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Abstract of thesis entitled:
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Submitted by YU, Xiaotian

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in December 2018

The prevailing decision-making model named as multi-armed bandits

(MAB) elegantly characterizes a wide class of practical problems in

sequential learning with stochastic feedbacks. A predominant charac-

teristic of MAB is a trade-off between exploration and exploitation in

the sequential decision process. The intrinsic trade-off frequently arises

in scientific research and various industrial applications, e.g., resource

allocation, online advertising and personalized recommendations.

In this thesis, we study efficient learning in stochastic bandits (LSB).

The goal of efficient LSB is to develop algorithms with provable per-

formance guarantees, as well as practical implementations. We address

three challenges in LSB: mean-variance explorations, decisions with

heavy-tailed payoffs and fast learning for nonlinear payoff functions.

By attacking these three challenges, we generalize the applicability of

bandits to more real-world scenarios.

This thesis makes four main contributions. First, we rigorously

prove that the error resulting from the mean-variance estimation is sub-

gamma. Then, we develop two efficient algorithms to solve the problem

of pure exploration of mean-variance. In addition, based on sub-gamma

estimation noises, we derive upper bounds of the probability of error
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for the proposed algorithms. By comparing with two algorithms in

experiments, we show the superiority and robustness of our algorithms.

Second, we investigate the problem of pure exploration of MAB with

heavy-tailed payoffs. Heavy-tailed payoffs in this thesis mean that each

feedback after a decision has finite p-th moments, where p ∈ (1,+∞).

We analyze tail probabilities of empirical average and truncated em-

pirical average for estimating expected payoffs in sequential decisions.

In addition, we propose two bandit algorithms to solve the problem of

pure exploration of MAB with heavy-tailed payoffs. We derive theo-

retical guarantees and show the effectiveness of our bandit algorithms.

Third, we focus on the practical problem of regret minimization

for linear stochastic bandits with heavy-tailed payoffs. We rigorously

analyze the lower bound of the above problem, and develop two novel

bandit algorithms such that the regret upper bounds match the lower

bound up to polylogarithmic factors. To the best of our knowledge,

we are the first to solve the problem optimally in the sense of the

polynomial order on the total number of rounds in sequential decisions.

The proposed algorithms outperform the state-of-the-art methods.

Finally, we investigate the problem of stochastic bandits with non-

linear payoff functions. We propose a generic algorithm for accelerat-

ing the convergence of existing algorithms to learn nonlinear functions.

The key of the novel algorithm is to explore a local growth condition

of underlying objective functions. The benefits of the proposed accel-

eration technique are three-fold: 1) it is applicable to both settings of

one-point and two-point evaluations; 2) it does not necessarily require

strong convexity or smoothness of objective functions; 3) it improves

the convergence for a broad family of problems. Empirical studies in

various settings show the effectiveness of the proposed algorithm.
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Chapter 1

Introduction

Machine learning is a key and fast-developing domain in artificial intel-

ligence which generally means that devices designed by human beings

act intelligently (Fetzer, 1990). In many scenarios, the main task of

machine learning is to automatically predict or infer an output with

respect to certain input data. In the past two decades, there has been

a tremendous surge in the study of machine learning, such as support

vector machine (Cortes and Vapnik, 1995; Vapnik, 2013), neural net-

works (Goodfellow et al., 2016; Haykin et al., 2009; LeCun et al., 2015),

and reinforcement learning (Mnih et al., 2015; Sutton and Barto, 1998;

Szepesvári, 2010).

In the framework of Jordan and Mitchell (2015), machine learn-

ing algorithms can be categorized into three paradigms: supervised

learning, unsupervised learning and reinforcement learning. Supervised

learning problems, which usually turn out to be classification or regres-

sion problems, aim at predicting an output for the input of a testing

sample based on a model well trained by a finite number of training

samples. Each training sample in a supervised learning process con-

sists of an input vector and a label. Basically, unsupervised learning

1



CHAPTER 1. INTRODUCTION 2

involves the analysis of unlabeled data, and assumptions about the

data’s structural properties are necessary. A common example of un-

supervised learning is to partition the unlabeled data, i.e., clustering.

Clearly, we have the supervised learning paradigm if training samples

contain the information of label, and we have the unsupervised learning

paradigm if training samples do not contain any information of label.

In practice, there do exist scenarios in which training samples provide

intermediate information for algorithms, and these scenarios cannot be

classified as either supervised learning or unsupervised learning. In

other words, machine learning algorithms predict an output in each

round of learning, and then receive a feedback with respect to the pre-

dicted output. Reinforcement learning characterizes the cases where

training samples have intermediate information. Simplified versions

of reinforcement learning are known as bandit problems (Jordan and

Mitchell, 2015), where training samples are a set of bandits. For bandit

problems, it is assumed that a payoff is observed for each play of an

arm by machine learning algorithms, and the goal of bandit problems

is set as maximizing cumulative payoffs for a certain number of rounds

in sequential decisions, or identifying the optimal bandit that is also

called the optimal arm in a given decision set.

The problem of learning in stochastic bandits (LSB) belongs to

the paradigm of reinforcement learning. The learning process of LSB

is to successively play bandits in a decision set, and in each round

of playing bandits, machine learning algorithms receive a stochastic

payoff with respect to the chosen bandit. Practical applications of

LSB include online personalized recommendations (Li et al., 2010) and

online resource allocations (Badanidiyuru et al., 2014).

The focus of this thesis is to develop efficient algorithms for LSB
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problems. Efficient LSB requires algorithms to have provable perfor-

mance guarantees, as well as practical implementations. There are

three challenges to develop efficient algorithms for LSB problems. The

first challenge is LSB with the mean-variance metric, which is less inves-

tigated in previous studies. The second challenge is LSB under heavy

tails, which generalizes the results in previous studies. The third chal-

lenge is LSB with nonlinear payoff functions. By solving these three

challenges, we enhance the applicability of LSB in the real world. The

rest of this chapter is organized as follows. In Section 1.1, we present

the background of this thesis. In Section 1.2, we give five practical

examples motivating the study of LSB problems. In Section 1.3, we

describe the details of the challenges for LSB problems and summarize

the contributions of this thesis. In Section 1.4, we list the common

notations used in the ensuing chapters. Finally, we give the thesis

structure in Section 1.5.

1.1 Background

The model of multi-armed bandits (MAB), which is the simplest LSB

problem, has attracted researchers for almost a century. In the past

decade, practitioners have successfully applied MAB to real scenarios

with satisfactory performances. The most significant application of

MAB is online news personalized recommendations (Li et al., 2010).

The original problem of learning in stochastic bandits dates back to

1933 by Thompson (1933), which lies in the domain of probability and

statistics. Thompson asked whether or not it was possible to differ-

entiate two probabilities via finite samples, and was motivated by the

real problem of identifying a good treatment in clinical trials. The pio-

neering study by Thompson answers the above question affirmatively.
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It is worth mentioning that a formal characterization of bandits was

proposed by Robbins (1952), which later is named as MAB. Bandit

problems have attracted the attention of researchers and practitioners

because the central issue in bandit problems is decision making under

uncertainty. Real-world applications of MAB include clinical trials,

online recommendations and resource allocations. In the era of big

data, samples arrive on the fly. Machine learning algorithms for on-the-

fly data can be fundamentally applied into sequential decision making.

To lay a basis for our discussion, the model of MAB can be briefly

described below.

The model of multi-armed bandits (MAB)

Known parameters: the number of arms K, and the number of

rounds T ≥ K.

Unknown parameters: K probability distributions P1, · · · ,PK
on [0, 1].

For each round t = 1, · · · , T

Select an arm xt ∈ {1, · · · , K}.

Observe a stochastic payoff of arm xt, yt(xt) ∼ Pxt .

From the above learning process of MAB, we observe that the feed-

back from the chosen arm is noisy and not a true label. This finding

reveals that the feedback contains intermediate information, and thus

the learning of MAB belongs to the paradigm of reinforcement learn-

ing. In Chapter 2 of this thesis, we will further distinguish MAB from

the general model of reinforcement learning.

In general, there are two types of goals for MAB problems (Bubeck

et al., 2012). One common goal is to maximize the cumulative payoffs

over a sequence of rounds for playing bandits. In this case, algorithms
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for MAB problems have limited knowledge about the mechanism of

generating payoffs, and need to learn the distribution of each arm while

playing bandits. Thus, there exists an intrinsic trade-off between ex-

ploration and exploitation. The other goal is to identify the best arm

among the given decision set, which is called pure exploration of MAB.

In the domain of bandit problems, researchers evaluate an algorithm

via theoretical guarantees, as well as empirical verifications. For the

goal of maximizing cumulative payoffs, the evaluation metric is regret,

which is defined as the summation of differences between a clairvoyance

and a bandit algorithm over rounds. For each round of playing bandits,

the difference is usually characterized by the gap between the mean of

the optimal arm based on the clairvoyance and the mean of the chosen

arm by the bandit algorithm. The first theoretical results, including

the lower bound of MAB and the upper bound of a bandit algorithm,

were formally developed by Lai and Robbins (1985). For the goal of

pure exploration, the evaluation metric is probability of error or sample

complexity. In the past two decades, it witnessed a lot of interesting

results for various MAB problems (Bubeck et al., 2012).

In this thesis, our focus is LSB, which is more general than MAB.

The differences between LSB and MAB are briefly discussed as fol-

lows. The first difference is the evaluation metric can be generalized

into mean-variance in LSB. The second difference comes from noise

distributions of arms. In previous studies of MAB, researchers usually

assume sub-Gaussian noises in feedbacks. We generalize noise distri-

butions into heavy tails in LSB. The third generalization of LSB is

the decision set can be chosen as a continuous convex set. The fourth

difference is the underlying payoff functions can be nonlinear in LSB,

which is more practical than MAB and linear stochastic bandits.
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1.2 Motivation

The model of MAB is a simple abstraction of reality for decision mak-

ing with uncertainty. In practice, one can usually obtain a (stochastic)

feedback after making a decision. The general question is how to make

sequential decisions with a good quality, as well as a theoretical guar-

antee. In this section, we list five motivating examples to support the

research topics of MAB and LSB.

1.2.1 News Recommendation

News recommendation is a stylized and significant task in Internet. The

problem of news recommendation requires machine learning algorithms

to capture human behaviours. Without loss of generality, we assume

that a user visits a news website with a database in the backend, and

the website equipped with machine learning algorithms recommends

a subset of all news for the user. If the user clicks an item among

the recommended set, the feedback is recorded by one. Otherwise the

feedback is zero. Due to the stochastic behaviour of human beings, the

problem of news recommendation for a user can be formalized by an

MAB model, where the mean of each arm refers to the true underlying

preference of the user to each item in the recommended set.

Since the database of news is dynamic with time evolution, a ban-

dit algorithm needs to conduct online recommendation, which is es-

sentially sequential decision making. More importantly, the current

action recommended by the bandit algorithm depends on the previous

exploration of human behaviours. An intuitive trade-off between ex-

ploration and exploitation occurs in online recommendations of news.

The power of MAB in solving the problem of news recommendation

has been empirically demonstrated by Li et al. (2010).
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The extension of online recommendation of news can be various,

e.g., online advertising in Internet shopping and sponsored search. For

online advertising, a user visits a website and the website demonstrates

one of many advertisements. The problem is how to display an adver-

tisement that will be clicked as much as possible by potential clients.

For sponsored search, the problem is to return a subset of links, which

are the most useful and significant for the client using the search engine.

Recent investigations on advertising via MAB can be found in Schwartz

et al. (2017).

In traditional recommendations, the goal is usually to maximize

cumulative payoffs, which is related to the identification of the arm

with the largest mean among the decision set. However, in practice,

the mean information sometimes is not enough, and the variance of

each arm should also be considered. A generalization of the traditional

bandit problems is to optimize the metric of mean-variance in LSB.

Thus, we will investigate the problem of pure exploration of mean-

variance in Chapter 3.

1.2.2 Clinical Trials

The problem of clinical trials is to determine a treatment for patients

via sequential selections. A patient visits a doctor and the doctor de-

termines one of several potential treatments based on symptoms of the

patient. After the patient taking the treatment, the doctor evaluates

the treatment effectiveness via the feedback from the patient. The

doctor encounters the trade-off between exploring the underlying best

treatment and exploiting the empirically satisfying treatment. Intu-

itively, the best case is that the disease can be cured as fast as possible.

The problem of clinical trials can be modelled by an MAB.
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Recent studies for clinical trials with MAB can be found in Vil-

lar et al. (2015). The problem of clinical trials can be solved by

two methodologies: Bayesian approach or frequentist approach. Each

methodology enjoys its own characteristics. For example, Bayesian ap-

proach needs the assumption of a specific distribution for each arm.

We will show more differences of the two approaches in Chapter 2. In

fact, these two methodologies can be applied into solving many other

variants of MAB.

One notorious issue of clinical trials is that feedbacks from patients

are too noisy. The noisy feedbacks might not follow the assumption of

sub-Gaussian in the traditional MAB, and even can be heavy tails. It

is surprising to find that less effort has been devoted to the problem

of MAB with heavy tails. In this thesis, we will solve bandit problems

with heavy tails in Chapter 4 and Chapter 5.

1.2.3 Network Routing

In the era of big data, Internet increasingly influences daily life of

human beings. A significant problem in Internet is network routing,

where algorithms try to direct internet traffic as fast as possible among

a large amount of network nodes. Given a package of data, network

routing algorithms need to real-time identify the shortest path from

the original node to the destination node.

In the problem of network routing, the decision set of bandits is

the set of all potential network paths from the original node to the

destination node. The stochastic feedback of selecting a path is the re-

alized time consumption for sending a packet via the chosen path. The

interesting investigations on network routing with MAB are by Badani-

diyuru et al. (2013); Le Ny et al. (2008).
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In previous work of Liebeherr et al. (2012), it has been pointed out

that network delay affects the performance of routing. Besides, the de-

lay of network routing is heavy-tailed. The problem of network routing

also faces the heavy-tailed phenomenon, which reflects the significance

of LSB with heavy tails. We notice that the first study of bandits with

heavy tails was due to Bubeck et al. (2013a). In this thesis, we will

make a progress for bandit problems with heavy tails.

1.2.4 Dynamic Pricing

In marketing, dynamic pricing plays an important role in attracting

potential customers. Generally, the purchase intention of customers is

greatly affected by the price of a product. A company needs to real-

time optimize the price of a product such that the final revenue of

the product achieves a predefined target. Some interesting studies of

dynamic pricing via MAB have been conducted by Misra et al. (2018);

Xu et al. (2017a).

1.2.5 Online Resource Allocations

A common problem in logistics is to allocation resource to an agent,

where the consumption of the resource is stochastic. The output of

the consumption can be viewed as the payoff. The problem can be

modelled by contextual bandits, which is a variant of MAB.

In online resource allocation, one popular application is portfolio

management. The portfolio management not only contains noisy feed-

backs following heavy tails, but also involves a nonlinear relationship of

investment items. Inspired by the nonlinear relationship in payoffs, we

investigate the problem of nonlinear stochastic bandits in Chapter 6.
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1.3 Challenges and Contributions

With a rapid development in bandits, many variants have been pro-

posed to solve practical problems. Recently, there have been interest-

ing investigations based on the traditional MAB model, such as linear

bandits (Auer, 2002; Yu et al., 2017b; Zhao and King, 2016), pure ex-

ploration of MAB (Audibert and Bubeck, 2010), risk-averse MAB (Sani

et al., 2012; Yu et al., 2017a), cascading bandits (Kveton et al., 2015)

and clustering bandits (Korda et al., 2016; Li et al., 2016). We present

the challenges in LSB problems and then summarize the contributions

of this thesis.

1.3.1 Challenges

Though plenty of achievements have been conducted in the domain of

bandits, many open problems exist if we would like to close the gap

between the theoretical model of MAB and application scenarios. Cur-

rently, there are three significant challenges in LSB shown as follows.

• Bandit problems with mean-variance

Traditionally, the optimal arm in MAB refers to the arm with

the highest mean. However, in many practical applications, e.g.,

portfolio selection, it is not sufficient to only consider the mean

information for the optimal decision. Thus, it is a significant chal-

lenge to study bandit problems with the metric of mean-variance.

Bandit problem with mean-variance leads to three technical is-

sues. The first comes from the analysis of errors due to estima-

tions of mean-variance in bandits. The second is how to design

efficient bandit algorithms for solving problems via the analysis of

estimation errors. The third is to upper bound the performance
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of bandit algorithms. We will tackle the three technical issues in

Chapter 3.

• Bandit problems with heavy tails

The model of MAB with sub-Gaussian noises has been well inves-

tigated. However, it is surprising to find that less effort has been

devoted to the topic of bandits with noises following heavy-tailed

distributions. It is an urgent problem to investigate the bandits

with heavy tails. In this thesis, we will study pure exploration

and regret minimization of bandits with heavy tails, with novel

and systematic theoretical guarantees. Specifically, by breaking

the assumption of payoffs with sub-Gaussian noises in bandits, we

assume that stochastic payoffs from bandits are with finite p-th

moments, where p ∈ (1,+∞). We show the studies in Chapter 4

and Chapter 5.

• Bandit problems with nonlinear payoffs

We extend the case of stochastic bandits with linear functions to

nonlinear functions. It has been a notorious challenge to solve

the stochastic bandits with nonlinear functions. We classify two

scenarios: one is convex functions and the other is non-convex

functions. For convex functions, there exist studies for stochastic

bandits with convex functions, which also called stochastic ban-

dits convex optimization. In this case, explicit gradient calcula-

tions may be computationally infeasible, expensive, or impossible.

Previous algorithms are slower than stochastic optimization with

gradient feedbacks due to an unavoidable dependence of their iter-

ation complexities on the dimensionality of the problem. We will

accelerate the convergence rate in stochastic bandit convex opti-
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mization. Besides, we can extend the results of the convex setting

to the non-convex setting. We show the study in Chapter 6.

1.3.2 Contributions

We focus on the problem of LSB in this thesis, and propose efficient

bandit algorithms with practical implementation and provable perfor-

mance guarantee. For a better understanding, we list main contribu-

tions of our study on efficient learning in stochastic bandits as follows.

• Efficient pure exploration of MAB with mean-variance

Pure exploration of bandits has the goal of identifying the opti-

mal arm in a given decision-arm set. Traditionally, the optimal

arm refers to the arm with the highest mean. However, in many

practical applications, e.g., portfolio selection, it is not sufficient

to only consider the mean information for the optimal decision.

Motivating by exploration of high-order statistics, we study the

problem of Pure Exploration of Mean-Variance (PEMV) in ban-

dits. We rigorously prove that the error resulting from the mean-

variance estimation is sub-gamma. Then, we develop two efficient

algorithms to tackle PEMV. Besides, with sub-gamma estimation

noises, we derive upper bounds of the probability of error for the

proposed algorithms. Finally, we conduct a series of experiments

on synthetic and real-world datasets for the task of pure explo-

ration. By comparing with two state-of-the-art algorithms, we

demonstrate the proposed algorithms are superior and robust.

• Fast pure exploration of MAB with heavy tails

Since heavy-tailed distributions are significant in real-world sce-

narios, we investigate the problem on pure exploration of MAB
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with heavy-tailed payoffs by breaking the assumption of payoffs

containing sub-Gaussian noises. In particular, we assume that

stochastic payoffs from bandits are with finite p-th moments,

where p ∈ (1,+∞). The main contributions of our study for this

problem are three-fold. First, we technically analyze tail proba-

bilities of empirical average and truncated empirical average for

estimating expected payoffs in sequential decisions with heavy-

tailed noises via martingales. Second, we propose two effective

bandit algorithms based on different prior information (i.e., fixed

confidence or fixed budget) for pure exploration of MAB generat-

ing payoffs with finite p-th moments. Third, we derive theoretical

guarantees for the proposed two bandit algorithms, and demon-

strate the effectiveness of two algorithms in pure exploration of

MAB with heavy-tailed payoffs in synthetic data and real-world

financial data.

• Almost optimal algorithms for linear stochastic bandits

with heavy tails

It is commonly assumed that payoffs are with sub-Gaussian noises.

Under a weaker assumption on noises, we study the problem of

Linear stochastic Bandits with hEavy-Tailed payoffs (LinBET),

where the distributions have finite moments of order p, where

p ∈ (1, 2]. We rigorously analyze the regret lower bound of Lin-

BET as Ω(T
1
p ), implying that finite moments of order 2 (i.e., fi-

nite variances) yield the bound of Ω(
√
T ), with T being the total

number of rounds to play bandits. The provided lower bound also

indicates that the state-of-the-art algorithms for LinBET are far

from optimal. By adopting median of means with a well-designed

allocation of decisions and truncation based on historical infor-
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mation, we develop two novel bandit algorithms, where the regret

upper bounds match the lower bound up to polylogarithmic fac-

tors. To the best of our knowledge, we are the first to solve Lin-

BET optimally in the sense of the polynomial order on T . Our

proposed algorithms are evaluated based on synthetic datasets,

and outperform the state-of-the-art results.

• Acceleration of stochastic bandit optimization

We extend the learning in stochastic bandits with nonlinear pay-

offs. We investigate two settings: convex functions and non-

convex functions. We propose a generic approach for accelerating

the convergence of existing algorithms to solve the problem of

stochastic bandit optimization. Standard techniques for accel-

erating the convergence of stochastic bandit algorithms are by

exploring multiple functional evaluations (e.g., two-point evalu-

ation), or by exploiting global conditions of the problem (e.g.,

smoothness and strong convexity). Nevertheless, these classic ac-

celeration techniques are necessarily restricting the applicability

of newly developed algorithms. The key of our proposed generic

approach is to explore a local growth condition (or called local

error bound condition) of the objective function. The benefits

of the proposed acceleration technique are: (i) it is applicable to

both settings with one-point evaluation and two-point evaluation;

(ii) it does not necessarily require strong convexity or smoothness

condition of the objective function; (iii) it yields an improvement

on convergence for a broad family of problems. Empirical studies

in various settings demonstrate the effectiveness of the proposed

acceleration approach.
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Table 1.1: Common symbols used in the thesis.

symbol description

, definition

A a bandit algorithm

N, N+ natural numbers, N , {0, 1, · · · } and N+ , N\{0}

R, R+ R , (−∞,+∞) and R+ , (0,+∞)

[T ] {1, 2, 3, · · · , T}

|S| the cardinality of a finite set S

P a probability distribution

E[A] the expectation of a random variable A

P[E ] the probability of an event E

N (µ, σ2) a normal distribution with mean µ and variance σ2

Ft a filtration until time t

exp(·) the exponential operation

poly(·) the polynomial operation

‖x‖2 `2-norm of a vector x

〈x, y〉 or x>y inner product of vectors x and y

∇f(x) gradient of function f(x)

∂f(x) sub-gradient of function f(x)

0 and 1 a vector of all elements being zeros and ones
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1.4 Notations

In this section, we list the common symbols used in this thesis in Ta-

ble 1.1. Besides, since each chapter is intended to be self-contained, we

will give the detailed descriptions of notations for each chapter.

1.5 Thesis Structure

The rest of this thesis is organized as follows.

• Chapter 2

In this chapter, we present a survey for the research topic of

stochastic bandits, especially for MAB. In Section 2.1, we present

the theoretical advancements in stochastic bandits, which include

two settings: pure exploration and regret minimization. In Sec-

tion 2.2, we give a discussion of bandit algorithms based on method-

ology. The common methodology in bandits is two-fold: one is

frequentist approach and the other is Bayesian approach. In Sec-

tion 2.3, we present a taxonomy of bandits.

• Chapter 3

In this chapter, we investigate pure exploration of mean-variance

of bandits. We give an introduction of pure exploration of bandits

in Section 3.1. In Section 3.2, we present the preliminary and

related work. In Section 3.3, We list the assumptions for pure

exploration of mean-variance of bandits and formally define the

problem. In Section 3.4, we propose two bandit algorithms and

show their theoretical performance. In Section 3.5, We rigorously

prove the theorems of the two algorithms. In Section 3.6, we

conduct experiments to verify the performance of the proposed
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algorithms. In Section 3.7, we give conclusive remarks of this

chapter.

• Chapter 4

In this chapter, we investigate the problem on pure exploration

of MAB with heavy-tailed payoffs by breaking the assumption of

payoffs with sub-Gaussian noises in bandits. We assume that

stochastic payoffs from bandits are with finite p-th moments,

where p ∈ (1,+∞). In Section 4.1, we present the background

information of the problem. In Section 4.2 and Section 4.3, we

give the preliminary and related work. In Section 4.4, we propose

two algorithms based on the settings of fixed confidence and fixed

budget. In Section 4.5, we show the proofs of the theorems for the

proposed algorithms. In Section 4.6, we conduct a series of ex-

periments in synthetic and real-world datasets for demonstrating

the efficiency of the algorithms. In Section 4.7, we give conclusive

remarks of fast pure exploration of MAB with heavy tails.

• Chapter 5

In this chapter, we investigate the problem of linear stochastic

bandits with heavy-tailed payoffs. The heavy-tailed payoffs refer

to the distributions of feedbacks have finite moments of order p

with p ∈ (1, 2]. In Section 5.1, we present an introduction and

show the significance of the problem. In Section 5.2, we give

the preliminary and related work. In Section 5.3, we prove the

regret lower bound of the problem. In Section 5.4, we develop

two bandit algorithms based on median of means and truncation.

In Section 5.5, we give the proofs of the theoretical guarantees.

In Section 5.6, we conduct experiments to show the superiority of
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the proposed algorithms. In Section 5.7, we conclude the study on

the problem of linear stochastic bandits with heavy-tailed payoffs.

• Chapter 6

In this chapter, we investigate the problem of stochastic bandit

optimization, and most of our efforts are on the setting of con-

vex functions. In Section 6.1, we present an introduction of the

problem. In Section 6.2 and Section 6.3, we give the related work

and then present the notations and preliminary. In Section 6.4,

we propose a generic framework to solve stochastic bandit con-

vex optimization. In Section 6.5, we give the theoretical proofs of

the algorithm. In Section 6.6, we conduct a series of experiments

in real-world datasets to show the efficiency of the proposed al-

gorithm. In Section ??, we extend the results into the setting

of non-convex functions. In Section 6.7, we give the conclusive

remarks for the problem of stochastic bandit optimization.

• Chapter 7

In this chapter, we summarize this thesis and present three po-

tential directions for future work. In particular, we conclude this

thesis in Section 7.1. Then, we list three points as future direc-

tions in Section 7.2.

2 End of chapter.



Chapter 2

Learning in Stochastic

Bandits: A Survey

In this chapter, we review the current research progress in the area

of MAB. In particular, we give a whole view of theoretical guarantees

in bandit problems from two aspects: regret minimization and pure

exploration. Then, we discuss the methodology for solving stochastic

MAB. Besides, in order to characterize the development of bandits, we

give the taxonomy of bandits in the past two decades.

As mentioned in Chapter 1, the model of MAB is to sequentially

select an arm among a decision-arm set. The learning of MAB contains

bandit feedback because, after each round of selection, algorithms ob-

serve a payoff with respect to the chosen arm. Learning in stochastic

bandits generally refers to the setting that the feedback from the cho-

sen arm is stochastic. The inherent challenge of learning in stochastic

bandits is to balance the trade-off between exploring the true best arm

and exploiting the empirically optimal arm. Since the trade-off of ex-

ploration and exploitation is ubiquitous, bandit problems have played

an essential role in many industrial domains, e.g., online recommenda-

19



CHAPTER 2. LEARNING IN STOCHASTIC BANDITS: A SURVEY 20

tions.

2.1 Theoretical Advancements

Bandit problems are originated from Thompson (1933), where different

treatments are available for a patient and the task is to determine

the appropriate treatment for the patient based on historical records.

The final goal of MAB can be defined from two perspectives. One is

maximization of cumulative payoffs and the other is identification of

the best arm among the decision set. The latter one is also called pure

exploration of bandits. In the following, we will summarize theoretical

advancements based on the two perspectives of the final goal for MAB.

2.1.1 Regret Minimization

To maximize cumulative payoffs over a number of rounds for sequential

decisions, we assume the existence of an underlying optimal arm, and

analyze the difference between the true optimal arm and the selection

arms. To analyze the performance of a bandit algorithm A over T

rounds, we usually compare the realized cumulative rewards via A with

rewards from the true optimal arm. The notion of regret is introduced

to investigate the theoretical performance of A, which is defined as

R̄(A, T ) , max
i=1,··· ,K

T∑
t=1

yt(i)−
T∑
t=1

yt(xt), (2.1)

where xt is the selected arm at round t, yt(i) is the reward of arm i

at round t, and yt(xt) is the observed reward of selected arm xt. Both

rewards yt(i) and the algorithm’s choices xt might be stochastic, which

entails the expected regret as

E
[
R̄(A, T )

]
= E

[
max

i=1,··· ,K

T∑
t=1

yt(i)−
T∑
t=1

yt(xt)
]
. (2.2)
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In practice, a notion of pseudo-regret is adopted, which is

R(A, T ) , max
i=1,··· ,K

E
[
T∑
t=1

yt(i)−
T∑
t=1

yt(xt)
]
. (2.3)

It is obvious that the pseudo-regret is weaker that the expected

regret, i.e., R(A, T ) ≤ E[R̄(A, T )]. But the pseudo-regret is more

about the statistical optimal strategy. In the following, we always adopt

the pseudo-regret rather than the expected regret as a performance

measurement for bandit algorithms.

We show the theoretical advancements of stochastic bandits with K

arms in Figure 2.1. In particular, for regret minimization, the origin of

MAB dates back to 1933 (Robbins, 1952; Thompson, 1933). In Robbins

(1952), the MAB problem was formally proposed. In Lai and Robbins

(1985), the first distribution-dependent asymptotic analysis of stochas-

tic MAB was developed with the regret lower bound being Ω(log(T )),

and the regret upper bound of the proposed bandit algorithm matched

the lower bound up to constant factors. Agrawal (1995) proposed the

sample mean index policy and asymptotic analysis of bandits, which

naturally leads to a finite-time analysis. Auer et al. (2002a) proposed

the upper confidence bound (UCB) algorithm and gave the finite-time

analysis for regret of MAB. A study of revisited UCB by Auer and

Ortner (2010) developed an improved analysis of upper bounds for

bandits, which inspired the investigation in Bubeck et al. (2013b). A

new regret lower bound was proved as R(A, T ) ≥ Ω (∑i log(T∆2
i )/∆i),

and it implies that the worst case of the regret lower bound is Ω(
√
T )

when ∆i = Θ(1/
√
T ). It is worth mentioning that bandit problems

with Thompson sampling have been investigated by Agrawal and Goyal

(2012, 2013a); Kaufmann et al. (2012), where problem-dependent and

problem independent bounds were developed.

A natural and important variant of MAB is linear stochastic bandits
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original problem (Robbins,

1952; Thompson, 1933)

first theoretical results (Lai

and Robbins, 1985)

finite time analysis of

bandits (Agrawal, 1995)

efficient algorithms for

MAB (Auer et al., 2002a)

improved analysis (Auer

and Ortner, 2010)

a new lower bound for

MAB (Bubeck et al., 2013b)

Thompson sampling for

MAB (Agrawal and

Goyal, 2012, 2013a;

Kaufmann et al., 2012)

T →∞ (asymptotic bounds)

lower bound: R(A, T ) ≥ Ω
(∑

∆i
log(T )

)
upper bound: R(UCB, T ) ≤ O

(∑
∆i

log(T )
)

T is finite and known (finite-time bound)

upper bound: R(SM, T ) ≤ O
(∑

∆i
log(T )

)

T is finite and known

upper bound: R(UCB1, T ) ≤ O
(∑

i

log(T )
∆i

)
T is finite

upper bound for known T :

R(IUCB, T ) ≤ O
(∑

i

log(T∆2
i )

∆i

)
upper bound for unknown T :

R(IUCB, T ) ≤ O
(∑

i

log(T∆2
i )

∆i
+ max(∆iT )

)
T is finite

lower bound: R(A, T ) ≥ Ω
(∑

i

log(T∆2
i )

∆i

)

T is finite and unknown

upper bound: R(TS, T ) ≤ O
(∑

i
∆i log(T )

)
upper bound: R(TS, T ) ≤ O

(√
T log(T )

)

Figure 2.1: Theoretical advancements in MAB, and ∆i denotes the mean

difference between the true optimal arm and the i-th arm with i ∈ [K].

with the expected payoff of each arm satisfying a linear mapping from

the arm information to a real number. The model of linear stochastic
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bandits enjoys some good theoretical properties, e.g., there exists a

closed-form solution of the linear mapping at each time step in light

of ridge regression. The linear mapping of linear stochastic bandits

requires a parameter, which is defined as θ∗. Given the decision set

as D ⊆ Rd, a bandit algorithm selects an arm xt ∈ D at time t, and

observes a stochastic payoff yt(xt) , x>t θ∗ + εt, where εt is a noise.

Then, the pseudo-regret in linear stochastic bandits is defined as

R(A, T ) , E
[
T∑
t=1

yt(x∗t )−
T∑
t=1

yt(xt)
]
, (2.4)

where x∗t is the true optimal arm at t.

There are fruitful results in linear stochastic bandits, which are

shown in Figure 2.2. The model of linear stochastic bandits, which

is also termed as associative reinforcement learning with linear pay-

off functions by Abe and Long (1999); Auer (2000), is a special case

of reinforcement learning (Kaelbling, 1994; Sutton and Barto, 1998).

In Auer (2002), a bandit algorithm with linear regression was developed

to solve linear stochastic bandits, and the regret upper bound of the

algorithm was O
(√

Tpoly(log(T ))
)
. Online convex optimization un-

der bandit feedbacks was investigated by Flaxman et al. (2005), which

covered the case of linear stochastic bandits. Since the method of Flax-

man et al. (2005) was based on noisy gradient descent, the proposed

algorithm could solve bandit problems when the decision set is con-

tinuous and convex. The lower bound of linear stochastic bandits was

addressed by Dani et al. (2008a), which was shown as Ω(d
√
T ) with d

denoting the dimension of the convex decision set. An improvement on

the logarithmic factor for the theoretical analysis in linear stochastic

bandits was conducted in Abbasi-Yadkori et al. (2011), and the empiri-

cal improvement was also verified. Note that the finite-arm setting was

studied by Chu et al. (2011) with an improvement on the dimension fac-
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tor. The proposed algorithm LinUCB has been successfully applied into

online personalized news recommendations (Li et al., 2010). Recently,

the problem of linear stochastic bandits with Thompson sampling was

well studied by Agrawal and Goyal (2013b).

A topic close to stochastic bandits is adversarial bandits (Auer et al.,

1995). There is no statistical assumption for the generation of payoffs

in adversarial bandits. The model of adversarial bandits can be viewed

as a game between a player and an adversary, where for each round

of the game, the player chooses an arm in the decision set and the

adversary determines a payoff for the player. The payoff could be

non-stochastic or even arbitrary. Intuitively, the adversary should be

oblivious, because if it is malicious, then the regret lower bound of

the two-player game is linear. In the line of adversarial bandits, many

theoretical results have been developed (Alon et al., 2017; Auer et al.,

2002b; Gerchinovitz and Lattimore, 2016; Uchiya et al., 2010). Most of

algorithms for adversarial bandits enjoy an upper bound O(
√
T ). Since

the topic of this thesis is stochastic bandits, we will not list the details

in adversarial bandits.

There are researchers trying to develop bandit algorithms for both

stochastic and adversarial worlds (Audibert and Bubeck, 2009; Bubeck

and Slivkins, 2012). In Audibert and Bubeck (2009), two algorithms

were developed for closing the gap of a logarithmic factor between up-

per bounds of the previous methods and the lower bound in MAB.

The first work to develop a unified algorithm for both stochastic and

adversarial bandits was by Bubeck and Slivkins (2012). The bandit al-

gorithm named SAO in Bubeck and Slivkins (2012) achieved the regret

upper bound O(
√
Tpoly(log(T ))) for adversarial bandits and achieved

the regret upper bound O(poly(log(T ))) for stochastic bandits. Auer
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associative reinforce-

ment learning (Abe and

Long, 1999; Auer, 2000)

linear reinforcement

learing (Auer, 2002)

convex optimization for ban-

dits (Flaxman et al., 2005)

online linear optimiza-

tion (Dani et al., 2008a;

Rusmevichientong

and Tsitsiklis, 2010)

improved analysis (Abbasi-

Yadkori et al., 2011)

finite arm analy-

sis (Chu et al., 2011)

Thompson sampling for

linear bandits (Agrawal

and Goyal, 2013b)

T is finite and the decision set is finite

upper bound:

R(LinRel, T ) ≤ O
(√
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Figure 2.2: Theoretical advancements in linear stochastic bandits.

and Chiang (2016) found that it is impossible to develop algorithms to

simultaneously achieve O(log(T )) for stochastic bandits and O(
√
T ) for
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adversarial bandits. Later, by comparing with SAO, Seldin and Lugosi

(2017); Seldin and Slivkins (2014) proposed practical EXP3++ with

improved regret upper bounds to solve the problem of both stochastic

and adversarial bandits.

2.1.2 Pure Exploration

For pure exploration, its goal is to find the optimal arm after explo-

ration among a given decision-arm set (Audibert and Bubeck, 2010;

Bubeck et al., 2009; Chen et al., 2014; Gabillon et al., 2012, 2016;

Jamieson and Nowak, 2014). It has been pointed out that pure explo-

ration in MAB has many applications, such as communication networks

and online advertising.

In the task of pure exploration, there are two settings: fixed confi-

dence and fixed budget. For the setting of fixed confidence, A receives

the information of the probability of error at the beginning, and A

generates an output when a certain condition related to the probabil-

ity of error is satisfied. For the setting of fixed budget, A receives the

information of the total number of rounds at the beginning, and A

generates an output at the end of exploration.

For pure exploration of MAB with the sub-Gaussian assumption,

theoretical guarantees have been well studied. Specifically, in the set-

ting of fixed confidence, the first distribution-dependent lower bound

of sample complexity was developed by Mannor and Tsitsiklis (2004),

which was ∑k∈[K] ∆−2
k . Even-Dar et al. (2002) originally proposed a

bandit algorithm via successive elimination for bounded payoffs with

an upper bound of sample complexity matching the lower bound up to

a multiplicative logarithmic factor. Karnin et al. (2013) proposed an

improved bandit algorithm, which achieved an upper bound of sample
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Figure 2.3: Theoretical advancements of pure exploration in MAB with an

input parameter of confidence δ ∈ (0, 1).

complexity matching the lower bound up to a multiplicative doubly-

logarithmic factor. Jamieson et al. (2014) proved that it is necessary

to have a multiplicative doubly-logarithmic factor in the distribution-

dependent lower bound of sample complexity. Jamieson et al. also

developed a bandit algorithm via the law of the iterated logarithm

algorithm for pure exploration of MAB, which achieved the optimal

sample complexity. We show the theoretical advancements of pure ex-

ploration in MAB with an input parameter of confidence δ ∈ (0, 1) in

Figure 2.3.

In the setting of fixed budget under the sub-Gaussian assumption,
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Audibert and Bubeck (2010) developed a distribution-dependent lower

bound of probability of error, and provided two algorithms, which en-

joyed the optimality of probability of error up to logarithmic factors.

Gabillon et al. (2012) proposed a unified algorithm for fixed budget and

fixed confidence, and addressed ε-optimal learning in best arm identi-

fication of MAB. Karnin et al. (2013) proposed a bandit algorithm via

sequential halving to improve probability of error by a multiplicative

constant. It is worth mentioning that Kaufmann et al. (2016) inves-

tigated best arm identification of MAB under Gaussian or Bernoulli

assumption, and provided lower bounds in terms of Kullback-Leibler

divergence. We show the theoretical advancements of pure exploration

in MAB with an input parameter of budget T in Figure 2.4.

There also exists a generalized variant for the problem of pure explo-

ration of MAB, which is termed combinatorial pure exploration (Chen

et al., 2017a,b, 2014; Gabillon et al., 2016).

2.2 Methodology

There are two fundamental methodologies for stochastic MAB, which

are UCB and Thompson Sampling. The main idea of UCB is optimism

in face of uncertainty. We assume that a bandit algorithm has obtained

historical data on the arms and has to decide which arm to play at the

next round. An estimate related to the true mean of each arm based

on the data is constructed. With high probability, the true values lie

in a region around the estimate. The algorithm plays the empirical

optimal arm with respect to the supremes of the regions.
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Figure 2.4: Theoretical advancements of pure exploration in MAB with an

input parameter of budget T .

2.2.1 Frequentist Approach

The idea of UCB had been investigated in Agrawal (1995); Lai and

Robbins (1985). In 2002, Auer et al. (2002a) proposed an algorithm

named UCB1 with finite-time analyses. Audibert et al. (2009) took

the variances of payoffs into consideration and proposed an algorithm

named UCB-V. Audibert and Bubeck (2009) then proposed an algo-

rithm named MOSS based on UCB1 with modified indexes. The al-

gorithm MOSS achieves the distribution-free optimal rate while still

having a distribution-dependent rate, which is logarithmic of the num-

ber of plays. Garivier and Cappé (2011) proposed KL-UCB, which
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satisfied a uniformly better regret bound than UCB1 and other vari-

ants and reached the lower bound of Lai and Robbins (1985) in the

special case of Bernoulli rewards.

2.2.2 Bayesian Approach

Instead of the method of UCB, there is a bayesian method named

Thompson Sampling (TS) (Thompson, 1933), which assumes a simple

prior distribution on the parameters of each arm’s distribution. But

the question of the optimality of TS had been open before Agrawal and

Goyal (2012, 2013b); Kaufmann et al. (2012) provided analyses for it.

Agrawal and Goyal (2012) derived the first logarithmic upper bound

for regret with TS in expectation. Kaufmann et al. (2012) provided an

upper bound of TS in terms of finite time for MAB with Bernoulli pay-

offs, which matched the regret lower bound proposed by Lai and Rob-

bins (1985). Agrawal and Goyal (2013b) provided the first problem-

independent regret upper bound of O
(√

T log(T )
)
.

Most algorithms adopting Thompson Sampling are similar (Agrawal

and Goyal, 2012, 2013b; Kaufmann et al., 2012). The algorithms con-

struct a posterior distribution for the estimates based on the data. At

the next round, the algorithm draws a sample from the posterior dis-

tribution of each arm, and selects the empirical optimal arm according

to the samples.

The method of Gittins indices is applied to the MAB model where

the arms are associated with K Markov processes, each arm with its

own state space. The underlying stochastic transition matrices are typ-

ically assumed to be known, and thus the method of Gittins indices (?)

provides a way to efficiently compute the optimal arm.
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Figure 2.5: A taxonomy of bandits.

2.3 Taxonomy

We construct a taxonomy in Figure 2.3. In the above figure, we know

that there are various variants in bandit problems.

2 End of chapter.



Chapter 3

Pure Exploration of

Mean-Variance

The popular decision-making model of MAB elegantly characterizes

a wide class of problems for sequential learning with stochastic feed-

backs. A predominant characteristic of MAB is the trade-off between

exploration and exploitation for decisions. In previous studies, most of

bandit algorithms aim at maximizing cumulative payoffs over a number

of rounds. In this chapter, we investigate pure exploration of mean-

variance for bandits with K arms.

One non-trivial branch of MAB is pure exploration, of which the

goal is to identify the optimal arm in a given decision-arm set. Tra-

ditionally, the optimal arm refers to the arm with the highest mean.

However, in many practical applications, e.g., portfolio selection, it is

not sufficient to only consider the mean information for the optimal de-

cision. With the motivation of exploring high-order statistics, we study

the problem of Pure Exploration of Mean-Variance (PEMV) in bandits.

The problem of PEMV leads to three technical challenges. The first

comes from the analysis of errors due to estimations of mean-variance

32
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in pure exploration of MAB. The second is how to design efficient ban-

dit algorithms for solving PEMV via the analysis of estimation errors.

The third is to upper bound the probability of error for selecting a

sub-optimal arm by a bandit algorithm. To solve the challenges, we

rigorously prove that the error resulting from the mean-variance esti-

mation is sub-gamma. Then, we develop two efficient algorithms to

tackle PEMV. Besides, with sub-gamma estimation noises, we derive

upper bounds of the probability of error for the proposed algorithms.

Finally, we conduct a series of experiments on synthetic and real-world

datasets for the task of pure exploration. By comparing with two

state-of-the-art algorithms, we demonstrate the proposed algorithms

are superior and robust.

3.1 Introduction

The model of MAB well tackles a large number of sequential-decision

problems, such as personalized recommendations (Li et al., 2010) and

online resource allocations (Lattimore et al., 2014). The inherent char-

acteristic of MAB is the trade-off between exploration and exploitation.

The first asymptotic theoretical guarantee of this class of models was

developed by Lai and Robbins (1985). Recently, with the growth of

research in machine learning and operations research, there emerges

a surge of theoretical study on MAB and its variants (Bubeck et al.,

2012; Cesa-Bianchi and Lugosi, 2006; Li et al., 2017; Zhou, 2015).

Traditional MAB algorithms aim at maximizing (expected) cumula-

tive payoffs over a sequence of decisions. Given a clairvoyance knowing

the optimal decision for each round, we can define a metric of regret,

which is the difference of payoffs from the clairvoyance and a bandit

algorithm. Intuitively, a small regret indicates good performance of
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a bandit algorithm. It has been shown that, for any algorithm, the

regret of MAB is at least logarithmic with respect to the total number

of sequential decisions (Lai and Robbins, 1985).

To generalize applications of MAB, there have been various inter-

esting investigations on its variants, such as bandits with side observa-

tions (Joseph et al., 2016; Langford and Zhang, 2008), pure exploration

of MAB (Audibert and Bubeck, 2010; Carpentier and Locatelli, 2016;

Chen et al., 2014), risk-averse MAB (Galichet et al., 2013; Sani et al.,

2012), and dueling bandits (Yue et al., 2012). With real-world scenarios

of medical trials and crowdsourcing, pure exploration is a fundamental

variant of MAB for various decision-making problems, which usually

sets the goal to find the optimal arm in a given decision-arm set at the

end of exploration. It is worth mentioning that, for pure exploration,

there is no explicit trade-off between exploration and exploitation for

each round decision. It is suitable to view this decision-making model

as two phases, i.e., first exploration and then exploitation.

In previous work, the optimal arm for pure exploration of MAB

refers to the arm with the highest mean in the given decision set.

However, there do exist practical scenarios where we cannot neglect

high-order statistics of an arm in pure exploration. As a motivating

example, consider two therapies in clinical trials for patients. After a

sequential clinical testing, the doctor determines which of the therapies

should be suggested for the next patient. The first therapy performs

80 in terms of treatments (with a maximum score of 100 denoting com-

pletely curing patients). Besides, the first one faces a risk of 20 to incur

failures (or even, death). The second one can heal patients with a bit

lower score (e.g., 75) than that of the first one, but facing a risk of 5.

Then, a reasonable optimal suggestion for the next patient is to choose
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the second therapy. This example reveals that the estimated expected

payoff (i.e., the score in the example) should not be the only goal in

decisions. It needs to incorporate risks into the optimal decision. The

similar scenario does happen in pure exploration of the optimal decision

for other real applications.

It is worth pointing out that pure exploration of high-order statistics

(e.g., mean-variance) in MAB has been rarely investigated, which might

be caused by different reasons. One possible reason is that high-order

statistics may bring the divergence of estimation errors in sequential

learning. Another reason could be that the probability of error for

selecting a sub-optimal arm in pure exploration is too sensitive to high-

order statistics, leading to failures in control.

Since pure exploration of MAB has played an important role in

various practical applications, it is urgent and meaningful to study

exploration of high-order statistics, e.g., mean-variance exploration, in

bandits. To the best of our knowledge, whether or not pure exploration

of high-order statistics in bandits is feasible remains an open problem.

In this chapter, we focus on the problem of Pure Exploration of

Mean-Variance (PEMV) in MAB, and we answer the above question in

the affirmative. Specifically, there are three main technical challenges

in solving the problem of PEMV. The first comes from the analysis of

the error between the estimation of mean-variance and the true mean-

variance for pure exploration in MAB. The second is how to design

efficient bandit algorithms for solving PEMV with the analysis of es-

timation errors. The third is how to bound the probability of errors

for selecting a sub-optimal arm at the end of exploration. Here the

optimal arm refers to the arm with the minimal mean-variance in the

given decision set.
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To solve the aforementioned challenges, based on the empirical es-

timation of mean-variance, we rigorously prove that the error resulting

from the estimation is sub-gamma. We develop two bandit algorithms

to solve the problem of PEMV under the sub-gamma noises. Besides,

we derive upper bounds of the probability of error for the proposed al-

gorithms. Based on two baselines in pure exploration, we demonstrate

superiority and robustness of the proposed algorithms in synthetic and

real-world datasets.

In summary, we make the following contributions in this chapter.

• We rigorously prove that the empirical estimation of mean-variance

in sequential decisions incurs sub-gamma noise, where we adopt

the technique of martingale.

• We develop two bandit algorithms, which are named respectively

as PEMV.CB and PEMV.HALVING, to solve the problem of explo-

ration of mean-variance in bandits. Moreover, we derive upper

bounds of the probability of errors for the algorithms in the set-

ting of a fixed budget.

• We evaluate the proposed algorithm via a series of experiments

with synthetic and real datasets. By comparing the proposed al-

gorithms with two state-of-the-art baselines, we demonstrate that

the two algorithms have superior performance in pure exploration

with mean-variance.

3.2 Preliminary and Previous Work

We first present related notations and definitions. Then, we give a

literature review on pure exploration of bandits.
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3.2.1 Notations and Definitions

The learning process of pure exploration in bandits for the fixed bud-

get setting can be briefly summarized as follows. At the beginning, a

learning algorithm A receives the fixed budget T , which is the total

number of rounds to play bandits, and also is given a decision set with

K arms. For each round t ∈ [T ] with [T ] , {1, 2, · · · , T}, A decides to

play an arm at ∈ [K]. At the end of t, the algorithm observes a stochas-

tic payoff yt(at), which is corresponding to the chosen arm. Then, at

t = T (sometimes t < T if A is confident enough), the algorithm is

required to output the optimal arm. The challenge is usually to upper

bound the probability of error because of selecting a sub-optimal arm.

Let E[·] be the expectation of a random variable, and exp(·) denote the

exponential operation. Given a set Φ = {Φ1, · · · ,Φs} with size s = |Φ|,

we denote by Φ\Φs the elimination of Φs in Φ. Given x ∈ R, bxc is

the greatest integer less than or equal to x, and dxe is the least integer

greater than or equal to x.

Definition 3.1. (see Buldygin and Kozachenko, 1980) A random vari-

able ζ is sub-Gaussian if there exists a constant R̄ > 0 such that

E[exp(λζ)] ≤ exp
(
λ2R̄2

2

)
, ∀λ ∈ R. (3.1)

A random variable ζ satisfying Eq. (3.1) is also called R̄-sub-Gaussian.

Besides, we have E[ζ] = 0 and E[ζ2] ≤ R̄2.

Definition 3.2. (see Boucheron et al., 2013) A random variable ζ is

sub-gamma on the right tail if

E[exp(λζ)] ≤ exp
(

λ2v

2(1− cλ)

)
, ∀λ ∈

(
0, 1
c

)
, (3.2)

where v > 0 is a variance factor, c > 0 is a scale parameter.
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Definition 3.3. The measure of mean-variance for a random variable

ζ is defined as

ω(ζ) , σ2(ζ)− κµ(ζ), (3.3)

where σ2(ζ) and µ(ζ) are, respectively, the variance and the mean of ζ,

and the coefficient κ ≥ 0 is the risk tolerance factor. Besides, given T

samples of random variable ζ as {ζt}Tt=1, we directly define the empirical

mean and variance, respectively, as µ̂(ζT ) ,
∑T
t=1 ζt/T and σ̂2(ζT ) ,∑T

t=1(ζt − µ̂(ζT ))2/(T − 1). Then, the empirical mean-variance over T

samples is ω̂(ζT ) , σ̂2(ζT )− κµ̂(ζT ).

Given K arms, let Opt denote the optimal arm with minimal mean-

variance shown as Eq. (3.3). For a 6= Opt, we introduce the sub-

optimality metric between arms a and Opt as

∆a , ω(a)− ω(Opt), (3.4)

where a ∈ [K]. Based on Eq. (3.4), we further define the minimal sub-

optimality as ∆∗ , mina6=Opt,a∈[K] ∆a. Clearly, we have ∆a ≥ 0. We

introduce the notation (a) ∈ [K] to denote the a-th best arm (with ties

break arbitrarily), thus

∆∗ = ∆(1) ≤ ∆(2) ≤ ∆(3) ≤ · · · ≤ ∆(K). (3.5)

The sorted sequence of sub-optimality shown in Eq. (3.5) is helpful in

analyzing the probability of error in algorithms. Inspired by Audibert

and Bubeck (2010), we define the hardness of pure exploration with

mean-variance as

H1 ,
K∑
a=1

1
∆2
a

, H2 , max
a∈[K]

a∆−2
(a).

We generalize the concept of the above hardness into

H3 ,
K∑
a=1

1
∆a

, H4 , max
a∈[K]

a∆−1
(a).
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In the above definitions, we adopt ∆a and ∆(a) in denominators. These

two generalized concepts are related to the theoretical analyses of the

probability of error.

3.2.2 Previous Work

Pure exploration in MAB is an essential branch in decision-making

problems, where the goal is to identify the optimal arm after explo-

ration among a given decision set (Audibert and Bubeck, 2010; Bubeck

et al., 2009; Chen et al., 2017a, 2014). It can be tailored to many ap-

plications, such as resource allocations and online advertising.

As mentioned, in previous work, the optimal arm is generally set

as the arm with the highest expected payoff. For the problem PEMV,

there has been very rare investigations. But there exist studies of

risk control in bandits with strictly assumptions (Yu and Nikolova,

2013), where the payoffs are set as bounded, and the density function

of payoffs is assumed to be continuously differentiable. In Yu and

Nikolova (2013), a bandit algorithm named CuRisk was proposed to

minimize risk for each round of decisions. But it did not discuss on

pure exploration of high-order statistics.

It is worth mentioning that there also exists a closely related line of

research to pure exploration with risk in MAB, which is called as risk-

averse MAB. The investigations on risk-averse MAB aim at maximizing

cumulative payoffs during sequential decisions with consideration of

variance of payoffs (Even-Dar et al., 2006; Galichet et al., 2013; Sani

et al., 2012; Vakili and Zhao, 2016). The first work on risk-averse MAB

was by Even-Dar et al. (2006), where two potential definitions on risk

of payoffs for decision-making problems were developed. One is Sharpe

ratio (Sharpe, 1966) and the other is mean-variance (Markowitz, 1952).
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After 2006, the metric of mean-variance has become popular for risk

control in MAB. In Vakili and Zhao (2016), risk-averse MAB is directly

assumed to have sub-Gaussian noises for high-order statistics, which

should be infeasible.

Via the given information in pure exploration of MAB, we can dis-

tinguish between two settings, fixed budget and fixed confidence (Gabil-

lon et al., 2012). For the first setting, an algorithm is required to

output the optimal arm after playing a given fixed number of rounds.

The theoretical guarantee of this setting focuses on the upper bound

of the probability of error for selecting a sub-optimal arm (Audibert

and Bubeck, 2010). The other setting is to fix a level of confidence

to output the optimal arm, and its theoretical guarantee is to mini-

mize the number of rounds for playing arms (Jamieson and Nowak,

2014). Recently, it has been pointed out that these two settings could

be equivalent in the sense of sample complexity Chen et al. (2014), and

also can be unified into a model Gabillon et al. (2012). Without loss

of generality, in this chapter, we focus on the setting of a fixed budget.

3.3 Assumptions and Problem Definition

In this section, we give the assumptions to solve the problem of PEMV.

Then, we formally present the problem definition.

3.3.1 Assumptions

We list the assumptions as follows.

Assumption 3.1. Given a K-arm decision set, if an algorithm A

chooses the arm at ∈ [K], then a stochastic payoff is generated as

rt(at) = µ(at) + ζt, (3.6)
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where ζt is a random noise. Without loss of generality, let a filtration

be Ft , {ai}ti=1 ∪ {ζi}t−1
i=1. Then, we assume

E[exp(λζt)|Ft] ≤ exp
(
λ2R2

2

)
, (3.7)

where R > 0. Clearly, we have the result of E[ζt|Ft] = 0.

Assumption 3.2. We assume that, for any arm a ∈ [K], the true

variance of arm a is time-invariant and is denoted as σ2(a) > 0. Be-

sides, we also assume that the variances among K arms are not all

the same. Otherwise, the PEMV problem is trivial because it is equiv-

alent to pure exploration of mean. Based on Assumption 3.1, we have

E[rt(at)|Ft] = µ(at), and σ2(at) = E[ζ2
t |Ft] ≤ R2 for the randomness

of the noise ζt comes from payoffs of the chosen arm at.

Assumption 3.3. We assume that the optimal arm in terms of true

mean-variance is unique among the given K arms, and thus the optimal

arm can be denoted by Opt.

Remark 3.1. We would like to briefly address the feasibility of As-

sumptions 3.1-3.3. Different from previous studies in pure exploration

of bandits (Shahrampour et al., 2017), we do not assume independent

payoffs for sequential decisions in Assumption 3.1, which is practical.

Besides, sub-Gaussian noise ζt is general because it encompasses all

distributions that are supported on [0, R] as well as many unbounded

distributions. Finally, Assumptions 3.2 and 3.3 are reasonable in pure

exploration of bandits.

3.3.2 Problem Definition

We focus on pure exploration with mean-variance in the setting of a

fixed budget, which is an essential scenario in MAB (Chen et al., 2014;
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Gabillon et al., 2012). Given an algorithm A, the goal of PEMV is to

identify the optimal arm Opt with the smallest mean-variance shown

in Eq. (3.3). Specifically, with a fixed budget of T , we design bandit

algorithms to minimize the probability of error, which is shown as

minP[aT 6= Opt]. (3.8)

It is difficult to directly solve the problem of Eq. (3.8). A potential

solution is to find its upper bound, which has been a popular alternative

in Audibert and Bubeck (2010); Chen et al. (2014). Compared with

pure exploration in traditional MAB, the selection sequence of arms

with mean-variance will encounter the second-order statistics.

From Eq. (3.3), we notice that there exists a risk tolerance factor

in the problem of PEMV. The factor of κ in Eq. (3.3) shows the trade-

off between the mean and the variance of stochastic payoffs. It is

also worth to mention that, for different κ, the optimal arm could be

different in the given decision set. Thus, our focus in this chapter is

to find the optimal arm among the decision set with a given value κ,

instead of finding optimal κ for mean and variance.

By further investigating the risk tolerance factor of κ, we find that

the problem of PEMV is a generalization of the traditional problem of

pure exploration for mean. Specifically, we can set different values for

specific needs of risk tolerance. On one hand, when we set κ sufficiently

large (or even κ → +∞), the dominated term in Eq. (3.3) should be

mean because the variances of arms are bounded by R2 via Assump-

tion 3.1. Then, the problem of PEMV becomes the standard problem

of identifying the optimal arm with the highest mean. On the other

hand, when we set the parameter as κ = 0, PEMV becomes minimizing

the variance of payoffs.
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Algorithm 3.1 PEMV.CB
1: input: T , K, R, H1, H3, κ

2: δ = min
(

25(T−2K)
576(96R2+κ2)R2H1

, 5(T−2K)
96R2H3

)
3: play each arm twice and observe payoffs

4: for t = 1, 2, · · · , T do

5: for a ∈ [K] do

6: ω̂t(a) = σ̂2
t (a)− κµ̂t(a)

7: CBt(a) =
√

128R4(st(a)+1)δ
(st(a)−1)2 + 4κ2R2δ

st(a) + 8R2δ
(st(a)−1)

8: pt(a) = ω̂t(a)− CBt(a)

9: end for

10: at = arg mina∈[K] pt(a) . break ties arbitrarily

11: observe a payoff yt(at) and save information

12: end for

13: return: aT = arg mina∈[K] ω̂t(a)

3.4 Two Bandit Algorithms and Analyses

We present two bandit algorithms, which are named as PEMV.CB and

PEMV.HALVING. Specifically, we adopt Confidence Bound (CB) tech-

nique to develop the algorithm of PEMV.CB, and adopt sequential halv-

ing technique to develop PEMV.HALVING.

For any a ∈ [K], we design mean-variance estimation as

ω̂t(a) = σ̂2
t (a)− κµ̂t(a), (3.9)

where µ̂t(a) is the estimation of the true expected payoff of µ(a) at

time t. We can calculate µ̂t(a) as

µ̂t(a) =
∑

i∈Φt(a)

yi(a)
st(a) , (3.10)

where Φt(a) is a set to store historical time instants of selecting arm a

over 1, · · · , t− 1, and st(a) is the size of the set Φt(a). We can denote
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by φit(a) the i-th largest element in Φt(a). Note that the values of

elements in Φt(a) monotonically increase. Besides, we calculate σ̂2
t (a)

as

σ̂2
t (a) = 1

st(a)− 1
∑

i∈Φt(a)
(yi(a)− µ̂t(a))2. (3.11)

3.4.1 Description of PEMV.CB and Results

The confidence bound for the mean-variance estimation is different
from that in traditional MAB. With parameters in Eq. (3.31), we set
CBt(a) =

√
2vt(a)δ + ct(a)δ, implying

CBt(a) =

√
128R4(st(a) + 1)δ

(st(a)− 1)2 + 4κ2R2δ

st(a) + 8R2δ

(st(a)− 1) ,

where δ > 0 is a parameter.

We present PEMV.CB in Algorithm 3.1, which is inspired by the CB

technique in MAB (Auer and Ortner, 2010; Auer et al., 2002a). The

key idea of CB technique is to add or subtract a CB term to empirical

estimations. Note that we adopt subtraction because of the minimiza-

tion of mean-variance. Besides, the input includes the hardness, which

is to calculate a parameter of δ. Finally, we are ready to have the time

complexity of PEMV.CB as O(TK). The following theorem shows the

theoretical guarantee of Algorithm 3.1.

Theorem 3.1. For pure exploration of mean-variance with K-arm

MAB, suppose Assumptions 3.1-3.3 are satisfied. If Algorithm 3.1 is

run with a fixed budget of T , we have the upper bound of the probability

of error for PEMV.CB as

P[aT 6= Opt] ≤ 2TK exp
(
− δ

5
)
, (3.12)

where δ ∈
(

0,min
(

25(T−2K)
576(96R2+κ2)R2H1

, 5(T−2K)
96R2H3

)]
.
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3.4.2 Description of PEMV.HALVING and Results

Since Algorithm 3.1 requires the information of hardness, we further

develop PEMV.HALVING to remove this weakness. The halving tech-

nique is popular in machine learning (Kalyanakrishnan et al., 2012;

Karnin et al., 2013). We show PEMV.HALVING in Algorithm 3.2, with

the key idea of deleting an arm via mean-variance estimation. We can

calculate the time complexity of PEMV.HALVING as O(T + K). The

following theorem shows the theoretical guarantee of Algorithm 3.2.

Theorem 3.2. For pure exploration of mean-variance with K-arm

MAB, suppose Assumptions 3.1-3.3 are satisfied. If Algorithm 3.2 is

run with a fixed budget of T , we have the upper bound of the probability

of error for PEMV.HALVING as

P[aT 6= Opt] ≤ 2K exp
(
− T

log2(K)H

)
, (3.13)

where H = 12(96R2 + κ2)R2 min(H4, 3H2).

3.5 Proofs of Theorems

In this section, we first rigorously prove that the error at t resulting

from the mean-variance estimation is sub-gamma. Then, with a fixed

budget, we develop upper bounds of probability of error for the pro-

posed bandit algorithms.

Theorem 3.3. For pure exploration of mean-variance with K-arm

MAB, suppose Assumptions 3.1-3.3 are satisfied. We define a ran-

dom variable as ρt(a) , ω̂t(a)− ω(a) for any a ∈ [K]. Then, we have

ρt(a) is sub-gamma on the right tail, implying

E[exp(λρt(a))] ≤ exp
(

λ2v

2(1− cλ)

)
,
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Algorithm 3.2 PEMV.HALVING
1: input T , K, κ

2: construct a decision-arm set D1 = [K], t = 0

3: for k = 1, · · · , dlog2(K)e do

4: Tk = b T
|Dk|dlog2(K)ec

5: for a ∈ Dk do

6: for j = 1, · · · , Tk do

7: t = t+ 1

8: select a and observe yj(a)

9: end for

10: end for

11: if |Dk| > 1 then

12: for j = 1, · · · , b |Dk|2 c do

13: select an arm aj = arg maxa∈Dk ω̂k(a)

14: Dk = Dk\aj . delete an arm

15: end for

16: end if

17: Dk+1 = Dk
18: end for

19: return aT = Ddlog2(K)e+1

where λ ∈ (0, 1
c
), c = 8R2, v = (192R2 + κ2)R2 for any a ∈ [K] and

t ∈ [T ].

Before we present the proof of Theorem 3.3, we give the following

two lemmas. Lemma 3.1 is on the property of square of a sub-Gaussian

random variable. Lemma 3.2 is on the moment generating function of

the sum of random variables.
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Lemma 3.1. If ζ is R̄-sub-Gaussian, we have

E
[

exp(γ(ζ2 − E[ζ2]))
]
≤ exp

( 8γ2R̄4

1− 2γR̄2

)
, (3.14)

where γ ∈ (− 1
2R̄2 ,

1
2R̄2 ).

Proof. Since ζ is R̄-sub-Gaussian, we have

E[exp(λζ)] ≤ exp
(
λ2R̄2

2

)
, ∀λ ∈ R. (3.15)

Based on Rivasplata (2012), we have

E[|ζ|r] ≤ r2 r
2 R̄rΓ

(
r

2

)
, ∀ r ≥ 0, (3.16)

where Γ(r) is the Gamma function. Based on the result of Honorio and

Jaakkola (2014), we have

E[exp(γ(ζ − E[ζ2]))] ≤ 1 + 8γ2R̄4

1− 2γR̄2
, (3.17)

where we set γ ∈ (− 1
2R̄2 ,

1
2R̄2 ). Due to the fact of 1 + x ≤ exp(x) for

x ∈ R, we have

E[exp(γ(ζ − E[ζ2]))] ≤ exp
( 8γ2R̄4

1− 2γR̄2

)
, (3.18)

which completes the proof.

Lemma 3.2. Given two random variables of ζ1 and ζ2, for any λ ∈ R

and p, q > 1 such that 1
p

+ 1
q

= 1, we have

E[exp(λ(ζ1 + ζ2))] ≤
(
E[exp(pλζ1)]

) 1
p
(
E[exp(qλζ2)]

) 1
q

.

In particular, by setting p = q = 2, we have the result as E[exp(λ(ζ1 +

ζ2))] ≤
√(

E[exp(2λζ1)]
)√(

E[exp(2λζ2)]
)
.

Proof. The proof can be easily generalized from the result of Hölder’s

inequality by Finner et al. (1992).
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Proof of Theorem 3.3. The key is the moment generating function of

ρt(a) = ω̂t(a)− ω(a), which is the estimation error of mean-variance .

There are three steps for the proof.

Step 1. moment generating function of mean

For any arm a ∈ [K], we define

αt(a) , µ̂t(a)− µ(a), (3.19)

where αt(a) ∈ R. With the estimation in Eq. (3.10), we have αt(a) =∑
i∈Φt(a) ζi/st(a). Via Assumption 3.1, we obtain

E[exp(λαt(a))] = E
[

exp
(λ∑i∈Φt(a) ζi

st(a)

)]

= E
[

exp
(λ∑i∈Φ1

t (a) ζi

st(a)

)
E
[

exp
(λζφ1

t (a)

st(a)
)
|Fφ1

t (a)

]]

≤ exp
(
λ2R2

2s2
t (a)

)
E
[

exp
(λ∑i∈Φ1

t (a) ζi

st(a)

)]
, (3.20)

where Φ1
t (a) = Φt(a)\φ1

t (a) with φ1
t (a) the largest element in Φ1

t (a).

Continuing inductively, we conclude that

E[exp(λαt(a))] ≤ exp
(
λ2R2

2st(a)

)
, (3.21)

which implies that αt(a) is sub-Gaussian. Thus, we have

E[α2
t (a)] = E[µ̂2

t (a)− 2µ̂t(a)µ(a) + µ2(a)]

= E
[ 1
s2
t (a)

( ∑
i∈Φt(a)

(µ(a) + ζi)
)2]
− µ2(a)

= E
[∑

i∈Φt(a) E[ζ2
i |Fi]

s2
t (a)

]
= σ2(a)
st(a) , (3.22)

where we adopt the fact of E[ζi|Fi] = 0 for any i ∈ Φt(a). We know

E[α2
t (a)] decreases with increasing st(a).

Step 2. moment generating function of variance

For any arm a ∈ [K], we define

βt(a) , σ̂2
t (a)− σ2(a), (3.23)
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where βt(a) ∈ R. We also define

σ̄2
t (a) , 1

st(a)− 1
∑

i∈Φt(a)

(
yi(a)− µ(a)

)2
, (3.24)

which implies σ̄2
t (a) =

∑
i∈Φt(a) ζ

2
i

st(a)−1 via Assumption 3.1. Besides, we are

ready to have the result of

σ̄2
t (a) =

∑
i∈Φt(a)

(
yi(a)− µ̂t(a) + µ̂t(a)− µ(a)

)2

st(a)− 1

=

∑
i∈Φt(a)

(
(yi(a)− µ̂t(a))2 + (µ̂t(a)− µ(a))2

)
st(a)− 1

=

∑
i∈Φt(a)

(
(yi(a)− µ̂t(a))2

)
st(a)− 1 + st(a)

st(a)− 1α
2
t (a),

= σ̂2
t (a) + st(a)

st(a)− 1α
2
t (a), (3.25)

where we adopt the fact ∑i∈Φt(a)(yi(a) − µ̂t(a)) = 0 in the second

equality, and adopt the definition of αt(a) in the third equality. Now

we have

βt(a) = σ̄2
t (a)− st(a)

st(a)− 1α
2
t (a)− σ2(a)

=
∑
i∈Φt(a) ζ

2
i

st(a)− 1 −
st(a)

st(a)− 1α
2
t (a)− σ2(a)

=
∑
i∈Φt(a)(ζ2

i − σ2(a))
st(a)− 1 − st(a)

st(a)− 1

(
α2
t (a)− σ2(a)

st(a)

)
.

Now we consider separately the two terms on the right hand side of the

above equation. Specifically, we have

E
[

exp
(λ∑i∈Φt(a)(ζ2

i − σ2(a))
st(a)− 1

)]

= E
[

exp
(
λΘ1

t (a)
)
E
[

exp
(λ(ζ2

φ1
t (a) − σ

2(a))
st(a)− 1

)
|Fφ1

t (a)

]]

≤ exp
( 8γ2

1R
4

1− 2γ1R2

)
E
[

exp
(
λ∆1

t (a)
)]
, (3.26)
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where Θ1
t (a) ,

∑
i∈Φ1

t
(a)

(
ζ2
i −σ

2(a)
)

st(a)−1 , γ1 = λ/(st(a)−1) with γ1 ∈ (− 1
2R2 ,

1
2R2 ),

and the inequality is due to Lemma 3.1 by using the conditional filtra-

tion. Similar to the technique in Eq. (3.20), we conclude that

E
[

exp
(λ∑i∈Φt(a)(ζ2

i − σ2(a))
st(a)− 1

)]
≤ exp

(8γ2
1R

4st(a)
1− 2γ1R2

)
.

Similarly, based on Eqs. (3.21) and (3.22), we have

E
[

exp
( −λst(a)
st(a)− 1

(
α2
t (a)− σ2(a)

st(a)
))]
≤ exp

( 8γ2
1R

4

1 + 2γ1R2

)
.

Now, with the support of Lemma 3.2, we can calculate

E[exp(λβt(a))] = E
[

exp
(
σ̄2
t (a)− st(a)

st(a)− 1α
2
t (a)− σ2(a)

)]

≤

√√√√E
[

exp
(2λ∑i∈Φt(a)(ζ2

i − σ2(a))
st(a)− 1

)]
×√√√√E

[
exp

(
− 2λst(a)
st(a)− 1

(
α2
t (a)− σ2(a)

st(a)
))]

≤ exp
(4γ2

2R
4st(a)

1− 2γ2R2 + 4γ2
2R

4)
1 + 2γ2R2

)

= exp
(4γ2

2R
4
(
st(a) + 1− 4

1/(γ2R2)+2)

)
1− 2γ2R2

)
, (3.27)

where γ2 = 2λ/(st(a)−1) with γ2 ∈ (0, 1
2R2 ). Clearly, we have 4

1/(γ2R2)+2 ∈

(0, 1). Note that we consider γ2 > 0 here because γ2 ∈ (− 1
2R2 , 0) will

lead to 4
1/(γ2R2)+2 ∈ (−∞, 0), implying the unbounded moment gener-

ating function of βt(a). Thus, we have

E[exp(λβt(a))] ≤ exp
(4γ2

2R
4(st(a) + 1)

1− 2γ2R2

)
. (3.28)

We obtain

E[exp(λβt(a))] ≤ exp
(

λ2b1

2(1− λb2)

)
, (3.29)

where λ ∈ (0, 1
b2

), b1 = 32R4(st(a)+1)/(st(a)−1)2 and b2 = 4R2/(st(a)−

1). This implies that βt(a) is a sub-gamma random variable on the right

tail.
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Step 3. moment generating function of ρt(a)

Since ρt(a) = ω̂t(a)− ω(a) = βt(a)− καt(a), we have

E[exp(λρt(a))] ≤
√
E[exp(2λβt(a))]

√
E[exp(−2κλαt(a))]

≤

√√√√exp
( 4λ2b1

2(1− 2λb2)

)√√√√exp
(4κ2λ2R2

2st(a)

)

= exp
( 2λ2b1

2(1− 2λb2) + 2κ2λ2R2

2st(a)

)

≤ exp
(
λ2(2b1st(a) + 2κ2R2)

2st(a)(1− 2λb2)

)
, (3.30)

where λ ∈ (0, 1
2b2 ), the first inequality is due to Lemma 3.2, and the

last inequality is due to the fact of 1− 2λb2 < 1. Then, we have

E[exp(λρt(a))] ≤ exp
(

λ2vt(a)
2(1− ct(a)λ)

)
, (3.31)

where λ ∈
(
0, 1

ct(y)

)
, ct(a) = 8R2/(st(a)− 1) and vt(a) = 64R4(st(a) +

1)/(st(a) − 1)2 + 2κ2R2/st(a). Without loss of generality, we can set

st(a) ≥ 2. Then we have ct(a) ≤ 8R2 and vt(a) ≤ (192R2 + κ2)R2 for

any a ∈ [K]. Finally, we have

E[exp(λρt(a))] ≤ exp
(

λ2v

2(1− cλ)

)
, (3.32)

where λ ∈ (0, 1
c
), c = 8R2, v = (192R2 + κ2)R2 for any a ∈ [K] and

t ∈ [T ]. This means that ρt(a) is sub-gamma on the right tail, which

completes the proof.

3.5.1 Proof of Theorem 3.1

Proof. From Theorem 3.3, we know {ρt(a)} are sub-gamma on the right

tail for all a ∈ [K] and t ∈ [T ]. Based on Boucheron et al. (2012), we

know a sub-gamma random variable ρt(a) on the right tail satisfies a

Bernstein inequality as

P[ρt(a) ≥
√

2vt(a)δ + ct(a)δ] ≤ exp(−δ), (3.33)
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where δ > 0. Note that here we adopt the parameters in Eq. (3.31).

Besides, we have similar results of Eq. (3.33) for −ρt(a). Thus, we have

the concentration inequality as

P[|ρt(a)| ≤
√

2vt(a)δ + ct(a)δ] ≥ 1− 2 exp(−δ). (3.34)

Inspired by the above equation, we consider the event as

E =
{
a ∈ [K], |ω̂t(a)− ω(a)| ≤ 1

5
√

2vt(a)δ + 1
5ct(a)δ

}
,

where t ∈ [T ], ct(a) = 8R2/(st(a) − 1) and vt(a) = 64R4(st(a) +

1)/(st(a) − 1)2 + 2κ2R2/st(a). The following details are inspired by

the reuslt in Audibert and Bubeck (2010). In the proof, we show that

the event E implies that aT = Opt. Thus, the probability of error in

PEMV.CB is equivalent to the upper bound of 1 − P[E ]. Since t ∈ [T ]

and a ∈ [K], by adopting a union bound of probability in E , we need

to find δ such that

P[E ] ≥ 1− 2TK exp(−δ5), (3.35)

where we adopt the result in Eq. (3.34) and the fact of 1
5

√
2vt(a)δ >

1
25

√
2vt(a)δ. It is enough to prove that

1
5
√

2vt(a)δ + 1
5ct(a)δ ≤ ∆a

2 , (3.36)

where a ∈ [K]. Then we consider two cases: 1)
√

2vt(a)δ ≥ ct(a)δ,

and 2)
√

2vt(a)δ < ct(a)δ. Note that, in Algorithm 3.1, we design the

confidence bound as CBt(a) =
√

2vt(a)δ + ct(a)δ.

Case 1. Since
√

2vt(a)δ ≥ ct(a)δ and for E , we should prove

2
5
√

2vt(a)δ ≤ ∆a

2 . (3.37)
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Besides, we have
√
vt(a) =

√√√√64R4(st(a) + 1)
(st(a)− 1)2 + 2κ2R2

st(a)

=

√√√√ 64R4

st(a)− 1 + 128R4

(st(a)− 1)2 + 2κ2R2

st(a)

≤

√√√√ 64R4

st(a)− 1 + 128R4

st(a)− 1 + 2κ2R2

st(a)− 1

=

√√√√2(96R2 + κ2)R2

st(a)− 1 . (3.38)

By setting t = T , it is enough to prove

2
5
√

2vT (a)δ ≤ 4
5

√√√√(96R2 + κ2)R2δ

sT (a)− 1 ≤ ∆a

2 . (3.39)

Equivalently, we should find δ such that

sT (a) ≥ 64(96R2 + κ2)R2δ

25∆2
a

+ 1, ∀ a ∈ [K]. (3.40)

Now we need to consider the upper bound of st(a) for a ∈ [K] with

a 6= Opt. We prove by induction that

st(a) ≤ 576(96R2 + κ2)R2δ

25∆2
a

+ 2, (3.41)

where a ∈ [K] with a 6= Opt, and t = [T ].

For t = 1, Eq. (3.41) holds obviously. We assume Eq. (3.41) holds at

t−1, then we prove Eq. (3.41) at t. If at 6= a for ∀ a ∈ [K] with a 6= Opt,

the chosen arm is Opt. Thus, st(a) = st−1(a) holds. If at = a, we know

that

ω̂t−1(a)− 2
√

2vt−1(a)δ ≤ ω̂t−1(Opt)− 2
√

2vt−1(Opt)δ. (3.42)

Because we consider E , we have ω̂t−1(Opt)− 2
√

2vt−1(Opt)δ ≤ ω(Opt).

Besides, we have ω(a)− 12
5

√
2vt−1(a)δ ≤ ω̂t−1(a)− 2

√
2vt−1(a)δ. Then,

we have

ω(a)− ω(Opt) ≤ 12
5
√

2vt−1(a)δ, (3.43)
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implying that st(a) ≤ 576(96R2+κ2)R2δ
25∆2

a
+ 2 with Eq. (3.38), where we

adopt the fact of st(a) = st−1(a) + 1.
Now we prove by induction that

st(a) ≥ min
(144(96R2 + κ2)R2δ

25∆2
a

,
9
16(st(Opt)− 2)

)
+ 1, (3.44)

where a ∈ [K] and a 6= Opt. For t = 1, it is obvious true. We assume

Eq. (3.44) holds at t− 1, then we prove it at t. If at = a for ∀a ∈ [K]

with a 6= Opt, we know that it clearly is true since st(a) = st−1(a) + 1.

If at = Opt, then we have

ω(Opt)− 8
5
√

2vt−1(Opt)δ ≤ ω(a)− 12
5
√

2vt−1(a)δ. (3.45)

Thus, with Eq. (3.38), we have

st−1(a)− 1 ≥ 576
25

(96R2 + κ2)R2δ(
∆a + 16

5

√
(96R2+κ2)R2δ
st−1(Opt)−1

)2 , (3.46)

which implies Eq. (3.44). In order to guarantee the result in Eq. (3.40),

we only need to prove
9
16(sT (Opt)− 2) ≥ 64(96R2 + κ2)R2δ

25∆2
∗

, (3.47)

where ∆∗ = mina6=Opt,a∈[K] ∆a. Based on Eq. (3.41), we have

sT (Opt)− 2 = T − 2−
∑
a6=Opt

sT (a)

≥ T − 2− 2(K − 1)− 576(96R2 + κ2)R2δ

25
∑
a6=Opt

1
∆2
a

≥ 576(96R2 + κ2)R2δ

25∆2
∗

>
1024(96R2 + κ2)R2δ

225∆2
∗

, (3.48)

which implies that

0 < δ ≤ 25(T − 2K)
576(96R2 + κ2)R2H1

. (3.49)

Case 2. Since
√

2vt(a)δ < ct(a)δ and for E , we should prove

2
5ct(a)δ ≤ ∆a

2 . (3.50)
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Via analyses similar to Case 1, we need to find δ satisfying

sT (a) ≥ 32R2δ

5∆a

+ 1. (3.51)

We can have

st(a) ≤ 96R2δ

5∆a

+ 2, ∀ a ∈ [K] with a 6= Opt, and ∀t ∈ [T ]. (3.52)

We also have

st(a) ≥ min
(48R2δ

5∆a

,
3
2(st(Opt)− 2)

)
+ 1, (3.53)

where a ∈ [K] with a 6= Opt, and t ∈ [T ]. Thus, we need to have

3
2(sT (Opt)− 2) ≥ 32R2δ

5∆∗
. (3.54)

Then, we have

sT (Opt)− 2 = T − 2−
∑
a6=Opt

sT (a)

≥ T − 2− 2(K − 1)− 96R2δ

5
∑
a6=Opt

1
∆a

≥ 96R2δ

5∆∗
>

64R2δ

15∆∗
, (3.55)

which implies that

0 < δ ≤ 5(T − 2K)
96R2H3

. (3.56)

Because we need to hold E in both cases for a ∈ [K], we can set

δ ∈
(

0,min
(

25(T−2K)
576(96R2+κ2)R2H1

, 5(T−2K)
96R2H3

))
. Then, we know

P[E ] ≥ 1− 2TK exp
(
− δ

5
)
. (3.57)

This implies that

P[aT 6= Opt] ≤ 2TK exp
(
− δ

5
)
, (3.58)

which completes the proof.
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3.5.2 Proof of Theorem 3.2

Proof. Without loss of generality, we assume K is a power of 2. The

following analysis can be generalized to any K. From the result in

Theorem 3.3, we know {ρt(a)} are sub-gamma on the right tail for all

a ∈ [K] and t ∈ [T ]. Based on Boucheron et al. (2012), we know a

sub-gamma random variable ρt(y) on the right tail satisfies a Bernstein

inequality as

P[ρt(a) ≥
√

2vt(a)δ + ct(a)δ] ≤ exp(−δ), (3.59)

where ct(a) = 8R2/(st(a) − 1) and vt(a) = 64R4(st(a) + 1)/(st(a) −

1)2 + 2κ2R2/st(a). Here we adopt a different technique to combine

vt(a) and ct(a). We observe that vt(a) ≥ ct(a) due to st(a) > 0, then

we have
√

2vt(a)δ + ct(a)δ ≤
√

2vt(a)δ + vt(a)δ. By further noticing

that
√

2vt(a)δ + vt(a)δ ≤ 2
√
vt(a)δ + vt(a)δ, we have

P[ρt(a) ≥ 2
√
vt(a)δ + vt(a)δ] ≤ exp(−δ). (3.60)

Thus, we have
P[ρt(a) ≥ 3vt(a)δ] ≤ exp(−δ) if vt(a)δ ≥ 1,

P[ρt(a) ≥ 3
√
vt(a)δ] ≤ exp(−δ) if 0 < vt(a)δ < 1.

We can set δ̂ = 3vt(a)δ if vt(a)δ ≥ 1, and δ̂ = 3
√
vt(a)δ if 0 < vt(a)δ <

1. Equivalently, we have
P[ρt(a) ≥ δ̂] ≤ exp

(
− δ̂

3vt(a)

)
if δ̂ ≥ 3,

P[ρt(a) ≥ δ̂] ≤ exp
(
− δ̂2

9vt(a)

)
if 0 < δ̂ < 3.

(3.61)

Besides, we define

v̂t(a) , 2(96R2 + κ2)R2

st(a)− 1 . (3.62)
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It is ready to have vt(a) ≤ v̂t(a). Thus, we have
P[ρt(a) ≥ δ̂] ≤ exp

(
− (st(a)−1)δ̂

6(96R2+κ2)R2

)
if δ̂ ≥ 3,

P[ρt(a) ≥ δ̂] ≤ exp
(
− (st(a)−1)δ̂2

18(96R2+κ2)R2

)
if 0 < δ̂ < 3.

In Algorithm 3.2, in each epoch k, we denote the set of deleted arms as

D̄k, i.e., the arm set in Line 14 of PEMV.HALVING. Inspired by Karnin

et al. (2013), we can upper bound the probability of error as

P[aT 6= Opt] ≤
log2(K)∑
k=1

∑
a∈D̄k

P[ω̂t(a) ≤ ω̂t(Opt)]

=
log2(K)∑
k=1

∑
a∈D̄k

P[ω̂t(Opt)− ω(Opt)− ω̂t(a) + ω(a) ≥ ∆a].

We have sub-gamma noise for ω̂t(Opt)−ω(Opt)−ω̂t(a)+ω(a) shown as

Theorem 3.1 if we consider the noise of ω̂t(Opt)−ω̂t(a)−(ω(Opt)−ω(a)).

This means the tail probability of Eq. (3.61) can be used. For clarity,

we can define

A , (96R2 + κ2)R2, (3.63)

where A > 0. Thus,
P[ρt(a) ≥ δ̂] ≤ exp

(
− (st(a)−1)δ̂

6A

)
if δ̂ ≥ 3,

P[ρt(a) ≥ δ̂] ≤ exp
(
− (st(a)−1)δ̂2

18A

)
if 0 < δ̂ < 3.

Without loss of generality, we can set ∆a = δ̂. Then, if ∆a ≥ 3, we

have

P[aT 6= Opt] ≤
log2(K)∑
k=1

∑
a∈D̄k

exp
(
− (∑k

i=1 Ti − 1)∆a

6A

)

≤
log2(K)∑
k=1

∑
a∈D̄k

exp
(
− 2k−1T∆a

6AK log2(K)

)
,

where Ti is the value in Line 4 of Algorithm 3.2 and we adopt the fact

of |D̄k| = |Dk| = K
2k−1 for k ≥ 2. Besides, D1 = K and D̄1 = 0. Inspired
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by Karnin et al. (2013), we have

P[aT 6= y∗] ≤
log2(K)∑
k=1

K

2k−1 max
a∈D̄1

exp
(
− 2kT∆a

12AK log2(K)

)

≤
log2(K)∑
k=1

K

2k−1 exp
(
− T

12A log2(K)a∆−1
(a)

)

≤ 2K exp
(
− T

12A log2(K)H4

)
= 2K exp

(
− T

12(96R2 + κ2)R2 log2(K)H4

)
.

Similarly, if 0 < ∆y < 3, we obtain

P[aT 6= Opt] ≤ 2K exp
(
− T

36(96R2 + κ2)R2 log2(K)H2

)
.

By taking H = 12(96R2 + κ2)R2 min(H4, 3H2), we have

P[aT 6= Opt] ≤ 2K exp
(
− T

log2(K)H

)
, (3.64)

which completes the proof.

3.6 Experiments

In this section, we conduct a series of experiments via synthetic and

real-world datasets to evaluate PEMV.CB and PEMV.HALVING. We

compare the proposed algorithms with two state-of-the-art algorithms,

i.e., UCBE of Audibert and Bubeck (2010) and CuRisk of Yu and

Nikolova (2013). Note that UCBE searches the optimal arm with the

highest mean. Since the key idea in CuRisk is to find the optimal arm

via empirical estimation, CuRisk here is implemented to find the opti-

mal arm based on minimal mean-variance estimation.

In experiments, we find that the proposed two algorithms have su-

perior performance in pure exploration for synthetic and real-world

datasets. Specifically, the algorithms of PEMV.CB and PEMV.HALVING
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Table 3.1: Statistics of used synthetic datasets.

dataset #arm {µ(y)} {σ2(y)}

S1 20 [1.0, 2.9] with a

uniform gap

σ2(11)∼σ2(15) = 0.6,

σ2(20) = 0.6, others 0.3

S2 10 random value in

[0.0, 1.0]

random value in [1.0, 2.0]

S3 30 µ(1) = 1.0,

µ(y) = 1− 1.0
2y2

σ2(1) = 1.0, σ2(y) = 2.0− 1.0
2y2

Table 3.2: Probability of error with κ = 1.0 and T = 1000.

algorithm S1 S2 S3

UCBE 0.63 ± 0.12 0.95 ± 0.04 0.95 ± 0.03

CuRisk 0.43 ± 0.06 0.63 ± 0.11 0.38 ± 0.10

PEMV.CB 0.19 ± 0.10 0.55 ± 0.08 0.17±0.06

PEMV.HALVING 0.05±0.01 0.40±0.12 0.23 ± 0.09

always outperform CuRisk and UCBE in terms of probability of error

for synthetic datasets. Besides, for real-world datasets, we conduct the

experiment of yearly investments via sliding windows with pure explo-

ration on investment alternatives, and find both proposed algorithms

have higher cumulative returns than UCBE and CuRisk.

3.6.1 Settings

To evaluate algorithms in synthetic datasets, we calculate the proba-

bility of error based on frequency of wrong decision after exploration.
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Specifically, we run multiple epochs of experiments, with each epoch

containing 20 independent experiments. For each independent exper-

iment, algorithms output an optimal arm at T . We label 1 for an

experiment if the output arm is the true optimal arm. Otherwise we

label 0. For 20 experiments of an epoch, we evaluate the probability

of error in terms of frequency of zero in labels. Clearly, we have an

estimated probability of error in an epoch. By running 10 epochs, we

obtain an average of probability of error and its standard error.

In real-world financial data, it is difficult to identify the best in-

vestment alternative in hindsight. Thus, it is reasonable to evaluate

algorithms via future returns of the chosen alternative. Specifically, in

yearly investments, we run algorithms over a sliding window to iden-

tify the optimal choice for investments at the beginning of a year. We

calculate the performance of returns with the chosen alternative at the

end of the year. Via yearly sequential investments, we calculate cumu-

lative returns of algorithms. The higher cumulative returns, the better

performance of an algorithm.

3.6.2 Synthetic Data and Results

For verifications, we adopt three synthetic datasets (named as S1-S3)

in the experiments, of which statistics are shown in Table 4.3. In S1,

the variances are set to satisfy Assumption 3.2. In S2, the values are

uniformly randomly generated, and S3 is inspired by Karnin et al.

(2013).

From experimental results in Tables 3.2 and 3.3, we find superior

performance of the proposed algorithms in terms of the probability of

error with a fixed budget of T . Note that the data of the table in bold

mean the best performance in the dataset among the four algorithms.
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Table 3.3: Probability of error with κ = 10.0 and T = 1000.

algorithm S1 S2 S3

UCBE 0.32 ± 0.04 0.52 ± 0.10 0.47 ± 0.23

CuRisk 0.56 ± 0.12 0.67 ± 0.11 0.52 ± 0.12

PEMV.CB 0.47 ± 0.17 0.62 ± 0.09 0.24±0.03

PEMV.HALVING 0.08±0.05 0.47±0.10 0.31 ± 0.10

We also show one standard deviation of the performance in the tables.

Clearly, PEMV.CB and PEMV.HALVING always outperform CuRisk and

UCBE.

In Tables 3.2 and 3.3, we show probability of error on synthetic

datasets by different bandit algorithms. We show more comparisons of

different κ in Tables 3.4 and 3.5. We can find that the proposed two

algorithms are robust for different values of κ.

Besides, to verify the performance of two proposed algorithms with

different T , we show experimental results in Figure 3.1. From the fig-

ure, we know the probability of error almost decreases with the increase

of T . The experimental results are consistent with the theoretical anal-

yses in Theorems 3.1 and 3.2. We also conduct experiments for other

parameter settings, and find similar observations.

From the above experimental results, we find the robustness of

PEMV.CB and PEMV.HALVING. We also conduct experiments with

other parameters for the superiority of two algorithms.



CHAPTER 3. PURE EXPLORATION OF MEAN-VARIANCE 62

Table 3.4: Probability of error with κ = 0.3 and T = 1000.

algorithm S1 S2 S3

UCBE 0.70 ± 0.07 0.93 ± 0.07 0.97 ± 0.03

CuRisk 0.59 ± 0.12 0.61 ± 0.10 0.30 ± 0.21

PEMV.CB 0.55 ± 0.06 0.59 ± 0.12 0.14 ± 0.05

PEMV.HALVING 0.31±0.09 0.38±0.06 0.12±0.04

Table 3.5: Probability of error with κ = 0.6 and T = 1000.

algorithm S1 S2 S3

UCBE 0.67 ± 0.06 0.96 ± 0.05 0.97 ± 0.03

CuRisk 0.53 ± 0.14 0.62 ± 0.07 0.31 ± 0.08

PEMV.CB 0.36 ± 0.10 0.51 ± 0.10 0.16 ± 0.07

PEMV.HALVING 0.10±0.06 0.33±0.12 0.15±0.06

3.6.3 Financial Data and Results

We conduct yearly sequential investments by adopting the technique

of pure exploration. The real data for experiments are historical re-

turns on stocks, bonds and bills of United States from 1928 to 20161.

The dataset contains 89 samples of annual returns on SP500, 3-month

Treasury Bill and 10-year Treasury Bond, which can be viewed as three

arms in bandits for sequential decisions.

We adopt the measure of cumulative returns for performance eval-
1http://pages.stern.nyu.edu/˜adamodar/New_Home_Page/datafile/histretSP.

html

http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/histretSP.html
http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/histretSP.html
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(a) S1 (b) S2 (c) S3

Figure 3.1: Probability of error with different T and κ = 1.0 in synthetic

datasets.

uations, which is defined as

Cret(N) =
N∏
i=1

(1 + ri), (3.65)

where ri is the realized return for the i-th investment period, and N is

the total periods in investments. Clearly, an algorithm performs better

if Cret(N) is higher.

For yearly investments of the real dataset, we should output the

optimal arm for investments in each year. For example, at the begin-

ning of 2015, we first determine which choice is the best among SP500,

3-month Treasury Bill and 10-year Treasury Bond, and then invest all

the available money on that choice. After a year (i.e., at the begin-

ning of 2016), we observe the realized return of the choice in 2015, and

sequentially determine the best choice for investments in 2016. This

experiment can also be called one-year forward sequential investments.

In Fig. 3.2, we find that PEMV.CB and PEMV.HALVING outperform

UCBE and CuRisk in terms of cumulative returns. This reveals that

pure exploration of high order statistics in financial scenarios brings

better performance in returns.

Now we show more experimental results in Figures 3.3 and 3.4,

where κ = 1.0, 1.5, 2.0 and we adopt different sliding windows. From
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Figure 3.2: Cumulative returns in yearly investments on SP500, 3-month

Treasury Bill and 10-year Treasury Bond. The investment is one-year for-

ward from 1947 to 2016.

the figures, we find that the proposed algorithms are robust to the real-

world financial data. The algorithms of PEMV.CB and PEMV.HALVING

always outperform UCBE and CuRisk in terms of cumulative returns.

Overall, by comparing with state-of-the-art algorithms in pure ex-

ploration of MAB, we demonstrate the superiority of the proposed

PEMV.CB and PEMV.HALVING in synthetic and real-world datasets.

From comprehensive comparisons, we also find that the proposed algo-

rithms are robust in pure exploration with high order statistics.

3.7 Conclusion

In this chapter, motivating by optimization of high order statistics in

bandits, we investigated the problem of Pure Exploration of Mean-

Variance (PEMV). The problem contains three technical challenges,

where the core challenge is the analysis of estimation errors due to

mean-variance. We have solved the challenges by rigorously proving
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(a) κ = 1.0 (b) κ = 1.5 (c) κ = 2.0

Figure 3.3: Cumulative returns in yearly investments on SP500, 3-month

Treasury Bill and 10-year Treasury Bond with sliding window W = 20. The

investment is one-year forward from 1947 to 2016.

(a) κ = 1.0 (b) κ = 1.5 (c) κ = 2.0

Figure 3.4: Cumulative returns in yearly investments on SP500, 3-month

Treasury Bill and 10-year Treasury Bond with sliding window W = 40. The

investment is one-year forward from 1967 to 2016.

that the error resulting from the mean-variance estimation is sub-

gamma. Besides, we developed two efficient algorithms to tackle PEMV.

With the sub-gamma noises, we derived upper bounds of the proba-

bility of error for the proposed algorithms. By conducting a series of

experiments on synthetic and real-world datasets, we demonstrated the

two algorithms are superior and robust.



Chapter 4

Pure Exploration with

Heavy Tails

The model of MAB with sub-Gaussian noises has been well investi-

gated. However, it is surprising to find that less effort has been devoted

to the topic of bandits with noises following heavy-tailed distributions.

Inspired by heavy-tailed distributions in practical scenarios, we investi-

gate the problem on pure exploration of MAB with heavy-tailed payoffs

by breaking the assumption of payoffs with sub-Gaussian noises in ban-

dits, and assuming that stochastic payoffs from bandits are with finite

p-th moments, where p ∈ (1,+∞).

The main contributions in this chapter are three-fold. First, we

technically analyze tail probabilities of empirical average and truncated

empirical average (TEA) for estimating expected payoffs in sequential

decisions with heavy-tailed noises via martingales. Second, we propose

two effective bandit algorithms based on different prior information

(i.e., fixed confidence or fixed budget) for pure exploration of MAB gen-

erating payoffs with finite p-th moments. Third, we derive theoretical

guarantees for the proposed two bandit algorithms, and demonstrate

66
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the effectiveness of two algorithms in pure exploration of MAB with

heavy-tailed payoffs in synthetic data and real-world financial data of

crytocurrency.

4.1 Introduction

The prevailing decision-making model MAB elegantly characterizes a

wide class of practical problems on sequential learning with partial feed-

backs, which was first formally proposed and investigated in Robbins

(1952). Most algorithms in MAB are primarily developed to maximize

cumulative payoffs during a number of rounds for sequential decisions.

Recently, there have been interesting investigations on various variants

of the traditional MAB model, such as linear bandits (Auer, 2002; Yu

et al., 2017b; Zhao and King, 2016), pure exploration of MAB (Audib-

ert and Bubeck, 2010), risk-averse MAB (Sani et al., 2012; Yu et al.,

2017a), cascading bandits (Kveton et al., 2015) and clustering ban-

dits (Korda et al., 2016; Li et al., 2016).

One non-trivial branch of MAB is pure exploration, where the goal

is to find the optimal arm in a given decision-arm set at the end of

exploration. In this case, there is no explicit trade-off between explo-

ration and exploitation for sequential decisions, which means that the

exploration phase and the exploitation phase are separated. The prob-

lem of pure exploration is motivated by real scenarios which prefer to

identify an optimal arm instead of maximizing cumulative payoffs. Re-

cent advances in pure exploration of MAB have found potential appli-

cations in many practical domains including communication networks

and commercialized products (Audibert and Bubeck, 2010; Chen et al.,

2014).

In previous studies on pure exploration of MAB, a common as-
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sumption is that noises in observed payoffs are sub-Gaussian. The

sub-Gaussian assumption encompasses cases of all bounded payoffs and

many unbounded payoffs in MAB, e.g., payoffs of an arm following a

Gaussian distribution. However, there exist non-sub-Gaussian noises in

observed payoffs for bandits, e.g., high-probability extreme payoffs in

sequential decisions which are called heavy-tailed payoffs. A practical

motivation example for MAB with heavy-tailed payoffs is the distribu-

tion of delays in end-to-end network routing (Liebeherr et al., 2012).

Pure exploration of MAB with heavy-tailed payoffs is important, espe-

cially for identifications of the potential optimal investment target for

practical financial applications. It is worth mentioning that the case

of maximizing cumulative payoffs of MAB with heavy tails has been

extensively investigated in Bubeck et al. (2013a); Carpentier and Valko

(2014); Lattimore (2017); Medina and Yang (2016); Vakili et al. (2013).

In Bubeck et al. (2013a), the setting of sequential payoffs with bounded

p-th moments was investigated for regret minimization in MAB, where

p ∈ (1, 2]. Vakili et al. (2013) introduced bounded p-th moments with

the support over (1,+∞), and provided a complete regret guarantee

in MAB. In Medina and Yang (2016), regret guarantee in linear ban-

dits with heavy-tailed payoffs was investigated, which is still scaled by

parameters of bounded moments. Recently, payoffs in bandits with

bounded kurtosis were discussed in Lattimore (2017).

In this chapter, we investigate the problem on pure exploration

of MAB with heavy-tailed payoffs characterized by the bound of p-th

moments. It is surprising to find that less effort has been devoted to

pure exploration of MAB with heavy-tailed payoffs. Compared with

previous work on pure exploration of MAB, the problem of best arm

identifcation with heavy-tailed payoffs has three challenges. The first
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challenge is the estimate of expected payoffs of an arm in MAB. It

might not be sufficient to adopt an empirical average (EA) of observed

payoffs with heavy-tailed noises for estimating a true mean. The second

challenge is the probability of error for the estimate of expected payoffs,

which affects performance of bandit algorithms in pure exploration of

MAB. The third challenge is to develop effective bandit algorithms with

theoretical guarantees for pure exploration of MAB with heavy-tailed

stochastic payoffs.

To solve the above three challenges, we need to introduce a general

assumption that stochastic payoffs in MAB are with finite p-th mo-

ments, where p ∈ (1,+∞). Note that the case of p ∈ (1, 2] is weaker

than the classic assumption of payoffs with sub-Gaussian noises in

MAB. Then, under the assumption of finite p-th moments, we present

theoretical behaviours of empirical average, and analyze the estimate

of truncated empirical average (TEA). Based on different prior infor-

mation, i.e., fixed confidence or fixed budget, we propose two bandit

algorithms in pure exploration of bandits with heavy-tailed payoffs.

Finally, based on synthetic data with noises from standard Student’s

t-distribution and real-world financial data, we demonstrate the effec-

tiveness of the proposed bandit algorithms. To the best of our knowl-

edge, this is the first systematic investigation on pure exploration of

MAB with heavy-tailed payoffs. For reading convenience, we list con-

tributions of this chapter below.

• We technically analyze tail probabilities of EA and TEA to esti-

mate true mean of arms in MAB with the general assumption of

conditionally independent payoffs.

• We propose two bandit algorithms for pure exploration of MAB

with heavy-tailed stochastic payoffs characterized by finite p-th
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moments, where p ∈ (1,+∞).

• We derive theoretical results of the proposed bandit algorithms, as

well as demonstrating effectiveness of two algorithms via synthetic

data and real-world financial data.

4.2 Preliminaries

In this section, we first present related notations and definitions in this

chapter. Then, we present assumptions and the problem definition for

pure exploration of MAB with heavy-tailed payoffs.

4.2.1 Notations

Let A be a bandit algorithm for pure exploration of MAB, which con-

tains K arms at the beginning of exploration. For pure exploration,

let Opt be the true optimal arm among K arms, where Opt ∈ [K]

with [K] , {1, 2, · · · , K}. The total number of sequential rounds for

A to play bandits is T , which is also called as sample complexity. The

confidence parameter is denoted by δ ∈ (0, 1), which means that, with

probability at least 1 − δ, A generates an output optimal arm Out

equivalent to Opt, where Out ∈ [K]. In other words, it happens with

a small probability δ that Opt 6= Out, and δ can be also called the

probability of error.

There are two settings based on different prior information given at

the beginning of exploration, i.e., fixed confidence or fixed budget. For

the setting of fixed confidence, A receives the information of δ at the

beginning, and A generates Out when a certain condition related to δ

is satisfied. For the setting of fixed budget, A receives the information

of T at the beginning, and A generates Out at the end of T .
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We present the learning process on pure exploration of MAB as fol-

lows. For t = 1, 2, · · · , T , A decides to play an arm at ∈ [K] with histor-

ical information of {a1, π1(a1), · · · , at−1, πt−1(at−1)}. Then, A observes

a stochastic payoff πt(at) ∈ R with respect to at, of which the expecta-

tion conditional on Ft−1 is µ(at) with Ft−1 , {a1, π1(a1), · · · , at−1, πt−1(at−1), at}

and F0 being an empty set. Based on πt(at), A updates parameters to

proceed with the exploration at t+ 1. We store time index t of playing

arm at in Φ(at), which is a set with increasing integers.

Given an event E and a random variable ξ, let P[E ] be the prob-

ability of E and E[ξ] be the expectation of ξ. For x ∈ R, we denote

by |x| the absolute value of x, and for a set S, we denote by |S| the

cardinality of S. For an event E , let 1[E] be the indicator function of E .

Definition 4.1. (Heavy-tailed payoffs in MAB) Given MAB with K

arms, let π(k) be a stochastic payoff drawn from any arm k ∈ [K].

For t = 1, · · · , T , conditional on Ft−1, MAB has heavy-tailed payoffs

with the p-th raw moment bounded by B, or the p-th central moment

bounded by C, where p ∈ (1,+∞), B,C ∈ (0,+∞) and k ∈ [K].

4.2.2 Problem Definition

It is general to assume that payoffs during sequential decisions con-

tain noises in many practical scenarios. We list the assumptions in

this chapter for pure exploration of MAB with heavy-tailed payoffs as

follows.

Assumption 4.1. Assume that Opt , arg maxk∈[K] µ(k) is unique for

pure exploration of MAB with K arms.

Assumption 4.2. Assume that MAB has heavy-tailed payoffs with the

p-th raw or central moment conditional on Ft−1 bounded by B or C,

for t = 1, · · · , T .
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Assumption 4.3. Assume that the sequence of stochastic payoffs from

arm k ∈ [K] has noises with zero mean conditional on Ft−1 in pure

exploration of MAB. For any time instant t ∈ [T ] and the selected arm

at, we define random noise of a true payoff as ξt(at) , πt(at)− µ(at),

and assume E[ξt(at)|Ft−1] = 0.

Now we present a problem definition for pure exploration of MAB

as follows. Given K arms satisfying Assumptions 1–3, the problem

in this chapter is to develop a bandit algorithm A generating an arm

OutT ∈ [K] after T pullings of bandits such that P[OutT 6= Opt] ≤ δ,

where δ ∈ (0, 1).

We discuss theoretical guarantees in two settings for best arm iden-

tification of bandits. One is to derive the theoretical guarantee of T by

fixing the value of δ, which is called fixed confidence. The other is to

derive the theoretical guarantee of δ by fixing the value of T , which is

called fixed budget.

For simplicity of notations, we enumerate the arms according to

their expected payoffs as a sequence of µ(1) > µ(2) ≥ · · · ≥ µ(K). In

the ranked sequence, we know that Opt = 1. Note that the ranking

operation does not affect our theoretical guarantees. For any arm k 6=

Opt and k ∈ [K], we define the sub-optimality as ∆k , µ(Opt)− µ(k),

which leads to a sequence of sub-optimality as {∆k}Kk=2. To obtain K

terms in sub-optimality, which helps theoretical analyses, we further

define ∆1 , ∆2. Inspired by Audibert and Bubeck (2010), we define

the hardness for pure exploration of MAB with heavy-tailed payoffs by

quantities as

Hp
2 , max

k∈[K]
kp−1∆−pk . (4.1)
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4.3 Related Work

Pure exploration in MAB, aiming at finding the optimal arm after ex-

ploration among a given decision-arm set, has become an attracting

branch in the decision-making domain (Audibert and Bubeck, 2010;

Bubeck et al., 2009; Chen et al., 2014; Gabillon et al., 2012, 2016;

Jamieson and Nowak, 2014). It has been pointed out that pure explo-

ration in MAB has many applications, such as communication networks

and online advertising.

For pure exploration of MAB with payoffs under sub-Gaussian noises,

theoretical guarantees have been well studied. Specifically, in the set-

ting of fixed confidence, the first distribution-dependent lower bound

of sample complexity was developed by Mannor and Tsitsiklis (2004),

which is ∑k∈[K] ∆−2
k . Even-Dar et al. (2002) originally proposed a ban-

dit algorithm via successive elimination for bounded payoffs with an

upper bound of sample complexity matching the lower bound up to

a multiplicative logarithmic factor. Karnin et al. (2013) proposed an

improved bandit algorithm, which achieves an upper bound of sample

complexity matching the lower bound up to a multiplicative doubly-

logarithmic factor. Jamieson et al. (2014) proved that it is necessary

to have a multiplicative doubly-logarithmic factor in the distribution-

dependent lower bound of sample complexity. Jamieson et al. also

developed a bandit algorithm via the law of iterated logarithm algo-

rithm for pure exploration of MAB, which achieved the optimal sample

complexity of the problem.

In the setting of fixed budget with payoffs under sub-Gaussian

noises, Audibert and Bubeck (2010) developed a distribution-dependent

lower bound of probability of error, and provided two algorithms, which

achieve optimal probability of error up to logarithmic factors. Gabillon



CHAPTER 4. PURE EXPLORATION WITH HEAVY TAILS 74

et al. (2012) proposed a unified algorithm for fixed budget and fixed

confidence, which discusses ε-optimal learning in best arm identifica-

tion of MAB. Karnin et al. (2013) proposed a bandit algorithm via

sequential halving to improve probability of error by a multiplicative

constant. It is worth mentioning that Kaufmann et al. (2016) inves-

tigated best arm identification of MAB under Gaussian or Bernoulli

assumption, and provided lower bounds in terms of Kullback-Leibler

divergence. We also notice that there are extensions of best arm iden-

tification of MAB, which is multiple-arm identification (Bubeck et al.,

2013c; Chen et al., 2014).

To the best of our knowledge, there is no investigation on pure

exploration of MAB without the strict assumption of payoffs under

sub-Gaussian noises. There are some potential reasons for this fact.

One main reason can be that, without sub-Gaussian noises, the tail

probabilities of estimates for expected payoffs can be heavy because

Chernoff-Hoeffding inequalities of estimates do not hold in general. The

failure of Chernoff-Hoeffding inequalities of estimates is a big challenge

in pure exploration of MAB. In this chapter, we investigate theoretical

performance of pure exploration of MAB with heavy-tailed stochastic

payoffs characterized by finite p-th moments, where p ∈ (1,+∞). We

will put more efforts on p ∈ (1, 2] because the case of p ∈ (2,+∞) enjoys

a similar format of p = 2. To compare our work with prior studies,

we list the distributional assumptions and theoretical guarantees in

pure exploration of MAB in Table 4.2. Finally, it is worth mentioning

that the case of maximizing expected cumulative payoffs of MAB with

heavy tails has been extensively investigated by Bubeck et al. (2013a);

Carpentier and Valko (2014); Medina and Yang (2016); Vakili et al.

(2013).
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4.4 Algorithms and Analyses

In this section, we first investigate two estimates, i.e., EA and TEA,

for expected payoffs of bandits, and derive tail probabilities for EA and

TEA under sequential payoffs. Then, we develop two bandit algorithms

for best arm identification of MAB in the spirit of successive elimination

(SE) and successive rejects (SR). In particular, SE is for the setting of

fixed confidence and SR is for the setting of fixed budget. Finally, we

derive theoretical guarantees for each bandit algorithm, where we take

advantage of EA or TEA.

4.4.1 Empirical Estimates

In SE and SR, it is common forA to maintain a subset of arms St ⊆ [K]

at time t = 1, 2, · · · and A will output an arm when a certain condition

is satisfied, e.g., |St| = 1 in the setting of fixed confidence. Similar to

the most frequently used estimates for expected payoffs in MAB, we

consider the following EA to estimate expected payoffs for any arm

k ∈ St:

µ̂t(k) , 1
st,k

∑
i∈Φ(k)

πi(k), (4.2)

where st,k , |Φ(k)| at time t. Note that the number of elements in

Φ(k) will increase or hold with time evolution, and the elements in

Φ(k) may not successively increase. We also investigate the following

estimator TEA for any arm k ∈ St:

µ̂†t(k) , 1
st,k

∑
i∈Φ(k)

πi(k)1[|πi(k)|≤bi], (4.3)

where bi > 0 is a truncating parameter, and bi will be completely

discussed in the ensuing theoretical analyses.
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We do not discuss the estimator called median of means (MoM)

discussed by Bubeck et al. (2013a), because theoretical guarantees of

MoM enjoy similar formats to those of TEA. Before we prove concen-

tration inequalities for estimates via martingales, we have results as

below.

Proposition 4.1. (Dharmadhikari et al., 1968; von Bahr et al., 1965)

Let {νi}ti=1 be random variables satisfying E[|νi|p] ≤ C and E[νi|Fi−1] =

0. If p ∈ (1, 2], then we have E
[∣∣∣∑t

i=1 νi
∣∣∣p] ≤ 2tC. If p ∈ (2,+∞), then

we have E
[∣∣∣∑t

i=1 νi
∣∣∣p] ≤ CpCt

p/2, where Cp , (8(p− 1) max(1, 2p−3))p.

Proposition 4.2. (Seldin et al., 2012) Let {νi}ti=1 be random vari-

ables satisfying |νi| ≤ bi with {bi}ti=1 being a non-decreasing sequence,

E[νi|Fi−1] = 0 and E[ν2
i |Fi−1] is bounded. Then, with probability 1− δ,

we have
∣∣∣∑t

i=1 νi
∣∣∣ ≤ bt log(2/δ) + Vt/bt, and Vt = ∑t

i=1 E[ν2
i |Fi−1].

Lemma 4.1. In pure exploration of MAB with K arms, for any t ∈ [T ]

and any arm k ∈ St, with probability 1− δ

• for EA, we have
|µ̂t(k)− µ(k)| ≤

(
2C
sp−1
t,k

δ

) 1
p

, 1 < p ≤ 2,

|µ̂t(k)− µ(k)| ≤
(
CpC

s
p/2
t,k

δ

) 1
p

, p > 2;

• for TEA, we have|µ̂
†
t(k)− µ(k)| ≤ 5B

1
p

(
log(2/δ)
st,k

) p−1
p

, 1 < p ≤ 2,

|µ̂†t(k)− µ(k)| ≤ 5B
1
p

(
log(2/δ)
st,k

) 1
2
, p > 2.

Proof. We first prove the results with the estimator µ̂t(k) with k ∈ St.

By Chebyshev’s inequality, we have

P[|µ̂t(k)− µ(k)| ≥ δ] ≤ E[|µ̂t(k)− µ(k)|p]
δp

=
E[|∑i∈Φ(k) πi(k)− µ(k)|p]

spt,kδ
p

,

(4.4)
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where δ ∈ (0, 1) and st,k is fixed at time t.

Based on Assumption 4.2, we have E[|ξi(k)|p] ≤ C and E[ξi(k)|Fi−1] =

0 for any i ∈ Φ(k) at t. For p ∈ (1, 2],

P[|µ̂t(k)− µ(k)| ≥ δ] ≤
E
[∣∣∣∑i∈Φ(k) ξi

∣∣∣p]
spt,kδ

p
≤ 2C
sp−1
t,k δ

p
,

where we adopt Proposition 4.1. Thus, for any arm k ∈ St, with

probability at least 1− δ

|µ̂t(k)− µ(k)| ≤
 2C
sp−1
t,k δ

 1
p

. (4.5)

For p ∈ (2,+∞), we have

P[|µ̂t(k)− µ(k)| ≥ δ] ≤ CpC

s
p/2
t,k δ

p
, (4.6)

where we adopt Proposition 4.1. With probability 1− δ

|µ̂t(k)− µ(k)| ≤
CpC
s
p/2
t,k δ

 1
p

. (4.7)

Now we prove the results with the estimator µ̂†t(k), where k ∈ St.

Considering bi in Eq. (4.3), we define µ†i (k) , E
[
πi(k)1[|πi(k)|≤bi]|Fi−1

]
,

and ζi(k) , µ†i (k)−πi(k)1[|πi(k)|≤bi], for any i ∈ Φ(k). We have |ζi(k)| ≤

2bi, E[ζi(k)|Fi−1] = 0 and E
[
πi(k)1[|πi(k)|>bi]|Fi−1

]
≤ B/bp−1

i . Besides,

we also have

µ(k)− µ̂†t(k) = 1
st,k

∑
i∈Φ(k)

[
µ(k)− µ†i (k)

]
+ 1
st,k

∑
i∈Φ(k)

[
µ†i (k)− πi(k)1[|πi(k)|≤bi]

]

= 1
st,k

∑
i∈Φ(k)

(
E
[
πi(k)1[|πi(k)|>bi]|Fi−1

]
+ ζi(k)

)
,

which implies the inequality of µ(k)−µ̂†t(k) ≤ 1
st,k

∑
i∈Φ(k)

(
B

bp−1
i

+ ζi(k)
)

.

For p ∈ (1, 2], we have E[ζ2
i (k)|Fi−1] ≤ E

[
π2
i (k)1[|πi(k)|≤bi]|Fi−1

]
≤ B

bp−2
i

.
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Based on Proposition 4.2, with probability at least 1− δ∣∣∣∣∣∣
∑
i∈Φ(k)

ζi(k)

∣∣∣∣∣∣ ≤ 2bt log(2/δ) + 1
2bt

∑
i∈Φ(k)

E[ζ2
i (k)|Fi−1]

≤ 2bt log(2/δ) + st,k
B

2bp−1
t

, (4.8)

where we adopt the design of {bi}i∈Φ(k) as a non-decreasing sequence,

i.e., b1 ≤ b2 ≤ · · · ≤ bt. Thus, by setting bt =
(

Bst,k
log(2/δ)

) 1
p , with proba-

bility at least 1− δ, we have

|µ̂†t(k)− µ(k)| ≤ 5B
1
p

(
log(2/δ)
st,k

) p−1
p

, (4.9)

where we adopt the fact of

1
st,k

∑
i∈Φ(k)

B

bp−1
i

≤ 2B
1
p

(
log(2/δ)
st,k

) p−1
p

. (4.10)

For p ∈ (2,+∞), by Jensen’s inequality, we have

E[ζ2
i (k)|Fi−1] ≤ B

2
p . (4.11)

By converting the condition in p ∈ (2,+∞) to the condition in p = 2

with Jensen’s inequality and using Eq. (4.9), with probability at least

1− δ, we have

|µ̂†t(k)− µ(k)| ≤ 5B
1
p

(
log(2/δ)
st,k

) 1
2

, (4.12)

which completes the proof.

Remark 4.1. In Bubeck et al. (2013a); Vakili et al. (2013), the Bern-

stein inequality without martingales is adopted with an implicit assump-

tion of sampling payoffs of an arm being independent of sequential de-

cisions, which is informal. By contrast, in Lemma 4.1, conditional on

Ft−1, the subset St is fixed, and we adopt Bernstein inequality with

martingales. Thus, we break the assumption of independent payoffs in
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previous work, and prove formal theoretical results of tail probabilities

of estimators EA and TEA. Note that the superiority of martingales in

sequential decisions has been fully discussed by Zhao et al. (2016).

Remark 4.2. The concentration results with martingales in Lemma 4.1

for p ∈ (1,+∞) can also be applied into regret minimization of heavy-

tailed payoffs and other applications in sequential decisions. In partic-

ular, we observe that the concentration inequality of p = 2 recovers that

of payoffs under sub-Gaussian noises. Besides, when p > 2, the concen-

tration results indicate constant variations with respect to B. Note that,

in Lemma 4.1, we analyze concentration results when p > 2, which has

not been analyzed by Bubeck et al. (2013a). Compared to Vakili et al.

(2013), the concentration result in our work for TEA when p > 2 en-

joys a constant improvement. Since the case of p ∈ (2,+∞) can be

resolved by p = 2, we will focus on p ∈ (1, 2] in bandit algorithms for

pure exploration of MAB with heavy-tailed payoffs.

4.4.2 Fixed Confidence

In this subsection, we present a bandit algorithm for pure exploration

of MAB with heavy-tailed payoffs under a fixed confidence. Then, we

derive upper bounds of sample complexity of the bandit algorithms.

Description of SE-δ

In fixed confidence, we design our bandit algorithm for pure exploration

of MAB with heavy-tailed payoffs based on the idea of SE, which is

inspired by Even-Dar et al. (2002). For SE-δ(EA), the algorithmic

procedures are almost the same as that in Even-Dar et al. (2002),

which are omitted here. For SE-δ(TEA), A will output an arm Out

when |St| = 1 with computation details shown in Algorithm 4.1, where
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Algorithm 4.1 Successive Elimination-δ (SE-δ(TEA))
1: input: δ, K, p, B

2: initialization: µ̂†1(k)← 0 for any arm k ∈ [K], S1 ← [K], and b1 ← 0

3: t← 1 . begin to explore arms in [K]

4: while |St| > 1 do

5: ct ← 5B
1
p

(
log(2K/δ)

t

) p−1
p

. update confidence bound

6: bt ←
(

Bt
log(2K/δ)

) 1
p

. update truncating parameter

7: for k ∈ St do

8: play arm k and observe a payoff πt(k)

9: µ̂†t(k)← 1
t

∑t
i πi(k)1[|πi(k)|≤bi] . calculate TEA

10: end for

11: at ← arg maxk∈[K] µ̂
†
t(k) . choose the best arm at t

12: St+1 ← ∅ . create a new arm set for t+ 1

13: for k ∈ St do

14: if µ̂†t(at)− µ̂
†
t(k) ≤ 2ct then

15: St+1 ← St+1 + {k} . add arm k to St+1

16: end if

17: end for

18: t← t+ 1 . update time index

19: end while

20: Out← St[0] . assign the first entry of St to Out

21: return: Out

δ is a given parameter. The idea is to eliminate the arm which has the

farthest deviation compared with the empirical best arm in St.

Theoretical guarantee of SE-δ

We derive upper bounds of sample complexity of SE-δ with estimators

of EA and TEA. Note that T is the time complexity of SE-δ.

Theorem 4.1. For pure exploration in MAB with K arms, with prob-

ability at least 1 − δ, Algorithm SE-δ identifies the optimal arm Opt
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with sample complexity as

• for SE-δ(EA)

T ≤
K∑
k=1

(
22p+1KC

∆p
kδ

) 1
p−1

;

• for SE-δ(TEA)

T ≤
K∑
k=1

20B
1
p

∆k


p
p−1

log
(2K
δ

)
,

where p ∈ (1, 2].

4.4.3 Fixed Budget

In this subsection, we present a bandit algorithm for pure exploration

of MAB with heavy-tailed payoffs under a fixed budget. Then, we

derive upper bounds of probability of error for the bandit algorithms.

Description of SR-T

For SR-T (EA), we omit the algorithm because it is almost the same

as that of Audibert and Bubeck (2010). For SR-T (TEA), we design a

bandit algorithm for pure exploration of MAB with heavy-tailed pay-

offs based on the idea of SR, with computation details shown in Al-

gorithm 4.2, where T is a given parameter. The high-level idea is to

conduct non-uniform pulling of arms by K−1 phases, and SR-T rejects

a worst empirical arm for each phase. The reject operation is based

on EA or TEA, and we distinguish the two cases by SR-T (EA) and

SR-T (TEA).

For simplicity, we show SR-T (TEA) in Algorithm 4.2, where ∆ > 0

is a design parameter for the estimator of TEA. The design parameter

∆ helps to calculate the truncating parameter b in SR-T (TEA). Usually,

we set ∆ ≤ ∆k for any k ∈ [K].
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Algorithm 4.2 Successive Rejects-T (SR-T (TEA))
1: input T , K, p, B, ∆ > 0

2: initialization: µ̂†(k)← 0 for any arm k ∈ [K], S1 ← [K], n0 ← 0, b← 0 and

K̄ ←
∑K
i=1

1
i

3: b←
(

3Bp
∆

) 1
p−1

. calculate truncating parameter

4: for k ∈ S1 do

5: Φ(k)← ∅ . construct sets to store time index

6: end for

7: for k ∈ [K − 1] do

8: nk ← d T−K
K̄(K+1−k)e . calculate nk at stage k

9: n← nk − nk−1 . calculate the number of times to pull arms

10: for y ∈ Sk do

11: for i ∈ [n] do

12: t← t+ 1

13: play arm y, and observe a payoff πt(y)

14: Φ(y)← Φ(y) + {t} . store time index for arm y

15: end for

16: µ̂†k(y)← 1
|Φ(y)|

∑
i∈Φ(y) πi(y)1[|πi(y)|≤b]

17: end for

18: ak ← arg miny∈Sk µ̂†t(y) . choose the worst arm at k

19: Sk+1 ← Sk − {ak} . successively reject arm ak

20: end for

21: Out← SK [0] . assign the first entry of SK to Out

22: return: Out

Theoretical guarantee of SR-T

We derive upper bounds of probability of error for SR-T with estimators

of EA and TEA. We have the following theorem for SR-T .

Theorem 4.2. For pure exploration in MAB with K arms, if Algo-

rithm SR-T is run with a fixed budget T , we have probability of error

for p ∈ (1, 2] as
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• for SR-T (EA)

P[Out 6= Opt] ≤ 2p+1CK(K − 1)Hp
2

(
K̄

T −K

)p−1

;

• for SR-T (TEA)

P[Out 6= Opt] ≤ 2K(K − 1) exp
(
− (T −K)B̄1

K̄K∆p/(1−p)

)
,

where B̄1 = p−1

4(2p3Bpp)
1
p−1

.

4.5 Proofs of Theorems

In this section, we present the proof of theorems.

4.5.1 Proof of Theorem 4.1

Proof. We first consider EA in Eq. (4.2) for estimating the expected

payoffs in MAB. For p ∈ (1, 2], for any arm k ∈ St, we have

P[|µ̂t(k)− µ(k)| ≥ δ] ≤ 2C
tp−1δp

, (4.13)

where we adopt st,k = t in SE-δ(EA). We notice the inherent charac-

teristic of SE that, for any arm k ∈ St, we have Φ(k) = {1, 2, · · · , t}.

Based on Lemma 4.1, for t = 1, 2, · · · , with probability at least

1− δ/K, the following event holds

Et , {k ∈ St, |µ̂t(k)− µ(k)| ≤ ctk} ,

where ctk =
(
2KC/(tp−1

k δ)
) 1
p is a confidence interval. To eliminate a

sub-optimal arm k, we need to play any arm k ∈ [K]\Opt with tk times

such that

∆̂k , µ̂tk(Opt)− µ̂tk(k) ≥ 2ctk . (4.14)



CHAPTER 4. PURE EXPLORATION WITH HEAVY TAILS 86

Based on Lemma 4.1, with a high probability, we have

∆̂k ≥ µ(Opt)− ctk − (µ(k) + ctk) = ∆k − 2ctk ,

where ctk is a confidence interval. To satisfy Eq. (4.14), we are ready

to set

∆k − 2ctk ≥ 2ctk . (4.15)

To solve the above inequality, we are ready to have that tk =
(

22p+1KC
∆p
k
δ

) 1
p−1

is sufficient. The total sample complexity is T = t2 +∑K
k=2 tk, because

the number of pulling the optimal arm t1 = t2. This implies, with

probability at least 1− δ, we have

T ≤
K∑
k=1

(
22p+1KC

∆p
kδ

) 1
p−1

. (4.16)

Now we consider TEA in Eq. (4.3) for estimating the expected payoffs

in MAB. Similarly, for p ∈ (1, 2], with probability at least 1 − δ, we

have

T ≤
K∑
k=1

20B
1
p

∆k


p
p−1

log
(2K
δ

)
, (4.17)

which completes the proof.
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4.5.2 Proof of Theorem 4.2

Proof. We first consider EA in Eq. (4.2) for estimating the expected

payoffs in MAB. For p ∈ (1, 2], we have

P[Out 6= Opt] ≤
K−1∑
k=1

K∑
i=K+1−k

P [µ̂k(Opt) ≤ µ̂k(i)]

≤
K−1∑
k=1

K∑
i=K+1−k

P [µ̂k(i)− µ(i) + µ(Opt)− µ̂k(Opt) ≥ ∆i]

≤
K−1∑
k=1

K∑
i=K+1−k

4C
np−1
i

(
∆i

2

)p (4.18)

≤
K−1∑
k=1

2p+2Ck

np−1
k ∆p

K+1−k
, (4.19)

where the inequality of Eq. (4.18) is due to the results in Lemma 1 by

setting st,k = nk. Besides, we notice that

np−1
k ∆p

K+1−k ≥
1
Hp

2

(
T −K
K̄

)p−1
,

which implies that

P[Out 6= Opt] ≤ 2p+1CK(K − 1)Hp
2

(
K̄

T −K

)p−1

.

Now we consider TEA in Eq. (4.3) for estimating the expected pay-

offs in MAB. By considering the design of b in SR-T (TEA), we have a

similar result of Lemma 4.1. Then, for p ∈ (1, 2], we have probability

of error as

P[Out 6= Opt] ≤
K−1∑
k=1

K∑
i=K+1−k

P
[
µ̂†k(Opt) ≤ µ̂†k(i)

]

≤
K−1∑
k=1

K∑
i=K+1−k

P
[
µ̂†k(i)− µ(i) + µ(Opt)− µ̂†k(Opt) ≥ ∆

]

≤ 2K(K − 1) exp
(
− (T −K)B̄1

K̄K∆p/(1−p)

)
, (4.20)

which completes the proof.
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Table 4.3: Statistics of used synthetic data.

dataset #arms {µ(k)} heavy-tailed

{p,B,C}

S1 10 one arm is 2.0 and nine arms are

over [0.7, 1.5] with a uniform gap

{2, 7, 3}

S2 10 one arm is 2.0 and nine arms are

over [1.0, 1.8] with a uniform gap

{2, 7, 3}

4.6 Experiments

In this section, we conduct experiments via synthetic and real-world

data to evaluate the performance of the proposed bandit algorithms.

We run experiments in a personal computer with Intel CPU@3.70GHz

and 16GB memory. For the setting of fixed confidence, we compare

the sample complexities of SE-δ(EA) and SE-δ(TEA). For the setting

of fixed budget, we compare the error probabilities of SR-T (EA) and

SR-T (TEA).

4.6.1 Synthetic Data and Results

For verifications, we adopt two synthetic data (named as S1-S2) in the

experiments, of which statistics are shown in Table 4.3. The data are

generated from Student’s t-distribution with 3 degrees of freedom. In

experiments, we run multiple epochs for each dataset, with each epoch

containing ten independent experiments for best arm identification of

MAB. Besides, we set the value of fixed confidence from 0.005 to 0.040

with a uniform gap of 0.005. We set the value of fixed budget from 400

to 1100 with a uniform gap of 100.

We show experimental results in Figures 4.1 and 4.2, where both
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(a) S1 (b) S2

Figure 4.1: Sample complexity for SE-δ in pure exploration of MAB with

heavy-tailed payoffs.

(a) S1 (b) S2

Figure 4.2: Probability of error for SR-T in pure exploration of MAB with

heavy-tailed payoffs.

proposed algorithms are effective for pure exploration of MAB with

heavy-tailed payoffs. In particular, in fixed-confidence setting, sam-

ple complexity decreases with increasing value of δ. In fixed-budget

setting, probability of error converges to zero with increasing value of

T . Besides, for fixed-confidence setting, SE-δ(TEA) beats SE-δ(EA)

in both datasets with small δ due to a better control of confidence

interval. The experimental results also reflect that the concentration

properties of EA are much weaker than those of TEA. For fixed-budget

setting, SR-T (TEA) is comparable to SR-T (EA) due to the selection
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of truncating parameter.

4.6.2 Financial Data and Results

It has been pointed out that financial data show the inherent charac-

teristic of heavy tails (Panahi, 2016), because the probability of events

with a large deviation is high in financial markets. Due to the availabil-

ity of financial data on the Internet, we choose a financial application

of identifying the most profitable cryptocurrency over a period of time

in a given pool of digital currencies. The identification for the most

profitable cryptocurrency among the top ten cryptocurrency in terms

of market value is motivated by the practical scenario that an investor

would like to invest a fixed budget of money in a cryptocurrency and

get return as much as possible.

We get hourly price data of cryptocurrency via the Internet1, which

include the open price, the closed price, the highest price and the lowest

price of each hour. From historical financial data in digital currency,

we observe that high fluctuations of price of cryptocurrency reflect a

significant characteristic of heavy tails, which is pretty ideal for the task

of pure exploration of MAB with heavy-tailed payoffs. For experiments,

we choose top ten cryptocurrencies in terms of market value, with basic

information shown in Table 4.4.

We show the statistics of real data in Table 4.5. In the table, we

conduct a statistical analysis in hindsight with hourly returns of cryp-

tocurrency from February 3rd, 2018 to April 27th, 2018. From the

table, we find that the optimal option in hindsight is EOS in terms of

the maximal empirical mean of hourly payoffs. Besides, we conduct

Kolmogrov-Smirnov (KS) test to fit real data of a cryptocurrency to a
1https://www.cryptocompare.com/

https://www.cryptocompare.com/
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Table 4.4: Ten selected cryptocurrencies in experiments.

full name symbol market value in April 2018 (unit: billion

US dollar)

Bitcoin BTC 155

Ethereum

Classic

ETC 66

Ripple XRP 32

Bitcoin

Cash

BCH 23

EOS EOS 15

Litecoin LTC 8

Cardano ADA 8

Stellar XLM 7

IOTA IOT 5

NEO NEO 5

distribution. In particular, via KS test, we know that the null hypoth-

esis of real data following a Gaussian distribution is rejected, because

p̄-value is smaller than a significant level of 0.05. We observe that real

data of cryptocurrency are likely to follow a Student’s t-distribution via

KS test in Table 4.5.

With the above statistical analyses, we can fit real data of cryp-

tocurrency to a Student’s t-distribution, and obtain distribution pa-
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Table 4.5: Statistical property of ten selected cryptocurrencies with hourly

returns from Feb. 3rd, 2018 to Apr. 27th, 2018. KS-test1 denotes

Kolmogrov-Smirnov (KS) test with a null hypothesis that real data follow a

Gaussian distribution. KS-test2 denotes KS test with a null hypothesis that

real data follow a Student’s t-distribution.

symbol empirical statistics KS-test1 KS-test2
(mean×103,

variance×103)

(statistic,

p̄-value)

(statistic,

p̄-value)

BTC (0.36, 0.54) (0.08, 0.005) (0.05, 0.20)

ETC (0.29, 1.03) (0.07, 0.02) (0.03, 0.89)

XRP (0.33, 0.94) (0.09, 0.0004) (0.03, 0.61)

BCH (0.78, 0.92) (0.08, 0.001) (0.03, 0.64)

EOS (1.56, 1.18) (0.09, 0.0002) (0.03, 0.88)

LTC (0.68, 0.86) (0.10, 0.0002) (0.04, 0.49)

ADA (0.02, 1.22) (0.07, 0.03) (0.02, 0.99)

XLM (0.62, 0.12) (0.07, 0.02) (0.03, 0.80)

IOT (0.68, 0.11) (0.07, 0.02) (0.04, 0.57)

NEO (−0.31, 1.26) (0.10, 0.0002) (0.04, 0.53)

rameters shown in Table 4.6. Based on the property of Student’s t-

distribution, we can set p = 2, and estimate B and C as shown in the

table. The estimated parameter of p reflects that financial data contain

a finite variance, which is reasonable.

Via a similar setting to that of synthetic data, we show the results

on pure exploration of top ten cryptocurrencies in Figure 4.3. Note

that, due to limitation of data points in the setting of fixed confidence,

we generate payoffs from Student’s t-distributions fitting to real data.
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Table 4.6: Estimated parameters for ten cryptocurrencies.

symbol degree of

freedom

(p,B,C) in experiments

BTC 3.50

ETC 3.81

XRP 2.53

BCH 3.00

EOS 2.90

LTC 2.75 (2,1.577×10−3,1.575×10−3)

ADA 3.55

XLM 3.81

IOT 4.66

NEO 3.13

But in the setting of fixed budget, we adopt exactly real financial data.

We have similar observations as those in synthetic data. It is worth

mentioning that, TEA algorithm outperforms EA algorithm in fixed-

confidence setting when the value of δ is small. Besides, TEA is compa-

rable to EA in fixed-budget setting because the truncating parameter

in Algorithm 4.2 only has budget information and does not increase

with the number of samples. Overall, with synthetic and real-world

data, we have verified the effectiveness of our two algorithms.

4.7 Conclusion

In this chapter, we broke the assumption of payoffs under sub-Gaussian

noises in pure exploration of MAB, and investigated best arm identi-

fication of MAB with a general assumption that the p-th moments of
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(a) fixed confidence (b) fixed budget

Figure 4.3: Pure exploration of cryptocurrency.

stochastic payoffs are bounded, where p ∈ (1,+∞). We have tech-

nically analyzed tail probabilities of empirical average and truncated

empirical average for estimating expected payoffs in sequential deci-

sions. Besides, we proposed two bandit algorithms for pure exploration

of MAB with heavy-tailed payoffs based on SE and SR. Finally, we

derived theoretical guarantees of the proposed bandit algorithms, and

demonstrated the effectiveness of bandit algorithms in pure exploration

of MAB with heavy-tailed payoffs.



Chapter 5

Linear Stochastic Bandits

with Heavy Tails

For linear stochastic bandits, where the expected payoff of an arm is

a linear function, theoretical guarantees under sub-Gaussian assump-

tions, e.g., the observed stochastic payoffs are bounded, have been

well investigated. The model of linear stochastic bandits is an impor-

tant variant of MAB. However, many practical applications for sequen-

tial decisions contain non-sub-Gaussian noises, especially heavy-tailed

noises with finite moments for the p-th order, where p ∈ (1, 2].

In previous studies, it is commonly assumed that payoffs are with

sub-Gaussian noises for linear stochastic bandits. In this chapter, un-

der a weaker assumption on noises, we study the problem of Linear

stochastic Bandits with hEavy-Tailed payoffs (LinBET), where the dis-

tributions have finite moments of order p, for some p ∈ (1, 2]. We rig-

orously analyze the regret lower bound of LinBET as Ω(T
1
p ), implying

that finite moments of order 2 (i.e., finite variances) yield the bound of

Ω(
√
T ), with T being the total number of rounds to play bandits. The

provided lower bound also indicates that the state-of-the-art algorithms

95



CHAPTER 5. LINEAR STOCHASTIC BANDITS WITH HEAVY TAILS96

for LinBET are far from optimal. By adopting median of means with

a well-designed allocation of decisions and truncation based on histor-

ical information, we develop two novel bandit algorithms, where the

regret upper bounds match the lower bound up to polylogarithmic fac-

tors. To the best of our knowledge, we are the first to solve LinBET

optimally in the sense of the polynomial order on T . Our proposed

algorithms are evaluated based on synthetic datasets, and outperform

the state-of-the-art results.

5.1 Introduction

Bandit algorithms usually aims at maximizing cumulative payoffs over

a sequence of rounds. A natural and important variant of MAB is linear

stochastic bandits with the expected payoff of each arm satisfying a

linear mapping from the arm information to a real number. The model

of linear stochastic bandits enjoys some good theoretical properties,

e.g., there exists a closed-form solution of the linear mapping at each

time step in light of ridge regression. Many practical applications take

advantage of MAB and its variants to control decision performance,

e.g., online personalized recommendations (Li et al., 2010) and resource

allocations (Lattimore et al., 2014).

In most previous studies of MAB and linear stochastic bandits, a

common assumption is that noises in observed payoffs are supposed to

be sub-Gaussian conditional on historical information (Abbasi-Yadkori

et al., 2011; Bubeck et al., 2012), which encompasses cases of all bounded

payoffs and many unbounded payoffs, e.g., payoffs of an arm following

a Gaussian distribution. However, there do exist practical scenarios of

non-sub-Gaussian noises in observed payoffs for sequential decisions,

such as high-probability extreme returns in investments for financial
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markets (Cont and Bouchaud, 2000) and fluctuations of neural oscilla-

tions (Roberts et al., 2015), which are called heavy-tailed noises. Thus,

it is significant to completely study theoretical behaviours of sequential

decisions in the case of heavy-tailed noises.

Many practical distributions, e.g., Pareto distributions and Weibull

distributions, are heavy-tailed, which perform high tail probabilities

compared with exponential family distributions. We consider a general

characterization of heavy-tailed payoffs in bandits, where the distribu-

tions have finite moments of order p, where p ∈ (1, 2]. When p = 2,

stochastic payoffs are generated from distributions with finite variances.

When 1 < p < 2, stochastic payoffs are generated from distributions

with infinite variances (Shao and Nikias, 1993). Note that, different

from sub-Gaussian noises in the traditional bandit setting, noises from

heavy-tailed distributions do not enjoy exponentially decaying tails,

and thus make it more difficult to learn a parameter of an arm.

The regret of MAB with heavy-tailed payoffs has been well ad-

dressed by Bubeck et al. (2013a), where stochastic payoffs have bounds

on raw or central moments of order p. For MAB with finite variances

(i.e., p = 2), the regret of truncation algorithms or median of means re-

covers the optimal regret for MAB under the sub-Gaussian assumption.

Recently, Medina and Yang (2016) investigated theoretical guarantees

for the problem of Linear stochastic Bandits with hEavy-Tailed payoffs

(LinBET). It is surprising to find that, for p = 2, the regret of bandit

algorithms by Medina and Yang (2016) to solve LinBET is Õ(T 3
4 ) 1,

which is far away from the regret of the state-of-the-art algorithms (i.e.,

Õ(
√
T )) in linear stochastic bandits under the sub-Gaussian assump-

tion (Abbasi-Yadkori et al., 2011; Dani et al., 2008a). Thus, the most
1We omit polylogarithmic factors of T for Õ(·).
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interesting and non-trivial question is

Is it possible to recover the regret of Õ(
√
T ) when p = 2 for LinBET?

In this chapter, we answer this question affirmatively. Specifically,

we investigate the problem of LinBET characterized by finite p-th mo-

ments, where p ∈ (1, 2]. The problem of LinBET raises several interest-

ing challenges. The first challenge is the lower bound of the problem,

which remains unknown. The technical issues come from the construc-

tion of an elegant setting for LinBET, and the derivation of a lower

bound with respect to p. The second challenge is how to develop a

robust estimator for the parameter in LinBET, because heavy-tailed

noises greatly affect errors of the conventional least-squares estima-

tor. It is worth mentioning that Medina and Yang (2016) has tried

to tackle this challenge, but their estimators do not make full use of

the contextual information of chosen arms to eliminate the effect from

heavy-tailed noises, which eventually leads to large regrets. The third

challenge is how to successfully adopt median of means and truncation

to solve LinBET with regret upper bounds matching the lower bound

as closely as possible.

To solve the above challenges, first of all, we rigorously analyze the

lower bound on the problem of LinBET, which enjoys a polynomial or-

der on T as Ω(T
1
p ). The lower bound provides two essential hints: one is

that finite variances in LinBET yield a bound of Ω(
√
T ), and the other

is that algorithms by Medina and Yang (2016) are sub-optimal. Then,

we develop two novel bandit algorithms to solve LinBET based on the

basic techniques of median of means and truncation. Both the algo-

rithms adopt the optimism in the face of uncertainty principle, which is

common in bandit problems (Abbasi-Yadkori et al., 2011; Munos et al.,

2014). The regret upper bounds of the proposed two algorithms, which
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are Õ(T
1
p ), match the lower bound up to polylogarithmic factors. To

the best of our knowledge, we are the first to solve LinBET almost

optimally. We conduct experiments based on synthetic datasets, which

are generated by Student’s t-distribution and Pareto distribution, to

demonstrate the effectiveness of our algorithms. Experimental results

show that our algorithms outperform the state-of-the-art results. The

contributions of this chapter are summarized as follows:

• We provide the lower bound for the problem of LinBET charac-

terized by finite p-th moments, where p ∈ (1, 2]. In the analysis,

we construct an elegant setting of LinBET, which results in a

regret bound of Ω(T
1
p ) in expectation for any bandit algorithm.

• We develop two novel bandit algorithms, which are named as

MENU and TOFU (with details shown in Section 5.4). The MENU

algorithm adopts median of means with a well-designed allocation

of decisions and the TOFU algorithm adopts truncation via his-

torical information. Both algorithms achieve the regret Õ(T
1
p )

with high probability.

• We conduct experiments based on synthetic datasets to demon-

strate the effectiveness of our proposed algorithms. By comparing

our algorithms with the state-of-the-art results, we show improve-

ments on cumulative payoffs for MENU and TOFU, which are

strictly consistent with theoretical guarantees in this chapter.

5.2 Preliminaries and Related Work

In this section, we first present preliminaries, i.e., notations and learn-

ing setting of LinBET. Then, we give a detailed discussion on the line

of research for bandits with heavy-tailed payoffs.
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5.2.1 Notations

For a positive integer K, [K] , {1, 2, · · · , K}. Let the `-norm of a

vector x ∈ Rd be ‖x‖` , (x`1 + · · · + x`d)
1
` , where ` ≥ 1 and xi is the

i-th element of x with i ∈ [d]. For r ∈ R, its absolute value is |r|, its

ceiling integer is dre, and its floor integer is brc. The inner product of

two vectors x, y is denoted by x>y = 〈x, y〉. Given a positive definite

matrix A ∈ Rd×d, the weighted Euclidean norm of a vector x ∈ Rd is

‖x‖A =
√
x>Ax. B(x, r) denotes a Euclidean ball centered at x with

radius r ∈ R+, where R+ is the set of positive numbers. Let e be Euler’s

number, and Id ∈ Rd×d an identity matrix. Let 1{·} be an indicator

function, and E[X] the expectation of X.

5.2.2 Learning Setting

For a bandit algorithm A, we consider sequential decisions with the

goal to maximize cumulative payoffs, where the total number of rounds

for playing bandits is T . For each round t = 1, · · · , T , the bandit

algorithm A is given a decision set Dt ⊆ Rd such that ‖x‖2 ≤ D for any

x ∈ Dt. A has to choose an arm xt ∈ Dt and then observes a stochastic

payoff yt(xt). For notation simplicity, we also write yt = yt(xt). The

expectation of the observed payoff for the chosen arm satisfies a linear

mapping from the arm to a real number as yt(xt) , 〈xt, θ∗〉+ ηt, where

θ∗ is an underlying parameter with ‖θ∗‖2 ≤ S and ηt is a random noise.

Without loss of generality, we assume E [ηt|Ft−1] = 0, where Ft−1 ,

{x1, · · · , xt} ∪ {η1, · · · , ηt−1} is a σ-filtration and F0 = ∅. Clearly,

we have E[yt(xt)|Ft−1] = 〈xt, θ∗〉. For an algorithm A, to maximize

cumulative payoffs is equivalent to minimizing the regret as

R(A, T ) ,
(

T∑
t=1
〈x∗t , θ∗〉

)
−
(

T∑
t=1
〈xt, θ∗〉

)
=

T∑
t=1
〈x∗t − xt, θ∗〉, (5.1)
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where x∗t denotes the optimal decision at time t for θ∗, i.e., x∗t ∈

arg maxx∈Dt〈x, θ∗〉. In this chapter, we will provide high-probability

upper bound of R(A, T ) with respect to A, and provide the lower

bound for LinBET in expectation for any algorithm. The problem of

LinBET is defined as below.

Definition 5.1 (LinBET). Given a decision set Dt for time step t =

1, · · · , T , an algorithm A, of which the goal is to maximize cumu-

lative payoffs over T rounds, chooses an arm xt ∈ Dt. With Ft−1,

the observed stochastic payoff yt(xt) is conditionally heavy-tailed, i.e.,

E [|yt|p|Ft−1] ≤ b or E [|yt − 〈xt, θ∗〉|p|Ft−1] ≤ c, where p ∈ (1, 2], and

b, c ∈ (0,+∞).

5.2.3 Related Work

The model of MAB dates back to 1952 with the original work by Rob-

bins (1952), and its inherent characteristic is the trade-off between ex-

ploration and exploitation. The asymptotic lower bound of MAB was

developed by Lai and Robbins (1985), which is logarithmic with respect

to the total number of rounds. An important technique called upper

confidence bound was developed to achieve the lower bound (Agrawal,

1995; Lai and Robbins, 1985). Other related techniques to solve the

problem of sequential decisions include Thompson sampling (Agrawal

and Goyal, 2012; Chapelle and Li, 2011; Thompson, 1933) and Gittins

index (Gittins et al., 2011).

The problem of MAB with heavy-tailed payoffs characterized by

finite p-th moments has been well investigated (Bubeck et al., 2013a;

Vakili et al., 2013; Yu et al., 2018). Bubeck et al. (2013a) pointed out

that finite variances in MAB are sufficient to achieve regret bounds of

the same order as the optimal regret for MAB under the sub-Gaussian
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assumption, and the order of T in regret bounds increases when ε

decreases. The lower bound of MAB with heavy-tailed payoffs has been

analyzed (Bubeck et al., 2013a), and robust algorithms by Bubeck et al.

(2013a) are optimal. Theoretical guarantees by Bubeck et al. (2013a);

Vakili et al. (2013) are for the setting of finite arms. In Vakili et al.

(2013), primary theoretical results were presented for the case of p > 2.

We notice that the case of p > 2 is not interesting, because it reduces

to the case of finite variances in MAB.

For the problem of linear stochastic bandits, which is also named lin-

ear reinforcement learning by Auer (2002), the lower bound is Ω(d
√
T )

when contextual information of arms is from a d-dimensional space (Dani

et al., 2008b). Bandit algorithms matching the lower bound up to poly-

logarithmic factors have been well developed (Abbasi-Yadkori et al.,

2011; Auer, 2002; Chu et al., 2011; Dani et al., 2008a). Notice that

all these studies assume that stochastic payoffs contain sub-Gaussian

noises. More variants of MAB can be discussed by Bubeck et al. (2012).

It is surprising to find that the lower bound of LinBET remains

unknown. In Medina and Yang (2016), bandit algorithms based on

truncation and median of means were presented. When p ∈ (1, 2] for

LinBET, the algorithms by Medina and Yang (2016) cannot recover the

bound of Õ(
√
T ) which is the regret of the state-of-the-art algorithms

in linear stochastic bandits under the sub-Gaussian assumption. Med-

ina and Yang (2016) conjectured that it is possible to recover Õ(
√
T )

with p being a finite number for LinBET. Thus, it is urgent to conduct

a thorough analysis of the conjecture in consideration of the impor-

tance of heavy-tailed noises in real scenarios. Solving the conjecture

generalizes the practical applications of bandit models. Practical mo-

tivating examples for bandits with heavy-tailed payoffs include delays
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in end-to-end network routing (Liebeherr et al., 2012) and sequential

investments in financial markets (Cont and Bouchaud, 2000).

Recently, the assumption in stochastic payoffs of MAB was relaxed

from sub-Gaussian noises to bounded kurtosis (Lattimore, 2017), which

can be viewed as an extension of Bubeck et al. (2013a). The interesting

point of Lattimore (2017) is the scale free algorithm, which might be

practical in applications. Besides, Carpentier and Valko (2014) investi-

gated extreme bandits, where stochastic payoffs of MAB follow Fréchet

distributions. The setting of extreme bandits fits for the real scenario

of anomaly detection without contextual information. The order of re-

gret in extreme bandits is characterized by distributional parameters,

which is similar to the results by Bubeck et al. (2013a).

It is worth mentioning that, for linear regression with heavy-tailed

noises, several interesting studies have been conducted. Hsu and Sabato

(2016) proposed a generalized method in light of median of means for

loss minimization with heavy-tailed noises. Heavy-tailed noises in Hsu

and Sabato (2016) might come from contextual information, which is

more complicated than the setting of stochastic payoffs in this chapter.

Therefore, linear regression with heavy-tailed noises usually requires a

finite fourth moment. In Audibert et al. (2011), the basic technique of

truncation was adopted to solve robust linear regression in the absence

of exponential moment condition. The related studies in this line of

research are not directly applicable for the problem of LinBET.

5.3 Lower Bound

In this section, we provide the lower bound for LinBET. We consider

heavy-tailed payoffs with finite p-th raw moments in the analysis. In

particular, we construct the following setting. Assume d ≥ 2 is even
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(when d is odd, similar results can be easily derived by considering

the first d − 1 dimensions). For Dt ⊆ Rd with t ∈ [T ], we fix the

decision set as D1 = · · · = DT = D(d). Then, the fixed decision set

is constructed as D(d) , {(x1, · · · , xd) ∈ Rd
+ : x1 + x2 = · · · = xd−1 +

xd = 1}, which is a subset of intersection of the cube [0, 1]d and the

hyperplane x1+· · ·+xd = d/2. We define a set Sd , {(θ1, · · · , θd) : ∀i ∈

[d/2] , (θ2i−1, θ2i) ∈ {(2∆,∆), (∆, 2∆)}} with ∆ ∈ (0, 1/d]. The payoff

functions take values in {0, (1/∆)
1
p−1} such that, for every x ∈ D(d),

the expected payoff is θ>∗ x. To be more specific, we have the payoff

function of x as

y(x) =


(

1
∆

) 1
p−1 with a probability of ∆

1
p−1 θ>∗ x,

0 with a probability of 1−∆
1
p−1 θ>∗ x.

(5.2)

We have the theorem for the lower bound of LinBET as below.

Theorem 5.1. If θ∗ is chosen uniformly at random from Sd, and the

payoff for each x ∈ D(d) is in {0, (1/∆)
1
p−1} with mean θ>∗ x, then for

any algorithm A and every T ≥ (d/12)
p−1
p , we have

E [R(A, T )] ≥ d

192T
1
p . (5.3)

In the proof of Theorem 5.1, we first prove the lower bound when

d = 2, and then generalize the argument to any d > 2. We notice

that the parameter in the original d-dimensional space is rearranged

to d/2 tuples, each of which is a 2-dimensional vector as (θ2i−1, θ2i) ∈

{(2∆,∆), (∆, 2∆)} with i ∈ [d/2]. If the i-th tuple of the parame-

ter is selected as (2∆,∆), then the i-th tuple of the optimal arm is

(x∗,2i−1, x∗,2i) = (1, 0). In this case, if we define the i-th tuple of the

chosen arm as (xt,2i−1, xt,2i), the instantaneous regret is ∆(1− xt,2i−1).

Then, the regret can be represented as an integration of ∆(1− xt,2i−1)
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Figure 5.1: Framework comparison between our MENU and MoM by Medina

and Yang (2016).

over D(d). Finally, with common inequalities in information theory, we

obtain the regret lower bound by setting ∆ = T−
p−1
p /12.

We notice that martingale differences to prove the lower bound for

linear stochastic bandits in (Dani et al., 2008a) are not directly feasible

for the proof of lower bound in LinBET, because under our construction

of heavy-tailed payoffs (i.e., Eq. (5.4)), the information of p is excluded.

Besides, our proof is partially inspired by Bubeck (2010). We show the

detailed proof of Theorem 5.1 in Section 5.5.

Remark 5.1. The above lower bound provides two essential hints for

bandit algorithms: one is that finite variances in LinBET yield a bound

of Ω(
√
T ), and the other is that algorithms proposed by Medina and

Yang (2016) are far from optimal. The result in Theorem 5.1 strongly

indicates that it is possible to design bandit algorithms recovering Õ(
√
T )

with finite variances.

5.4 Algorithms and Upper Bounds

In this section, we develop two novel bandit algorithms to solve Lin-

BET, which turns out to be almost optimal. We rigorously prove regret



CHAPTER 5. LINEAR STOCHASTIC BANDITS WITH HEAVY TAILS106

Algorithm 5.1 MENU
1: input d, c, p, δ, λ, S, T , {Dn}Nn=1

2: initialization: k = d24 log
(
eT
δ

)
e, N = bTk c, V0 = λId, C0 = B(0, S)

3: for n = 1, 2, · · · , N do

4: (xn, θ̃n) = arg max(x,θ)∈Dn×Cn−1〈x, θ〉 . to select an arm

5: Play xn with k times and observe payoffs yn,1, yn,2, · · · , yn,k
6: Vn = Vn−1 + xnx

>
n

7: For j ∈ [k], θ̂n,j = V −1
n

∑n
i=1 yi,jxi . to calculate LSE for the j-th group

8: For j ∈ [k], let rj be the median of {‖θ̂n,j − θ̂n,s‖Vn : s ∈ [k]\j}

9: k∗ = arg minj∈[k] rj . to take median of means of estimates

10: βn = 3
(

(9dc)
1
p n

2−p
2p + λ

1
2S
)

11: Cn = {θ : ‖θ − θ̂n,k∗‖Vn ≤ βn} . to update the confidence region

12: end for

upper bounds for the proposed algorithms. In particular, our core idea

is based on the Optimism in the Face of Uncertainty principle (OFU).

The first algorithm is MEdian of meaNs under optimism in the face

of Uncertainty (MENU) shown in Algorithm 5.1, and the second algo-

rithm is Truncation under Optimism in the Face of Uncertainty (TOFU)

shown in Algorithm 5.2. For comparisons, we directly name the bandit

algorithm based on median of means in Medina and Yang (2016) as

MoM, and name the bandit algorithm based on confidence region with

truncation in Medina and Yang (2016) as CRT.

Both algorithms in this chapter adopt the tool of ridge regression.

At time step t, let θ̂t be the `2-regularized least-squares estimate (LSE)

of θ∗ as θ̂t = V −1
t X>t Yt, where Xt ∈ Rt×d is a matrix of which rows

are x>1 , · · · , x>t , Vt , X>t Xt + λId, Yt , (y1, · · · , yt) is a vector of the

historical observed payoffs until time t and λ > 0 is a regularization

parameter.
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5.4.1 MENU and Regret

Description of MENU. To conduct median of means in LinBET, it

is common to allocate T pulls of bandits among N ≤ T epochs, and

for each epoch the same arm is played multiple times to obtain an

estimate of θ∗. We find that there exist different ways to contruct

the epochs. We design the framework of MENU in Figure 5.1(a), and

show the framework of MoM designed by Medina and Yang (2016)

in Figure 5.1(b). For MENU and MoM, we have the following three

differences. First, for each epoch n = 1, · · · , N , MENU plays the same

arm xn byO(log(T )) times, while MoM plays the same arm byO(T
p

3p−2 )

times. Second, at epoch n with historical payoffs, MENU conducts LSEs

by O(log(T )) times, each of which is based on {xi}ni=1, while MoM

conducts LSE by one time based on intermediate payoffs calculated

via median of means of observed payoffs. Third, MENU adopts median

of means of LSEs, while MoM adopts median of means of the observed

payoffs. Intuitively, the execution of multiple LSEs will lead to the

improved regret of MENU. With a better trade-off between k and

N in Figure 5.1(a), we derive an improved upper bound of regret in

Theorem 5.2.

In light of Figure 5.1(a), we develop algorithmic procedures in Algo-

rithm 5.1 for MENU. We notice that, in order to guarantee the median

of means of LSEs not far away from the true underlying parameter

with high probability, we construct the confidence interval in Line 10

of Algorithm 5.1. Now we have the following theorem for the regret

upper bound of MENU.

Theorem 5.2. Assume that for all t and xt ∈ Dt with ‖xt‖2 ≤ D,
‖θ∗‖2 ≤ S, |x>t θ∗| ≤ L and E[|ηt|p|Ft−1] ≤ c. Then, with probability at
least 1 − δ, for every T ≥ 256 + 24 log (e/δ), the regret of the MENU
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algorithm satisfies

R(MENU, T )

≤ 6
(

(9dc)
1
p + λ

1
2S + L

)
T

1
p

(
24 log

(
eT

δ

)
+ 1
) p−1

p

√
2d log

(
1 + TD2

λd

)
.

The technical challenges in MENU (i.e., Algorithm 5.1) and its

proofs are discussed as follows. Based on the common techniques in

linear stochastic bandits (Abbasi-Yadkori et al., 2011), to guarantee the

instantaneous regret in LinBET, we need to guarantee ‖θ∗− θ̂n,k∗‖Vn ≤

βn with high probability. We attack this issue by guaranteeing ‖θ∗ −

θ̂n,j‖Vn ≤ βn/3 with a probability of 3/4, which could reduce to a

problem of bounding a weighted sum of historical noises. Interestingly,

by conducting singular value decomposition on Xn (of which rows are

x>1 , · · · , x>n ), we find that 2-norm of the weights is no greater than 1.

Then the weighted sum can be bounded by a term as O
(
n

2−p
2p

)
. With

a standard analysis in linear stochastic bandits from the instantaneous

regret to the regret, we achieve the above results for MENU. We show

the detailed proof of Theorem 5.2 in Section 5.5.

Remark 5.2. For MENU, we adopt the assumption of heavy-tailed

payoffs on central moments, which is required in the basic technique

of median of means (Bubeck et al., 2013a). Besides, there exists an

implicit mild assumption in Algorithm 5.1 that, at each epoch n, the

decision set must contain the selected arm xn at least k times, which is

practical in applications, e.g., online personalized recommendations (Li

et al., 2010). The condition of T ≥ 256 + 24 log (e/δ) is required for

T ≥ k. The regret upper bound of MENU is Õ(T
1
p ), which implies that

finite variances in LinBET are sufficient to achieve Õ(
√
T ).
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Algorithm 5.2 TOFU
1: input d, b, p, δ, λ, T , {Dt}Tt=1

2: initialization: V0 = λId, C0 = B(0, S)

3: for t = 1, 2, · · · , T do

4: bt =
(

b

log( 2T
δ )

) 1
p−1

t
2−p
2p

5: (xt, θ̃t) = arg max(x,θ)∈Dt×Ct−1〈x, θ〉 . to select an arm

6: Play xt and observe a payoff yt

7: Vt = Vt−1 + xtx
>
t and X>t = [x1, · · · , xt]

8: [u1, · · · , ud]> = V
−1/2
t X>t

9: for i = 1, · · · , d do

10: Y †i = (y11ui,1y1≤bt , · · · , yt1ui,tyt≤bt) . to truncate the payoffs

11: end for

12: θ†t = V
−1/2
t (u>1 Y

†
1 , · · · , u>d Y

†
d )

13: βt = 4
√
db

1
p
(
log
( 2dT

δ

)) p−1
p t

2−p
2p + λ

1
2S

14: Update Ct = {θ : ‖θ − θ†t‖Vt ≤ βt} . to update the confidence region

15: end for

5.4.2 TOFU and Regret

Description of TOFU. We demonstrate the algorithmic procedures of

TOFU in Algorithm 5.2. We point out two subtle differences between

our TOFU and the algorithm of CRT as follows. In TOFU, to obtain the

accurate estimate of θ∗, we need to trim all historical payoffs for each

dimension individually. Besides, the truncating operations depend on

the historical information of arms. By contrast, in CRT, the historical

payoffs are trimmed once, which is controlled only by the number of

rounds for playing bandits. Compared to CRT, our TOFU achieves a

tighter confidence interval, which can be found from the setting of βt.

Now we have the following theorem for the regret upper bound of the

TOFU algorithm.

Theorem 5.3. Assume that for all t and xt ∈ Dt with ‖xt‖2 ≤ D,



CHAPTER 5. LINEAR STOCHASTIC BANDITS WITH HEAVY TAILS110

‖θ∗‖2 ≤ S, |x>t θ∗| ≤ L and E[|yt|p|Ft−1] ≤ b. Then, with probability at

least 1− δ, for every T ≥ 1, the regret of the TOFU algorithm satisfies

R(TOFU, T )

≤ 2T
1
p

4
√
db

1
p

(
log

(
2dT
δ

)) p−1
p

+ λ
1
2S + L


√√√√2d log

(
1 + TD2

λd

)
.

Similarly to the proof in Theorem 5.2, we can achieve the above

results for TOFU. Due to space limitation, we show the detailed proof

of Theorem 5.3 in Appendix 5.5.3.

Remark 5.3. For TOFU, we adopt the assumption of heavy-tailed pay-

offs on raw moments. It is worth pointing out that, when ε = 1, we have

regret upper bound for TOFU as Õ(d
√
T ), which implies that we recover

the same order of d as that under sub-Gaussian assumption (Abbasi-

Yadkori et al., 2011). A weakness in TOFU is high time complexity,

because for each round TOFU needs to truncate all historical payoffs.

The time complexity might be reasonably reduced by dividing T into

multiple epochs, each of which contains only one truncation.

5.5 Proofs of Theorems

In this section, we show the proofs of theorems.

5.5.1 Proof of Theorem 5.1

We prove the lower bound for d ≥ 2. Assume d is even (when d is

odd, similar results can be easily derived by considering the first d− 1

dimensions). For Dt ⊆ Rd with t ∈ [T ], we fix the decision set as

D1 = · · · = DT = D(d). Then, the fixed decision set is constructed

as D(d) , {(x1, · · · , xd) ∈ Rd
+ : x1 + x2 = · · · = xd−1 + xd = 1},
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which is a subset of intersection of the cube [0, 1]d and the hyper-

plane x1 + · · · + xd = d/2. We define a set Sd , {(θ1, · · · , θd) : ∀i ∈

[d/2] , (θ2i−1, θ2i) ∈ {(2∆,∆), (∆, 2∆)}} with ∆ ∈ (0, 1/d]. The pay-

off functions take values in {0, (1/∆)
1
p−1} with ε ∈ (0, 1], for every

x ∈ D(d), the expected payoff is θ>∗ x, where θ∗ is the underlying param-

eter drawn from Sd. To be more specific, we have the payoff function

of x as

y(x) =


(

1
∆

) 1
p−1 with a probability of ∆

1
p−1 θ>∗ x,

0 with a probability of 1−∆
1
p−1 θ>∗ x.

(5.4)

In this setting, the p-th raw moments of payoffs are bounded by d

and |θ>∗ x| ≤ 1. We start the proof with the 2-dimensional case in

Subsection 5.5.1. Its extension to the general case (i.e., d > 2) is

provided in Subsection 5.5.1. Though we set a fixed decision set in

the proofs, we can easily extend the lower bound here to the setting of

time-varying decision sets, as discussed by Dani et al. (2008a).

d = 2 Case

Let µ0 = (∆,∆), µ1 = (2∆,∆) and µ2 = (∆, 2∆). The 2-dimensional

decision set is D(2) = {(x1, x2) ∈ R2
+ : x1 + x2 = 1}. Our payoff

functions take values in {0, (1/∆)
1
p−1}, and for every x ∈ D(2), the

expected payoff is θ>∗ x, where θ∗ is chosen uniformly at random from

{µ1, µ2}. It is easy to find µ>j x = ∆(1 + xj) which is maximized at

xj = 1 for j ∈ {1, 2}, and µ>0 x = ∆ for any x ∈ D(2).

Lemma 5.1. If θ∗ is chosen uniformly at random from {µ1, µ2}, and

the payoff for each x ∈ D(2) is in {0, (1/∆)
1
p−1} with mean θ>∗ x, then

for every algorithm A and every T ≥ 1, the regret satisfies

E[R(A, T )] ≥ 1
96T

1
p . (5.5)
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Proof. We consider a deterministic algorithmA first. Let qx,T = T (x)/T ,

where T (x) denotes the number of pulls of arm x. QT is the empirical

distribution of arms with respect to qx,T and X is drawn from QT . We

let Pj and Ej denote, respectively, the probability distribution of X

conditional on θ∗ = µj and the expectation conditional on θ∗ = µj,

where j ∈ {0, 1, 2}. Thus, we have Pj(X ∈ E) = Ej[
∑
x∈E T (x)]/T for

any E ⊆ D(2). At each time step t, xt = (xt,1, xt,2) is selected. We let

y∗t = 〈x∗t , θ∗〉. Hence, for j ∈ {1, 2}, we have

Ej
[
T∑
t=1

(y∗t − yt(xt))
]

=
T∑
t=1

Ej [∆(1− xt,j)] = T
∫
D(2)

∆(1− xj)dPj(x)

= T∆
(

1−
∫
D(2)

xjdPj(x)
)

= T∆
(

1−
(∫

0≤xj≤ 1
2

xjdPj(x) +
∫

1
2<xj≤1

xjdPj(x)
))

≥ T∆
(

1−
(1

2Pj
(

0 ≤ Xj ≤
1
2

)
+ Pj

(1
2 < Xj ≤ 1

)))
, (5.6)

which implies

E[R(A, T )] = Eθ∗

[
Ej
[
T∑
t=1

(y∗t − yt(xt))
]]

≥ T∆
1− 1

2

2∑
j=1

(1
2Pj

(
0 ≤ Xj ≤

1
2

)
+ Pj

(1
2 < Xj ≤ 1

)) . (5.7)

According to Pinsker’s inequality, for any E ⊆ D(2), we have

Pj(X ∈ E) ≤ P0(X ∈ E) +
√

1
2KL(P0,Pj), (5.8)

where KL(P0,Pj) denotes the Kullback-Leibler divergence (simply KL

divergence). Hence,

E[R(A, T )]

≥ T∆
1− 1

2

2∑
j=1

1
2P0

(
0 ≤ Xj ≤

1
2

)
+ P0

(1
2 < Xj ≤ 1

)
+ 3

2

√
1
2KL(P0,Pj)


= T∆

1
4 −

3
4

2∑
j=1

√
1
2KL(P0,Pj)

 . (5.9)
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Since A is deterministic, the sequence of received rewards denoted by

WT , (y1, y2, · · · , yT ) ∈ {0, (1/∆)
1
p−1}T uniquely determines the em-

pirical distribution QT and thus, QT conditional on WT is the same for

any θ∗. We let P tj be the probability distribution ofWt = (y1, y2, · · · , yt)

conditional on θ∗ = µj. Based on the chain rule for KL divergence, we

have

KL(P0,Pj) ≤ KL(PT0 ,PTj ). (5.10)

Further, iteratively using the chain rule for KL divergence, we have

KL(PT0 ,PTj )

= KL(P1
0 ,P1

j ) +
T∑
t=2

∫
Wt−1

KL
(
P t0(·|wt−1),P tj(·|wt−1)

)
dP t−1

0 (Wt−1)

= KL(P1
0 ,P1

j ) +
T∑
t=2

∫
xt∈D(2)

∫
Wt−1|xt,j=xj

(5.11)

KL
(
∆

p
p−1 ,∆

p
p−1 (1 + xj)

)
dP t−1

0 (Wt−1|xt,j = xj)dP t−1
0 (xt,j = xj)

(5.12)

≤ 2∆
p
p−1 + (5.13)

T∑
t=2

∫
xt∈D(2)

∫
Wt−1|xt,j=xj

2∆
p
p−1 dP t−1

0 (Wt−1|xt,j = xj)dP t−1
0 (xt,j = xj)

(5.14)

= 2T∆
p
p−1 , (5.15)

where Eq. (5.14) could be derived by setting ∆ ≤ (1/2)
p−1
p . Note that

for any p, q ∈ (0, 1), let P and Q denote the Bernoulli distribution with

parameters a and b respectively. We denote KL(P ,Q) as KL(a, b) in

Eq. (5.12). Therefore, we have

E[R(A, T )] ≥ T∆
(

1
4 −

3
2

√
T∆

p
p−1

)
≥ 1

96T
1
p , (5.16)

where we set ∆ = T−
p−1
p /12.
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So far we have discussed the case where A is a deterministic algo-

rithm. When A is a randomized algorithm, the result is the same. In

particular, let EA denote the expectation with respect to the random-

ness of A. Then, we have

E[R(A, T )] = EA
[
Eθ∗

[
Ej
[
T∑
t=1

(y∗t − yt(xt))
]]]

. (5.17)

If we fix the realization of the algorithm’s randomization, the results of

the previous steps for a deterministic algorithm apply and we know that

Eθ∗
[
Ei
[∑T

t=1(y∗t − yt(xt))
]]

could be lower bounded as before. Hence,

E[R(A, T )] is lower bounded as Eq. (5.16).

General Case (d > 2)

Now we suppose d > 2 is even. If d is odd, we just take the first d− 1

dimensions into consideration. Then we consider the contribution to

the total expected regret from the choice of (x2i−1, x2i), for all i ∈ [d/2].

We call (x2i−1, x2i) the i-th component of x.

Analogously to the d = 2 case, we set (θ∗,2i−1, θ∗,2i) ∈ {µ1, µ2}.

The decision region is D(d) = {(x1, · · · , xd) ∈ Rd
+ : x1 + x2 = · · · =

xd−1 + xd = 1}. Then, by following the proof for d = 2 case, we could

derive the regret due to the i-th component of x as

E
[
R(i)(A, T )

]
≥ 1

96T
1
p , (5.18)

where i ∈ [d/2]. Summing over the d/2 components of Eq. (5.18)

completes the proof for Theorem 5.1.

5.5.2 Proof of Theorem 5.2

To prove Theorem 5.2, we start with proving the following two lem-

mas. Recall that the algorithm in the chapter is based on least-squares

estimate (LSE).
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Lemma 5.2 (Confidence Ellipsoid of LSE). Let θ̂n denote the LSE

of θ∗ with the sequence of decisions x1, · · · , xn and observed payoffs

y1, · · · , yn. Assume that for all τ ∈ [n] and all xτ ∈ Dτ ⊆ Rd,

E[|ητ |p|Fτ−1] ≤ c and ‖θ∗‖2 ≤ S. Then θ̂n satisfies

P
[
‖θ̂n − θ∗‖Vn ≤ (9dc)

1
pn

2−p
2p + λ

1
2S
]
≥ 3

4 , (5.19)

where λ > 0 is a regularization parameter and Vn = λId +∑n
τ=1 xτx

>
τ .

Proof. The singular value decomposition of Xn is UΣnV
>, where U is

an n×d matrix with orthonormal columns, V is a d×d unitary matrix

and Σn is an n × n diagonal matrix with non-negative entries. We

calculate Vn = V (Σ2
n + λId)V > and

V
− 1

2
n X>n = V

(
Σ2
n + λId

)− 1
2 ΣnU

>. (5.20)

Let u>i denote the i-th row of V (Σ2
n + λId)−

1
2 ΣnU

>, which leads to

‖ui‖2 ≤ 1. More importantly, by optimization, we have ‖ui‖p ≤ n
2−p
2p .

By letting Yn = (y1, · · · , yn), we have

‖θ̂n − θ∗‖Vn = ‖V −1
n X>n (Yn −Xnθ∗)− λV −1

n θ∗‖Vn

≤ ‖V −
1
2

n X>n (Yn −Xnθ∗)‖2 + λ‖θ∗‖V −1
n

≤

√√√√ d∑
i=1

(
u>i (Yn −Xnθ∗)

)2
+ λ

1
2S. (5.21)

Inspired by Bubeck et al. (2013a); Medina and Yang (2016), we bound

the desired probability by using a union bound as

P

 d∑
i=1

(
n∑
τ=1

ui,τητ

)2

> γ2


≤ P [∃i, τ, |ui,τητ | > γ] + P

 d∑
i=1

(
n∑
τ=1

ui,τητ1|ui,τητ |≤γ

)2

> γ2

 , (5.22)
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where 1{·} is the indicator function. By using a union bound and

Markov’s inequality, the first term could be bounded as

P (∃i, τ, |ui,τητ | > γ) ≤
d∑
i=1

n∑
τ=1

P(|ui,τητ | > γ) (5.23)

≤
∑d
i=1

∑n
τ=1 E[|ui,τητ |p]
γp

(5.24)

≤
∑d
i=1

∑n
τ=1 |ui,τ |1+εc

γp
≤ dcn

1−ε
2

γp
. (5.25)

Based on Markov’s inequality, we bound the second term as

P

 d∑
i=1

(
n∑
τ=1

ui,τητ1|ui,τητ |≤γ

)2

> γ2


≤

E
[∑d

i=1(∑n
τ=1 ui,τητ1|ui,τητ |≤γ)2

]
γ2

=
d∑
i=1

E
[∑n

τ=1(ui,τητ )21|ui,τητ |≤γ
]

γ2 +

d∑
i=1

2
E
[∑

τ ′>τ (ui,τητ )1|ui,τητ |≤γ(ui,τ ′ητ ′)1|ui,τ ′ητ ′ |≤γ
]

γ2

≤
d∑
i=1

E
[∑n

τ=1(ui,τητ )21|ui,τητ |≤γ
]

γ2 +

d∑
i=1

2
∑
τ ′>τ E[(ui,τητ )1|ui,τητ |≤γ]E[(ui,τ ′ητ ′)1|ui,τ ′ητ ′ |≤γ|µi,τητ ]

γ2

≤
d∑
i=1

∑n
τ=1 |ui,τ |pc
γp

+
(∑n

τ=1 |ui,τ |pc
γp

)2
 (5.26)

≤ dcn
2−p

2

γp
+ d

n 2−p
2 c

γp

2

. (5.27)

Note that Eq. (5.26) uses the fact as follows.

E[(ui,τητ )1|ui,τητ |≤γ|Fτ−1] = −E[(ui,τητ )1|ui,τητ |>γ|Fτ−1]. (5.28)

Finally, setting γ = (9dc)
1
pn

2−p
2p completes the proof.
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Lemma 5.3. Recall θ̂n,j, θ̂n,k∗ and Vn in MENU (i.e., Algorithm 5.1).

If there exists a γ > 0 such that P
[
‖θ̂n,j − θ∗‖Vn ≤ γ

]
≥ 3

4 holds for

all j ∈ [k] with k ≥ 1, then with probability at least 1 − e− k
24 , ‖θ̂n,k∗ −

θ∗‖Vn ≤ 3γ.

Proof. The proof is inspired by Hsu and Sabato (2014). We define bj ,

1‖θ̂n,j−θ∗‖Vn>γ
, pj , P(bj = 1) and BVn(θ∗, γ) , {θ : ‖θ − θ∗‖Vn ≤ γ}.

We know that pj < 1/4. By Azuma-Hoeffding’s inquality, we have

P

 k∑
j=1

bj ≥
k

3

 < P

 k∑
j=1

bj − pj ≥
k

12

 ≤ e−
k
24 , (5.29)

which means that more than 2/3 of {θ̂n,1, · · · , θ̂n,k} are contained in

BVn(θ∗, γ) (denoting by this event E) with probability at least 1−e− k
24 .

Note that the value k/3 in Eq. (5.29) could also be set as other values

in (k/4, k/2). Conditional on the event E , by letting rj be the median

of {‖θ̂n,j − θ̂n,s‖Vn : s ∈ [k]\j}, we have

• If θ̂n,j ∈ BVn(θ∗, γ), ‖θ̂n,j − θ̂n,s‖Vn ≤ 2γ for all θ̂n,s ∈ BVn(θ∗, γ)

by triangle inequality. Therefore, rj ≤ 2γ.

• If θ̂n,j /∈ BVn(θ∗, 3γ), ‖θ̂n,j − θ̂n,s‖Vn > 2γ for all θ̂n,s ∈ BVn(θ∗, γ)

by triangle inequality. Therefore, rj > 2γ.

Combining the above two cases completes proof.

Based on Lemmas 5.2 and 5.3, by setting k = d24 log (eT/δ)e, we are

ready to have ‖θ̂n,k∗−θ∗‖Vn ≤ 3
(

(9dc)
1

1+εn
2−p
2p + λ

1
2S
)

with probability

at least 1 − δ/T . The following part of proof is standard (Abbasi-

Yadkori et al., 2011; Dani et al., 2008a). We include it for the sake

of completeness. By letting βn = 3
(

(9dc)
1

1+εn
2−p
2p + λ

1
2S
)

, we can
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decompose the instantaneous regret as follows:

rn = θ>∗ x∗ − θ>∗ xn

≤ θ̃>n xn − θ>∗ xn

≤
(
‖θ̃n − θ̂n−1,k∗‖Vn−1 + ‖θ̂n−1,k∗ − θ∗‖Vn−1

)
‖xn‖V −1

n−1

≤ 2βn−1‖xn‖V −1
n−1
, (5.30)

where we recall that (xn, θ̃n) is optimistic in MENU. Note that, for

n = 1, the above inequality also holds with V0 = λId. On the other

hand, by considering |x>t θ∗| ≤ L, we always have

rn ≤ 2L. (5.31)

We can get that

rn ≤ 2 min{βn−1‖xn‖V −1
n−1
, L} ≤ 2(βn−1 + L) min{‖xn‖V −1

n−1
, 1}. (5.32)

Following Lemma 11 of Abbasi-Yadkori et al. (2011), we know that
N∑
n=1

min{‖xn‖2
V −1
n−1
, 1} ≤ 2

N∑
n=1

log(1 + ‖xn‖2
V −1
n−1

)

= 2 log
(

det(VN)
det(V0)

)

≤ 2d log
(

1 + ND2

λd

)
, (5.33)

where N is the number of epochs in MENU. Therefore, the total regret

can be upper bounded by

R(MENU, T )

≤ k
N∑
n=1

rn ≤ k

√√√√N N∑
n=1

r2
n

≤ 2kN 1
2 (βN + L)

√√√√ N∑
n=1

min{‖xn‖2
V −1
n−1
, 1}

≤ 6
(
(12dc)

1
p + λ

1
2S + L

)
T

1
p

(
24 log

(
eT

δ

)
+ 1

) p−1
p

√√√√2d log
(

1 + TD2

λd

)
.

(5.34)



CHAPTER 5. LINEAR STOCHASTIC BANDITS WITH HEAVY TAILS119

The condition of T ≥ 256 + 24 log(e/δ) is required for T ≥ k, which

completes the proof.

5.5.3 Proof of Theorem 5.3

Lemma 5.4. With the sequence of decisions x1, · · · , xt, the truncated

payoffs {Y †i }di=1 and the parameter estimate θ†t are defined in TOFU

(i.e., Algorithm 5.2). Assume that for all τ ∈ [t] and all xτ ∈ Dτ ⊆ Rd,

E[|yτ |p|Fτ−1] ≤ b and ‖θ∗‖2 ≤ S. With probability at least 1 − δ, we

have

‖θ†t − θ∗‖Vt ≤ 4
√
db

1
p

(
log

(
2d
δ

)) p−1
p

t
2−p
2p + λ

1
2S, (5.35)

where λ > 0 is a regularization parameter and Vt = λId +∑t
τ=1 xτx

>
τ .

Proof. Similarly to Eq. (5.21), we have

‖θ†t − θ∗‖Vt ≤

√√√√ d∑
i=1

(
u>i (Y †i −Xtθ∗)

)2
+ λ

1
2S. (5.36)

We let y†τ denote Y †i,τ for notation simplicity as the following proof holds
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for all i ∈ [d]. Then with probability at least 1− δ/d, we have

u>i
(
Y †i −Xtθ∗

)
(5.37)

=
t∑

τ=1
ui,τ

(
y†τ − E[yτ |Fτ−1]

)
(5.38)

=
t∑

τ=1
ui,τ

(
y†τ − E

[
y†τ |Fτ−1

]
− E

[
yτ1|ui,τyτ |>bt |Fτ−1

])

≤
∣∣∣∣∣
t∑

τ=1
ui,τ (y†τ − E[y†τ |Fτ−1])

∣∣∣∣∣+
∣∣∣∣∣
t∑

τ=1
ui,τE[yτ1|ui,τyτ |>bt|Fτ−1]

∣∣∣∣∣
≤
∣∣∣∣∣2bt log

(
2d
δ

)
+ 1

2bt

t∑
τ=1

E
[
u2
i,τ

(
y†τ − E

[
y†τ |Fτ−1

])2
|Fτ−1

]∣∣∣∣∣
+
∣∣∣∣∣
t∑

τ=1
E[ui,τyτ1|ui,τyτ |>bt|Fτ−1]

∣∣∣∣∣ (5.39)

≤ 2bt log
(

2d
δ

)
+
∑t
τ=1 |ui,τ |pb

2bp−1
t

+
∑t
τ=1 |ui,τ |pb
bp−1
t

≤ 4b
1
p

(
log

(
2d
δ

)) p−1
p

t
2−p
2p , (5.40)

where Eq. (5.39) is obtained by applying Bernstein’s inequality for

martingales (Seldin et al., 2012) and Eq. (5.40) is obtained by the fact

that ‖ui‖p ≤ t
2−p
2p and by setting bt = (b/ log(2d/δ))

1
p t

2−p
2p . Combining

Eq. (5.36) and Eq. (5.40) completes the proof.

With similar procedures to the proof of Theorem 5.2, we have the

regret of TOFU as follows.

R(TOFU, T )

≤ 2T
1
p

4
√
db

1
p

(
log

(
2dT
δ

)) p−1
p

+ λ
1
2S + L


√√√√2d log

(
1 + TD2

λd

)
,

(5.41)

which completes the proof.
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Table 5.1: Statistics of synthetic datasets in experiments. For Student’s

t-distribution, ν denotes the degree of freedom, lp denotes the location, sp
denotes the scale. For Pareto distribution, α denotes the shape and sm

denotes the scale. NA denotes not available.

dataset Dt {#arms,

#dimensions}

distribution

{parameters}

{p, b, c} mean of the

optimal arm

S1 {20,10} Student’s

t-distribution {ν =

3, lp = 0, sp = 1}

{2.00, NA,

3.00}

4.00

S2 {100,20} Student’s

t-distribution {ν =

3, lp = 0, sp = 1}

{2.00, NA,

3.00}

7.40

S3 {20,10} Pareto distribution

{α = 2, sm =
x>t θ∗

2 }

{1.50, 7.72,

NA}

3.10

S4 {100,20} Pareto distribution

{α = 2, sm =
x>t θ∗

2 }

{1.50, 54.37,

NA}

11.39

5.6 Experiments

In this section, we conduct experiments based on synthetic datasets to

evaluate the performance of our proposed bandit algorithms: MENU

and TOFU. For comparisons, we adopt two baselines: MoM and CRT

proposed by Medina and Yang (2016). We run multiple independent

repetitions for each dataset in a personal computer under Windows 7

with Intel CPU@3.70GHz and 16GB memory.
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5.6.1 Datasets and Setting

To show effectiveness of bandit algorithms, we will demonstrate cumu-

lative payoffs with respect to number of rounds for playing bandits over

a fixed finite-arm decision set. For verifications, we adopt four synthetic

datasets (named as S1–S4) in the experiments, of which statistics are

shown in Table 5.1. The experiments on heavy tails require p, b or p, c

to be known, which corresponds to the assumptions of Theorem 5.2

or Theorem 5.3. According to the required information, we can apply

MENU or TOFU into practical applications. We adopt Student’s t and

Pareto distributions because they are common in practice. For Stu-

dent’s t-distributions, we easily estimate c, while for Pareto distribu-

tions, we easily estimate b. Besides, we can choose different parameters

(e.g., larger values) in the distributions, and recalculate the parameters

of b and c.

For S1 and S2, which contain different numbers of arms and dif-

ferent dimensions for the contextual information, we adopt standard

Student’s t-distribution to generate heavy-tailed noises. For the cho-

sen arm xt ∈ Dt, the expected payoff is x>t θ∗, and the observed payoff is

added a noise generated from a standard Student’s t-distribution. We

generate each dimension of contextual information for an arm, as well

as the underlying parameter, from a uniform distribution over [0, 1].

The standard Student’s t-distribution implies that the bound for the

second central moment of S1 and S2 is 3.

For S3 and S4, we adopt Pareto distribution, where the shape pa-

rameter is set as α = 2. We know x>t θ∗ = αsm/(α − 1) implying

sm = x>t θ∗/2. Then, we set p = 1.5 leading to the bound of raw mo-

ment as E [|yt|1.5] = αs1.5
m /(α − 1.5) = 4s1.5

m . We take the maximum

of 4s1.5
m among all arms as the bound of the 1.5-th raw moment. We
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Figure 5.2: Comparison of cumulative payoffs for synthetic datasets S1-S4

with four algorithms.

generate arms and the parameter similar to S1 and S2.

In figures, we show the average of cumulative payoffs with time

evolution over ten independent repetitions for each dataset, and show

error bars of a standard variance for comparing the robustness of algo-

rithms. For S1 and S2, we run MENU and MoM and set T = 2× 104.

For S3 and S4, we run TOFU and CRT and set T = 1 × 104. For all

algorithms, we set λ = 1.0, and δ = 0.1.
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5.6.2 Results and Discussions

We show experimental results in Figure 5.2. From the figure, we clearly

find that our proposed two algorithms outperform MoM and CRT,

which is consistent with the theoretical results in Theorems 5.2 and

5.3. We also evaluate our algorithms with other synthetic datasets,

as well as different λ and δ, and observe similar superiority of MENU

and TOFU. Finally, for further comparison on regret, complexity and

storage of four algorithms, we list the results shown in Table 5.2.

Table 5.2: Comparison on regret, complexity and storage of four algorithms.

algorithm MoM MENU CRT TOFU

regret Õ(T
2p−1
3p−2 ) Õ(T

1
p ) Õ(T

1
2 + 1

2p ) Õ(T
1
p )

complexity O(T ) O(T log T ) O(T ) O(T 2)

storage O(1) O(log T ) O(1) O(T )

5.7 Conclusion

We have studied the problem of LinBET, where stochastic payoffs are

characterized by finite p-th moments with p ∈ (1, 2]. We broke the tra-

ditional assumption of sub-Gaussian noises in payoffs of bandits, and

derived theoretical guarantees based on the prior information of bounds

on finite moments. We rigorously analyzed the lower bound of LinBET,

and developed two novel bandit algorithms with regret upper bounds

matching the lower bound up to polylogarithmic factors. Two novel

algorithms were developed based on median of means and truncation.

In the sense of polynomial dependence on T , we provided optimal algo-
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rithms for the problem of LinBET, and thus solved an open problem,

which has been pointed out by Medina and Yang (2016). Finally, our

proposed algorithms have been evaluated based on synthetic datasets,

and outperformed the state-of-the-art results. Since both algorithms in

this chapter require a priori knowledge of p, future directions in this line

of research include automatic learning of LinBET without information

of distributional moments, and evaluation of our proposed algorithms

in real-world scenarios.



Chapter 6

Nonlinear Stochastic Bandits

The decision set in MAB can be generalized into a convex set, and the

payoff function can be generalized into a non-linear function. In this

chapter, we investigate the problem of learning on non-linear stochastic

bandits. Given a convex decision set, we consider the stochastic bandits

under convex and non-convex payoff functions. Due to the elegant

structure of convex functions, we mainly focus on pure exploration of

stochastic bandits with convex functions, and extend the results into

the scenario of non-convex functions.

We name the problem of pure exploration of stochastic bandits with

convex functions as Stochastic Bandit Convex Optimization (SBCO).

The problem of SBCO, which is also known as stochastic zeroth-order

optimization, has been extensively studied in the literature. It is worth

mentioning that stochastic bandit optimization is an LSB problem with

a closed compact domain. In stochastic bandit optimization, we will

consider two settings: convex objective functions and non-convex objec-

tive functions. In particular, we first focus on the study on the convex

case and then extend the results to the non-convex case. The goal of

this chapter is to develop algorithms with faster convergence rates for

126
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LSB problems in a closed compact domain, where the convergence rate

means the number of iterations to train a model.

In particular, we propose a generic approach for accelerating the

convergence of existing algorithms to solve the problem of stochastic

zeroth-order convex optimization (SBCO). Standard techniques for ac-

celerating the convergence of stochastic zeroth-order algorithms are by

exploring multiple functional evaluations (e.g., two-point evaluation),

or by exploiting global conditions of the problem (e.g., smoothness and

strong convexity). Nevertheless, these classic acceleration techniques

are necessarily restricting the applicability of newly developed algo-

rithms. The key of our proposed generic approach is to explore a local

growth condition (or called local error bound condition) of the objective

function in SBCO. The benefits of the proposed acceleration technique

are: (i) it is applicable to both settings with one-point evaluation and

two-point evaluation; (ii) it does not necessarily require strong con-

vexity or smoothness condition of the objective function; (iii) it yields

an improvement on convergence for a broad family of problems. Em-

pirical studies in various settings demonstrate the effectiveness of the

proposed acceleration approach.

6.1 Introduction

We focus on the case of Stochastic Bandit Convex Optimization (SBCO).

Then, we extend the results of SBCO to non-convex functions learning.

The problem of SBCO has been extensively studied in the literature due

to its attractiveness in applications where explicit gradient calculations

may be computationally infeasible, expensive, or impossible. However,

stochastic zeroth-order algorithms are notoriously slower than stochas-

tic first-order algorithms due to an unavoidable dependence of their
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iteration complexities on the dimensionality of the problem.

We consider the following problem of SBCO:

min
x∈Ω

f(x) , Eξ[f(x; ξ)], (6.1)

where Ω ⊆ Rd is a closed compact convex set, f(x; ξ) is a stochas-

tic convex function depending on random noise ξ. This problem has

broad applications in computer science and engineering. For exam-

ple, many practical problems in machine learning can be cast into a

stochastic convex optimization, where ξ denotes a random data point

and x denotes the parameter of a prediction model. A standard ap-

proach for solving the problem of Eq. (6.1) is to adopt the stochas-

tic (sub)gradient of f(x; ξ) (Nemirovski et al., 2009). However, there

exist situations where the first-order gradient information is compu-

tationally infeasible, expensive, or impossible, while the zeroth-order

functional information can be easily obtained. For example, in online

auctions and advertisement selections, only function values are revealed

as feedbacks for algorithms (Wibisono et al., 2012). In stochastic struc-

tured predictions, explicit differentiations may be difficult to perform

while the functional evaluations of predicted structures are easily ob-

tained (Sokolov et al., 2016). The optimization problem of Eq. (6.1) in

such situations is referred to SBCO.

A key concern in the development of iterative stochastic zeroth-oder

algorithms for solving Eq. (6.1) is the order of the necessary number of

functional evaluations in the form of f(x; ξ), which is termed as sample

complexity or iteration complexity. Flaxman et al. (2005) should be

the first work related to SBCO. They studied a closely related setting

namely online bandit convex optimization where only One-Point Eval-

uation (OPE) is available for the cost function at each iteration. Ap-

plied to the stochastic setting, their algorithm suffers from an iteration
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complexity of O(d2/ε4) for finding an ε-optimal solution x̂ such that

E[f(x̂) − minx∈Ω f(x)] ≤ ε. Since then, there have been a number of

studies (Agarwal et al., 2010; Duchi et al., 2015; Nesterov and Spokoiny,

2017; Shamir, 2013, 2017) trying to improve the iteration complexity

of Flaxman et al. (2005) in online bandit setting or in stochastic opti-

mization setting. A useful technique to accelerate the convergence of

SBCO is by leveraging Two-Point Evaluation (TPE) at each iteration.

Another technique is to explore the strong convexity or the smooth-

ness condition of the random function f(x; ξ). Clearly, both techniques

impose strong restrictions of their developed algorithms, and thus the

applicability of the resultant algorithms is limited.

The goal of this chapter is to design a generic approach for accel-

erating existing SBCO algorithms which is applicable to both settings

with OPE and TPE, and to cases even without smoothness and strong

convexity assumptions of the objective function. A novel contribution

is to explore a generic local growth condition (or called local error

bound condition) of the objective function, which specifies how fast

the objective function grows in a local neighborhood of optimal solu-

tions. In particular, we propose a generic algorithmic framework for

accelerating existing SBCO algorithms in various settings by leverag-

ing the local error bound condition. This is accomplished by a novel

synthesis of existing SBCO algorithms and a multi-stage adaptive tech-

nique, which consists of three components: using a multi-stage scheme

with each stage running existing algorithms, warm starting each stage

using the solution from previous stage, and adaptively changing the

algorithm’s parameters after each stage (e.g., step size, the smoothing

parameter). Depending on the Local Error Bound (LEB) condition,

the improvement over existing results is up to a factor of 1/ε2. Em-
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pirical studies in various settings demonstrate the effectiveness of the

proposed acceleration approach.

6.2 Related Work and Our Results

A quick comparison between our obtained upper bounds of iteration

complexities under different settings and previous upper bounds is

shown in Table 6.1. Zeroth-order convex optimization has been stud-

ied in two closely related paradigms, namely online bandit optimiza-

tion and stochastic optimization. Using the standard online-to-batch

conversion (Shalev-Shwartz et al., 2012), the regret bounds for online

bandit optimization can easily be translated into convergence results

for stochastic optimization. Hence, we focus on the discussion of results

for stochastic zeroth-order convex optimization. However, it is worth

mentioning that related chapters studied for online optimization may

contain more results for adversarial setting, which is beyond the scope

of this thesis.

In Flaxman et al. (2005), the authors developed the first method for

online bandit convex optimization, which updates the solutions based

on the functional evaluation at a single point. Central to the algorithm

and the analysis is a noisy gradient estimator, which is proved to be

an unbiased gradient estimator of a smoothed function. By using the

analysis of online gradient method, as well as the properties of the

noisy gradient estimator and the smoothed function, they established

a regret bound of O(d1/2T 3/4) for Lipschitz continuous cost functions.
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Lower bounds for SBCO have been also studied in several works

under various settings (Dani et al., 2008b; Duchi et al., 2015; Shamir,

2013). We will show that our proposed algorithm’s performance in

certain settings matches the existing lower bounds. For example, for

stochastic zeroth-order linear optimization with OPE, our obtained up-

per bound of iteration complexity is Õ(d2/ε2)1, which matches the lower

bound by Dani et al. (2008b). In addition, the best upper bound in

this chapter for SBCO in the setting with OPE without smoothness as-

sumption is Õ(d2/ε2), which matches the lower bound by Shamir (2013)

up to a logarithmic factor. It is also notable that the best upper bound

achieved in this chapter can be as good as min(O(d2 log(1/ε)), Õ(d/ε)).

However, we note that our result does not contradict to the lower bound

by Duchi et al. (2015) because either their considered random functions

do not necessarily have bounded gradients as assumed in this chapter

or their considered problem does not satisfy the LEB condition that

yields our best result. Finally, we note that the LEB condition has been

explored in (stochastic) convex optimization for improving the conver-

gence of first-order methods (Xu et al., 2017b; Yang and Lin, 2015).

To the best of our knowledge, this is the first work that leverages the

LEB condition for improving the convergence of SBCO.

6.3 Notations and Preliminaries

In this section, we present some notations and preliminaries for SBCO.

Let the `-norm of a vector x be ‖x‖` (where ` ≥ 1). The inner product

of two vectors x, y is denoted by x>y = 〈x, y〉. The notation of B(x, r)

denotes a Euclidean ball centered at x with radius r > 0. The ceiling

integer of a real number r is dre.
1We omit a poly-logarithmic factor for Õ(·).
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Let ∂f(x) and ∇f(x) denote, respectively, the subgradient of a

non-smooth function and the gradient of a smooth function. f(x) is

G-Lipschitz continuous if ∃G > 0 such that |f(x)−f(y)| ≤ G‖x−y‖2,

∀x, y ∈ Ω, i.e., ‖∂f(x)‖2 ≤ G,∀x ∈ Ω. f(x) is L-smooth if it is

differentiable and has L-Lipschitz-continuous gradient, i.e., ‖∇f(x) −

∇f(y)‖2 ≤ L‖x − y‖2, ∀x, y ∈ Ω. f(x) is convex if f(x) ≥ f(y) +

〈∂f(y), x − y〉, ∀x, y ∈ Ω. f(x) is σ-strongly convex if f(x) ≥ f(y) +

〈∂f(y), x− y〉+ σ‖x− y‖2
2/2, ∀x, y ∈ Ω and σ ≥ 0.

Let u ∼ B(0, 1) denote a noise vector uniformly sampled from a

unit sphere, and u ∼ N (0, 1) denote a noise vector sampled from a

standard Gaussian distribution. Given a noise vector u, let f̂(x; ξ) ,

Eu[f(x+δu; ξ)] denote a smoothed function with smoothing parameter

δ > 0 and f̂(x) , Eu;ξ[f(x+δu; ξ)]. Let Ω∗ denote the optimal solution

set for Eq. (6.1), and f∗ , minx∈Ω f(x). In the sequel, we will make

the following assumption.

Assumption 6.1. Assume that there exist x0 ∈ Ω and ε0 > 0 such that

f(x0) − minx∈Ω f(x) ≤ ε0. For any δ ∈ (0,+∞), there exists B > 0

such that |f(x+ δu; ξ)| ≤ B for any x ∈ Ω and ξ, where u ∼ B(0, 1).

6.3.1 Noisy Gradient Estimators

The noisy gradient estimator in the setting with OPE proposed by Flax-

man et al. (2005) is given as:

gf
t = d

δ
f(xt + δut; ξt)ut, (6.2)

where ut ∼ B(0, 1) and δ > 0. The properties of gf
t and f̂(x; ξ) are

stated below.

Lemma 6.1 ((Flaxman et al., 2005)). Given u ∼ B(0, 1), we have

Eu[gf
t] = ∇f̂(xt; ξt), and ‖gf

t‖2 ≤ dB/δ. If f(x; ξ) is G-Lipschitz con-
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tinuous, we have |f(x; ξ) − f̂(x; ξ)| ≤ Gδ. If f(x; ξ) is L-smooth, we

have |f(x; ξ)− f̂(x; ξ)| ≤ Lδ2/2.

For the setting with TPE, there are different gradient estimators

used in previous studies. For example, Agarwal et al. (2010); Shamir

(2017) used the following noisy gradient estimator with ut ∼ B(0, 1):

ga
t = d

2δ
(
f(xt + δut; ξt)− f(xt − δut; ξt)

)
ut. (6.3)

Duchi et al. (2015); Nesterov and Spokoiny (2017) considered the fol-

lowing noisy gradient estimator for TPE with ut ∼ N (0, 1):

gn
t = 1

δ
(f(xt + δut; ξt)− f(xt; ξt))ut. (6.4)

The properties of estimators in Eqs. (6.3) and (6.4) are summarized as

below.

Lemma 6.2. (Agarwal et al., 2010; Shamir, 2017) Given u ∼ B(0, 1),

we have Eu[ga
t ] = ∇f̂(xt; ξt). If f(x; ξ) is G-Lipschitz continuous, we

have ‖ga
t ‖2 ≤ Gd, Eu[‖gat ‖2

2] ≤ db2G2C, and |f(x; ξ) − f̂(x; ξ)| ≤

Gδ, where C is a universal constant and b is a constant such that

(E[‖u‖4
2])1/4 ≤ b. If f(x; ξ) is L-smooth, we have |f(x; ξ) − f̂(x; ξ)| ≤

Lδ2/2.

Lemma 6.3. (Nesterov and Spokoiny, 2017) Considering u ∼ N (0, 1),

we have Eu[gn
t ] = ∇f̂(xt; ξt). If f(x; ξ) is G-Lipschitz continuous, we

have Eu[‖gn
t ‖2

2] ≤ G2(d + 4)2, and |f(x; ξt) − f̂(x; ξt)| ≤ δGd1/2. If

f(x; ξ) is G-Lipschitz continuous and L-smooth, we have Eu[‖gn
t ‖2

2] ≤

δ2(d+ 6)3L2/2 + 2(d+ 4)G2, and |f(x; ξ)− f̂(x; ξ)| ≤ δ2Ld/2.

Remark 6.1. The absolute upper bound of the noisy gradient estima-

tors is needed for high probability analysis and the variance bound of

the noisy gradient estimators is useful for expectational convergence

analysis.
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The iterative update in the previous studies takes the following

form:

xt+1 = ΠΩ[xt − ηgt], (6.5)

where η > 0 is a step size, gt is a gradient estimator and ΠΩ denotes

the Euclidean projection onto the set Ω. We synthesize the conver-

gence analysis of stochastic optimization in the following proposition,

which, combined with properties of different gradient estimators, yields

corresponding convergence results in previous studies.

Proposition 6.1. Considering the update in Eq. (6.5) with an initial
point of x1 ∈ Ω, for any x ∈ Ω, we have

T∑
t=1

f(xt; ξt)− f(x; ξt)

≤ 2
T∑
t=1

sup
x∈Ω
|f(x; ξt)− f̂(x; ξt)|+

T∑
t=1

g>t (xt − x) + (∇f̂(xt; ξt)− gt)>(xt − x),

and ∑T
t=1 g

>
t (xt − x) ≤ ‖x1−x‖22

2η +∑T
t=1

η‖gt‖22
2 .

6.3.2 Local Error Bound Condition

Definition 6.1. A problem of Eq. (6.1) satisfies the LEB condition on

a compact set Ω if there exist θ ∈ (0, 1] and c > 0 such that for any

x ∈ Ω

dist(x,Ω∗) ≤ c(f(x)−min
x∈Ω

f(x))θ, (6.6)

where dist(x,Ω∗) , minv∈Ω∗ ‖v− x‖2.

Note that the LEB condition has been studied thoroughly by Bolte

et al. (2015); Xu et al. (2017b); Yang and Lin (2015). It is satisfied

for a broad family of problems. For example, when f(x) is continuous

and semi-algebraic (or sub-analytic), the LEB condition holds on any

compact set (Bolte et al., 2015). Below, we consider several instances
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of problems that satisfy the LEB condition. More interesting examples

in machine learning can be found in Xu et al. (2017b); Yang and Lin

(2015).

Example 1: When f(x; ξ) = x>ξ is a linear function and Ω is a

polyhedral set (e.g., hypercube), then the problem of Eq. (6.1) satis-

fies the LEB with θ = 1 (Yang and Lin, 2015). These functions are

considered in online bandit linear optimization (Dani et al., 2008b).

More generally, if f(x) is a polyhedral function and Ω is a polyhedral

set, then LEB with θ = 1 holds (Yang and Lin, 2015). For instance,

f(x) = ∑n
i=1 |a>i x− bi|/n and Ω = {‖x‖1 ≤ s}.

Example 2: When f(x) is strongly convex, then the LEB condi-

tion holds with θ = 1/2 (Xu et al., 2017b).

Example 3: Even when f(x) is not strongly convex, the LEB

condition with θ = 1/2 may still hold, such as f(x) = ∑n
i=1(a>i x−bi)2/n

and Ω is a polyhedral set.

6.4 Our Approach and Results

In this section, we propose a generic algorithm for accelerating the

convergence of SBCO and its main results in various settings. In order

to achieve improved high probability convergence results, we need to

use the following update to control the last term in Proposition 6.1:

xt+1 = ΠD[xt − ηgt], (6.7)

where D = Ω∩B(x1, D) with x1 being a reference point and D being the

radius of the ball. The proposed acceleration framework is presented

in Algorithm 6.1, which is a multi-stage adaptive scheme consisting of

three key components: (i) a multi-stage scheme with each stage running

existing updates, (ii) warm starting each stage using the solution from
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Algorithm 6.1 A generic approach for accelerating SBCO
1: initialization x0, K, η1, δ1, D1

2: for k = 1, · · · ,K do

3: x1
k = xk−1, Dk = Ω ∩ B(x1

k, Dk)

4: for τ = 1, · · · , t do

5: compute a gradient estimator in light of Eq. (6.2) or Eq. (6.3) or

Eq. (6.4)

6: compute xτk according to Eq. (6.5) or Eq. (6.7) with a step size ηk,

a parameter δk, and a domain Dk

7: end for

8: let xk =
∑t
τ=1 x

τ
k/t

9: update δk+1, Dk+1 and ηk+1

10: end for

11: return xK

previous stage, and (iii) adaptively changing the parameters after each

stage. Next, we present the iteration complexities of Algorithm 6.1 in

various settings. Let εk = ε0/2k be a sequence.

Theorem 6.1 (Results for OPE). Let Algorithm 6.1 run with Eq. (6.2)

as the noisy gradient estimator and K = dlog2(ε0/ε)e stages. We have

the following results.

• R-I: if f(x; ξ) is G-Lipschitz continuous, by employing Eq. (6.5)

and setting t = O(d2/ε2(2−θ)), δk = εk/(6G), ηk = ε3k/(54G2d2B2),

then Algorithm 6.1 enjoys an iteration complexity of Õ(d2/ε2(2−θ))

in expectation for problems satisfy the LEB condition with θ ∈

(0, 1/2];

• R-II: if f(x; ξ) is G-Lipschitz continuous and L-smooth, by em-

ploying Eq. (6.5) and setting t = O(d2/ε3−2θ), δk = √εk/(
√

3L),
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ηk = 2ε2k/(9Ld2B2), then Algorithm 6.1 enjoys an iteration com-

plexity of Õ
(
d2/ε3−2θ

)
in expectation for problems satisfy the LEB

condition with θ ∈ (0, 1/2];

• R-III: if f(x; ξ) is G-Lipschitz continuous, by employing Eq. (6.7)

and setting δk, ηk similarly as in R-I and t = Õ(d2/ε2(2−θ)), Dk =

O(εθk−1), then Algorithm 6.1 enjoys an iteration complexity of

Õ(d2/ε2(2−θ)) with high probability 1− p, where we set p ∈ (0, 1),

for problems satisfy the LEB condition with θ ∈ (0, 1];

• R-IV: if f(x; ξ) is G-Lipschitz continuous and L-smooth, by em-

ploying Eq. (6.7) and setting δk, ηk similarly as in R-II and t =

Õ(d2/ε3−2θ), Dk = O(εθk−1), then Algorithm 6.1 enjoys an itera-

tion complexity of Õ(d2/ε3−2θ) with high probability 1 − p, where

we set p ∈ (0, 1), for problems satisfy the LEB condition with

θ ∈ (0, 1].

Remark 6.2. For the statement of high probability results, we omit a

poly-logarithmic factor of log(K/p) in t. In the above results, we as-

sume the fact that |f(xt + δu)| ≤ B, which is mild considering that

δ ∈ O(1/Tα). Another way is to assume |f(x)| ≤ B for any x ∈ Ω

and Br ⊆ Ω, where Br is a ball centered at the origin with radius r.

For every iteration, we project the solution into (1− ε)Ω. By assuming

that ε = δ/r, we have x+ δu ∈ Ω for any x ∈ (1− ε)Ω. The improve-

ments on iteration complexity still hold. Our iteration complexities by

leveraging the LEB condition are better than those in Agarwal et al.

(2010); Flaxman et al. (2005). For LEB with θ = 1/2 that is weaker

than the strong convexity assumption, our iteration complexities match

that in Agarwal et al. (2010) for strongly convex functions. For prob-

lems with f(x; ξ) being a linear function and Ω being a polyhedral set,

the LEB with θ = 1 holds and we achieve an iteration complexity of
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Õ
(
d2/ε2

)
with high probability, which matches the lower bound in Dani

et al. (2008b). Besides, one may get expectational results for θ > 1/2

from high probability results R-III and R-IV following the Corollary 3

in (Xu et al., 2016).

Theorem 6.2 (Results for TPE). Let Algorithm 6.1 run with K =

dlog2(ε0/ε)e stages. We have the following results.

• R-I: if f(x; ξ) is G-Lipschitz continuous, by employing the noisy

gradient estimator of Eq. (6.3) and the update of Eq. (6.5) and

setting t = O(d/ε2(1−θ)), δk = εk/(6G), ηk = 2εk/(3db2G2C)

where b and C are parameters discussed in Lemma 6.2, then Al-

gorithm 6.1 enjoys an iteration complexity of Õ(d/ε2(1−θ)) in ex-

pectation for problems satisfy the LEB condition with θ ∈ (0, 1/2];

• R-II: if f(x; ξ) is G-Lipschitz continuous and L-smooth, by em-

ploying the noisy gradient estimator of Eq. (6.4) and the update

of Eq. (6.5) and setting t = O(d/ε2(1−θ)), δk = √εk/(2
√
dL),

ηk = min{εk/(4(d + 4)G2), 2d/((d + 6)3L)}, then Algorithm 6.1

enjoys an iteration complexity of Õ(d/ε2(1−θ)) in expectation for

problems satisfy the LEB condition with θ ∈ (0, 1/2];

• R-III: if f(x; ξ) is G-Lipschitz continuous, by employing the noisy

gradient estimator of Eq. (6.3) and the update of Eq. (6.7) and

setting δk = εk/(8G), ηk = εk/(2d2G2), t = Õ(d2/ε2(1−θ)), and

Dk = O(εθk−1), then Algorithm 6.1 enjoys an iteration complexity

of Õ(d2/ε2(1−θ)) with high probability 1−p, where we set p ∈ (0, 1),

for problems satisfy the LEB condition with θ ∈ (0, 1].

Remark 6.3. It is notable that in the setting with TPE, the smoothness

of the random function does not improve the convergence (by comparing

R-I and R-II). The reason is that, for R-I, we utilize the refined analysis
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in (Shamir, 2017) to bound the variance of the noisy gradient estimator

E[‖ga
t ‖2

2] ≤ O(d) (see Lemma 6.2), which is in the same order to that

of the noisy gradient estimator gn
t with small enough δ as established

in (Nesterov and Spokoiny, 2017) (see Lemma 6.3). The expectational

results R-I and R-II have better dependence on d compared to the high

probability result R-III. The reason is that, for high probability analysis,

we have to use the absolute bound of ga
t . However, the expectational

results R-I and R-II cannot enjoy better dependence on ε for θ > 1/2

as in the high probability result R-III. We notice that one can obtain

similar expectational results for θ > 1/2 in light of R-III with the same

technique in Remark 2.

Finally, we would like to point out that although the above results

require knowing the value of θ in the LEB condition, we can use another

level of restarting on top of Algorithm 6.1 and an increasing sequence

of t for the outer loop similar to that by Xu et al. (2017b); Yang and

Lin (2015), which still enjoy improved iteration complexities compared

with previous results. Due to limitation of space, this result and the

related proofs are both omitted here.

6.5 Proofs of Theorems

In this section, we present the proofs of Proposition 6.1, Theorem 6.1

and Theorem 6.2.
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6.5.1 Proof of Proposition 6.1

Proof. We adopt the update in Eq. (6.5) to find an ε-optimal solution

for SBCO. After T iterations, we have
T∑
t=1

f̂(xt; ξt)− f̂(x; ξt) ≤
T∑
t=1
∇f̂(xt; ξt)>(xt − x)

≤
T∑
t=1

(∇f̂(xt; ξt)− gt)>(xt − x) +
T∑
t=1

g>t (xt − x)

≤
T∑
t=1

(∇f̂(xt; ξt)− gt)>(xt − x)+

T∑
t=1

‖x− xt‖2
2 − ‖x− xt+1‖2

2
2η +

T∑
t=1

η‖gt‖2
2

2 ,

where x ∈ Ω, η is the learning rate, and the last inequality is due

to Zinkevich (2003). By taking the upper bound between f(x; ξt) and

f̂(x; ξt), we have

T∑
t=1

f(xt; ξt)− f(x; ξt)

≤
T∑
t=1

f̂(xt; ξt)− f̂(x; ξt) + 2
T∑
t=1

sup
x∈Ω
|f(x; ξt)− f̂(x; ξt)|.

Thus, we are ready to have
T∑
t=1

f(xt; ξt)− f(x; ξt)

≤ 2
T∑
t=1

sup
x∈Ω
|f(x; ξt)− f̂(x; ξt)|+

‖x1 − x‖22
2η +

T∑
t=1

η‖gt‖22
2 +

(∇f̂(xt; ξt)− gt)>(xt − x),

where x ∈ Ω.

6.5.2 Proof of Theorem 6.1

Proof. We present the proof of the theorem based on different con-

ditions as follows. For expectational results, we adopt the update
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in Eq. (6.5). For high probability results, we adopt the update in

Eq. (6.7).

i) Proof of R-I: Expectational results when f(x; ξ) is G-

Lipschitz continuous.

If f(x; ξ) is G-Lipschitz continuous, based on Proposition 6.1 and

Lemma 6.1, we have
T∑
t=1

f(xt; ξt)− f(x; ξt) ≤ 2TGδ + ηTd2B2

2δ2 +

‖x1 − x‖2
2

2η +
T∑
t=1

(∇f̂(xt; ξt)− gf
t)>(xt − x).

By setting x̂T = ∑T
t=1 xt/T and taking the expectation over randomness

in u and ξ, we have

E[f(x̂T )− f(x)] ≤ E[‖x1 − x‖2
2]

2ηT + ηd2B2

2δ2 + 2Gδ.

By adopting the generic framework in Algorithm 6.1, for the k-th stage,
we have

E[f(xk)− f(x)] ≤ E[‖xk−1 − x‖22]
2ηkt

+ ηkd
2B2

2δ2
k

+ 2Gδk,

where we use t iterations in inner loops of Algorithm 6.1.

For θ ∈ (0, 1/2], based on Jensen’s inequality, we have E[‖x −

x∗‖2
2] ≤ c2E[(f(x) − f∗)2θ] ≤ c2(E[f(x) − f∗])2θ, with x∗ ∈ Ω∗ and

x ∈ Ω. Note that here we adopt the LEB condition over Ω. Then, we

show that E[f(xk)− f∗] ≤ εk holds by induction, where εk = ε0/2k.

If k = 0, we clearly have E[f(x0) − f∗] ≤ ε0. Conditioned on the

inequality of E[f(xk−1)− f∗] ≤ εk−1, we will show that E[f(xk)− f∗] ≤

εk.
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Let xk−1,∗ = arg minv∈Ω∗ ‖v− xk−1‖2. We have

E[f(xk)− f(xk−1,∗)] ≤
E[‖xk−1 − xk−1,∗‖2

2]
2ηkt

+ ηkd
2B2

2δ2
k

+ 2Gδk

≤ c(E[f(xk−1)− f(xk−1,∗)])2θ

2ηkt
+ ηkd

2B2

2δ2
k

+ 2Gδk

≤
cε2θk−1
2ηkt

+ ηkd
2B2

2δ2
k

+ 2Gδk.

To establish E[f(xk)− f∗] ≤ εk, we set

c2ε2θk−1
2ηkt

≤ εk−1

6 ⇒ t ≥ 1296d2B2G2c2

ε
2(2−θ)
k−1

,

ηkd
2B2

2δ2
k

≤ εk
3 ⇒ ηk ≤

ε3k
54G2d2B2 ,

2Gδk ≤
εk
3 ⇒ δk ≤

εk
6G.

By setting εK = ε0/2K = ε, we have K = dlog(ε0/ε)e. Thus, we have

E[f(xK) − f∗] ≤ εK = ε. As a result, the total iteration complexity is

Õ(d2/ε2(2−θ)).

ii) Proof of R-II: Expectational results when f(x; ξ) is G-

Lipschitz continuous and L-smooth.

If f(x; ξ) is L-smooth, with Lemma 6.1, we have

E[f(xk)− f(xk−1,∗)] ≤
c2ε2θk−1
2ηkt

+ ηkd
2B2

2δ2
k

+ Lδ2
k.

To establish E[f(xk)− f∗] ≤ εk, we set

c2ε2θk−1
2ηkt

≤ εk−1

6 ⇒ t ≥ 54d2B2Lc2

ε3−2θ
k−1

,

ηkd
2B2

2δ2
k

≤ εk
3 ⇒ ηk ≤

2ε2k
9Ld2B2 ,

Lδ2
k ≤

εk
3 ⇒ δk ≤

√
εk√
3L
.

Thus, withK = dlog(ε0/ε)e, the total iteration complexity is Õ(d2/ε3−2θ).

iii) Proof of R-III: High probability results when f(x; ξ) is

G-Lipschitz continuous.
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We prove high probability convergence for θ ∈ (0, 1]. Similar to

Proposition 6.1, we can derive
T∑
t=1

(
f̂(xt)− f̂(x)

)
≤

T∑
t=1
〈gf
t, (xt − x)〉+

T∑
t=1

(∇f̂(xt)− gf
t)>(xt − x).

Since Eu,ξ[gt] = ∇f̂(xt) and ‖gf
t‖2 ≤ dB/δ, based on Lemma 14 in Hazan

and Kale (2014), we have the following result. Given x1 ∈ Ω, we apply
T iterations of Eq. (6.2) and the update in Eq. (6.7). For any fixed
x ∈ Ω ∩ B(x1, D) and p̃ ∈ (0, 1), with a probability at least 1 − p̃, the
following inequality holds

f̂(x̂T )− f̂(x) ≤‖x1 − x‖22
2ηT + ηd2B2

2δ2 +
4dBD

√
3 log( 1

p )
√
Tδ

,

where x̂T = ∑T
t=1 xt/T . Then, we are ready to have

f(xk)− f(xk−1,∗) ≤
c2ε2θk−1
2ηkt

+ ηkd
2B2

2δ2
k

+
4dBcεθk−1

√
3 log(1

p
)

√
tδk

+ 2Gδk,

where we use Dk = cεθk−1. We can easily establish f(xk) − f(x∗) ≤

εk with high probability by induction. By setting δk = O(εk), ηk =

O(ε3k/d2), t = O(d2 log(K/p̃)/ε2(2−θ)) and K = dlog(ε0/ε)e, we have the

iteration complexity as Õ(d2/ε2(2−θ)) with high probability of 1 − p,

where p̃ = p/K.

iv) Proof of R-IV: High probability results when f(x; ξ) is

G-Lipschitz continuous and L-smooth.

For smooth objective functions, we have

f(xk)− f(xk−1,∗) ≤
c2ε2θk−1
2ηkt

+ ηkd
2B2

2δ2
k

+
4dBcεθk−1

√
3 log(1

p
)

√
tδk

+ Lδ2
k.

We establish f(xk)−f(x∗) ≤ εk with high probability by induction. By

settingDk = cεθk−1, δk = O(√εk), ηk = O(ε2k/d2), t = O(d2 log(K/p̃)/ε3−2θ)

and K = dlog(ε0/ε)e, we have the iteration complexity as Õ(d2/ε3−2θ)

with high probability of 1− p, where p̃ = p/K.
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6.5.3 Proof of Theorem 6.2

Proof. In the setting with TPE, we present the proofs as follows. Again,

for expectational results, we adopt the update in Eq. (6.5). For high

probability results, we adopt the update in Eq. (6.7).

i) Proof of R-I: Expectational results when f(x; ξ) is G-

Lipschitz continuous.

We consider the noisy gradient estimator of Eq. (6.3). Based on the

LEB condition, for θ ∈ (0, 1/2], we have E[‖x − x∗‖2
2] ≤ c2E[(f(x) −

f∗)2θ] ≤ c2(E[f(x)−f∗])2θ. With results in Proposition 6.1 and Lemma 6.2,

and the analysis of Theorem 6.1, we have

E[f(xk)− f(xk−1,∗)] ≤
c2ε2θk−1
2ηkt

+ ηkdb
2G2C

2 + 2Gδk,

where b and C are parameters discussed in Lemma 6.2.

Similarly, we can easily establish the relationship of E[f(xk)−f∗] ≤

εk by induction. We can set

c2ε2θk−1
2ηkt

≤ εk−1

6 ⇒ t ≥ 9dG2b2Cc2

ε
2(1−θ)
k−1

,

ηkdb
2G2C

2 ≤ εk
3 ⇒ ηk ≤

2εk
3db2G2C

,

2Gδk ≤
εk
3 ⇒ δk ≤

εk
6G.

Then, withK = dlog(ε0/ε)e, the total iteration complexity is Õ(d/ε2(1−θ)).

ii) Proof of R-II: Expectational results when f(x; ξ) is G-

Lipschitz continuous and L-smooth.

If f(x; ξ) is L-smooth, we adopt the noisy gradient estimator of

Eq. (6.4) and the update of Eq. (6.5) to solve SBCO. For θ ∈ (0, 1/2],

with the results in Lemma 6.3, we are ready to have

E[f(xk)− f(xk−1,∗)] ≤
c2ε2θk−1
2ηkt

+ ηk
2

(
δ2
k(d+ 6)3L2

2 + 2(d+ 4)G2
)

+ Lδ2
kd,
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To establish the induction E[f(xk)− f∗] ≤ εk, we set
c2ε2θk−1
2ηkt

≤ εk−1

8 ⇒ t ≥ 32(d+ 4)G2c2

ε
2(1−θ)
k−1

,

ηk
2

(
δ2
k(d+ 6)3L2

2

)
≤ εk

4 ⇒ ηk ≤
4d

(d+ 6)3L
,

ηk
2 (2(d+ 4)G2) ≤ εk

4 ⇒ ηk ≤
εk

4(d+ 4)G2 ,

Lδ2
kd ≤

εk
4 ⇒ δk ≤

√
εk

2
√
dL

.

Here we can set ηk = min{ εk
4(d+4)G2 ,

2d
(d+6)3L

}. Since εk goes to ε, the

term εk
4(d+4)G2 is dominant in iteration complexity and t is calculated

via ηk ≤ εk
4(d+4)G2 . Thus, with K = dlog(ε0/ε)e, the total iteration

complexity is Õ(d/ε2(1−θ)).

iii) Proof of R-III: High probability results when f(x; ξ) is

G-Lipschitz continuous.

For high probability analysis, we adopt the noisy gradient estimator

of Eq. (6.3) and the update of Eq. (6.7) to solve SBCO. Similar to the

analysis of R-III in Theorem 6.1, with high probability at least 1− p̃,

f(xk)− f(xk−1,∗) ≤
c2ε2θk−1
2ηkt

+ ηkd
2G2

2 +
4dGcεθk−1

√
3 log(1

p
)

√
t

+ 2Gδk,

where we set Dk = cεθk−1. To establish the induction f(xk) − f∗ ≤ εk,

we set δk = εk/(8G), ηk = εk/(2d2G2), t = O(d2 log(K/p̃)/ε2(1−θ)) and

K = dlog(ε0/ε)e, where p̃ = p/K. As a result, the total iteration

complexity is Õ(d2/ε2(1−θ)) with probability of 1− p.

6.6 Experiments

In this section, we conduct experiments on real-world datasets in vari-

ous settings to demonstrate the superior performance of the proposed

acceleration approach in Algorithm 6.1. We run experiments in a per-

sonal computer with Intel CPU@3.70GHz and 16GB memory.
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To compare the efficiency of the acceleration framework with prior

methods, we will show the evolution of function values with respect to

the number of iterations. We adopt three baselines: the first is OPE

from (Flaxman et al., 2005); the second is TPEA from (Agarwal et al.,

2010); and the third is TPEN from (Nesterov and Spokoiny, 2017). We

add a term “Acc” to denote our acceleration version for each baseline

in experiments. To show experimental results, we run experiments

ten times with the same initialization point, and show the average of

function values. For the first experiment on real-world datasets, we

also show error bars of a standard variance.
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6.6.1 Music Recommendation Competition Data

We consider the ensemble learning setting of recommendations as a

black-box optimization problem discussed in Lian et al. (2016). In par-

ticular, we blend the existing models in Chen et al. (2011) for music

recommendation competition in KDD-Cup 2011, which turns out to

be a linear regression problem. Since true ratings for the test set are

unknown in competition, the feedback is the evaluation of the linear re-

gression prediction of the blended model. Thus, this ensemble learning

case is SBCO.

We get predicted ratings of individual models in Chen et al. (2011)

for the test set in KDD-Cup 2011, with 237 models and 6,005,940 pre-

dictions for each model. In addition to a square loss (Lian et al., 2016),

we also consider an absolute loss and a huber loss (Zadorozhnyi et al.,

2016) as objective functions. For better demonstrations of convergence

rate, we sample 10 models from 237 models with predicted ratings de-

noted by w ∈ R10 in ensemble learning, and set the number of training

points as N = 105. The ground truth of sample i is denoted by ri.

We show the superior convergence of our proposed acceleration ap-

proach with different objective functions in Figure 6.1. From the stan-

dard variance error bar, we clearly find that our approach stably accel-

erates the existing SBCO algorithms with order improvements.

6.6.2 Industrial Data on Ceramic Thin Films

We consider industrial data on crystallization of ceramic thin films

in Nakamura et al. (2017). The goal for the industrial application on

crystallization of ceramic thin films is to determine an optimal setting

for the volume of tetraethylene glycol (TEG), temperature (T), and the

time of heat to a temperature in time (HTI), which is in fact a SBCO
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Figure 6.2: Growth of ceramic thin films with T = 104.

problem. The objective of the experiment is a quadratic function. For

more details, please refer to Nakamura et al. (2017); Wang et al. (2017).

By updating the values of TEG, T and HTI, we show the growth

of ceramic thin films with the number of iterations in Figure 6.2. The

superior performance of the acceleration via Algorithm 6.1 is clear. We

also test different intensity of noises, and find that the acceleration is

robust. Note that, in ceramic thin films, we solve a concave function

and thus the function value increases.

6.7 Conclusion

In this chapter, we have developed a generic acceleration approach to

solve the problem of SBCO. We tackled the SBCO problem with the

core idea of exploring an LEB condition of objective functions, which

is frequently encountered in real applications. The benefits of the pro-

posed acceleration technique are three-fold: wide applicability, weak

assumption and improvements on iteration complexity. With LEB con-
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dition, the best upper bound here can be min(O(d2 log(1/ε)), Õ(d/ε)),

and the improvement over existing results is up to a factor of 1/ε2.

Experimental results have shown superior and robust performance of

the proposed acceleration approach.

2 End of chapter.



Chapter 7

Conclusion and Discussions

In this chapter, we conclude the study of efficient learning in stochastic

bandits. First, we give a summary of contributions in this thesis. Then,

we list three interesting future directions in bandits.

7.1 Main Contributions

The topic of efficient learning in stochastic bandits lies in the domain

of machine learning. We developed efficient algorithms for problems

of learning in stochastic bandits. We have demonstrated the effec-

tiveness and efficiency of the algorithms by theoretical analyses and

experiments. In particular, we have the following summarizations.

In Chapter 3, we investigated the problem of pure exploration of

mean-variance. We have solved three technical challenges by rigorously

proving that the error resulting from the mean-variance estimation is

sub-gamma. Besides, we developed two efficient algorithms to tackle

the problem. With the sub-gamma noises, we derived upper bounds

of the probability of error for the proposed algorithms. By conduct-

ing a series of experiments on synthetic and real-world datasets, we

demonstrated the two algorithms are superior and robust.

153
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In Chapter 4, we broke the assumption of payoffs under sub-Gaussian

noises in pure exploration of MAB, and investigated best arm identi-

fication of MAB with a general assumption that the p-th moments of

stochastic payoffs are bounded, where p ∈ (1,+∞). We have tech-

nically analyzed tail probabilities of empirical average and truncated

empirical average for estimating expected payoffs in sequential deci-

sions. Besides, we proposed two bandit algorithms for pure explo-

ration of MAB with heavy-tailed payoffs. Finally, we derived theoret-

ical guarantees of the proposed bandit algorithms, and demonstrated

the effectiveness of bandit algorithms in pure exploration of MAB with

heavy-tailed payoffs.

In Chapter 5, we studied the problem of linear stochastic bandits

with heavy tails. We rigorously analyzed the lower bound of the prob-

lem, and developed two novel bandit algorithms with regret upper

bounds matching the lower bound up to polylogarithmic factors. In

the sense of polynomial dependence on T , we provided optimal algo-

rithms for the problem. Finally, our proposed algorithms have been

evaluated based on synthetic datasets, and outperformed the state-of-

the-art results.

In Chapter 6, we developed a generic acceleration approach to solve

the problem of stochastic bandit optimization. We tackled the problem

with the core idea of exploring an error bound condition of objective

functions. With the error bound condition, the best upper bound here

can be min(O(d2 log(1/ε)), Õ(d/ε)), and the improvement over existing

results is up to a factor of 1/ε2. Experimental results have shown

superior and robust performance of the proposed acceleration approach.
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7.2 Future Directions

In machine learning, automatically learning is an important branch,

especially for sequential decisions in practical scenarios. From the

perspective of automatically learning of bandits, where payoffs can

be sub-Gaussian or heavy tails, our high-level goal is to develop ef-

ficient automatic bandit algorithms with good theoretical guarantees

for real applications, e.g., adaptive online recommendations and auto-

matic portfolio selection.

In this thesis, we have fully investigated efficient learning in stochas-

tic bandits. There are many other interesting open problems in ban-

dits. Specifically, we list the following three sub-problems for future

directions:

1. A direct extension of this thesis is to investigate the problem of

bandits with outliers, where some of the payoffs could change

arbitrarily without the constraints p.

2. The state-of-the-art algorithms for heavy-tailed payoffs assuming

the boundedness of the moments of order p, i.e., E [|yt|p|Ft−1] ≤ b

or E [|ηt|p|Ft−1] ≤ c, require the prior knowledge on p and b or

c. In real data, we usually do not have access to this knowl-

edge. Thus, a potential problem we would like to investigate is

automatically learning p and b or c.

3. The third potential direction is that bandits can have time-varying

tails, e.g., change from sub-Gaussian tails to heavy tails. To de-

rive theoretical results for automatically learning this problem is

a big challenge.
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for linear stochastic bandits. In Annual Conference on Neural Infor-

mation Processing Systems, pages 2312–2320, 2011.

N. Abe and P. M. Long. Associative reinforcement learning using linear

probabilistic concepts. In ICML, pages 3–11, 1999.

A. Agarwal, O. Dekel, and L. Xiao. Optimal algorithms for online

convex optimization with multi-point bandit feedback. In COLT,

pages 28–40, 2010.

R. Agrawal. Sample mean based index policies by o (log n) regret for

the multi-armed bandit problem. Advances in Applied Probability,

27(4):1054–1078, 1995.

S. Agrawal and N. Goyal. Analysis of thompson sampling for the multi-

armed bandit problem. In Conference on Learning Theory, pages

39–1, 2012.

S. Agrawal and N. Goyal. Further optimal regret bounds for thomp-

son sampling. In Artificial Intelligence and Statistics, pages 99–107,

2013a.

S. Agrawal and N. Goyal. Thompson sampling for contextual bandits

with linear payoffs. In International Conference on Machine Learn-

ing, pages 127–135, 2013b.

N. Alon, N. Cesa-Bianchi, C. Gentile, S. Mannor, Y. Mansour,

158



BIBLIOGRAPHY 159

and O. Shamir. Nonstochastic multi-armed bandits with graph-

structured feedback. SIAM Journal on Computing, 46(6):1785–1826,

2017.

J.-Y. Audibert and S. Bubeck. Minimax policies for adversarial and

stochastic bandits. In COLT, pages 217–226, 2009.

J.-Y. Audibert and S. Bubeck. Best arm identification in multi-armed

bandits. In Conference on Learning Theory, pages 13–p, 2010.

J.-Y. Audibert, R. Munos, and C. Szepesvári. Exploration–exploitation
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