverse direction of the shortest-path tree.

2.5.2 Distributed and Localized Implementation of the

MAXINE Algorithm

In contrast to the centralized version that greedily maximizes the

ι index of each resulting subset in an entire network scope, in

the distributed and localized version, a node greedily maximizes

ι of its neighborhood [126, 136]. We consider that a node si’s

neighborhood is the subnetwork consisting of si, its ungrouped

sensing neighbors (i.e., the neighbors with their distances to si

within 2R), and its grouped sensing neighbors that are in the

same subset. Details are as follows3.

Under the constraint that the coverage of its sensing region

3This part is based on my M.Phil. Thesis [126, 136].
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should be larger than τ , the node removes the nodes in its neigh-

borhood. The candidate to be removed satisfies that:

• It is an ungrouped node;

• The deletion of the node does not bring in any sampling

point within the sensing region of si that cannot be covered

by the neighborhood;

• The deletion of the node results in the largest ι of the neigh-

borhood, compared with the deletion of any other candi-

dates.

This node-removing procedure continues until no candidate

can be found. Then all the ungrouped sensing neighbors that

are not removed are grouped into the same subset of si. We

call the sensing neighbors that are in the same subset of si the

in-subset sensing neighbors of node si.

The distributed and localized MAXINE initiates the above

procedure at a random-selected node. The node is grouped to

the first subset. It calculates its in-subset sensing neighbors

based on the procedure, and informs them the results. It then

hands over to another in-subset sensing neighbor which have

not performed such a procedure. The new node repeats the

procedure until no such neighbors can be found. The first subset
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that can cover the entire network territory is then formed.

After a subset is formed, another random-selected ungrouped

node begins to group itself to a new subset and initiates the

above procedure. MAXINE thus repeats to find subsets one by

one. It stops when a node involving in this procedure finds that

its sensing region cannot be covered by its neighborhood even if

no node has been removed from the neighborhood.

2.6 Performance Study

2.6.1 Methods for Coverage Sampling

As the subsets of a solution for Problem 2.1 should guarantee to

cover the entire network territory, the coverage is sampled with

discrete points in the territory. The network territory is deemed

covered if every sampling point is covered. We sample coverage

with the following four methods.

Regular lattice (RL)

The network territory is divided into grids and the central point

in each grid region is the sampling point for each grid.
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Uniformly distributed random points (UDRP)

Sampling points are randomly selected in a uniform manner in

the network territory.

Quasi-Random sequences (HTS and HMLS)

Quasi-random sequences which have low discrepancy (a mea-

sure of uniformity for the distribution of the points) have been

widely employed in Quasi Monte Carlo methods [45, 46]. We

consider two typical quasi-random sequences, Halton sequence

[45] and Hammersley sequence [46]. Both sequences can achieve

asymptotically optimal discrepancy and they are easy to be con-

structed. We linearly map the 2-dimensional Halton sequence

and the 2-dimensional Hammersley sequence into network ter-

ritory to generate the locations of the sampling points we need.

We use the abbreviations HTS and HMLS to represent the

Halton-sequence-based method and the Hammersley-sequence-

based method, respectively.

Sensor-node-based points (SNB)

In this method, the sampling points are generated on-line, based

on the sensor nodes in each subset. In the Boolean coverage

model case, we evenly select the points on the border of each
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node’s sensing region (i.e., the perimeter of the circle centering

at the node with radius R). If such a point is in the territory

being monitored by the network, it is then a sampling point.

In the collaborative probabilistic model case, we evenly divide

the sensing region of a node into several areas and regard the

central point in each area as a sampling point if the point is in

the territory being monitored by the network. For both models,

we say such sampling points are generated by the node. If all

the sampling points generated by every node in a subset are

covered by the nodes in the same subset, the network territory

is considered covered by the subset.

2.6.2 Algorithms in Comparison with MAXINE

For comparison purpose, we also implement two algorithms in

solving Problem 2.1. The first is a Greedy Algorithm (GA) that

selects an ungrouped node to the current subset (initially, the

subset is an empty set ∅). The criterion is that adding this

node causes the highest improvement of subset’s the coverage

values of the sampling points in total. This process is repeated

until the subset can cover all the sampling points. The subsets

are thus found iteratively. Based on the similar way we imple-

ment the distributed and localized version of MAXINE, we also
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implement the Distributed and Localized GA (DLGA).

The second algorithm formulates the network partitioning

problem as a disjoint set covers (dsc) problem, which can be

transformed to a mixed integer programming (MIP), as shown

in [13]. The subsets can be obtained with an MIP solver. For the

Boolean coverage model, such an idea can directly be applied to

the coverage-oriented network partition problem: By regarding

each sampling point as a target to be covered, an MIP-based

algorithm (MIPA) is thus implemented.

2.6.3 Simulation Settings

We randomly deploy sensor nodes in a 400m× 400m area with

a uniform distribution. The territory to be monitored by the

network is a 360m × 360m area centered at the 400m × 400m

area. R, β, δ, ε, and τ are 80.0, 2.0, 1.0, 100.0, and 0.6 re-

spectively, which are some example values taken in quantifying

the coverage for the collaborative probabilistic coverage model.

R and τ are 60m and 1 for the Boolean coverage model. We

conduct each of our simulations 10 times with different random

seeds and the results are averaged. The simulations for the cen-

tralized algorithms are performed at a Sun Blade 2500 computer

with two 1.6GHz UltraSPARC-IIIi CPUs and 2GB RAM. We
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employ ILOG CPLEX Interactive Optimizer 9.1.0 to solve the

MIP problem in MIPA.

The algorithm name, followed by the name of the coverage

sampling method, indicates the scheme we employ to solve Prob-

lem 2.1. For example, MAXINE-HTS means that the MAX-

INE algorithm is employed and the coverage sampling method

is HTS.

To quantitatively study the performance of the subsets found

by each scheme, we randomly select 10000 event locations at

the 360m × 360m network territory in a uniform manner. We

obtain the coverage of a subset at the event locations based on

the coverage models. Each location where the coverage is below

the requirement τ is considered as an event detection failure.

We calculate the number of such event detection failures so as

to study the event detection capability of a subset.

2.6.4 Comparisons of Coverage Sampling Methods

We compare the coverage sampling methods (UDRP, RL, HTS,

and HMLS) in terms of the percentage of event-detection failures

of the subsets found. The total node number is 200 and we

vary the number of sampling points from 16 to 100. Figure

2.5 demonstrates the results by the centralized algorithms GA,
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Figure 2.5: Comparisons of UDRP, RL, HTS, and HMLS

MIPA, and MAXINE. An instant result is that the number of

the sampling points should be large enough (> 60) to maintain

a low level (< 10%) of event-detection failures. Furthermore,

an algorithm with the RL, HTS, and HMLS methods performs

much better than that with the UDRP method.

The good performance of the RL method is not surprising
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because the RL method generates sampling points in a regu-

lar manner in which each sampling point can be regarded as

the expectation of the event locations, which are uniformly dis-

tributed, in a small region. Discrete sampling points generated

with quasi-random methods like HTS and HMLS have low dis-

crepancy. As a result, the performance of an algorithm with a

quasi-random method is also good. Because of the quasi-random

nature of the HTS and HMLS methods, they can be good al-

ternatives to the RL method, especially in the application cases

that sensor nodes are deployed with some deterministic scheme

(e.g., grid-based deployment), where the sampling points gener-

ated by RL method may be with high risk in providing wrong

coverage information as the pattern of sensor nodes and the pat-

tern of sampling points may be correlated.

Note that we do not study the SNB method here because

the number of sampling points generated by this method is not

deterministic and consequently not comparable with the other

methods.
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Figure 2.6: Impact of sampling-point number on convergence time

2.6.5 Impact of Sampling-point Numbers on Conver-

gence Time

To study how the number of the sampling points influences the

convergence time of the algorithms4 that solve Problem 2.1, we

deploy 250 sensor nodes in the network area, and vary the num-

ber of sampling points from 16 to 100.

The results are shown in Figure 2.6 where the HMLS method

and the Boolean coverage model are adopted.

It shows that as the sampling-point number increases, the

convergence time of MIPA increases quickly, while that of MAX-

INE and that of GA remain low in an almost constant manner.

This is because the size of the MIP formulated in MIPA increases

very quickly as the number of the sampling points increases.

Note that we conduct these simulations with an advanced com-
4We consider the time in seconds required by the computer to complete an algorithm

as the convergence time of the algorithm.
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mercial MIP solver. For comparison purpose, we have done

simulations with GLPK [37], a well-known open-source solver.

The situation gets much worse when the number of the sam-

pling points increases. On the other hand, in MAXINE and

GA, the sampling points are involved only in testing whether a

node should be selected/removed from a subset. This is not a

major computational burden. As a result, the sampling-point

number does not have a considerable impact on the convergence

time.

2.6.6 Performance of the Centralized Implementation

of MAXINE

We compare the centralized version of MAXINE with MIPA in

terms of the number of subsets found. Since MIPA accepts only

the Boolean sensing model, we adopt this model in this study.

We vary the total number of sensor nodes n from 75 to 175 to see

the impact of node density. The results are presented in Table

2.1, where x denotes the number of sampling points generated

by the HMLS method. In Figure 2.7, we also show the impact

of the total node numbers on the convergence time of these two

algorithms, where the number of sampling points is 196.

From Table 2.1, we can see that when the node number is
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Figure 2.7: Impact of total node numbers on convergence time

small, the number of subsets found by these two algorithms

are almost the same. When the node number is large, MIPA

performs slightly better. However, in the large node number

case, the convergence time of MIPA increases quickly as the

total number of sensor nodes increases as shown in Figure 2.7.

The reason is that the size of the MIP formulated in MIPA again

increases very quickly as the node number increases.

We also investigate how the subsets perform in terms of the

percentage of event-detection failures of the subsets. Figure 2.8

demonstrates the results in the case that the number of sampling

points is 196. It shows that the performances of the subsets

found by these two algorithms are comparable.

To compare GA and MAXINE, we vary the total number of

sensor nodes from 100 to 300, and compare the number of sub-

sets found by them. Figure 2.9 demonstrates the results, where
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Table 2.1: Number of the subsets found by MIPA and MAXINE

x = 16 x = 36

n MIPA MAXINE MIPA MAXINE
75 2.00 2.00 1.67 1.33
100 4.00 4.00 4.00 3.33
125 5.33 5.33 4.67 4.33
150 7.67 7.33 6.67 5.33
175 9.00 8.33 8.67 6.67

x = 64 x = 100

n MIPA MAXINE MIPA MAXINE
75 1.33 1.33 1.33 1.33
100 2.67 2.67 3.00 2.67
125 4.00 3.33 3.67 3.00
150 6.00 5.00 5.67 4.67
175 7.00 6.00 7.33 5.00

x = 144 x = 196

n MIPA MAXINE MIPA MAXINE
75 0.67 0.67 1.00 1.00
100 3.00 2.67 3.00 2.33
125 3.67 2.67 4.00 3.00
150 6.00 4.67 6.00 4.67
175 6.00 4.33 6.33 4.67

the SNB method is employed and each sensor node generates 18

sampling points. It shows that MAXINE performs much bet-

ter than GA in terms of the number of subsets found. Lastly,

the percentage of event-detection failures of the subsets found

in this study is less than 0.1%, which is very low, and hence is

not included for comparison.
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2.6.7 Performance of the Distributed and Localized

Implementation of MAXINE

Since MIPA cannot easily be implemented as a distributed and

localized algorithm, for fairness consideration, we compare the

distributed and localized implementation of the MAXINE algo-

rithm with DLGA in this study5. We adopt the collaborative

probabilistic model and the SNB sampling method, where each

node generates 12 sampling points.

5This part is based on my M.Phil. Thesis [126, 136].
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Table 2.2: Results of five networks with n=1500

Net MAXINE DLGA MAXINE DLGA
# of Subsets # of Subsets Average ι Average ι

1 34 31 0.145514 0.031702
2 33 30 0.145036 0.036649
3 33 31 0.156483 0.033578
4 32 31 0.152671 0.029030
5 33 32 0.146560 0.033109
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Figure 2.10: Number of subsets found by DLGA and MAXINE

We set the total in-network node number to different values

and let the networks perform MAXINE and DLGA. Figure 2.10

shows the subset numbers found by both algorithms. We can

see that MAXINE always outperforms DLGA in terms of the

number of subsets found. Detailed results of five randomly-

selected networks when n = 1500 are listed in Table 2.2. We

find that the subsets formed by MAXINE always have larger ι

values.

Figure 2.11 shows the average numbers of failure event detec-

tions when different node numbers are set. We can see that the
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Figure 2.11: Event-detection failures of the subsets found by DLGA and
MAXINE

subsets found by MAXINE outperform those found by DLGA.

All these simulation studies show that the ι-Thesis-based

MAXINE algorithm, which maximizes the ι fan-out index of

the subsets, exhibits very satisfying results in terms of the con-

vergence time, the event detection capability of the subsets, and

the number of subsets found.

2.7 Conclusion

This chapter showed the interesting features of the fan-out index

ι for a set of points. The application of ι to the coverage-oriented

network partition problem was elaborated by employing it in a

MAXINE algorithm. MAXINE exhibited good performance and

short convergence time in our extensive simulation studies with

a wide range of network settings and two general sensor coverage

models. This provides a strong evidence that maximizing ι is
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a promising idea to reduce the node coverage redundancy. We

will further discuss its application to another coverage-oriented

problem in the next chapter.

2 End of chapter.



Chapter 3

Network Reconfiguration for Downtime-free

System Migration

Summary

Many state-of-the-art WSNs have been equipped with reprogramming

modules, e.g., those for software/firmware updates. System migration

tasks such as software reprogramming, however, will interrupt normal

sensing and data processing operations of a sensor node. Although such

tasks are occasionally invoked, the long time of such tasks may disable

the network from detecting critical events, posing a severe threat to

many sensitive applications. In this chapter, we present the first formal

study on the problem of downtime-free migration. We demonstrate that

the downtime can be effectively eliminated, by partitioning the sensors

into subsets, and let them perform migration tasks successively with the

rest still performing normal services. We then present a series of effective

algorithms, and further extend our solution to a practical distributed and

localized implementation. The performance of these algorithms has been

evaluated through extensive simulations, and the results demonstrate

that our algorithms achieve good balance between the sensing quality

and system migration time.

54
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3.1 Overview

It is usually expensive, if not impractical, for human-attended

operations on a sensor node (especially for the WSNs applied

in battle-field or habitat monitoring [70]). As a result, in most

application scenarios, WSNs are expected to work in an unat-

tended manner for a long period of time (usually several months)

once the sensor nodes have been deployed.

Although sensing/processing environmental data is the major

task of a WSN, during its month-long lifetime, it is inevitable

for the WSN to perform certain system tasks in addition to this

sensing/processing task, e.g., system maintenance [12], diagno-

sis [17], and upgrading [110]. However, typical sensor platforms

are simple and low-cost in nature. Multi-thread is usually not

supported due to the capacity limitation of a sensor node [64].

As a result, these system tasks are exclusive to the data sens-

ing/processing operations, i.e., a sensor node has to cease data

sensing/processing operations in performing these tasks. The

most critical example of such system tasks is the WSN repro-

gramming task, which typically takes a network with one hun-

dred sensor nodes a few hundred seconds to complete [110]. We
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use the term system migration tasks to include these long-term

exclusive system processes for reconfiguring, upgrading, or re-

initializing existing network components or software/firmware,

e.g., reprogramming a sensing software-unit or re-initializing a

communication protocol.

Although there have been significant research efforts on im-

plementing efficient online migration tasks for WSNs [110], they

largely ignored the interruption of the major sensing/repoting

task caused by such a system migration task. This can be a criti-

cal threat in many application scenarios. For example, if a WSN

for fire or intruder detection is being reprogrammed, it may fail

to detect and alarm a fire/intrusion event which happens during

the process. A reprogramming interval of hundreds of seconds is

long enough to cause severe problems. Regular system migration

tasks that occur periodically would further open this back-door

for intruders to explore. Hence, it is very important to develop

a seamless scheme for performing the exclusive system tasks,

which avoids the downtime of normal network operations so as

to maintain the uninterrupted event detection functionality of

the network.

A natural way for downtime-free system migration is to di-

vide the network into several subsets and let the subsets perform
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the exclusive system migration task in turn, while the rest of the

subsets still remain normal operations in sensing and processing

environmental data6. Obviously, the more the number of sub-

sets is, on one hand, the longer the time is to finish the system

migration task for the whole networks; on the other hand, the

less the performance degrades during the system migration. The

number of the subsets thus can serve as a flexible parameter to

fine-tune the system migration process. Given this number, the

critical problem then becomes how the sensor nodes are parti-

tioned into subsets so as to achieve the best tradeoff between

system migration time and performance degradation.

Although various sensor grouping problems have been stud-

ied (e.g., work in [13, 96], and that presented in Chapter 2 of this

thesis), their objectives are generally to maximize the number of

the subsets while maintaining the performance of each subset.

This is quite different from the problem context here, and the

conventional algorithms thus cannot be applied. In this chapter,

we formulate the new sensor network reconfiguration problem for

downtime-free system migration. We prove that the problem is

NP-hard with a general probabilistic sensing model. We then

6We assume that the nodes before conducting the migration task and those after the
conducting the task can still work collaboratively in event detection and notifying the sink
when an event of interest is detected. This requires that the system before migration and
that after migration are compatible.
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present a series of heuristics and further extend one of them to a

distributed and localized implementation. The performance of

these algorithms have been evaluated through extensive simula-

tions, and the results demonstrate that our algorithms achieve

satisfactory balance between the sensing quality and the system

migration time.

The rest of this chapter is organized as follows. Section 3.2

briefly introduces the related work. In Section 3.3, we provide a

formal description of this problem. We then analyze this prob-

lem and prove its NP-hardness. Section 3.4 provides several

algorithms in attacking this problem. The performance of these

algorithms is studied in Section 3.5. We conclude this paper in

Section 3.6.

3.2 Related Work

Implementing system migrations such as reprogramming is cru-

cial to the success of WSN applications, with which bugs can

be eliminated and functionalities of a network can be updated.

See a survey paper and the references therein [110]. However,

existing work has not notified the problem that the major sens-

ing/repoting task would be interrupted by a system migration

task. Our proposal is to divide sensor into subsets and let
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each subset perform the migration task in turn. This scheme

is then orthogonal to a reprogramming approach. It can be

easily adopted in many existing reprogramming protocols, espe-

cially those that support the reprogramming of a selected group

of nodes (e.g., [73]).

Much work has been done on how to divide the sensor nodes

in a network into disjoint subsets, where each subset can main-

tain the required sensing tasks. In [96], Slijepcevic et al. pro-

posed to divide a sensing field into regions. Sensor nodes are

grouped with the most-constrained least-constraining algorithm,

in which the priority of selecting a sensor to a subset is deter-

mined by how much uncovered area this sensor covers and the

redundancy caused by this sensor. In [14], the problem was

modeled as disjoint dominating sets, which is known as NP-

complete. A graph-coloring based approximation was then pro-

posed. A similar problem of covering target points was studied

in [13], which is again NP-complete and mixed integer program-

ming (MIP) approximation has been proposed. In Chapter 2 of

this thesis, we solved this problem by greedily maximizing the ι

index of each subset. These approaches, however, are unappli-

cable to the problem studied in this chapter, as the objectives

of these two problems are generally different.
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3.3 Models and Problem Formulations

3.3.1 Preliminaries

We consider a WSN composed of n stationary sensor nodes

{si}ni=1 randomly deployed in a uniform manner in a network

area φ. Let the status of sensor node si be denoted by a binary

variable ci. ci is 1 if si is conducting event detection work, and 0

if si is performing a system migration task such as being repro-

grammed. For the convenience of our discussion, we say that a

sensor si is on if ci = 1, and off if ci = 0. We call a collection of

sensors a division, which can be represented by a sequence of n

binary variables. For example, ci (i = 1, 2, ..., n) can represent

a division D, which contains si if and only if ci = 1, i.e., all the

on-sensors.

We consider a general probabilistic sensing model [66] as fol-

lows. The probability that an event e can be detected by a

sensor si is related to the distance between e and si if the sensor

is on; otherwise, it is zero since off-sensors can never detect an

event. As the location of each si is fixed, the probability is de-

termined by the event location (x, y) when the sensor is on. Let

pi(x, y) denote this probability. Given the location of an event

(x, y), the probability that the event can be detected by at least
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one sensor in D is:

pD(x, y) = 1−
n∏

i=1

(1− cipi(x, y)). (3.1)

Note that the network is employed to detect events and the

events of interest can take place in any random location of the

network area φ. As a result, the minimum value of pD(x, y)

among all in-network locations (x, y) is a natural index to cap-

ture how badly the network division D might perform in event

detection, which can then be considered as the capability of the

network division D on event detection. Formally, we define that

the event detection capability PD of the network division D is

the minimum value of pD(x, y) among all locations (x, y) in the

entire network area φ, i.e.,

PD = min
∀(x,y)∈φ

pD(x, y). (3.2)

This is a pessimistic measure, in which we pick the worst case

as the representative case.

3.3.2 Problem Formulation

We consider that the network should be divided into N subsets,

denoted by Sk (k = 1, 2, ..., N). In order to enforce downtime-
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free system migration, let each of the subsets perform the exclu-

sive system migration task in turn, while the rest of the subsets

still remain normal operations in sensing/processing environ-

mental data.

Let dik denote whether si is in subset Sk. dik is 0 if si belongs

to Sk, and 1 otherwise. In other words, when subset Sk is off

(that a subset is off/on means all the sensors in the subset are

off/on), sensor si is on if and only if dik = 1. So actually each

sequence of dik (i = 1, 2, ..., n) denotes the on-duty division Dk

during the system migration of sensors in Sk, i.e., let:

Dk = {si}ni=1 − Sk. (3.3)

In other words, Dk denotes the division of the sensor nodes

which are conducting normal sensing and processing work when

Sk is performing a migration task. dik then denotes whether si

is in Dk.

N is naturally a parameter of such a downtime-free migration

scheme. On one hand, a larger subset number means the longer

time it requires for the whole network to finish the system mi-

gration task as the task is performed by each subset in turn. On

the other hand, a larger subset number also means there are a

smaller number of nodes in each subset. Since each time only
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a subset is off in performing event detection task, fewer nodes

in each subset implies that the system performance (in terms

of event detection capability) degrades less during the system

migration task.

The number of subsets N can thus serve as a flexible param-

eter for a system maintainer to fine-tune the system migration

process. Considering the tradeoff between the system migration

time and how much a system can tolerate the degrading of event

detection capability during a system migration task, a system

maintainer can determine how many subsets the network should

be divided. Given an N by the system maintainer, the critical

problem then becomes how the sensor nodes should be parti-

tioned into subsets so as to achieve the best tradeoff between

system migration time and performance degradation.

Suppose during a system migration, the network has to be

reconfigured into N disjoint subsets Sk (k = 1, ..., N) and let

each Dk work successively. The event detection capability of

the entire network in this migration interval is defined as the

minimum among the event detection capability values of all the

N divisions Dk (∀k). This actually continues the pessimistic

considerations as how PD is defined in Equation (3.2).

The sensor network reconfiguration problem is thus how to
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divide the sensors so that the event detection capability of the

network in this migration interval is maximized. Given the event

detection capability measure PD in Equation (3.2), the problem

can be formulated as follows.

Problem 3.1: The sensor network reconfiguration problem.

Given: {si}ni=1 and pi(x, y)

Partition the set {si}ni=1 into N disjoint subsets Sk (k =

1, 2, ..., N) such that:

P = min
∀k

PDk
= min

∀k
{ min
∀(x,y)∈φ

[1−
n∏

i=1

(1− dikpi(x, y))]}

is maximized. �

3.3.3 Difficulty of the Sensor Network Reconfiguration

Problem

Given the situation that the number of the schemes to group

n into N subsets is related to the permutation of n, while the

event location is a continuous variable taken a value in the whole

network area, the network location that results in min
∀k

PDk
can

be anywhere in the network. This makes it difficult to handle

the sensor network reconfiguration problem.

Instead of dealing with all the network locations, let us con-

fine our considerations such that events can only take place at a
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finite set of discrete points in the network area. Suppose we have

m such discrete points in the network area, denoted by {tj}mj=1.

We call them the sampling points of the network area φ. The

probability that an event taking place at tj can be detected by

si is then denoted by cipij.

The minimum probability value among the sampling points,

denoted by P ′D, is then:

P ′D = min
∀j

[1−
n∏

i=1

(1− cipij)]. (3.4)

This P ′D thus serves as a simplified measure of the event de-

tection capability PD for division D. Then the sensor network

reconfiguration problem turns to a simplified one given the prac-

tical measure P ′D in Equation (3.4), which can be formulated as

follows.

Problem 3.2: The simplified sensor network reconfiguration

problem.

Given: {si}ni=1, {tj}mj=1, and pij (∀i, j)

Partition the set {si}ni=1 into N disjoint subsets Sk (k = 1, 2, ..., N)

so that:

P ′ = min
∀k

P ′Dk
= min

∀k
{min
∀j

[1−
n∏

i=1

(1− dikpij)]}
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is maximized. �

Unfortunately, even this simplified problem is generally NP-

Hard. To prove this, let us consider the decision version of

this problem in which given the same problem settings, it asks

whether the set {si}ni=1 can be partitioned into N disjoint sub-

sets so that the event detection capability of the network in the

migration interval is not smaller than a given value u. If the

decision version of this problem is NP-Complete, then the sen-

sor networks reconfiguration problem is NP-Hard [42]. In fact,

we have the following lemma to prove the NP-Hardness of the

simplified sensor network reconfiguration problem.

Lemma 1 The decision version of the simplified sensor network

reconfiguration problem is NP-Complete.

Proof: First, this problem is in NP: Given a partition scheme,

a nondeterministic algorithm only needs to calculate the event

detection capability (EDC) of each division so as to get the EDC

of the network during the time interval T . And then it can verify

whether this value is smaller than u or not. So now we need to

prove that this problem is harder than a known NP-Complete

problem.

We transform the provably NP-Complete set partition prob-

lem [42] to the decision version of the simplified sensor network
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reconfiguration problem. Given a set of non-negative numbers

{qi}ni=1, the set partition problem asks whether it is feasible to

partition the set into two so that the sum of numbers in either

partition is equal.

As pij ∈ [0, 1), we can construct an n by m matrix Q of which

each element is defined as qij = −log2(1 − pij). We can know

qij > 0. Based on the property of dik, we get:

1− dikpij = 2−dikqij . (3.5)

Let us construct an instance of the sensor network reconfigura-

tion problem in which N = 2, qij is equal to each other given

the same i and equal to the qi in the set partition problem, and

u = 1 − 2−(
∑n

i=1 qi)/2. Now we can always have di1 = 1 − di2 be-

cause a sensor should be in either division D1 or division D2, but

not in both. Also we can write qij as qi without the subscript j.

Therefore, we get:

P ′ − u = min
∀k
{min
∀j

[1−
n∏

i=1

(1− dikpij)]} − u

= min
∀k

[min
∀j

(1− 2−
∑n

i=1 dikqij)]− u

= min
∀k

(1− 2−
∑n

i=1 dikqi)− u

= 2−
∑n

i=1 qi
2 − 2

−[min
∀k

(
∑n

i=1 dikqi)]
. (3.6)
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If the answer to whether P ′ ≥ u is yes, we get:

min
∀k

(
n∑

i=1

dikqi) ≥

n∑
i=1

qi

2

⇒


n∑

i=1
di1qi ≥

∑n
i=1 qi

2

n∑
i=1

di2qi =
n∑

i=1
(1− di1)qi ≥

∑n
i=1 qi

2

⇒

∑n
i=1 qi

2
≥

n∑
i=1

di1qi ≥
∑n

i=1 qi

2
⇒

n∑
i=1

di1qi =

∑n
i=1 qi

2
.(3.7)

Therefore, the answer to the set partition problem is also yes.

On the other hand, if the answer to the set partition prob-

lem is yes, in the same way we can partition the sensors in the

simplified sensor network reconfiguration problem so that:
n∑

i=1
di1qi =

∑n
i=1 qi

2

n∑
i=1

di2qi =
n∑

i=1
(1− di1)qi =

∑n
i=1 qi

2

⇒ min
∀k

(
n∑

i=1

dikqi) =

∑n
i=1 qi

2
. (3.8)

According to Equation (3.6), P ′ = u. Therefore, the answer to

the decision version of the simplified sensor network reconfigu-

ration problem is also yes.

The above reduction requires only O(n) steps to be completed
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(for calculating pi and u with qi). Therefore, the decision ver-

sion of the simplified sensor network reconfiguration problem is

both NP-Hard and NP. Then it is NP-Complete. The lemma is

proved.�

3.4 Heuristics for Downtime-Free System Mi-

gration

Given the difficulty of the sensor network reconfiguration prob-

lem, we resort to heuristics that can find the approximation

solutions efficiently. We start from investigating this question:

What should we make the resulting subsets look like, if we want

to design a good approximation algorithm?

Let us again consider the simplified sensor network reconfig-

uration problem (Problem 3.2) first. For each solution to this

problem, there exists one sample point tx where the event detec-

tion capability of some division results in the minimum value,

i.e.,

x = argmin
∀j
{min
∀k

[1−
n∏

i=1

(1− dikpij)]}. (3.9)

Suppose division Dy results in the minimum event detection
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capability at tx, i.e.,

y = argmin
∀k

[1−
n∏

i=1

(1− dikpix)]. (3.10)

Let rk denote the event detection probability for each set Sk

at tx. We get:

rk = 1−
n∏

i=1

(1− dikpi(tx)), (3.11)

where pi(tx) denotes the event detection probability of sensor i

at location tx.

The event detection probability for each division Dk at tx,

denoted by p′Dk
(tx), is then:

p′Dk
(tx) = 1−

N∏
l=1,l 6=k

(1− rl) = 1−

N∏
l=1

(1− rl)

1− rk
. (3.12)

N∏
l=1

(1− rl) is a constant based on Equation (3.11) because

N∏
l=1

(1− rl) =
N∏

l=1

n∏
i=1

(1− dilpi(tx)) =
n∏

i=1

(1− pi(tx)), (3.13)

which is irrelevant to how we group the sensor nodes.

Then based on Equation (3.12), if the event detection prob-

ability of Dy is the minimum among all Dk, 1 − ry should be
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the smallest among all 1 − rk (∀k). In other words, ry, i.e.,

the event detection probability of subset Sy at tx, must be the

largest among all the subsets Sk.

The larger the event detection probability of Sy at tx, the

smaller the event detection probability of Dy at tx. To maximize

the event detection probability of Dy at tx, the event detection

probability of Sy at tx should be minimized. Therefore, a good

heuristic algorithm should let ry be as close as possible to the

event detection probability of other subsets at tx.

3.4.1 Greedy Algorithm (GA)

The above consideration can be directly applied to an algorithm

that solves the simplified sensor network reconfiguration prob-

lem (Problem 3.2): After initially grouping nodes into each Sk,

we can greedily move the nodes in subset Sy to other subsets so

as to reduce ry.

Algorithm 1 demonstrates the mechanism of this greedy al-

gorithm (GA). It first randomly selects n
N nodes for each subset

Sk (line 2). Let pmin denote the minimum event detection prob-

ability among the event detection probabilities of any division

Dk (∀k) at any sampling point (line 5). GA locates the sampling

point tx at which the event detection probability of some division
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Algorithm 1 Greedy Algorithm (GA)

1: Input:
{si}ni=1: the set of sensor nodes
{tj}mj=1: the set of sampling points
P : the n by m matrix, where each element pij denotes the event

detection probability of si at tj.
2: Randomly selects n

N
nodes for each subset Sk

3: Dk ← {si}ni=1 − Sk

4: repeat
5: pmin ← the minimum event detection probability among the event

detection probabilities of any divisions at any sampling points
6: tx ← the sampling point at which the event detection probability of a

division is pmin.
7: Dy ← the division that results in pmin at tx
8: Sz ← the subset whose event detection probability is the minimum at

tx.
9: Move a node from Sy to Sz. A node is selected if it results in the

largest improvement of pmin comparing with selecting any other node.
Ties are broken arbitrarily.

10: until pmin cannot be further improved

(denoted by Dy) is pmin (line 6). Based on the above discussions,

the event detection probability of Sy is the maximum among all

Sk at tx. Now suppose the event detection probability of Sz is

the minimum among all Sk at tx. GA improves pmin by moving a

node from Sy to Sz, which results in the largest improvement of

pmin (lines 7-9). pmin is thus improved iteratively until it cannot

be further improved (lines 4-10).

Although Algorithm 1 is to solve Problem 3.2, with a set of

well-designed sampling points {tj}mj=1, its output can be deemed

as a solution of Problem 3.1. The prerequisite is that the sam-
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pling points can well represent the event detection probability of

the whole network. Quasi-random sequences, such as Hammers-

ley sequence, which possess asymptotically optimal discrepancy

(a measure of uniformity for the distribution of the points) have

been widely employed in Quasi Monte Carlo methods [46]. In

this regard, they are reasonably good sampling-point generators.

We adopt Hammersley sequence [46] to generate the sampling

points for Algorithm 1. We linearly map the 2-dimensional Ham-

mersley sequence into the network area to generate the locations

of the sampling points {tj}mj=1 as the input of the algorithm.

3.4.2 Simple Partitioning and Picking Algorithm (SPP)

and Minimum Spanning Tree-Based Grouping

Algorithm (MSTBG)

In the greedy algorithm, tx is found in the set of sampling points.

In fact, given the original settings of Problem 3.1, i.e., the event

location is a continuous variable which can be anywhere in the

network, actually a possible tx can also be anywhere in the net-

work. To minimize ry, it would therefore be better if all the

subsets have a closer event detection probability at any point in

the network as we do not know where tx should be.

In order to make the event detection probability of all the
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subsets close to each other at any points, the resulting sub-

sets should look similar in a dispersive manner. It is therefore

necessary that nodes in the same subset should be dispersedly

distributed. Nodes that are close to each other should not be

grouped into the same subset so as to avoid high event detec-

tion probability of the subset at locations around these nodes.

In other words, if we examine an arbitrary area in the network,

there should not be outstanding dominant-population of any one

of the subsets.

Based on this consideration, we design the other two al-

gorithms, namely, the Simple Partitioning and Picking (SPP)

algorithm and the Minimum Spanning Tree-Based Grouping

(MSTBG) algorithm.

SPP tries to maximize the ι index, i.e., the minimum dis-

tance over the average distance between each node pair, of the

resulting subsets. Because the ι index can serve as a good mi-

croscope in indicating the existing of a high redundancy area

as we have discussed in Chapter 2, by maximizing this fan-out

index, SPP aims at avoiding high redundancy of some subsets

comparing to the others at anywhere in the network.

Algorithm 2 shows the details of SPP. It performs two pro-

cedures in turn: the partitioning procedure (lines 2-13) and the
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Algorithm 2 Simple Partitioning and Picking (SPP)

1: Input: {si}ni=1: the set of sensor nodes
2: The whole network area is deemed as a region
3: repeat
4: for all regions do
5: draw a line parallel to the x-axis to partition the region into two so

that the difference between the node numbers in both partitions is
at most one.

6: end for
7: if there are more than 2N nodes in each region then
8: for all regions do
9: draw a line parallel to the y-axis to partition the region into two so

that the difference between the node numbers in both partitions
is at most one.

10: end for
11: end if
12: until there are less than 2N nodes in each region
13: randomly select nodes in each region to Sk(k = 1, ..., N)
14: repeat
15: randomly assign two neighboring regions as A and B
16: for each randomly-picked subset Ak in region A do
17: Couple Ak with a subset Bx in region B, such that the couple results

in the largest ι comparing to the other couples formed by Ak and
any other subsets in B. Ties are broken arbitrarily.

18: end for
19: each couple is deemed as a subset, and thus A and B are merged into

a larger region.
20: until there is only one region

merging procedure (lines 14-20). In the partitioning procedure,

first consider all nodes are in one region. Supposing there is

a Cartesian coordinate system in the network area, SPP iter-

atively cuts each region into two until there are less than 2N

nodes in every region (lines 4-12). Then nodes in each region

are randomly selected into N different subsets (line 13). In the
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merging procedure, neighboring regions are merged into one till

there is only one region. During the merge procedure, one subset

in a region is coupled to anther subset in another region if the

couple can result in the largest ι comparing to the other possi-

ble couples. Ties are broken by picking randomly. This coupling

process continues until all N couples are generated, since each

region has N subsets (lines 16-18). Then each couple is deemed

as a subset, and thus two neighboring regions are merged into

one larger region (line 19).

Based on the same notion that nodes close to each other

should not be grouped into the same subset, MSTBG constructs

a minimum spanning tree (MST) of the network incrementally,

and groups each newly-joining node to its farthest subset in the

tree7. Thus MSTBG tries to group nodes that are close to each

other to different subsets so as to avoid the close-gathering of

the nodes in the same subset. The algorithm is illustrated in

Algorithm 3.

MSTBG first builds a tree that is composed only by the two

closest nodes among all the in-network nodes. These two nodes

are grouped into two different subsets (lines 2-3). Select a node

which is the closest to the tree among all the nodes that are not

7The distance between a node and a subset is defined as the distance between the node
and its closest node in the subset.
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Algorithm 3 Minimum Spanning Tree-Based Grouping Algorithm
(MSTBG)

1: Input:
{si}ni=1: the set of sensor nodes

2: T ← the tree composed by two closest nodes.
3: group the two nodes into two arbitrary subsets.
4: repeat
5: s ← the node closest to the tree among all the nodes that are not in

the tree, where the distance between a node to the tree is defined as
the minimum distance between the node to those nodes in the tree.

6: calculate the distance between s and each subset in the tree
7: S ← the farthest subset (ties are arbitrarily broken)
8: group s to S, and add s to T
9: until all nodes are in T

in the tree (line 5). Group this node to the subset which is the

farthest to this node. Then add this node to the tree (lines 6-8).

This procedure is thus iteratively conducted until all nodes are

in the tree. Such a process in building a tree is exactly how

Prim’s algorithm works in building a minimum spanning tree

(MST) [84]. This is why we call this algorithm an MST-based

grouping algorithm.

3.4.3 SNRP: A Distributed and Localized Sensor Net-

work Reconfiguration Protocol

The algorithms discussed above (i.e., GA, SPP, and MSTBG)

are all centralized approaches. A global picture of the network

is required to run these algorithms. However, WSNs are usually

large-scale networks which contain hundreds of nodes. Global
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information is not easy, if not impossible, to be obtained. Ac-

cording to the features of WSNs, a distributed and localized

solution for the sensor reconfiguration problem is surely of prac-

tical interests.

Although some well-investigated mechanism can help imple-

ment the above algorithms in a distributed way, for example, a

distributed MST algorithm (e.g., [39]) can be applied to decen-

tralize MSTBG, global information is still inevitably required

in constructing an MST [65, 133]. We therefore design a new

distributed and localized algorithm called the Sensor Network

Reconfiguration Protocol (SNRP). It is based on a mechanism

similar to that in MSTBG. But instead of constructing an MST

of the entire network, in SNRP, each node builds its local MST

of its neighborhood graph (i.e., the graph consisting of the node

and its one-hop neighbors). The nodes then groups neighboring

nodes to the subsets based on the local MST.

SNRP is an event (packet) driven algorithm. There are four

types of packets involved in this algorithm, i.e., ASK, CAN-

CEL, ANSWER, and RESULT packets. Figure 3.1 demon-

strates SNRP with a finite state machine. Details on the proto-

col are as follows.

Initially, a node does not belong to any subset (S0). The
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Figure 3.1: Finite state machine of SNRP

base station (i.e., the network control center) will firstly send

a RESULT packet to a randomly selected node, telling it that

it belongs to subset 1 and let it begin to perform the subset

discovery procedure.

When a node (suppose it is node s) receives a RESULT packet

(S0→S3), it starts its subset discovery procedure by firstly send-

ing ASK packets to enquire its neighbors which subset they be-

long to (S4→S5). It waits until every neighbor has replied with

an ANSWER packet (S6→S8). Then node s constructs a local

MST of its neighborhood graph. Based on the same mecha-

nism as that in MSTBG, it groups each of the nodes which do

not belong to any subset into a subset (S8→S7). Then node s
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notifies these nodes the grouping results by sending them RE-

SULT packets (S7→S12). Thus the subset discovery procedure

is handed over to the neighboring nodes of node s and node s

comes to the final state (S12).

If a node receives an ASK packet from a neighbor (suppose

the neighbor is node s′), the node will behave differently ac-

cording to whether or not it is currently conducting the subset

discovery procedure. If this is true, i.e., when the node is wait-

ing for collecting all ANSWER packets in the subset discovery

procedure (S5 or S6), in order to avoid deadlocks it will send

CANCEL packets to all the neighbors to which it has sent ASK

packets (S9→S10) before it sends an ANSWER packet to node

s′ in reporting which subset it belongs to (S10→S2). Otherwise,

(S0 or S12), it will directly send an ANSWER packet to node

s′ (S1→S2 or S11→S12).

Then after sending the ANSWER packet to node s′, the node

will return to the final state if the node has successfully per-

formed the subset discovery procedure before (S12). Otherwise,

it waits for a RESULT packet or a CANCEL packet from node

s′ (S2). Note that the node will also queue the ASK packets

from other neighbors without reply during this waiting time.

This can avoid the node to be grouped into different subsets by
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different neighbors. Now if a CANCEL packet is received, the

waiting is canceled (S2→S0) and the node returns to the initial

state (S0).

3.5 Performance Study

To study the effectiveness of our algorithms in solving the sen-

sor network reconfiguration problem, we customize a sensor net-

work simulator. Detailed settings of the simulation networks are

shown in Table 3.1. β, δ and ε in the table are parameters of the

probabilistic sensing model in which if an event is L meters away

from a sensor, the sensor can detect the event with probability

p that satisfies:

p =


δ

(L/ε+1)β if L ≤ Rs,

0 otherwise.

(3.14)

This model implies that the event detection probability is

determined by the event-signal strength received by a sensor,

while the signal fades exponentially with a factor β in its way

from the event location to the sensor location. This is a realistic

consideration.

We employ SPP, GA, MSTBG, and SNRP to reconfigure the
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Table 3.1: Simulation settings in Chapter 3
Area of sensor field 200m × 200m

Rode deployment scheme
Randomly deployed
in a uniform manner

Sensing range Rs 40m
Communication range Rc 40m

β, δ and ε 2.0, 1.0 and 40.0
Number of sampling points 100

Sampling method
2-dimensional

Hammersley sequence

in-network sensor nodes into N subsets. We study the event

detection capability (EDC) of the network during a system mi-

gration task where each subset has to cease to work for a given

period of time successively. For each network setting, simula-

tions are performed for 100 times with different random seeds

and the results are averaged.

For comparison purpose, we also draw another three curves.

The first curve (named “Original” in the figures) shows the EDC

of the entire network when no subset is off. The second curve

(named “Upper Bound” in the figures) shows the EDC upper-

bound of the network when one subset cease to work, which is

computed by:

1− (1− Pall)
N−1

N (3.15)

where Pall is the EDC of the entire network when no subset is

off. This is, however, a non-achievable upper-bound, as it con-

siders the non-achievable but optimum case where each subset
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Figure 3.2: EDC as a function of N (Node Number = 100)
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Figure 3.3: EDC as a function of N (Node Number = 150)

has equal event detection probability at any point of the net-

work. Lastly, the third curve (named “RP” in the figures) is the

EDC of the network when reconfigured by a Random Pick al-

gorithm (RP), in which we randomly select n/N nodes for each

subset without any performance considerations. This serves as

a baseline in our simulation study.

We first study how the value of N influences our algorithms.
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Figures 3.2-3.4 show the EDC of the networks composed of dif-

ferent numbers of nodes. We can see that the naive RP algo-

rithm performs by far the worst, which is what we have ex-

pected. SPP, MSTBG, and SNRP always perform better than

GA, which verifies that it is necessary to disperse the nodes in

the same subset.

Also it can be found out that when N is large enough (N > 4

in our simulations), improving N cannot effectively improve the

EDC of the network. This is not strange. The difference be-

tween the average node number in a subset when we divide the

network in N subsets and that when we divide the network into

N − 1 subsets gets smaller and smaller as N increases. When

one subset is off, the difference of the EDC degradations in these

two cases is hence become smaller. However, as a larger N in-

curs longer time for the entire network to complete a migration

task, the price of improving the EDC of the network during sys-

tem migration becomes higher and higher as N increases. This

should be an important consideration for a system maintainer

to select a proper value of N .

When the node density becomes higher, the differences among

the performances of these algorithms become smaller. This

is not surprising, either. The more the in-network nodes, the
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Figure 3.4: EDC as a function of N (Node Number = 200)
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Figure 3.5: EDC as a function of node number

higher the redundancy of the network with respect to event de-

tection. As a result, when the node density is high, if one subset

of the nodes is off, it does not have a great impact on the perfor-

mance of the network. Figure 3.5 further demonstrates this idea.

We let N = 3 and change the number of nodes from 100 to 200.

We can see that the EDC of the network gradually approaches

the original curve.

To see how the neighborhood graph size influences the results
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(b) Node Number = 150

Figure 3.6: EDC as a function of communication range

of SNRP, we change the communication range Rc from 40m to

80m (i.e., from one time to two times of the sensing range).

Figure 3.6 demonstrates the experimental results of SNRP where

N = 3 and the node numbers are 125 and 150, respectively. We

can find out that SNRP performs almost the same when Rc is

larger than the sensing range. As usually the communication

range of a node is larger than its sensing range, these results

verify that grouping based on the local MST is good enough

comparing to grouping based on the global MST. It shows that

SNRP, as a distributed and localized algorithm, works very well

since it does not degrade the resulting performance much.
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3.6 Conclusions

Seamless system migration without downtime is necessary for

WSNs that perform critical event detection tasks. Unfortu-

nately, to our knowledge, this important problem has not been

addressed in the literature. In this chapter, we presented the

first formal study on this problem. We demonstrated that the

downtime can be eliminated by partitioning the sensors into a

collection of subsets, and let each subset conduct the system mi-

gration tasks successively with the rest still performing normal

event detection services. We proved the optimum partitioning

of sensors in this context is NP-hard and then proposed a series

of heuristics. We further extended our solution to a distributed

implementation called the Sensor Network Reconfiguration Pro-

tocol (SNRP). Simulation results showed that these algorithms

work well in various performance evaluations.

2 End of chapter.



Chapter 4

Surviving Holes and Barriers in Geographic

Data Forwarding

Summary

Geographic forwarding is a favorable scheme for data reporting in Wire-

less Sensor Networks (WSNs) due to its simplicity and low-overhead.

However, WSNs are usually subject to complicated environmental fac-

tors. Network holes (i.e., the areas where no nodes inside) and barriers

(i.e., those blocking the communication between two close nodes) are

inevitable in practical deploying environments. These issues pose an

obstacle to adopting geographic forwarding in WSNs, while current ap-

proaches lack an efficient method to tolerate such negative factors. In

this chapter we specifically tailor a waypoint-based Geographic Data

Reporting Protocol (GDRP) for WSNs. Inherited from geographic for-

warding, GDRP is light-weighted and hence well-suits WSNs. But unlike

current approaches that often find suboptimal paths, GDRP adopts an

intelligent strategy to select a best set of waypoints via which packets

can efficiently circumvent holes and barriers, and it can thus find better

paths. Extensive simulations are conducted to verify the advantages of

GDRP in tolerating network holes and obstacles in WSNs.

88
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4.1 Introduction

A crucial task for a WSN is to convey the sensor data to a sink

so that the sink can obtain the information of interest. Geo-

graphic forwarding [9, 55, 56] is favorable for this sensor-to-sink

data reporting task. Its basic idea, namely, greedy forwarding,

is that a packet is forwarded to a neighbor which is geographi-

cally closer to the intended destination till the packet eventually

reaches the destination. In geographic forwarding, each node

just needs to maintain the information of its neighborhood to

select the next-hop neighbor to forward packets. This provides

it nice scalability and low overhead merits, which are specifi-

cally beneficial to WSNs due to their large-scale feature and the

energy constraints suffered by sensor nodes [21].

However, network holes (i.e., the areas where no nodes in-

side) and barriers (i.e., those blocking the communication be-

tween two close nodes) are inevitable in practice [1]. Various

real-world geographical environments, e.g., the existence of pud-

dles or buildings where sensors cannot be deployed causes holes.

Hills, walls, or even trees may cut wireless link of two nodes

even if they are in the theoretical communication range of each
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other, and thus form barriers. All these can make greedy for-

warding infeasible as a node may not find any neighbor nearer

to a packet’s intended destination than itself.

To tolerate the failure of greedy forwarding, traditional ge-

ographic forwarding schemes enter a detour mode in which a

packet is sent to a neighbor farther to the destination but po-

tential in bypassing a hole [9, 56]. The detour mode tends to

forward data packets along the boundaries of holes. It usually

turns out that the path from the source to the destination is

much longer than the optimum [8]. Longer path incurs more

energy consumption for packet transportation. It is therefore

critical to enhance the survivability of geographic forwarding in

practical deployment environments of WSNs, where there are

many network holes and barriers.

In this chapter, we specifically tailor a waypoint-based Geo-

graphic Data Reporting Protocol (GDRP) for WSNs to address

this challenging problem. The purpose of waypoint-based geo-

graphic forwarding is to minimize the unnecessary detours by

forwarding packets along a sequence of waypoints so that the

path can bypass holes and barriers. Lengthy routes due to the

detour mode can thus be avoided. GDRP adopts a trial-and-

error approach: The information of holes and barriers is accu-
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mulated during the runtime of GDRP. Based on such informa-

tion, better and better waypoint sequences can then be designed.

Unlike the current state-of-the-art approaches [8, 51, 124] which

may find waypoints that result in suboptimal path, GDRP can

find an optimal path from the source to the sink. We formulate

how to select waypoints as a tractable problem and provide its

solution with details in handling realistic network situations. In

contrast to the existing work [8, 51, 124] that provides heuris-

tics in finding waypoints, we prove the performance guarantee

of GDRP.

The rest of this chapter is organized as follows. Section 4.2

presents the related work. In Section 4.3, we provide the mo-

tivations of this research. We then sketch GDRP and identify

its three key components. Section 4.4 elaborates the design of

GDRP and illustrates how it can survive network holes and bar-

riers energy-efficiently. We study the performance of GDRP

with extensive simulations in Section 4.5. Finally, Section 4.6

concludes this chapter.
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4.2 Related Work

4.2.1 Geographic Forwarding

Geographic routing is first proposed by Karnakis et al. in [55].

Greedy Perimeter Stateless Routing (GPSR) [56] and several

other algorithms were subsequently proposed (e.g., [9]), which

adopt greedy forwarding if it is feasible, and otherwise enter the

detour mode and perform face routing in a planar graph of the

network. These algorithms can guarantee successful packet de-

livery. Frey and Stojmenovic further showed that recovery from

a greedy forwarding failure is always possible without changing

a face in the detour mode [38].

One challenge to geographic forwarding is that the locations

of the nodes may not be known [36], when a node is node

equipped with a GPS receiver. One possible approach is via

a localization protocol (e.g., [10, 114]).

Face routing incurs a longer path [8]. Many schemes are pro-

posed to improve face routing. Fang et al. studied how to locate

network holes and proposed to route packet along the boundary

of a hole [34]. Leong et al. presented a geographic routing mech-

anism without planarizing the network [63]. These approaches

generally need a protocol to obtain the information of the net-
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work holes and aim to minimize the protocol overhead, resulting

a more complicated implementation. They largely focus on holes

and lack a scheme to handle network barriers. Furthermore, re-

lated work also includes those focusing on finding a geometric

embedding of the network where greedy forwarding is always

feasible [36, 62]); and those assigning the nodes virtual coordi-

nates, via which data forwarding is conducted [102, 107].

Waypoint-based geographic forwarding was proposed in [8]

and Huang [51] studied how to select a set of waypoints adap-

tively. But the waypoint selection scheme may be trapped to

suboptimal results. Moreover, Zhao et al. [124] proposed to

conduct random shift to the locations of the waypoints to avoid

some nodes are always selected.

Theoretical performances of greedy forwarding has also been

widely studied. For example, Wan et al. provided the asymp-

totic bounds of transmission range to ensure greedy forwarding

[109]. Zorzi et al. provided the bounds on hop-count and latency

performance of greedy forwarding [137, 138].

4.2.2 Data Transport in WSNs

Data transport in WSNs has long been studied in the litera-

ture. In reliability domain, early data transport protocols for
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WSNs include PSFQ [108] and RMST [101]) that focus on end-

to-end reliable data transport. Event-to-sink data transport

was studied in [52, 104]. In [89], it was suggested that abso-

lute end-to-end reliable data transport is usually not needed

when transmitting sensor reporting packets. Packet loss within

a certain limit can usually be well tolerated in most application

scenarios. Based on this notion, an application-specific reliable

data transport protocol was proposed in [132]. There are also

many existing real-time data transport protocols in the litera-

ture for WSNs. Lu et al. [69] described a packet scheduling

policy called Velocity Monotonic Scheduling. It accounts for

both time and distance constraints. SPEED [47] by He et al.

combines feedback control and non-deterministic QoS-aware ge-

ographic forwarding. Felemban et al. [35] proposed Multi-path

and Multi-Speed Routing Protocol (MMSPEED) for probabilis-

tic QoS guarantee in WSNs. Multiple QoS levels are provided in

the timeliness domain by using different delivery speeds, while

various requirements are supported by probabilistic multipath

forwarding in the reliability domain. A multi-queue-based pro-

tocol was suggested in [77, 78], where soft QoS in timeliness

domain and reliability domain is investigated.

The notion of transmitter power control (topology control)
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has been extensively studied in MANETs. Most work (e.g.,

[16, 86, 88, 90, 91, 112]) focused on network connectivity anal-

ysis, network lifetime (a network is alive if it is ‘somehow’ con-

nected) analysis, where transmitter power setting schemes, gen-

erally for energy-efficient communications between an arbitrary

node pair and for energy-efficient broadcasting and multicas-

ting, were proposed. Work in [127] investigated transmitter

power control for sensor-to-sink traffic and suggested an effi-

cient waiting-based method for setting up such paths. Work in

[134] suggested a location-directed protocol for transport real-

time data for WSNs based on transmitter power control.

4.3 Waypoint-Based Geographic Forwarding

We consider a WSN consisting of a sink d and N stationary

sensor nodes randomly deployed in a 2-dimensional network area

φ (i.e., φ ⊂ R2). Since location-awareness is a basic requirement

for geographic forwarding algorithms [9, 56], we consider that

each node is aware of its own location, which can be obtained

by GPS or a localization approach (e.g., [10]). Let r denote

the communication range of a node. Each node u can then

know the locations of its neighbors, i.e., those nodes that have

a wireless link with u. Note that due to the existence of barriers
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Figure 4.1: A geographic forwarding example

in practical working environments, two nodes may not have a

wireless link even when their distance is less than r. In this case,

they are not neighbors.

4.3.1 Geographic Forwarding

Geographic forwarding schemes [9, 56] firstly planarize a net-

work into a planar graph GP (e.g. Gabriel Graph or Relative

Neighborhood Graph) with a distributed and localized algo-

rithm as shown in Figure 4.1. They usually contain two work-

ing modes: the greedy mode and the detour mode. In the greedy

mode, a node u selects a node v as its next hop among u’s neigh-

bors that are closer to the sink than itself when v is the closest

one to the sink (e.g., in Figure 4.1, the source selects u1 and

u1 selects u2). When holes and barriers exist, the greedy mode
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may not be feasible, i.e., no neighbor is closer to the sink (e.g.,

for u3). To handle this case, geographic forwarding schemes

send packets in the detour mode: Packets are sent clockwise (or

counter-clockwise) along the face of GP which are closer to the

sink (e.g., u3 selects u4 as its next-hop and u4 selects u5 as its

next-hop), until greedy forwarding is feasible again at a node

(u8) which is also closer to the sink than the node where greedy

forwarding first got stuck (u3) [56].

4.3.2 Design Considerations of Waypoint-based Geo-

graphic Forwarding

The design objective of a data reporting scheme is to minimize

the energy consumptions of the packet transportation from the

source to the destination. Since the hop number of a path shows

how many nodes are involved in the packet transportation, it is

a natural indicator to such energy consumptions. We define:

Definition 1 The topological length of a path is the total num-

ber of hops between the source and the destination of the path.�

A waypoint sequence is a sequence of sensor nodes that serve

as intermediate relays for the packet transportation from the

source to the destination. Let W=[w(1), w(2),..., w(M)] denote

a waypoint sequence with size M where each element denotes
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a waypoint node. Note that we deem the source as the first

waypoint and the destination as the last waypoint. We define:

Definition 2 The Euclidean length of a waypoint sequence [w(1),

..., w(M)] is
∑M

i=2 D(w(i), w(i−1)), where D(·, ·) denotes the Eu-

clidean distance between two nodes.�

In waypoint-based geographic forwarding, packets from the

first waypoint, i.e., the source, will be sent to the second way-

point. A waypoint, when receiving a packet, will send the packet

to its next waypoint until the last waypoint (i.e., the destina-

tion) is reached. Packets are transported between two adjacent

waypoints with a geographic forwarding scheme.

The aim of a waypoint-based geographic forwarding scheme

is to find a waypoint sequence [w(1), ..., w(M)] given a source

w(1) and destination w(M) so as to minimize the topological

length of the path from w(1) to w(M). To achieve this, two

issues are generally considered. First, greedy forwarding should

always be feasible between two adjacent waypoints based on the

notion that the greedy mode is better than the detour mode in

terms of the topological length. Second, the Euclidean length

of the waypoint sequence should be minimized since longer Eu-

clidean length usually incurs larger topological length. However,

these two considerations in the existing approaches are not yet
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adequate.

First, even if greedy forwarding is always feasible, geographic

routing cannot always achieve optimal routes [51]. Figure 4.2(a)

shows an example where a greedy forwarding path (i.e., the left-

hand side path) is just a suboptimal path. In fact, the topo-

logical length of greedy forwarding between s and d is tightly-

bounded by O(D2(s, d)) [41]. Such a quadratic relation makes

the theoretical performance of the greedy mode only compara-

ble to the detour mode. We are motivated to enhance waypoint-

based geographic forwarding so that the topological length be-

tween two adjacent waypoints is linearly related to their dis-

tance.
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Second, current approaches lack a strategy that can calculate

a waypoint sequence with minimum Euclidean length. Huang

[51] has recently suggested that packets should be forwarded

along the convex hull of the geometry set Z which consists of

the source, the destination, and the holes and barriers between

them. Supposing there is a 2-dimensional Cartesian coordinate

system with its x-axis passing the source and the destination,

this approach finds a waypoint sequence where the waypoints

form the y > 0 or the y < 0 half of the convex hull of Z. How-

ever, this approach may not find a good waypoint sequence, since

a shorter sequence can penetrate the set Z rather than going

around it. Figure 4.2(b) shows an example where the waypoint

sequence [s, w(3), w(2), d] is shorter in terms of Euclidean length

than the waypoint sequences [s, w(1), d] and [s, w(5), w(4), d]

that can be found by this approach.

How can we find a shorter path than those that go around Z

while the path can still bypass the holes and the barriers in Z?

A brute-force strategy is that for each hole or barrier in front,

packets are forwarded to both left-hand side and right-hand side

of the hole or barrier. Euclidean lengths of all the possible re-

sulting waypoint sequences are compared and the minimum one

is selected. This strategy can find a best waypoint sequence
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since it tries all options. However, the number of options is 2m

where m is the number of holes and barriers between the source

and the destination. When there are many holes and barri-

ers in between, the number of options is huge, which is surely

unacceptable. Hence, a better approach that can converge in

polynomial time is desired.

4.3.3 Overview of GDRP

In order to address the above two issues, we specifically design

GDRP, a waypoint-based geographic data reporting protocol for

WSNs. GDRP employs a trial-and-error approach to find an

optimal path. Round by round, based on its current knowledge

on the holes and barriers between the source and destination, it

tries a so-far-the-best waypoint sequence to bypass the holes and

barriers. Gradually it reinforces its knowledge on the holes and

barriers, until eventually an optimal path is found to bypass the

holes and barriers. Algorithm 4 illustrates its major mechanism.

Let j denote the round index. Pj denotes a path from the

source to the destination found in round j and Lj denotes all

the paths that have been found in round j and before, i.e., Lj =

P1 ∪ P2 ∪ ... ∪ Pj. In the first round, since no knowledge on the

in-network holes and barriers is available, the waypoints are only
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Algorithm 4 The mechanism of GDRP
1: EndF lag ⇐ false
2: L0 ⇐ ∅
3: j ⇐ 0
4: W1 ⇐ [s, d]
5: repeat
6: j ⇐ j + 1
7: Pj ⇐ ∅
8: k ⇐ |Wj |
9: i⇐ k

10: while i 6= 1 do
11: P ′ ⇐ route(Wj(i− 1),Wj(i))
12: Pj ⇐ P ′ ⊕ Pj

/* ⊕ denotes the concatenation
operation of two path segments, e.g.,
[a, b, c]⊕ [c, d] = [a, b, c, d]*/

13: i⇐ i− 1
14: end while
15: if accept(Pj) then
16: EndF lag ⇐ true
17: else
18: Lj ⇐ Lj−1 ∪ Pj

19: Wj+1 ⇐ cal waypoint(Lj)
20: end if
21: until EndF lag is true

Is the path 
acceptable

Initially, the waypoints 
are only s and d

NO
YES

BEGIN

Nodes find routes to convey 
packets between adjacent 
waypoints until the packets 

reach the destination

Calculate a new set of 
waypoints and inform 

them the results
END

the source and the destination. The path discovery scheme of

GDRP finds the first path P1 from the source to the destination.

In round j (j > 1), the waypoint calculation scheme selects a

sequence of waypoints Wj=[wj(1), . . . , wj(Mj)] based on Lj−1.

And the path discovery scheme forwards packets between each

adjacent waypoint pair wj(i − 1) and wj(i) (∀i = 2, ...,Mj) so

that packets are conveyed from the source to the destination. A

new path Pj is thus found. The above procedure is conducted

iteratively until the resulting path is acceptable.
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GDRP adopts a tidy framework where there are essentially

only three components:

• Waypoint calculation, denoted by cal waypoint(·) in line 19

of Algorithm 4;

• Path discovery between adjacent waypoints, denoted by

route(·, ·) of line 11 in Algorithm 4;

• Examination of whether an existing path is acceptable, de-

noted by accept(·) in line 15 of Algorithm 4.

The first and the third components are conducted by only

the sink, while the in-network nodes are responsible for the sec-

ond component. The sink (e.g., a laptop computer, a PDA, or

a robot in a mobility-assisted WSN) is usually with more pow-

erful computational capability and less energy constraint than

the in-network sensor nodes. We hence put the major com-

putational loads in the first and the third components. After

each round of Algorithm 4, GDRP employs an intelligent way-

point calculation scheme (the first component) to find a new

waypoint sequence for the next round, via which GDRP can po-

tentially bypass the in-network holes and barriers. GDRP stops

the path finding procedure in Algorithm 4 when a path satisfies

a condition which can guarantee the performance of the path in
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terms of topological length (the third component). Finally, the

second component is carefully tailored for energy-constraint sen-

sor nodes. It is based on the traditional geographic forwarding

scheme, which is inherently light-weighted. These components

will be illustrated in Section 4.4.

4.3.4 GDRP Preliminaries

Packet format

The header of a GDRP packet contains three fields: the geo-

graphic location of the intended destination, the location of the

waypoint that the packet is currently heading for, and the lo-

cations of nodes the packet has visited. The packet format is

shown in Figure 4.3.

destination next-waypoint locations data

location location visited contents︸ ︷︷ ︸
GDRP header

Figure 4.3: GDRP packet format

The destination location field saves the sink location, which

is unchanged during the packet’s trip to the sink. The locations

visited field is incrementally updated by each node that forwards

the packet. A record of such locations is generally required by a

waypoint-based geographic forwarding approach for calculating
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a waypoint sequence [8, 51, 124]. In round 1 of Algorithm 4,

as only the source and the sink are waypoints, the source fills

the location of the sink into the next-waypoint location field,

meaning that the packet is heading for the sink. Then, a new

waypoint sequence can be calculated in each round j (j > 1).

When a packet reaches each designated waypoint, this field can

be updated by the waypoint to its next waypoint.

Note that such a packet header is small in size. Most of

the overhead is in the locations visited field, which, however, is

only applied before Algorithm 4 converges. After GDRP finds

a waypoint sequence that results in an acceptable path, such a

field is then unnecessary. Hence, the packet overhead caused

by the header is inconsiderable, which sticks to our objective of

energy efficiency.

Waypoint table

For a node selected as waypoint, the sink would inform it and let

it know the location of its next adjacent waypoint. A waypoint

table is designed to save such information. Each record of the

waypoint table contains only two fields: The destination location

field and the next waypoint location field. The next waypoint

location field tells where the next waypoint is for those packets
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targeting at what the corresponding destination location field

indicates. Finally, note that the waypoint tables are quite small

in size (tens of bytes for typical WSNs), which is acceptable for

the state-of-the-art sensor platforms [21].

4.4 Surviving Holes and Barriers with GDRP

4.4.1 When a Path is Acceptable

Let us firstly formulate perfect sequence in geographic forwarding

(in short, perfect sequence) and strongly perfect sequence as

follows.

Definition 3 A sequence of nodes [u0, u1, ..., un, w] is a perfect

sequence in geographic forwarding if it satisfies:

• The distance between any two adjacent nodes in the subse-

quence [u0, ..., un] is less than or equal to r;

• ui is geographically closer to w than node uk if i > k.

• The distance between ui (i > 0) and any other nodes except

ui−1 and ui+1 in [u1, ..., un] is larger than r;

• Given an x-y coordinate system with its x-axis passing u0

and w, the maximum difference of the y-coordinates between
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any two nodes are no more than d = α · r, where α is a

constant.

A perfect sequence is a strongly perfect sequence if:

• The distance between w and un is less than or equal to r,

while the distance between w and any other nodes in the

sequence is larger than r.�

The first three requirements guarantee that the nodes ex-

cept the last in a perfect sequence form a path segment with

the last node being the destination, where greedy forwarding

is always feasible. A strongly perfect sequence further ensures

all nodes form a greedy forwarding path towards the last node

in the sequence. Moreover, the nodes in a perfect sequence are

confined in a rectangular area based on the fourth requirement.

As demonstrated in Figure 4.4, the whole path [u0, u1, ..., u6,

destination] is a strongly perfect sequence, while [u0, u1, u2, u3,

destination] is a perfect sequence since the distance between u3

and destination is larger than r. A good property of strongly

perfect sequence is as follows.

Lemma 2 The topological length of a path is bounded by 8(α+1)
πr

times the Euclidean distance between the source and the desti-

nation if the path is a strongly perfect sequence.�
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Figure 4.4: A strongly perfect sequence

Proof: Let us denote the path as [u0, u1, ..., destination]. Sup-

pose the distant between the source to the destination is l. As

shown in Figure 4.4, draw the circles centered at ui where i is odd

with their radii equal to r
2 . All these circles must be in a rect-

angular area with length l and width (α +1)r because all nodes

are in a rectangular area with length l and width αr. Moreover,

these circles should not intersect each other. Otherwise, the dis-

tance between two non-adjacent nodes is less than r which con-

tradicts the requirements of strongly perfect sequence. There-

fore, the maximum number of such circles n(l) are bounded by:

n(l) ≤ l · (α + 1)r

π(1
2r)

2
=

4(α + 1)

πr
· l. (4.1)

The total number of hops (i.e., the number of node in the se-

quence minus one) in the path is bounded by twice of such a
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circle number. The topological length of a strongly perfect se-

quence, denoted by HSPS(l), is hence bounded by:

HSPS(l) ≤ 8(α + 1)

πr
· l, (4.2)

which is linearly related to l and thus Lemma 2 is proved.

Corollary 1 If a path between two nodes is a strongly perfect

sequence, the topological length of the path is not larger than

8(α+1)
π times that of their shortest path.

Proof: Let us again suppose the distance between the source

and the destination is l. The topological length of the shortest

path HS(l) between them is lower-bounded by d l
re. Therefore

according to Lemma 2, we get:

HSPS(l) ≤ 8(α + 1)

π
d l
r
e ≤ 8(α + 1)

π
HSP (l). (4.3)

It shows that the topological length of a strongly perfect se-

quence will not be worse than 8(α+1)
π times of that of the shortest

path, which proves Corollary 1.

Therefore, we deem that given a path segment from waypoint

w(i-1) to w(i), if the path segment is a strongly perfect sequence,

the in-network holes and barriers do not considerably influence

the data transportation between w(i-1) and w(i). Hence, GDRP
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can accept a path and stop Algorithm 4 if the path is an accept-

able path defined as follows.

Definition 4 A path Pj is an acceptable path for Algorithm 4

if the path segments between any two adjacent waypoints, i.e.,

wj(i-1) and wj(i) (∀i = 2, ...,M), are strongly perfect sequences.�

4.4.2 Calculating a New Waypoint Sequence

In order to effectively bypass holes and barriers, the waypoints

should be determined based on the locations of the holes and

barriers. However, since the sink does not have a global picture

of the network, holes and barriers cannot be known beforehand.

GDRP has to learn the information of the holes and barriers

with the paths found in previous rounds. With a trial-and-error

approach, the knowledge on the holes and barriers can be accu-

mulated. Consequently, better and better waypoint sequences

can be designed. In what follows, we first discuss how GDRP

learns the knowledge of the holes and barriers with the paths

found in previous rounds. And then, we provide how GDRP

calculates a waypoint sequence based on such knowledge.



Chapter 4. Surviving Holes and Barriers in Geographic Data Forwarding111

Modeling the influences of holes and barriers

When a path is not an acceptable path, there exists at least one

path segment between a pair of adjacent waypoints which is not

a strongly perfect sequence. Let [w, u1, u2, ..., w′] denote such a

path segment where u1, ..., and ui are the intermediate nodes,

and w, w′ are the adjacent waypoints. In this case, there are

some holes or barriers that influence the packet transportation

from w to w′.

Since the impact of holes or barriers can be considered as

how they make the path segment “imperfect”, they can be in-

ferred by finding which parts of the segment make it fail to be

a strongly perfect sequence. Thus, we can model the impact of

the holes and barriers using these parts. Figure 4.5 demonstrates

an example. In this example, [w, u1, u2, w
′], [u4, u5, u6, w

′], and

[u8, u9, u10, w
′] are all perfect sequences; whereas [u2, u3, u4] and

[u6, u7, u8] make the whole path segment fail to be a strongly

perfect sequence. Therefore, it can be inferred that there are

some holes or barriers lying in the shaded areas shown in Figure

4.5.

Specifically, for [w, u1, u2, ..., w
′], GDRP first finds those parts

that form perfect sequences together with w′. And then it con-

siders the rest parts are resulting from the holes or barriers be-
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Figure 4.5: An example on modeling the influences of holes/barriers and
calculating waypoint sequence

tween the two waypoints. We call such a part a detour part,

where the first node is called the starting node of the detour

part and the last one is its ending node. Consider the exam-

ple case shown in Figure 4.5. [u2, u3, u4] and [u6, u7, u8] are two

detour parts with starting nodes being u2 and u6, and ending

nodes being u4 and u8, respectively.

Thus, for each path Pj found in round j of Algorithm 4, if

the path is not an acceptable path, a set of detour parts in Pj,

denoted by Bj, can be found. And then the collection {Bk}jk=1

can be regarded as the current knowledge of the in-network holes

and barriers by the end of round j of Algorithm 4. Note that

since the impacts of the holes and barriers are the same based

on the notion that they both make a path contain detour parts,

formulating their impacts as the detour parts actually provide

GDRP a generic treatment to both holes and barriers.
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Obtaining the best waypoint sequence

Based on the current knowledge {Bk}jk=1, our objective is to find

a best set of waypoints Wj+1 for round j+1 so as to make the

packets bypass the known holes and barriers in round j+1 and

minimize the topological length of the path found in round j+1.

We consider the starting nodes and the ending nodes of the

detour parts as the potential waypoints, i.e., the waypoints in

Wj+1 are selected from the set of the starting nodes and the

ending nodes of all detour parts in {Bk}jk=1. In the example

shown in Figure 4.5, u2, u4, u6, and u8 are hence the potential

waypoints. The reason is justified as follows.

We select an ending node of a detour part as a potential

waypoint because from this node on the path is clear of the

hole or barrier modeled by the detour part, since a new perfect

sequence starts from this node. In other words, the known hole

or barrier modeled by a detour part does not influence the path

any longer from its ending node on.

We select a starting node as potential waypoint as we take

into accounts the possibility that the node can avoid the cor-

responding detour part by just forwarding packets to another

direction. Again consider the example in Figure 4.5. If u2 and

u6 are waypoints, they can attempt to explore the network in the
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other directions indicated by the dotted arrows in the figure to

avoid the known holes or barriers modeled by their correspond-

ing detour parts. Finally, note that when a node is the starting

node of more than one detour part, it means that both direc-

tions have been tried. Consequently, it would not be considered

as a potential waypoint.

Given the potential waypoints composed by the starting nodes

and the ending nodes of {Bk}jk=1, we expect in round j+1 GDRP

can find an acceptable path, i.e., GDRP can find a strongly

perfect sequence between each pair of the adjacent waypoints.

Therefore, draw a line segment between two adjacent waypoints

in Wj+1, it cannot intersects a known detour part. Otherwise,

the path segment found in round j+1 between the waypoints

cannot be a strongly perfect sequence as it will detour when

reaching the hole or obstacle modeled by the detour part. Based

on this consideration, we calculate the waypoint sequence Wj+1

as follows.

First, construct a subgraph GW of the network in which the

vertex set includes the potential waypoints, the source s, and

the sink d. Two vertices in GW share an edge if and only if

the line segment between the two vertices does not intersect any
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of the detour parts8. Figure 4.5 shows an example where the

dotted line segments denote the edges of GW . The waypoint

sequence Wj+1 should form a path in GW since we expect that

path segments between any two adjacent waypoints will not in-

tersect a known detour part. We then let each edge in graph GW

be weighted by its Euclidean distance and find a shortest path

in GW from the source s and the destination d. The potential

waypoints along such a shortest path is hence considered as the

resulting waypoint sequence.

In the example shown in Figure 4.5, the shortest path is w →

u2 → u8 → w′ and hence the waypoint sequence is [w, u2, u8,

w′]. Lastly, note that no additional overhead is introduced in

this procedure since GW is constructed merely with Lj={Pk}jk=1

collected in each round of Algorithm 4. Based on how GW is

constructed and the property of shortest path, we can obtain

the following lemma.

Lemma 3 The waypoint sequence found by GDRP is with min-

imum Euclidean length according to the current knowledge of the

holes and barriers.

Suppose in round k, GDRP eventually converges. The topo-

logical length of Pk is then linearly related to the Euclidean

8The starting node and the ending node of the same detour part will not share an edge.
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length of Wk. Since the Euclidean length of Wk is the mini-

mum, we can hence guarantee the resulting path is an optimal

path between the source and the destination.

4.4.3 Geographic Forwarding between Adjacent Way-

points

Now we discuss how we tailor the path discovery scheme of a

sensor node so that it can conduct the geographic forwarding

task between two adjacent waypoints. First of all, such a path

discovery scheme should always ensure successful packet delivery

between two adjacent waypoints. Hence we base it on the path

discovery scheme adopted in traditional geographic forwarding

approaches (see Section 4.3.1) [56]. But two changes are made

as follows.

The first change is that the right-hand rule or left-hand rule

may be adopted even if greedy forwarding is feasible. This is

due to the fact that even greedy forwarding is feasible, there

may be a hole or barrier ahead. GDRP should try to forward

packet to another direction to bypass the hole or barrier.

The second change is that in GDRP, the staring node of a

detour part (i.e. a node which faces a hole or barrier ahead) can

choose the opposite direction to what is chosen in the previous
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round of Algorithm 4, so as to explore a new path which is

potentially better than what is found in the previous round.

For conducting this task, we design a direction table for each

starting node. Each record of a direction table contains two field:

the waypoint field and the direction field. The direction field

saves the rule (left-hand or right-hand) adopted in the previous

round of Algorithm 4 when forwarding packets to the waypoint

recorded in the corresponding waypoint field. After each round

of Algorithm 4, if GDRP finds out that a node is a starting

node of an newly-found detour part, it would inform the node.

Suppose in the previous round the packets forwarded by this

node is heading for a waypoint w. The node would then check

its routing direction table and find the record of w and change

the direction in its direction field accordingly9.

We now elaborate the behavior of a node when it runs GDRP.

First, when receiving a packet, a node reads the packet’s next-

waypoint location field. If the node is the packet’s intended

waypoint, it would update the next-waypoint location field of the

packet according to the node’s waypoint table before it sends the

packet. Otherwise, it just proceeds to send the packet.

When sending a packet, if no record of the corresponding

9If there is no record of w, the node would create one for w. The location of w is saved
in its waypoint field. The direction field is set to the opposite direction of the default one.



Chapter 4. Surviving Holes and Barriers in Geographic Data Forwarding118

waypoint can be found in a node’s direction table or there is no

direction table, the node would simply adopts the same strat-

egy as that in traditional geographic forwarding to send the

packet: Employ greedy forwarding if it is feasible, or otherwise

take predetermined left-hand rule or right-hand rule and enter

the detour mode to forward the packet. But if the record can

be found, it will choose a routing direction according to the di-

rection field of the record and adopt left-hand rule or right-hand

rule accordingly .

4.4.4 A Case Demonstration of GDRP

Figure 4.6 demonstrates the resulting paths found in each round

of GDRP in an example network. In the first round, since no

network holes or barriers are known, the sink considers [source,

sink] as the waypoint sequence. The path in Figure 4.6(a) is

found. the sink finds two potential waypoints w1 and w2 shown

in the figure. It then informs w1 to change its forwarding direc-

tion since it is the starting node of the detour part from w1 to

w2.

Because the line segment from the source to the sink does

not intersect the known detour part from w1 to w2, in round

2, the sink again sets [source, sink] as the waypoint sequence
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Figure 4.6: A case demonstration of GDRP

since it is the shortest path in GW from the source to the sink.

Now when a packet reaches w1, w1 would forward the packet to

anther direction. The resulting path is shown in Figure 4.6(b).

Another detour part from w1 to w3 is found and w3 is then a

potential waypoint. Since w1 is the starting node of two detour

parts, the sink knows w1 fails to bypass a hole or barrier and

hence w1 will not be selected as a potential waypoint any more.

Now the sink finds out that the waypoint sequence [source,
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w3, sink] is the shortest path in GW from the source to the sink.

It selects w3 as a waypoint and informs it in round 3. Packets

are now first sent to w3 and then to the sink. Figure 4.6(c)

shows the resulting path. The sink finds the third detour part

from w5 to w4. w4 and w5 are then the new potential waypoints

and GW is updated.

Now the waypoint sequence [source, w2, sink] is the shortest

path in GW from the source to the sink. In round 4, the sink

sets w2 as a waypoint and informs it. In this round, the path

segments from the source to w2 and from w2 to the sink are both

strongly perfect sequences as shown in Figure 4.6(d). GDRP

completes its task in finding a best set of waypoint. Packets,

from then on, can be forwarding along the path found in round

4.

For comparison purpose, we also plot the shortest path in

Figure 4.6. It shows the final resulting path of GDRP is com-

parable to the shortest path in terms of the topological length.

4.5 Simulation Study

In order to study the effectiveness of GDRP in surviving network

holes and barriers, we simulate a WSN. Energy-efficiency is stud-

ied in terms of the topological length of the resulting paths. We
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compare our GDRP protocol with GPSR (a geographic forward-

ing protocol proposed in [56]) and a waypoint-based geographic

forwarding protocol like that proposed in [51], which is named

CONVEX-W in this thesis. GPSR tolerates holes and barriers

by entering the detour mode instead of relying on waypoints.

CONVEX-W always find waypoints in one side of the line seg-

ment from the source to the sink, which forms the half convex

hull of the source, the sink, and the known holes and barriers

in between. In our simulations, we also find shortest paths with

global network information for comparison purpose.

All the geographic forwarding protocols planarize the net-

work based on its Gabrial Graph for the detour mode in our

simulation studies. The default forwarding direction in the de-

tour mode takes the right-hand rule. The constant α for GDRP

in determining perfect sequences is set to 2 empirically. the sink

is located at one corner of the network area (r
2 away from two

boundaries), while the source is located at its opposite corner

(also r
2 away from two boundaries). Network holes and barriers

are simulated by inserting ellipses and line segments into the

network. The line segments cut the intersecting wireless links,

while the ellipses are the areas in which there are no sensor

nodes. The ellipses and the line segments do not intersect the
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network boundary to avoid geographic forwarding routes packets

along network perimeters. Finally, the details of the simulation

network settings are shown in Table 4.1, which are typical WSN

settings. For each setting in our following performance studies,

we adopt 60 different random seeds in every runs and the results

are averaged. We do not consider the cases that geographic for-

warding fails to deliver a packet, which is generally caused by

the inserted holes and barriers that result in an unconnected

network.

Table 4.1: Simulation settings in Chapter 4

Area of sensor field 400m × 400m

Node deployment scheme
Randomly deployed

in a uniform manner

Node communication range r [40m, 70m]

Sensor node number [100, 500]

Holes and barrier number [2, 8]

We first study how the number of network holes and barri-

ers influences the topological lengths of the paths. Figure 4.7

demonstrates the results where the communication range is 60m

and the number of sensor nodes is 500. It shows that as the

number of holes and barriers increases, the paths found by all

the protocols result in larger topological length. This is because

with more holes and barriers in between, greedy forwarding faces
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Figure 4.7: Topological lengths with different numbers of holes and barriers

higher chances to fail, which results in longer paths for bypassing

more holes and barriers. We can see that our GDRP always out-

performs GPSR and CONVEX-W. This verifies the advantage

of the waypoint selection algorithm adopted in GDRP. Note

that even when the hole and barrier number is large, unlike

that of the other two protocols, the performance of GDRP does

not dramatically deviate from the optimum shortest path. This

shows the effectiveness of GDRP in surviving network holes and

barriers.

We also study how GDRP performs with respect to the node

density and node communication range. Six holes and barriers

are injected into the network. Figure 4.8 shows the results where

we let the communication range be 60m and change the node

number from 100 to 500, and Figure 4.9 provides the results

where we set the node number to 400 and change the commu-
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Figure 4.8: Topological lengths as a function of in-network node number
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Figure 4.9: Topological lengths as a function of communication range

nication range from 30 to 60.

It can be seen that the larger the node density or communica-

tion range is, the better all these protocols perform. This is quite

natural: Larger node density or communication range result in

larger per-hop progress in geographic forwarding [138]. More-

over, larger node density or communication range also decreases

the chance that greedy forwarding fails since more neighbors are

available as the potential greedy forwarding candidates. These
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Figure 4.10: Average number of rounds needed before converging

results further confirms that GDRP always outperforms GPSR

and CONVEX-W in different network settings.

Finally, although GDRP performs well in terms of the topo-

logical lengths of the paths it finds, an important concern is the

number of rounds it requires in finding an acceptable path. Fig-

ure 4.10 compares GDRP and CONVEX-W since CONVEX-W

is also an iterative protocol. The communication range is 60m

and the number of sensor nodes is 500 in this study. It shows

that although GDRP averagely needs more rounds to converge

than CONVEX-W does, the round number is still small even

when the hole and barrier number is high. Moreover, it do not

grow dramatically with the hole and barrier number. This shows

the nice tractability of the waypoint selection problem modeled

in GDRP.
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4.6 Conclusion

Geographic forwarding has long been advocated as a promis-

ing technique in transporting sensor data in WSNs. However,

in practical WSN deployments, network holes and barriers are

inevitable. This poses a critical challenge to traditional geo-

graphic forwarding and consequently makes it very inefficient in

terms of energy consumption. In this chapter we aim to improve

the energy efficiency of geographic forwarding, so as to enhance

the survivability of the network in practical deployment envi-

ronments. We address this problem by proposing a waypoint-

based geographic forwarding approach called GDRP. We prove

the performance guarantee of GDRP and verify its effectiveness

in tolerating network holes and barriers with extensive simula-

tion studies.

2 End of chapter.



Chapter 5

Energy-Efficient On-demand Active Contour

Service

Summary

Contour mapping is an important technique for WSNs to abstract the

information of a monitored field. State-of-the-art approaches for con-

tour mapping, however, are neither energy-optimized, nor capable of

handling heterogeneous user requests. We hence develop a novel On-

demand Active Contour Service (OACS) for WSNs. OACS regresses

the field intensity function with kernel Support Vector Regression, which

flexibly handles both contour line and contour map requests. OACS also

adaptively accommodates a wide range of contour line/map precision re-

quirements: (1) For applications of low precision, only a minimum set

of nodes are scheduled in the on-duty mode while others are sleeping

for conserving energy. (2) For applications of high precision, via an ac-

tive and progressive learning algorithm, OACS determines the best set

of nodes that should be turned on for improving the contour line/map

precision. Evaluation based on diverse realistic models demonstrates

that OACS provides quality and seamless contour services for various

application requirements yet significantly conserves energy.

127
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5.1 Introduction

In data collection WSN applications, the major task of a WSN

is to measure, process, and convey the sensor data to a data

sink so that the sink can reconstruct the information of a scalar

field of interest, e.g., the temperature distribution throughout

a monitored space, or the boundary where the concentration

of a toxic gas reaches a dangerous level. Since such a field is

continuous in nature, contour mapping turns out to be a natural

and necessary service: Based on the in-situ sensor readings, the

sinks of WSNs can construct contour lines or contour maps to

present the information of the scalar fields. A contour line is

a line along which the intensity of the field is a constant value.

The value is hence called the value of the contour line. A contour

map is a map illustrated with a set of such contour lines.

Contour mapping has long been recognized as an important

approach for WSN applications [75], e.g., to locate and monitor

a phenomenon of interest [119] and to capture the WSN system

life conditions such as the energy levels of the nodes [125]. It

can also provide instant and user-friendly visualization of the

scalar field of interest [68, 118].
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One challenge faced by contour mapping in WSNs is how to

handle diverse contour requests from users. A user may request

a single contour line to obtain the information of a boundary,

or request a contour map to obtain the information of the en-

tire field of interest. Moreover, the user may also have different

requirements on the precision of a contour line/map. For ex-

ample, he/she may be interested in observing more details of

the field when a particular phenomenon takes place and hence

may require the network to produce a finer map. However, a

contour service that can handle such diverse user requests with

energy-efficiency is still at large in the current state of the art.

The existing contour mapping approaches are generally opti-

mized for either contour line (e.g., [68, 98, 118]) or contour map

(e.g., [75, 95]) requests, but not for both. More importantly,

they largely ignore the fact that the users may have different re-

quirements on the precision of a contour line/map. Their focus

is to minimize the number of packets that should be reported to

the sink for achieving energy efficiency. They generally require

each in-network node to sense the environmental data of inter-

est, although the sensor readings are processed in the network

and some are possibly suppressed. As a result, they are essen-

tially best-effort approaches and lack a scheme for tuning the
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precision of the line/map by controlling the number of the on-

duty nodes [40, 68, 75, 98, 118]. Such precision tuning, however,

is not just a marginal service consideration, but very crucial for

energy saving. With such a scheme, we can put some in-network

nodes into the sleeping mode and thus save more energy when

low precision is acceptable.

To address this critical challenge, we develop a novel energy-

efficient contour service, namely, On-demand Active Contour

Service (OACS), for WSNs to seamlessly handle diverse user re-

quests. OACS first divides the network area into clusters. It

then regresses a field intensity function in each cluster by tak-

ing sensor readings with sensor locations as input samples. This

provides the flexibility to handle contour line and contour map

requests adaptively. For a contour line request, what we focus

is to let the regression result accurately represent the reality in

the area around the real contour line. Hence, only the sensor

readings close to the contour line value are required for the re-

gression. Whereas for contour map requests, since the contour

lines of interest are spreading throughout the network area, the

regression result is important everywhere of the network. Hence

more sensor readings can be involved in the regression.

To deal with different requirements on contour line/map pre-
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cision, OACS initially requires only a minimum set of nodes are

on duty while putting the rest in the sleeping mode. According

to the precision requirement, OACS then progressively activates

sleeping nodes to enhance the precision expected by the users.

To this end, it incorporates a comprehensive set of selection al-

gorithms for the nodes-to-be-activated, which are enlightened by

the recent advances in active learning [106]. This novel two-step

design of OACS seamlessly accommodates request diversity yet

significantly conserves energy.

The rest of this chapter is organized as follows. Section 5.2

studies the related work. In Section 5.3, we provide a system-

level overview of our contour service. Section 5.4 analyzes the

contour mapping problem and a two-step regression approach

is illustrated. Section 5.5 reports the performance study results

and Section 5.6 provides the conclusion remarks.

5.2 Related Work

Contour mapping has long been studied by geography and geol-

ogy researchers [22, 29], where their concern was mainly on how

to generate a contour map with all data at hand. A straightfor-

ward application to WSNs is that the sink collects all individual

sensor readings and then builds the map in a centralized manner
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(e.g., with linear interpolation such as Kriging [59]). Such an

approach, although simple, incurs too much energy consump-

tion as every node has to sense and report data to the sink. It is

not suitable WSNs due to their energy constraints. This leads

to the design of many distributed approaches. Some proposed

that only the nodes with readings close to the value of the con-

tour lines report their readings to the sink (e.g., [68, 98]). In

other approaches, a network is divided into clusters. In each

cluster, segments of contour lines are constructed at its cluster

head and reported to the sink instead of all the sensor readings

(e.g., [118]).

The idea of using machine learning techniques in contour

mapping was recently suggested in [118]. It formulates the prob-

lem of constructing a segment of a contour line as a non-linear

classification problem. A severe algorithmic inadequacy of this

approach is that it relies heavily on the shape of the distribution

of the nodes’ locations, while disregarding their sensor readings.

As a result, it may generate biased contour lines and generate

the same curve for the contour lines with different values. In

addition, the application of linear regression to contour map-

ping was proposed in [68]. But a contour line is non-linear in

nature. Such a linear approximation generates results that are
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either inaccurate or with too many parameters. Moreover, a

mobility-assisted approach was proposed in [99], which studies

how to design the tracks of a set of mobile nodes to detect a

contour line. The problem context, however, is quite different

from that studied in this chapter.

Note that the above schemes are essentially optimized for cal-

culating a single contour line. When an entire contour map is

required, they usually need to construct each contour line sepa-

rately and eventually the resulting lines are combined into one

map [68, 98, 118]. This is actually very inefficient. Neighboring

contour lines usually exhibit space correlations, and hence it is

possible to construct and represent them in a better way. Taking

this into account, many approaches try to exploit such spatial

correlations in building an entire map. The idea to abstract a

field with isobars (i.e., rectangle area where the field intensity

is close to a value) was suggested in [80] for boundary detec-

tion. Hellerstein et al. further proposed to build such an isobar

map based on a routing tree [48]. Gandhi et al. suggested sum-

marizing a contour map with a topologically equivalent family

of polygons [40]. Silberstein et al. [95] and Meng et al. [75]

investigated algorithms for spatial and temporal suppression.

Their focus is a data aggregation scheme for minimizing en-
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ergy consumption of communication. Similarly for efficient data

management, Guestrin et al. proposed to compress spatiotem-

porally correlated sensor data with a distributed regression ap-

proach [44]. These approaches, however, are not efficient for

calculating a single contour line since they aim at abstracting

all in-network sensor readings.

To the best of our knowledge, no comprehensive yet adaptive

treatment to both contour line and contour map requests is pre-

sented in the literature. Moreover, the existing approaches are

best-effort only: There is no mechanism for energy conserving

when lower precision contour line/map is acceptable. Finally,

they lack a proper scheme to actively select sensor nodes in cal-

culating contour lines/maps.

5.3 System-level Overview of On-demand Ac-

tive Contour Service

This section provides an overview of the OACS approach in a

system perspective. We first identify its working environments.

Then we discuss the user requirements and how we encode them

in OACS’s user enquiries. Finally, we brief OACS’s major work

flow in processing its user enquiries.
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5.3.1 Preliminaries

We consider a WSN consisted of N stationary sensor nodes

{sj}Nj=1 randomly deployed in a 2-dimensional network area φ

(i.e., φ ⊂ R2). Like work in [118], we consider the network

consists of K clusters and there is a head hi for each cluster i

[18, 123]. Cluster heads are in charge of constructing the seg-

ments of contour lines/maps inside their clusters and reporting

the results to the sink. They are generally equipped with a high

computational capability hardware platform, e.g., the Crossbow

Imote2 [19]. Cluster members, on the other hand, can be rela-

tively low-capability nodes such as the Crossbow IRIS Mote [20].

Let Si denote the set of the nodes in cluster i, i.e., sj is in cluster

i if and only if j ∈ Si. ni is the node number in Si. Lj denotes

the location of sj. Location-awareness is a basic requirement for

contour mapping approaches [40, 68, 75, 98, 118, 119]. Hence,

we consider that each node is aware of its own location, which

can be obtained by a light-weighted localization approach (e.g.,

Calamari [114] distributed with TinyOS [105]). Cluster heads

thus know the locations of their cluster members.

Suppose among all nodes in a cluster, there are a portion

of on-duty nodes, i.e., those that are not in the sleeping mode,
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which maintain the normal sensing task of the network10. Let

λ denote the percentage of the on-duty nodes in a cluster. We

assume that there is a mechanism for cluster heads to let any of

its sleeping cluster members change to the on-duty mode. This

can be done via an active scheme like that proposed in [43] with

which a node can be turned on by radio, or a passive scheme in

which a sleeping node periodically turns itself on and enquires

whether it should change to the on-duty mode.

zj denotes the sensor reading of node sj when sj is on duty.

We consider that zj ∈ R, i.e., zj is a 1-dimensional scalar value,

i.e., the measured intensity of one scalar field. This is assumed

without loss of generality. If there are multiple co-existing fields,

zj is then multi-dimensional, resulting in multiple contour maps,

each corresponding to one dimension. Each map can be con-

structed in the same way as building a map for a 1-dimensional

zj.

5.3.2 Contour Enquiries

We consider two natural user requirements of contour mapping

service. The first one is that a user wants to obtain one sin-
10The roles of being on duty and being sleeping can be rotated for all in-network nodes

based on a node grouping mechanism (e.g., [67, 128]) to balance the residual energy of the
nodes or to maintain coverage.
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gle contour line with a given value. Identifying an phenomenon

boundary (e.g., the boundary of a pollution area as considered

in [99]) is an example. The second one is that the user re-

quires a contour map of the whole network area, for example,

for visualization of the information of the entire field of inter-

est. Hence, user enquiries are divided into two types, namely,

line-enquiries and map-enquiries (L-enquiries and M-enquiries).

In an L-enquiry, a user should give the value of the requested

contour line. While in an M-enquiries, since the user requests

the network to abstract the entire field information, no specific

values are required.

Another important issue is the precision of the contour line

or map a user requests. During a WSN system run-time, a user

may require contour lines/maps with different precisions. For

example, a user may ask the system to generate some coarse-

grained contour maps periodically for logging the changes of a

field. Whereas during a particular time interval (e.g., when a

phenomenon of interest takes place), the user may need a finer

map for more details of the field.

Since neither the actual field intensity nor even its distribu-

tion is a priori knowledge, it is impossible to adopt traditional

precision metrics such as mean square error (MSE) for present-
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ing the precision of a calculated contour line/map: For example,

if a user needs a contour line with its value being 10 and MSE

being 0.5. After calculating a contour line with sensor readings,

no one can tell whether its MSE satisfied the requirement or

not since there is no way to know the ground-truth contour line.

This poses a challenging problem: The precision requirement of

an enquiry has to be defined in a way that it should not only

make sense of how well a contour line/map matches the reality

but also be a calculable value.

Note that the most precise contour line/map segment a clus-

ter head hi can get is the one constructed based on the readings

of all nodes in Si. A contour service can generally provide a

more precise result if it takes the readings of more nodes into

account in constructing a contour line/map. Hence, the number

of the involved nodes is naturally a good index to the precision

of the result. The more the number of nodes involved is, the

more precise the result is, whereas the more energy is required

since more nodes are needed to sense and report their readings.

Tuning the number of the involved nodes provides the flexibility

for a user to trade off energy and the precision of the result.

Hence, the formats of enquiries are as follows. An L-enquiry

is a 2-tuple L=[cv, p] and an M-enquiry is denoted by M=[p],
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where cv is the value of the requested contour line, and p is

the precision requirement, which is the percentage of the sensor

node number in each cluster that the user requires to build a

contour line/map.

5.3.3 Service Overview

Our contour service is an on-demand service: A user-enquiry can

be directly broadcast to the sensor nodes by the sink with its

powerful antenna, or can be broadcast through multi-hop. When

receiving an M-enquiry, all on-duty nodes report their readings

to their cluster heads, while when receiving an L-enquiry [cv, p],

only those on-duty nodes whose readings are close to the contour

value cv report their readings to their cluster heads.

Each cluster head then knows the intensity of the field at a

set of in-network locations. With these data, it computes the

contour line/map segment inside its corresponding cluster with

a kernel-based Support Vector Regression (SVR) technique.

It then examines whether the precision requirement of the

results matches the user requirements p with the initial on-duty

nodes. If the answer is no, it will employ an intelligent scheme to

select a set of sleeping nodes actively, turn them on, obtain their

readings, and refine the results of the kernel SVR scheme, until
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the results are satisfactory. Finally, after the results are reported

to the sink for combining into an overall contour line/map, the

additional on-duty nodes go back to the sleeping mode.

5.4 Regression-based Contour Mapping Al-

gorithms

Since the cluster heads play important roles in our contour ser-

vice, in this section we focus on how a cluster head constructs

the part of the contour line/map that is located in its cluster.

5.4.1 Contour Mapping with Kernel SVR

The intensity z of a scalar field is essentially an unknown con-

tinuous function f(x) defined on φ, where x is a 2-dimensional

vector denoting a location in the network area:

z = f(x) (x ∈ φ). (5.1)

An actual contour line with value cv is then a curve where the

points on the curve satisfy f(x) = cv. While an entire contour

map is composed by a lot of such curves (with values forming

an arithmetic sequence) spreading throughout the network area.

Given an estimation of the function f(x), we can easily find out
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a contour line/map.

The sensor readings can be deemed as the sample values of the

function f(x) where the nodes locate. Note that these sensor

readings, however, are subject to measurement errors due to

the influence of noise. Hence, contour mapping is essentially a

procedure we regress f(x) based on these noisy sample values.

Formally, for each cluster i, give its head hi a set of samples,

i.e., the mappings {Lk 7→ zk}∀k∈Wi
where Wi is a subset of all

nodes in Si. Its goal is a function f̃i(x) to estimate f(x) in its

cluster area, which satisfies f̃i(Lk) = zk + εk. Here εk is the error

of sensor sk. We assume the error {εj}∀j∈Si
are independent

and identically-distributed according to a zero-mean Gaussian

distribution with variance σ2, i.e. εj ∼ N(0, σ2).

To make this problem tractable, we need to assume a form of

the function f̃i(x). Work in [68] adopts a linear form to study

this problem. Although linear functions are the simplest for

this problem, they are not good candidates since the intensity

of a field is generally non-linear in nature (and contour lines are

generally not straight line segments). A better way is to use a

combination of polynomial functions or Gaussian functions to

represent f̃i(x). This can be handled by kernel SVR [26]. We

briefly present the approach as follows.
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(a) Sensor readings are not linear to their locations. (b) Map sensor locations to another
space, where sensor readings are linear to their locations.

Figure 5.1: An example of space mapping

Theoretical foundation

The idea of kernel SVR is employing space transform to map

the original non-linear function f(x) to another space where

the function can be deemed as a linear function, which is then

easy to be regressed. Figure 5.1 demonstrates a simple example

of how space mapping works. In the network area, the sensor

readings and their locations are not linearly-related. But, with a

non-linear mapping y1=x2
1-2x1+2 and y2=x2

2-8x2+17, a location

x=(x1, x2) in the original space is then mapped to a location

y=(y1, y2) in another 2-dimensional space where we can regress

z as a linear function of y. For example, z=y1+y2-2 is a satis-

factory function. The result can then be projected back to the

original space, i.e., z=(x1-1)2+(x2-4)2.
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Let us suppose Φ is an R2 7→ Rd mapping that maps a point

x in the network area φ to a point x in a d-dimensional space

Rd. Consider z as a linear function of y = Φ(x), i.e.,

z = w · y + b = w · Φ(x) + b, (5.2)

where w ∈ Rd, b ∈ R, and · denotes the inner product of two

vectors. Then the canonical SVR formulation of this problem is

[97]:

minimize
w,b

1
2||w||

2,

subject to


zk − (w · Φ(Lk) + b) < εk

(w · Φ(Lk) + b)− zk < εk .

(5.3)

The idea of this formulation is to regress the field intensity as a

linear function of node locations in the new space Rd.

This problem can be worked out by solving its dual problem

with a quadratic programming formulation. It turns out that

only the inner product K(x1,x2) = Φ(x1) ·Φ(x2) in Rd, but not

Φ(x), is involved in the optimization procedure and in its result

[97]. This greatly simplifies the optimization process as we do

not need to know what the mapping actually is. K(x1,x2) is

called a kernel. With such a kernel SVR approach, f̃i(x) can

be represented by a set of locations {Lm}∀m∈SVi
(called support
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vectors) and their weights {αm}∀m∈SVi
, where SV i is a subset of

Wi:

f̃i(x) =
∑

m∈SVi

zmαmK(Lm,x)− b. (5.4)

In general, kernel SVR is to find out a subset of node loca-

tions (i.e., support vectors) and node readings, together with the

proper weights, which best represent the field intensity function

with a kernel function.

Why using kernel SVR

Although SVR is proven effective in many disciplines (e.g.,

[79, 85]), OACS is the first work that adopts kernel SVR for

contour mapping in WSNs. In this section, we comprehensively

justify the benefits to employ kernel SVR in providing a contour

service.

Let us first illustrate the superiority of kernel SVR compar-

ing with the scheme adopted in CME [118], a recent approach

for WSN contour mapping which also suggests using similar ma-

chine learning approaches. CME formulates the problem of con-

structing a segment of contour line with value cv as a classifi-

cation problem. The nodes with the readings larger than cv

are in class A, while the nodes with the readings less than cv

are in class B. Then a classification boundary can be calcu-
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CME

OACS

ReaI Contour

VaIue of the 
Contour Line = 90.0

Sensors in CIass B: Their readings 
are Iess than the contour vaIue
Sensors in CIass A: Their readings 
are Iarger than the contour vaIue

Figure 5.2: An example of the results generated by CME and OACS

lated by machine learning techniques and thus deemed as the

contour line segment. Although such an approach is similar to

ours since non-linear machine learning techniques are adopted,

it relies simply on the shape of the distribution of the nodes’ lo-

cations, while disregarding the sensor readings in the same class.

As a result, it cannot generate satisfactory contour lines.

Figure 5.2 shows a typical result generated by CME. First,

CME generates the same curve for the requests with values be-

tween 80.0 and 90.0. This is because in this example scenario

class A and class B remain the same if the values of the requested

contour line are between 80.0 and 90.0, and consequently, the

classification boundaries (i.e., the contour line) calculated by

CME are the same. Second, CME tends to generate a biased
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contour line. This is due to the even distribution of the nodes

in class A and class B in the top-left part and the bottom-right

part of the dotted rectangle, respectively. CME does not con-

sider the values of sensor readings. As a result, the nodes in

class B in the top-right and bottom-left corners, although with

smaller readings, attract the classification boundary to go along

top-right to bottom-left. OACS with kernel SVR which takes

into account the sensor readings but not merely their locations,

on the contrary, does not face these algorithmic inadequacies.

Hence it can generate a more accurate result as demonstrated

in the figure.

Besides its advantages comparing with the scheme adopted

in CME, kernel SVR has many merits per se. First of all, it can

equip OACS with a flexible method to deal with L-enquiries and

M-enquiries. Examining its theoretical foundation, we can find

that kernel SVR is a scheme that learns an output function based

merely on its input samples, i.e., Wi. Therefore, by controlling

the set of input samples, we can adapt it well to L-enquiries or

M-enquiries. For L-enquiries, since we require f̃i(x) to approx-

imate f(x) well in only the area around the contour line, Wi

can be selected so that {zk}∀k∈Wi
are close to the contour value.

Whereas for M-enquiries, many contour lines are required simul-
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taneously and they are spreading throughout the cluster area;

therfore, the regression result is important anywhere of the net-

work. Hence a largerWi with the nodes more evenly distributed

can be the input for kernel SVR. Adaptively serving both types

of enquires is a novel consideration of OACS in contrast to the

current approaches which aim at either drawing a contour line

efficiently or drawing a contour map efficiently, but not both.

Second, kernel SVR can conveniently handle the non-linear

nature of contour lines. Observe from Equation (5.4) that f̃i(x)

is a combination of kernel functions K(Lm,x). If we want to rep-

resent the field as a combination of polynomial functions with

degree d, we only need to assign a polynomial kernel K(x1,x2)=

(x1 · x2 + 1)d for the kernel-SVR. Similarly, if we want to rep-

resent the field as a combination of Gaussian functions, we

just need a Radial Basis Function (RBF) kernel with the form

K(x1,x2)=e−γ||x1−x2||2, where e is the base of the natural log-

arithm. This provides a user the flexibility to select different

non-linear curve functions according to the features of differ-

ent sensing applications. Most importantly, the non-linearity of

the results can thus be easily generated by applying the ker-

nel method without causing much computational burden. We

expect that the computational load of SVR is acceptable for a
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cluster head equipped with the existing sensor platforms such as

Crossbow Imote2 with a 400MHz MCU [19], since it just needs

to solve a small-scale quadratic programming problem.

Finally, the result of kernel SVR is simple in representation.

According to Equation 5.4, f̃i(x) can be represented by a set

of support vectors and their weights. A packet of a few tens

of bytes is enough to encapsulate the result. OACS favors such

a simple result since a cluster head hence only needs to send

a single packet to the sink, which avoids high communication

costs.

5.4.2 Enhancing Precision via Active Node Selection

Schemes

Since there is no a priori knowledge on the requested contour

line/map, initially, OACS lets λ percentage of nodes be on duty

and then calculates the contour line/map based on these nodes.

If the precision of the result does not match the user requirement

(i.e., λ<p), it will open a set of sleeping nodes and re-calculate

the results based on the newly-added readings from this set of

nodes.

Let Di denote the set of the sleeping nodes in cluster i, i.e.,

Si=Di ∪ Wi. A straightforward way to select the set of to-be-
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opened nodes is to randomly select (λ-p)ni nodes from Di and

recalculate the contour line/map based on their readings. How-

ever, this scheme is inefficient. For example, for an L-enquiry,

it may select the nodes with readings far away from the contour

line value requested, but these nodes are almost useless. For an

M-enquiry, it may select two nodes close to each other, but they

are redundant. To avoid such situations, the way to select these

(λ-p)ni nodes should be carefully studied.

For classification problems in machine learning, a similar con-

cern is how to select a set of training samples for enhancing

the classification precision. Many active learning schemes have

been proposed in recent approaches which actively select train-

ing samples for text [50, 106] or image classification problems

[15]. Although these algorithms are specifically designed for

classification problems, their underlying idea, i.e., selecting the

samples that can provide most information, sheds light on solv-

ing our problem. We hence tailor two active learning schemes for

processing L-enquiries and M-enquiries to select (λ-p)ni nodes,

as described in what follows.
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L-enquiry case

Consider the space Rd where the locations of nodes are pro-

jected by Φ : R2 7→ Rd. The contour line with value cv found by

kernel SVR is hence an estimated hyperplane Pe in Rd, where

the points inside satisfy:

w · y + b = cv ⇒ w · Φ(x) + b− cv = 0. (5.5)

Since Pe is an estimation of the actual hyperplane Pa mapped

from the actual contour line, it inevitably deviates from Pa. Let

us consider a point y1 that is to one side of Pe and let d denote

the distance from y1 to Pe. Note that the closer y1 is to Pe, the

more likely y1 may actually be to the other side of Pa, i.e, the

more uncertain for us to know whether y1 is actually on which

side of Pa.

The distance dj in Rd between a node sj to the estimated

hyperplane Pa is:

dj =

∣∣∣∣w · Φ(Lj) + b− cv

w

∣∣∣∣ (5.6)

We then select a node st ∈ Di as a to-be-opened node if it is

the closest sleeping node to the hyperplane since the uncertainty

of whether the node is to the other side of the actual contour
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line is the maximum. In other words, its reading can poten-

tially change the shape of the calculated contour line the most,

and thus can best improve the accuracy of kernel SVR at the

locations around the actual contour line. Formally,

t = argmin
∀j∈Di

dj = argmin
∀j∈Di

∣∣∣∣w · Φ(Lj) + b− cv

w

∣∣∣∣
⇒ t = argmin

∀j∈Di

|w · Φ(Lj) + b|

⇒ t = argmin
∀j∈Di

∣∣∣f̃i(Lj)
∣∣∣ (5.7)

where the first transform is because |w| and cv are the same for

all nodes in Di and the second is based on the mechanism of

kernel SVR. See Figure 5.3(a) for an example where the value

of the contour line requested is 20.0. The sleeping node, where

the estimated field intensity 18.3 is closest to the contour value

20.0, should be opened to obtain its reading. This is because it

is the most uncertain one regarding whether it is to which side

of the actual contour line.

Note that only f̃i(x) is involved in solving Equation (5.7).

This is very convenient since the f̃i(x) in Equation (5.4) esti-

mated by kernel SVR is already at hand based on the readings

of Wi.

Then st is turned on and added to Wi. Kernel SVR runs
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22.6
24.3
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15.7
12.9

18,3

(a) (b)SIeeping Node
Working Node

Estimated

ActuaI

(a) In processing an L-enquiry, the sleeping node, where the estimated field intensity 18.3
is the closest to the contour value 20.0, should be selected as a to-be-opened node. This is
because it is the most uncertain regarding whether the node is to which side of the actual
contour line. (b) In processing an M-enquiry, the sleeping node in the bottom-left corner
is the farthest from the on-duty nodes. It is the most uncertain one for the field intensity
at that location. Hence it should be opened to obtain its reading.

Figure 5.3: Demonstration of the active node selection schemes

again to update the contour line. The above procedure can be

iterated until the precision of the generated contour line reaches

the requirement, i.e., pni nodes have been considered in produc-

ing the contour line.

M-enquiry case

For processing an M-enquiry, the situation is a little bit dif-

ferent from how to process an L-enquiry discussed in Section

5.4.2. What we care now is to enhance the precision of kernel

SVR everywhere in the cluster area. We discuss how to select a

to-be-opened node as follows.

Consider again the space Rd. The distance dkj between two
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nodes sk and sj in Rd is:

dkj = ||(Φ(Lk)− Φ(Lj)||2

=
√

K(Lk, Lk) + K(Lj, Lj)− 2K(Lk, Lj) (5.8)

Since f̃i(x) is predicted by kernel SVR with the readings of

the on-duty nodes, the farther a location x from the on-duty

nodes is, the more uncertain the f̃i(x) is. Therefore, to improve

the accuracy of f̃i(x), we should choose to open a sleeping node

far away from the on-duty nodes. We define the distance be-

tween a sleeping node to Wi as the minimum distance between

it and all nodes in Wi, i.e., in Rd it is min
∀k∈Wi

dkj. We select a

sleeping node st ∈ Di that has the maximum distance to Wi.

Formally,

t = argmax
∀j∈Di

( min
∀k∈Wi

dkj) (5.9)

Note that if we use an RBF kernel in SVR, K(x,x) =e−γ||x−x||2=1.

Equation (5.9) can be reduced to:

t = argmax
∀j∈Di

( min
∀k∈Wi

(−2K(Lk, Lj)))

= argmax
∀j∈Di

( min
∀k∈Wi

||Lk − Lj||), (5.10)
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which is exactly the same as selecting a sleeping node that has

the maximum distance toWi in the original space R2. See Figure

5.3(b) for an example where the sleeping node in the bottom-

left corner is the farthest from the on-duty nodes. It is the most

uncertain one for the field intensity at that location. Hence it

should be opened to obtain its reading.

5.5 Performance Study

To study the effectiveness of OACS in addressing the WSN con-

tour mapping problem, we simulate a WSN. Without loss of

generality, clusters are formed by evenly dividing the network

into grids and their heads are randomly selected, which is sim-

ilar to the scheme in [118]. The grid numbers are also selected

based on the scheme in [118]. A widely-adopted SVR solver in

SVMlight [54] is employed to solve our kernel SVR problems for

cluster heads11.

The field intensity is generated by the model adopted in

[75, 118], which is briefed as follows. M sources are randomly

distributed in the network area, the locations of which are de-

noted by T ={Tm}Mm=1. Then the field intensity f(x) at location

11The solver is implemented in C. We expect it convenient to port the solver to some
existing operating systems of sensor platforms, e.g. LiteOS [11]. But we have not studied
this issue in this thesis. It needs extensive future work, though.
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x is determined by the summation of the diffusion from the

sources:

f(x) =
∑

Tm∈T

1

(k||x− Tm||+ 1)α
. (5.11)

Note that this is a realistic model since in general the field is a

cumulative result by several sources (e.g., those that emit heat)

while the effect of a source decays exponentially with a factor

larger than 2 in space. The reading of a sensor si is then given

by f(Li) + ε.

Table 5.1: Simulation settings in Chapter 5

Area of sensor field 320m × 320m

Rode deployment scheme
Randomly deployed

in a uniform manner

Communication range Rc 30m

Decay factor α and k 3 and 0.01

Packet size 48 bytes

The details of our network settings are shown in Table 5.1,

which are typical WSN settings similar to those adopted in [118].

Accuracy of a contour line/map is calculated based on the MSE

of the results with respect to the actual line/map. In our fol-

lowing performance study, for each setting we adopt different

random seeds in every run and the results are averaged.
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5.5.1 Advantages of Kernel SVR

We first study the accuracy of our OACS in processing the L-

enquiries, comparing with the CME approach proposed in [118].

We adopt CME for comparison purpose because it is the most

up-to-date contour mapping approach, which also employs the

state-of-the-art machine learning techniques to handle the non-

linear nature of contour line.

For each L-enquiry [cv, p], cv is a randomly-selected field in-

tensity value. We set p=100% for fairness consideration as in

this case OACS would not take any advantages of its active node-

selection schemes. Our purpose is to compare the performance

of our kernel-SVR algorithm and the classification algorithm

adopted in CME.

We change the node density in processing L-enquiries. Figure

5.4 demonstrates an example result where M=3. We can see

that OACS greatly outperforms CME especially when the node

density is low. This is not surprising: CME relies only on the

node-location distribution. It can generate accurate results only

if the node density is very high. In contrast, OACS considers

sensor readings in its kernel-SVR algorithm, which adapts well

to low node density.

Note that the energy required for processing an L-enquiry
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Figure 5.4: Accuracy comparisons between OACS and CME in processing
L-enquiries

for both CME and OACS is almost the same in this experiment

(where the precision requirement p=100%). This is because both

approaches let the nodes with readings close to the contour value

report to their cluster heads.

We then compare OACS and CME in handling M-enquiries.

Similar to the previous experiment, we also set p=100%. We

change the node density and study the accuracy of the maps

generated by OACS and CME. The accuracy results are demon-

strated in Figure 5.5 where we randomly place six sources (i.e.,

M=6) in the network. It shows that OACS also outperforms

CME. The total number of packets that need to be sent by all

in-network nodes are compared in Figure 5.6. We can see that

if we need to generate a contour map with more contour lines,

CME spends more energy than OACS does since CME has to
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Figure 5.5: Accuracy comparisons between OACS and CME in processing
M-enquiries

calculate each contour line separately. In contrast, the num-

ber of packets remains constant for OACS since it generates the

same result for an M-enquiry with the same p.

These simulations show that OACS outperforms CME in pro-

cessing both L-enquiries and M-enquires in terms of accuracy of

the results, while OACS is more energy-efficient when calculat-

ing the contour map. Note that in these simulations, we set

p=100%. In case that the user does not need such a high p,

obviously OACS can conserve much more energy since it has

a scheme to let some nodes sleep. CME, however, lacks such a

scheme and as a result all nodes have to be on duty. Hence, when

p<100%, the energy consumption results are omitted since the

better performance of OACS is straightforward. In conclusion,

we verify the advantages of employing kernel SVR in contour
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Figure 5.6: Total packet numbers sent by OACS and CME in processing
M-enquiries

mapping.

5.5.2 Advantages of Active Node Selection Scheme

Now we investigate how well our active node selection scheme

performs in handling different user requirements on the preci-

sions of the contour line/map requested. We randomly place six

sources (i.e., M=6) and deploy 400 nodes in the network area.

Two approaches are adopted. One (denoted by OACS-Active)

is OACS with our active node selection scheme. The other (de-

noted by OACS-Random) is another OACS version without such

a scheme, where (p-λ)ni nodes are selected randomly from all the

sleeping nodes. We set λ=12% for OACS, i.e., initially, 12% of

in-network nodes are on duty.

We study the accuracy of the results on L-enquiries and M-
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Figure 5.7: Accuracy as a function of precision requirement: L-enquiry case
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Figure 5.8: Accuracy as a function of precision requirement: M-enquiry case

enquiries, in which we change the precision requirement p from

12% to 40%. Figures 5.7 and 5.8 show the results. We can see

that OACS with an active node scheme performs much better

than that without such a scheme12. This is also a natural result

since our active node selection scheme aims at minimizing the

uncertainty of the generated contour lines/maps. Hence, it can

12Note that the accuracy results of both schemes when p=12% are the same as in this
case p is equal to λ, which means that no sleeping nodes need to be turned on. As a result,
the node selection schemes do not have any effects.
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Figure 5.9: Accuracy as a function of node density

select a good set of sleeping nodes and open them for improving

the results, which can greatly enhance the accuracy comparing

with the random node selection scheme. We can instantly see

that for achieving the same accuracy, OACS with an active node

scheme can request to open less nodes than that without such a

scheme. Consequently, OACS with an active node scheme can

save more energy.

With the same setting, we further vary the node density and

study how OACS with an active node selection scheme performs

in processing M-enquiries. Figure 5.9 demonstrates the results,

which show that the higher the node density, the more accurate

the results. This is because when the node density is high, more

candidates are available, and consequently a better set of to-be-

opened nodes can be selected. Hence, the accuracy increases as

the node density increases.
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Finally, to study how OACS performs when the field inten-

sity becomes more irregularly-distributed, we deploy 400 nodes

in the network area and increase the number of sources M . Let

OACS perform M-enquires with p=32%. Figure 5.10 shows

that the accuracy of OACS almost remains unchanged when

the source number increases. This demonstrates that the per-

formance of OACS does not vary much with how the field inten-

sity is distributed, which verifies the nice adaptivity attribute of

OACS.

5.6 Conclusion

In this chapter, we presented OACS as a promising contour map-

ping tool in handling diverse user requests. We showed that

OACS can handle the requests for both contour line and con-

tour map energy-efficiently. Most importantly, it is intelligent
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in energy saving when providing users the flexibility to request

contour lines/maps with different precisions. Our work demon-

strated that the active learning and the kernel SVR techniques

from the machine learning field can be powerful tools for the

contour mapping service in WSNs.

2 End of chapter.



Chapter 6

Conclusion

In-situ sensing with WSNs is a promising approach in environ-

mental data collection and event detection. In this thesis, we

investigated a variety of key problems in realizing WSN in-situ

sensing systems. Since sensor nodes are powered by small bat-

teries which are usually not rechargeable, our aim is to achieve

energy-efficient WSNs given the low computation capacity of the

sensor nodes.

For event detection WSNs, the coverage of the network, as a

measure of event detection capability, should be maintained in

an energy-efficient manner. We studied two coverage-oriented

network scheduling problems in this thesis.

First, we addressed a critical coverage-oriented partitioning

problem: how to divide a set of sensor nodes into a maximum

number of disjoint subsets, so that each subset can cover the

164
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entire network territory. We showed the interesting features of

a fan-out index ι for a set of points. The application of ι to

the coverage-oriented network partition problem was elaborated

by employing it in a MAXINE algorithm. MAXINE exhibited

good performance and short convergence time in our extensive

simulation studies with a wide range of network settings and

two general sensor coverage models. This provides a strong ev-

idence that maximizing ι is a promising idea to reduce node

redundancy. But there is still much room to further extend

this research. For example, we are interested in introducing the

connectivity requirements into the problem formulation so that

the resulting subsets can guarantee certain network connectiv-

ity properties. Moreover, the distributed and localized version

of MAXINE is actually conducted sequentially by one node after

another. We are interested in have the algorithm executed by

multiple nodes simultaneously, rather than in such a sequential

manner.

Second, seamless system migration without downtime is nec-

essary for WSNs that perform critical event detection tasks. Un-

fortunately, to our knowledge, this important problem has not

been addressed in the literature. We presented the first formal

study on this problem. We demonstrated that the downtime
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can be eliminated by partitioning the sensors into a collection of

subsets, and let each subset conduct the system migration tasks

successively with the rest still performing normal event detec-

tion services. We proved the optimum partitioning of sensors

in this context is NP-hard and then proposed a series of heuris-

tics. We further extended our solution to a distributed imple-

mentation called the Sensor Network Reconfiguration Protocol

(SNRP). Simulation results showed that these algorithms work

well in various performance evaluations. Yet, we believe there

is still room to extend this research. In particular, if the node

locations are not available, we need to find a way to divide the

sensors according to the in-network nodes’ neighborhood infor-

mation.

For data collection WSNs, we proposed a novel location-

directed data transport protocols, namely, GDRP for conveying

sensor-to-sink packets. GDRP aims to improve the energy effi-

ciency of location-directed forwarding, so as to enhance the sur-

vivability of the network in practical deployment environments

where network holes and barriers generally exist. We proved the

performance guarantee of GDRP and verified its effectiveness in

tolerating network holes and barriers with extensive simulation

studies.
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Furthermore, we presented OACS as a promising contour

mapping tool in handling diverse user requests in data collec-

tion WSNs. We showed that OACS can handle the requests

for both contour line and contour map energy-efficiently. Most

importantly, it is intelligent in energy saving when providing

users the flexibility to request contour lines/maps with different

precision requirements. Our work demonstrated that the ac-

tive learning and the kernel SVR techniques from the machine

learning field can be powerful tools for the contour mapping

service in WSNs. There are, however, many remaining issues

to be explored. We are particularly interested in developing on-

line algorithms for contour mapping, where a contour line/map

can be incrementally polished based on new sensor readings in-

stead of re-running kernel SVR. We also intend to investigate

how OACS performs if we adopt a batch mode active learning

scheme where all the to-be-opened nodes are selected simulta-

neously, instead of selecting the to-be-opened node one by one.

Finally, how to calculate time-variant contour line/map is also

of interest: A powerful contour service that can well exploit the

temporal-correlations of sensor readings is still at large.

In conclusion, this thesis studies a bunch of protocols and

algorithms to approach energy-efficient WSNs. Another critical
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aspect of realizing WSN in-situ sensing is the implementation of

reliable protocols and algorithms. WSNs software is quite differ-

ent to traditional one. As a result, traditional software testing,

debugging, and fault-tolerance techniques are hence inapplicable

for WSN software, posing a great challenge for building reliable

WSN in-situ sensing systems. In future work, we are also par-

ticularly interested in these issues in WSNs.

2 End of chapter.
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[87] K. Römer and F. Mattern. The design space of wire-

less sensor networks. IEEE Wireless Communications,

11(6):54–61, December 2004.

[88] V. Rodoplu and T. H. Meng. Minimum energy mobile

wireless networks. IEEE Journal of Selected Areas in Com-

munications, 17(8):1333–1344, 1999.

[89] Y. Sankarasubramaniam, O. Akan, and I. Akyildiz. ESRT:

event to sink reliable transport in wireless sensor networks.

In Proc. of the ACM International Symposium on Mobile

Ad Hoc Networking and Computing (MOBIHOC), June

2003.

[90] P. Santi. The critical transmitting range for connectivity

in mobile ad hoc networks. IEEE Transactions on Mobile

Computing, 4(3), May-June 2005.

[91] P. Santi, D. Blough, and F. Vainstein. A probabilistic

analysis for the range assignment problem in ad hoc net-

works. In Proc. of the ACM International Symposium on

Mobile Ad Hoc Networking and Computing (MOBIHOC),

pages 212–220, Long Beach, October 2001.



BIBLIOGRAPHY 187

[92] L. Schwiebert, S. K. S. Gupta, and J. Weinmann. Re-

search challenges in wireless networks of biomedical sen-

sors. In Proc. of the ACM International Conference on

Mobile Computing and Networking (MOBICOM), pages

151–165, 2001.

[93] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srini-

vasan, Y. Wu, W. Kang, J. Stankovic, D. Young, and

J. Porter. Luster: Wireless sensor network for environmen-

tal research. In Proc. of the ACM International Confer-

ence on Embedded Networked Sensor Systems (SENSYS),

Sydney, Australia, November 2007.

[94] C. Sharp, S. Shaffert, A. Woo, N. Sastry, C. Karlof, S. Sas-

try, and D. Culler. Design and implementation of a sensor

network system for vehicle tracking and autonomous inter-

ception. In Proc. of the European Conference on Wireless

Sensor Networks (EWSN), 2005.

[95] A. Silberstein, R. Braynard, and J. Yang. Constraint

chaining: On energyefficient continuous monitoring in sen-

sor networks. In Proc. of the ACM SIGMOD International

Conference on Management of Data (SIGMOD), Chicago,

IL, 2006.



BIBLIOGRAPHY 188

[96] S. Slijepcevic and M. Potkonjak. Power efficient organi-

zation of wireless sensor networks. In Proc. of the IEEE

International Conference on Communications (ICC), vol-

ume 2, Helsinki, Finland, June 2001.

[97] A. J. Smola and B. Schölkopf. A tutorial on support vector

regression. Statistics and Computing, 14(3):199–222, 2004.

[98] I. Solis and K. Obraczka. Efficient continuous mapping in

sensor networks using isolines. In Proc. of the Annual In-

ternational Conference on Mobile and Ubiquitous Systems:

Computing, Networking and Services (MobiQuitous), San

Diego, CA, July 2005.

[99] S. Srinivasan, K. Ramamritham, and P. Kulkarni. ACE in

the hole: Adaptive contour estimation using collaborating

mobile sensors. In Proc. of the ACM/IEEE International

Conference on Information Processing in Sensor Networks

(IPSN), 2008.

[100] M. B. Srivastava, R. R. Muntz, and M. Potkonjak. Smart

kindergarten: sensorbased wireless networks for smart de-

velopmental problem-solving enviroments. In Proc. of the

ACM International Conference on Mobile Computing and

Networking (MOBICOM), pages 132–138, 2001.



BIBLIOGRAPHY 189

[101] F. Stann and J. Heidemann. RMST: reliable data trans-

port in sensor networks. In Proc. of the IEEE International

Workshop on Sensor Network Protocols and Applications,

May 2003.

[102] G. Tan, M. Bertier, and A.-M. Kermarrec. Convex par-

tition of sensor networks and its use in virtual coordinate

geographic routing. In Proc. of the IEEE Conference on

Computer Communications (INFOCOM), 2009.

[103] D. Tian and N. D. Georganas. A coverage-preserving node

scheduling scheme for large wireless sensor networks. In

Proc. of the First ACM International Workshop on Wire-

less Sensor Networks and Applications (WSNA), pages 32–

41, Atlanta, Georgia, 2002.

[104] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman. In-

frastructure tradeoffs for sensor networks. In Proc. of the

ACM International Workshop on Wireless Sensor Net-

works and Applications (WSNA), Atlanta, GA, USA,

September 2002.

[105] TinyOS Community Forum. Tinyos: An open-source os for

the networked sensor regime. http://www.tinyos.net.



BIBLIOGRAPHY 190

[106] S. Tong and D. Koller. Support vector machine active

learning with applications to text classification. Journal

of Machine Learning Research, 2:45–66, 2001.

[107] M.-J. Tsai, F.-R. Wang, H.-Y. Yang, and Y.-P. Cheng.

Virtualface: An algorithm to guarantee packet delivery of

virtual-coordinate-based routing protocols in wireless sen-

sor networks. In Proc. of the IEEE Conference on Com-

puter Communications (INFOCOM), 2009.

[108] C. Wan, A. Campbell, and L. Krishnamurthy. Psfq: A

reliable transport protocol for wireless sensor networks.

In Proc. of the ACM International Workshop on Wire-

less Sensor Networks and Applications (WSNA), Septem-

ber 2002.

[109] P.-J. Wan, C.-W. Yi, F. Yao, and X. Jia. Asymptotic

critical transmission radius for greedy forwarding routing

in wireless ad hoc networks. In Proc. of the ACM Inter-

national Symposium on Mobile Ad Hoc Networking and

Computing (MOBIHOC), Florence, Italy, May 2006.

[110] Q. Wang, Y. Zhu, and L. Cheng. Reprogramming wire-

less sensor networks: Challenges and approaches. IEEE

Network, pages 48–55, May-June 2006.



BIBLIOGRAPHY 191

[111] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and

C. Gill. Integrated coverage and connectivity configura-

tion in wireless sensor networks. In Proc. of the ACM

International Conference on Embedded Networked Sensor

Systems (SENSYS), Los Angeles, CA, November 2003.

[112] R. Wattenhofer, P. Bahl, L. Li, and Y. Wang. Distributed

topology control for power efficient operation in multihop

wireless ad hoc networks. In Proc. of the IEEE Conference

on Computer Communications (INFOCOM), April 2001.

[113] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and

M. Welsh. Fidelity and yield in a volcano monitoring sen-

sor network. In Proc. of the USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI), Seat-

tle, USA, 2006.

[114] K. Whitehouse. The design of calamari: an ad-hoc lo-

calization system for sensor networks. M.Sc. Thesis, UC

Berkeley, 2002.

[115] R. Williams. The Geometrical Foundation of Natural

Structure: A Source Book of Design. Dover Publications

Inc., pp. 51-52. New York, 1979.



BIBLIOGRAPHY 192

[116] G. Xing, C. Lu, R. Pless, and J. A. O’Sullivan. Co-Grid:

an efficient converage maintenance protocol for distributed

sensor networks. In Proc. of the ACM/IEEE International

Symposium on Information Processing in Sensor Networks

(IPSN), Berkeley, CA, April 2004.

[117] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan,

A. Broad, R. Govindan, and D. Estrin. A wireless sensor

network for structural monitoring. In Proc. of the ACM

International Conference on Embedded Networked Sensor

Systems (SENSYS), Baltimore, MD, November 2004.

[118] Y. Xu, W.-C. Lee, and G. Mitchell. CME: a contour map-

ping engine in wireless sensor networks. In Proc. of the

IEEE International Conference on Distributed Computing

Systems (ICDCS), pages 133–140, 2008.

[119] W. Xue, Q. Luo, L. Chen, and Y. Liu. Contour map

matching for event detection in sensor networks. In Proc.

of the ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD), Chicago, IL, 2006.

[120] T. Yan, T. He, and J. A. Stankovic. Differentiated surveil-

lance for sensor networks. In Proc. of the ACM Interna-



BIBLIOGRAPHY 193

tional Conference on Embedded Networked Sensor Systems

(SENSYS), Los Angeles, CA, November 2003.

[121] Z. Yang, M. Li, and Y. Liu. Sea depth measurement with

restricted floating sensors. In Proc. of the IEEE Real-Time

Systems Symposium (RTSS), 2007.

[122] F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang. PEAS:

A robust energy conserving protocol for long-lived sensor

networks. In Proc. of the IEEE International Conference

on Distributed Computing Systems (ICDCS), Providence,

Rhode Island, May 2003.

[123] O. Younis and S. Fahmy. HEED: a hybrid, energy-efficient.

distributed clustering approach for ad hoc sensor networks.

IEEE Transactions on Mobile Computing, 3(4):336–379,

2004.

[124] G. Zhao, X. Liu, and M.-T. Sun. Anchor-based geographic

routing for sensor networks using projection distance. In

Proc. of the IEEE International Symposium on Wireless

Pervasive Computing (ISWPC), San Juan, Puerto Rico,

Febrary 2007.

[125] J. Zhao, R. Govindan, and D. Estrin. Residual energy

scans for monitoring wireless sensor networks. In Proc. of



BIBLIOGRAPHY 194

the IEEE Wireless Communications and Networking Con-

ference (WCNC), pages 17–22, March 2002.

[126] Y. Zhou. Energy-efficient reliable wireless sensor networks.

M.Phil. Thesis, The Chinese University of Hong Kong,

2006.

[127] Y. Zhou, M. Lyu, and J. Liu. On setting up energy-

efficient paths with transmitter power control in wireless

sensor networks. In Proc. of the IEEE International Con-

ference on Mobile Ad-Hoc and Sensor Systems (MASS),

pages 440–448, Washington, DC, USA, November 2005.

[128] Y. Zhou, M. Lyu, and J. Liu. An index-based sensor-

grouping mechanism for field coverage wireless sensor net-

works. In Proc. of the IEEE International Conference on

Communications (ICC), Beijing, China, May 2008.

[129] Y. Zhou, M. Lyu, and J. Liu. On sensor network recon-

figuration problem for downtime-free system migrations.

In Proc. of the ICST International Conference on Hetero-

geneous Networking for Quality, Reliability, Security and

Robustness (QShine), Hong Kong, China, July 2008.

[130] Y. Zhou, M. Lyu, and J. Liu. On sensor network reconfigu-

ration for downtime-free system migration. ACM/Springer



BIBLIOGRAPHY 195

Mobile Networks and Applications, 14(2):241–252, April

2009.

[131] Y. Zhou, M. Lyu, and J. Liu. Surviving holes and barriers

in geographic data reporting for wireless sensor networks.

In Proc. of the IEEE International Conference on Mobile

Ad-Hoc and Sensor Systems (MASS), Macau, China, Oc-

tober 2009.

[132] Y. Zhou, M. Lyu, J. Liu, and H. Wang. PORT: A price-

oriented reliable transport protocol for wireless sensor net-

works. In Proc. of the IEEE International Symposium on

Software Reliability Engineering (ISSRE), pages 117–126,

Chicago, IL, USA, November 2005.

[133] Y. Zhou and M. R. Lyu. An energy-efficient mechanism

for self-monitoring sensor web. In Proc. of the 28th IEEE

Aerospace Conference, Big Sky, MT, March 2007.

[134] Y. Zhou, E. Ngai, M. Lyu, and J. Liu. POWER-

SPEED: A power-controlled real-time data transport pro-

tocol for wireless sensor-actuator networks. In Proc. of the

IEEE Wireless Communications and Networking Confer-

ence (WCNC), Hong Kong, China, March 2007.



BIBLIOGRAPHY 196

[135] Y. Zhou, J. Xiong, M. Lyu, J. Liu, and K.-W. Ng. Energy-

efficient on-demand contour service for wireless sensor net-

works. In Proc. of the IEEE International Conference

on Mobile Ad-Hoc and Sensor Systems (MASS), Macau,

China, October 2009.

[136] Y. Zhou, H. Yang, M. Lyu, and E. Ngai. A point-

distribution index and its application to sensor grouping

in wireless sensor networks. In Proc. of the International

Wireless Communications and Mobile Computing Confer-

ence (IWCMC), Vancouver, Canada, July 2006.

[137] M. Zorzi and R. R. Rao. Geographic random forward-

ing (GeRaF) for ad hoc and sensor networks: Energy and

latency performance. IEEE Transactions on Mobile Com-

puting, 2(4):349–365, Oct.-Dec. 2003.

[138] M. Zorzi and R. R. Rao. Geographic random forward-

ing (GeRaF) for ad hoc and sensor networks: Multihop

performance. IEEE Transactions on Mobile Computing,

2(4):337–347, Oct.-Dec. 2003.


