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Abstract of thesis entitled:
Self-Supervised Learning of Dense Correspondence

Submitted by LIU, Pengpeng
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in September 2020

Correspondence, which describes how pixels in one image
correspond to those of another, is a fundamental problem in
computer vision. Recent methods based on convolutional neural
networks (CNNs) have achieved great success in this field. To
train such CNNs with high performance, we need to collect a
large amount of labeled data. However, it is extremely difficult
to obtain densely labeled correspondences for real-world scenes.
In this thesis, we explore self-supervised learning approaches
for correspondence estimation, which significantly reduce the
reliance on labeling correspondences.

Throughout the history of computer vision, dense correspon-
dence is mostly motivated by two basic problems: optical flow
(dense correspondence between two adjacent frames in a video)
and stereo matching (dense correspondence between a stereo
image pair). In this thesis, we mainly focus on self-supervised
optical flow estimation. Besides, we explore self-supervised
learning on a special case of dense correspondence: 3D face
reconstruction (dense correspondence between a 2D face image
and a 3D face model).

For optical flow estimation, we propose a series of self-
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supervised learning approaches: DDFlow, SelFlow, Flow2Stereo
and DistillFlow. In DDFlow, we propose the first data distilla-
tion approach to learning optical flow estimation from unlabeled
data. DDFlow optimizes two models (a teacher model and a
student model) and uses reliable predictions from the teacher
model as annotations to supervise the student model. Unlike
previous work relying on hand-crafted energy terms to handle
occlusion, DDFlow is data-driven and can more effectively learn
optical flow for occluded pixels. To make data distillation
effective for a wider range of occlusions, we introduce a super-
pixels based occlusion hallucination technique in SelFlow. In
Flow2Stereo, we show that the key of self-supervised training
is creating challenging input-output pairs, and then letting
confident predictions to supervise less confident predictions. In
DistillFlow, we summarize the challenging transformations into
three categories: occlusion hallucination based transformations,
geometric transformations and color transformations. During
the self-supervised training, the performance of the teacher
model determines the upper bound of the student model. To lift
the upper bound, we explore three improvement directions: 1) in
SelFlow, we propose to utilize more frames and explore temporal
information, 2) in Flow2Stereo, we propose to use stereo videos
and explore the relationship between optical flow and stereo
disparity, 3) in DistillFlow, we propose model distillation and
ensemble multiple teacher predictions. Our proposed self-
supervised learning approaches outperform previous unsuper-
vised flow methods by a large margin on different datasets, e.g.,
KITTI 2012, KITTI 2015 and MPI-Sintel. Besides, current
supervised learning methods highly rely on pre-training on
synthetic datasets (e.g., FlyingChairs and FlyingThings3D).
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Our self-supervised pre-trained model provides an excellent
initialization for supervised fine-tuning, suggesting an alternate
training paradigm.

For stereo matching, we regard stereo disparity as a special
case of optical flow and use one unified model to estimate both
flow and stereo in Flow2Stereo. When directly estimating stereo
disparity with the unified flow model, it also achieves state-of-
the-art stereo matching performance.

For 3D face reconstruction, we propose a self-supervised
learning scheme based on visible texture swapping. To alleviate
the ill-posed nature of regressing 3D face geometry from a single
image, the scheme exploits face geometry information embedded
in multiple frames of the same person. Our method achieves
superior qualitative and quantitative results on AFLW-2000-3D,
Florence and FaceWarehouse datasets.
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論文題目：自監督學習密集匹配

作者 ：劉鵬鵬

學校 ：香港中文大學

學系 ：計算機科學與工程學系

修讀學位：哲學博士

摘要 ：

匹配是計算機視覺中的一個基本問題，它描述了一幅圖像

中的像素如何與另一幅圖像的像素相匹配。近年來，基於卷

積神經網絡（CNNs）的方法在這一領域取得了很大的成功。
為了訓練高性能的CNNs，我們需要收集大量的標記數據。然
而，要獲得真實場景中有密集標註的對應關係是極其困難的。

在本論文中，我們探索使用自監督方法估計密集的匹配，這將

大大減少對標註數據的依賴。

縱觀計算機視覺的發展史，密集匹配主要包含兩個基本問

題：光流（視頻中相鄰兩幀之間的密集匹配）和立體匹配（雙

目圖像對之間的密集匹配）。本文主要研究自監督的光流估

計。此外，我們還研究了一種特殊形式的密集匹配：三維人臉

重建（二維人臉圖像和三維人臉模型之間的密集匹配）。

在光流估計方面，我們提出了一系列不斷改進的自監

督學習方法：DDFlow、SelFlow、Flow2Stereo和DistillFlow。
在DDFlow中，我們第一次提出了一種從未標記數據中學習
光流估計的數據蒸餾方法。DDFlow優化兩個模型（教師模型
和學生模型），並使用來自教師模型的可靠預測作為標註來

指導學生模型。以前的方法使用人工定義的能量函數來處理

遮擋。不同於之前的方法，DDFlow使用數據驅動來更有效地
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學習被遮擋像素的光流。為了使數據蒸餾能處理更多形式的

遮擋，我們在SelFlow中引入了一種基於超像素的創造遮擋的
方法。在Flow2Stereo中，我們證明了自監督訓練的關鍵是創
建具有挑戰性的輸入輸出對，然後讓置信度高的光流去指導

置信度低的光流。在DistillFlow中，我們將有挑戰性的變換
歸納為三類：基於遮擋的變換、幾何變換和顏色變換。在自

監督訓練中，教師模型的性能決定了學生模型的上限。為了

提高上限，我們探索了三個改進方向：1）在SelFlow中，我
們利用更多的圖像幀和時序信息；2）在Flow2Stereo中，我們
建議使用雙目視頻，探索光流與立體視差之間的關係；3）
在DistillFlow中，我們提出模型蒸餾來綜合多個教師模型的
預測。我們提出的自監督學習方法在各個數據集上都遠超之

前的無監督學習方法，比如KITTI 2012、KITTI 2015和MPI
Sintel。此外，當前的有監督學習方法高度依賴在合成數據
（例如，FlyingChairs和FlyingThings3D）上進行預訓練。我
們的自監督預訓練模型為有監督的微調提供了一個極好的初始

化，可以取消對合成數據的依賴，這是一種新的訓練範式。

在立體匹配方面，我們將雙目視差看作為一種特殊形式的

光流，並使用一個統一的模型來估計光流和雙目視差。當使用

這個統一的光流模型直接估計雙目視差時，也達到了最優的立

體匹配結果。

對於三維人臉重建，我們提出了一種基於可見紋理

交換的自監督學習框架。為了減少從單個圖像中回歸三

維人臉的不適應性，該方案充分利用同一個人臉在多

個圖像幀中的幾何互補信息。我們的方法在AFLW-2000-
3D、Florence和FaceWarehouse數據集上取得了最優的可視化
和量化結果。
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f at current level.

Then coarse flow, cost volume and current feature
representations (aligned by 1 × 1 convolution
layer) are concatenated together as the input
to the decoder to learn the residual flow. The
decoder is shared at different levels. . . . . . . . . 90

3.20 Occlusion hallucination scheme. The scheme
creates hand-crafted occlusions, e.g., pixel p1 is
non-occluded from I1 to I2 but become occluded
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Chapter 1

Introduction

This thesis presents our exploration on self-supervised learning
of dense correspondence, which is a fundamental problem in
computer vision. We provide a brief overview of the research
problems under study in Section 1.1, and highlight the main
contributions of this thesis in Section 1.2. Section 1.3 outlines
the thesis organization.

1.1 Overview

The human visual system is quite amazing, allowing us to
understand the structure of the 3D world and distinguish
moving or still objects as a whole. A key mechanism for this
perception is the power of our eyes to establish correspondence.
Correspondence denotes how pixels of one image match to pixels
of another image (Figure 1.1). There are generally two types
of correspondence scenarios in our visual system: binocular
parallax and motion parallax. Our left and right eyes see
different images of the same object, and the slight deviation
between the two images is called binocular parallax. Binocular
parallax is the main reason why our eyes can perceive the 3D

1
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Figure 1.1: Pixel-wise correspondence between two images.

environment. Similarly, our left eyes or right eyes see different
images when objects move from one place to another place,
and the deviation between images captured at different times
is called motion parallax. Motion parallax not only enables us
to perceive the motion in the world, but also helps us better
perceive the 3D environment. For example, when the same
spatial movement occurs, the displacement of the distant object
is smaller than the nearby object in our visual system. Binocular
parallax and motion parallax have been applied widely in our
live, e.g., 3D movies utilize binocular parallax, while Virtual
Reality (VR) utilizes the combination of binocular parallax and
motion parallax to achieve more realistic and vivid 3D visual
effects.

In computer vision, optical flow [50] and stereo disparity [64]
are two types of dense correspondences that imitate binocular
parallax and motion parallax respectively. When referring
to dense correspondence, the task is to find matches for all



CHAPTER 1. INTRODUCTION 3

𝑂𝑙 𝑂𝑟
𝑝𝑙(𝑡) 𝑝𝑟(𝑡)

𝑃(𝑡) epipolar line

(b) Stereo Geometry

𝑃′(𝑡)𝑃′′(𝑡)
epipolar line

𝑂𝑙 𝑂𝑟
𝑝𝑙(𝑡) 𝑝𝑟(𝑡)

𝑃(𝑡)

(c) Rectified Stereo Geometry

disparity𝑝𝑟′ (𝑡)
𝑂

𝑃(𝑡)
𝑃(𝑡 + ∆𝑡)𝑉∆𝑡

flow𝑝(𝑡) 𝑝(𝑡 + ∆𝑡)

(a) Flow Geometry

Figure 1.2: The geometry of optical flow and stereo matching.

pixels. Optical flow represents the motion of pixels between
two adjacent images, which is the projection of the 3D motion
into the 2D image plane (Figure 1.2 (a)). Stereo disparity
is the difference between the projected coordinates in the left
and right stereo images (Figure 1.2 (b) and (c)). In stereo
vision, the 3D locations of the projected image points can be
computed through triangulation. As shown in Figure 1.2 (b), if
we only consider left camera Ol, the corresponding 3D location
of point pl(t) has infinite solutions, such as P (t), P

′

(t), P
′′

(t),
etc. When we have the correspondence pixels in both left and
right images, the corresponding 3D location of point pl(t) is
determined as P (t). In particular, for rectified cameras (left
and right camera are parallel, Figure 1.2(c)), the depth is scaled
inverse to the disparity. Suppose f is the focal length of the
cameras, B is the distance between two camera centers, then
disparity D can be directly converted to depth by fB/D. This
explains why stereo matching is used for analyzing the 3D
structure of objects. Actually, optical flow can also be employed
to understand the 3D world as long as the ego-motion (i.e.,
relative rotation and translation of camera center from time t
to time t + ∆t) [153, 167, 171] is estimated. Some other works
combine the estimation of optical flow and stereo disparity for
understanding the 3D motion of pixels [138, 139], which is known
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as scene flow estimation.
Traditional approaches for optical flow estimation [13, 50,

117] and stereo matching [49, 64, 129] usually first find initial
matches by optimizing a variational energy function, and then
refine the matches with post-processing. However, these meth-
ods are often computationally expensive. Recent convolutional
neural network (CNN) based methods directly estimate optical
flow [29, 52, 54, 112, 127] or stereo matching [20, 65] from
two raw images, achieving high accuracy with real-time speed.
However, these fully supervised methods require a large amount
of labeled data to obtain state-of-the-art performance. For
other computer vision tasks such as image classification [47, 74],
segmentation [22, 163] and object detection [39, 114], we can
seek people for help to label the ground truth. However,
obtaining ground truth optical flow and stereo disparity is
an extremely challenging task, since the 3D locations of the
pixels are usually unknown. Currently, only sparsely annotated
real-world flow and disparity data can only be obtained in a
controllable environment [37]. To reduce the reliance of labeled
data, researchers start to pre-train on synthetic datasets [29, 95].
Nonetheless, the distributions of synthetic datasets are usually
different from real-world scenes. Therefore, models trained on
synthetic datasets tend to perform poorly on real-world image
sequences, especially when the domain gap is large. To reduce
the reliance on the labeled data, we propose to learn dense
correspondence in a self-supervised manner. Self-supervised
learning enables us to utilize unlimited unlabeled data.

Apart from optical flow and stereo matching, we consider
another special dense correspondence: 3D face reconstruction,
where we need to establish the dense correspondence between
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Figure 1.3: 3D face reconstruction. In this thesis, we regard 3D face
reconstruction as a dense correspondence problem, which describes the dense
correspondence between a 2D face image and a 3D face model.

a 2D face image and a 3D face model (Figure 1.3). Current
popular 3D face models (e.g., BFM [108] and FLAME [80]) are
mainly based on 3DMM [10], which represent 3D faces with
linear combination of PCA vectors. Every vertex in the 3D
face model has a specific semantic meaning, e.g., which vertices
belong to eyes, mouth, nose, etc. From this point of view,
3D face reconstruction can be regarded as the combination of
dense face alignment and depth estimation. However, 3D face
reconstruction from a single image is an ill-posed problem due
to the depth ambiguity. To address this issue, we propose to
learn 3D face reconstruction from multiple frames and explore
multi-frame shape and texture consistency in a self-supervised
manner.

These exist strong relationships between these three types of
dense correspondences (Figure 1.4):
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of Dense Correspondence
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Figure 1.4: Thesis overview. Stereo matching can be regarded as a special
case of optical flow, and optical flow is applied as a 2D constraint in 3D face
reconstruction. From this point of view, the topic of this thesis can also be
referred to as optical flow and its applications.

• Stereo matching can be regarded as a special case

of optical flow.

According to stereo epipolar geometry, for a pixel on the left
image, its corresponding pixel on the right image shall lie
on the epipolar line (Figure 1.2(b)). For rectified cameras,
the epipolar line is along the horizontal direction (Fig-
ure 1.2(b)). This is due to the rigidity of the scene, that is,
the difference between left and right images is only caused
by the relative location and orientation of the cameras.
Therefore, stereo matching is a 1D searching problem along
the epipolar line. However, epipolar constraint does not
hold anymore for optical flow estimation, since both the
camera and objects can move independently from time t

to time t + ∆t. Therefore, optical flow estimation is a
2D searching problem. From this point of view, stereo
matching can be regarded as a special case of optical flow.

• 3D face reconstruction can be regarded as an appli-

cation of optical flow.

In our self-supervised 3D face reconstruction framework,
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multiple images of the same identity are required. We
generate a 3D mesh for each image, where every correspond-
ing vertex of different meshes shares the same semantic
meaning. Then, we can compute 3D face flow for every
two meshes. The projection of 3D face flow onto the 2D
image plane is exactly the optical flow between two faces.
Therefore, we can utilize optical flow as a 2D constraint
for multi-frame 3D face reconstruction. From this point
of view, 3D face reconstruction can be regarded as an
application of optical flow.

To sum up, the topic of this thesis can also be referred to as
optical flow and its applications.

1.2 Thesis Contributions

In this thesis, we aim at designing effective self-supervised learn-
ing methods for dense correspondence estimation. As stated in
Section 1.1, we mainly focus on optical flow estimation and pro-
pose a series of self-supervised methods, including DDFlow [85],
SelFlow [86], Flow2Stereo [87] and DistillFlow. Among them,
Flow2Stereo [87] is also designed for stereo matching. Besides,
we introduce a self-supervised learning framework for 3D face
reconstruction, which can be regarded as a special case of dense
correspondence. We summarize our contributions as follows:

• DDFlow [85]: Previous unsupervised optical flow meth-
ods are mainly based on brightness consistency and spatial
smoothness assumption. They employ image warping and
measure the difference between the reference image and
the warped target image with a photometric loss. Such
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methods work well for non-occluded pixels, but lack the
key ability to effectively learn optical flow of occluded
pixels. To address the issue, we propose DDFlow, the first
work that employs data distillation in unsupervised optical
flow estimation. In the self-supervised learning framework,
two models are optimized: a teacher model and a stu-
dent model. DDFlow distills reliable predictions from the
teacher model, and uses these predictions as annotations
to guide the student network to learn optical flow. To
make data distillation effective, cropping is employed to
the input of the student model for occlusion hallucination.
On average, DDFlow achieves performance improvement
more than 25% on KITTI and Sintel datasets compared
with previous best unsupervised learning methods. The
improvement over occluded pixels is more significant.

• SelFlow [86]: DDFlow works well for occlusions near the
image boundary, but is not so effective for occlusions else-
where. To make data distillation effective for a wider range
of occlusions, we introduce a superpixel based occlusion
hallucination technique in SelFlow. Besides, we also design
a simple CNN to utilize temporal information from multiple
frames for better flow estimation. SelFlow achieves great
performance improvement over DDFlow. More impor-
tantly, the performance gap between unsupervised methods
and state-of-the-art supervised methods is greatly reduced
with self-supervised training. We find that the pre-trained
model of SelFlow provides an excellent initialization for
supervised fine-tuning. After fine-tuning, SelFlow achieves
the highest reported accuracy (EPE = 4.262 pixels) on
the Sintel benchmark (rank 1st from November 2018 to
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November 2019). On KITTI datasets, SelFlow also achieves
state-of-the-art results. This is the first time that a super-
vised learning method achieves such remarkable accuracies
without using any external labeled data. The results
demonstrate that it is possible to completely reduce the
reliance of pre-training on synthetic labeled datasets in
supervised flow learning.

• Flow2Stereo [87]: For DDFlow and SelFlow, the training
procedure contains two stages: unsupervised training for
the teacher model (stage 1) and self-supervised training
for the student model (stage 2). In Flow2Stereo, we
unveil two bottlenecks. First, the teacher model is fixed
in stage 2, therefore the performance is upper bounded by
the flow prediction from the teacher model. To lift the
upper bound of confident predictions, we propose to utilize
stereoscopic videos and reveal the geometric relationship
between optical flow and stereo disparity. Second, we
show that the key of self-supervised training is to create
challenging input-output pairs, and then let confident pre-
dictions to supervised less confident predictions. Therefore,
apart from occlusion hallucinated techniques, we propose
to create more challenging transformations (e.g., scaling).
We also show that it does not make much difference to
distinguish between occluded and non-occluded pixels in
stage 2. Flow2Stereo achieves great performance improve-
ment over DDFlow and SelFlow on KITTI datasets, and
even outperforms some famous fully supervised methods
(e.g., FlowNet2 and PWC-Net on KITTI 2012). Besides,
we regard stereo matching as a special case of optical
flow and use one unified network to estimate both flow
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and stereo. The single model also achieves state-of-the-art
unsupervised stereo matching performance.

• DistillFlow: In Flow2Stereo, we show that the key of self-
supervised training is to create challenging transformations,
but do not give the definitions of these challenging trans-
formations. In DistillFlow, we summary the challenging
transformations as three categories: occlusion hallucination
based transformations, geometric transformation and color
transformations. Besides, we improve the training proto-
col compared with our previous works in three aspects:
improved network structure, spatial regularizer and model
distillation. These modifications greatly improve the per-
formance on both KITTI and Sintel datasets. Specifically,
we improve the flow accuracy over the monocular version
of Flow2Stereo by 15% on KITTI 2012, 29% on KITTI
2015, and improve flow accuracy over SelFlow by 36%
on Sintel Clean, by 12% on Sintel Final. Moreover, we
demonstrate the generalization capability of DistillFlow in
three aspects: framework generalization, correspondence
generalization and cross dataset generalization. In frame-
work generalization, we first show that our knowledge
distillation framework is applicable to different network
structures (e.g., PWC-Net, FlowNetS and FlowNetC), then
extend the knowledge distillation idea to semi-supervised
learning for further performance improvement. With semi-
supervised training, we achieve new state-of-the-art super-
vised learning results, with Fl = 5.94% on KITTI 2015
(rank 1st among all submitted monocular methods) and
EPE = 4.095 pixels (rank 1st among all published methods)
on Sintel Final. For correspondence generalization, we show



CHAPTER 1. INTRODUCTION 11

that our flow model trained on monocular videos can be
directly used to estimate stereo disparity. For cross data
generalization, we evaluate the performance of the model
trained on another dataset (e.g., Sintel → KITTI and
KITTI → Sintel) and show that DistillFlow still achieves
comparable performance with previous methods.

• 3D Face Reconstruction: With a careful study, we
unveil the fact that when predicting pose, identity and
expression parameters simultaneously, regressing pose dom-
inates the optimization procedure, making it hard to obtain
accurate 3D face parameters. We solve this problem by
designing a pose guidance network to solely predict 3D
landmarks for estimating the pose parameters. Our pose
guidance network enables us to utilize both fully annotated
datasets with 3D landmarks and pseudo 2D landmarks
from unlabeled in-the-wild datasets. This leads to a more
accurate landmark estimator and thus helping better 3D
face reconstruction. Our network is further augmented
with a self-supervised learning scheme, which exploits face
geometry information embedded in multiple frames of the
same person, to alleviate the ill-posed nature of regressing
3D face geometry from a single image. Built on a visible
texture swapping module, our method explores multi-image
consistency in photometric level (with Census Transform to
improve the robustness for illumination), optical flow level
and semantic level to leverage shape/texture consistency
information of video frames in a self-supervised manner.
Evaluated on ALFW-2000-3D, Florence and FaceWare-
house datasets, our method achieves superior qualitative
and quantitative results compared to our baselines and
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other state-of-the-art approaches.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2: In this chapter, we review the background
and related work on self-supervised learning of dense cor-
respondence. We first review three kinds of dense corre-
spondences: optical flow, stereo matching and 3D face re-
construction. Then we review self-supervised learning, the
technique employed on dense correspondence estimation in
this thesis.

• Chapter 3: This chapter presents our exploration on self-
supervised learning of optical flow and stereo matching. We
presents four works in separated sections:

– DDFlow: "DDFlow: Learning Optical Flow with Un-

labeled Data Distillation"

– SelFlow: "SelFlow: Self-Supervised Learning of Opti-

cal Flow"

– Flow2Stereo: "Flow2Stereo: Effective Self-Supervised

Learning of Optical Flow and Stereo Matching"

– DistillFlow: "Learning by Distillation: A Self-Supervised

Learning Framework for Optical Flow Estimation"

Apart from Flow2Stereo that introduces a framework for
jointly learning optical flow and stereo matching, all other
methods are designed for optical flow estimation. We
also show the corresponding experiment results for each
method.
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• Chapter 4: In this chapter, we explore a special case of
dense correspondence: 3D face reconstruction. We first
present our findings on the bottleneck of pose estimation in
prior parametric 3D face learning methods, then introduce
a self-supervised learning framework for 3D face reconstruc-
tion from multiple frames of the same person. We also show
the effectiveness of our methods on several datasets.

• Chapter 5: The last chapter concludes the thesis and
provides some potential directions that deserve further
exploration.

✷ End of chapter.



Chapter 2

Background Review

This chapter reviews background knowledge and related works.
We first introduce three types of dense correspondences: optical
flow (Section 2.1), stereo matching (Section 2.2) and 3D face
reconstruction (Section 2.3). Then, we introduce the self-
supervised learning technique employed in this thesis (Sec-
tion 2.4). In each subsection, we first provide the background
knowledge, then review related literature.

2.1 Optical Flow

Optical flow describes the dense pixel motion between two
adjacent frames. As shown in Figure 2.1, the arrow map in
(b) shows the flow between two frames in (a). For better
visualization, we usually use color coding (c) to represent
motion, where hue denotes the direction of the motion, and
saturation denotes the magnitude of the motion. (d) shows the
color coding of optical flow in (b). From the geometry view,
optical flow is the projection of 3D pixel motion onto the 2D
image plane. As shown in Figure 1.2. Suppose P (t) is a point
in 3D space, and it moves to P (t + ∆t) with velocity V , then

14
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Figure 2.1: Optical flow estimation. (a) The input is two adjacent images.
(b) The output is a dense flow map. The arrow direction denotes the motion
direction, and the arrow magnitude denotes the motion magnitude. (c) Color
coding for more intuitive visualization. (d) Optical flow represented with
color coding.

the difference between the projected pixels p(t + ∆t) − p(t) is
the optical flow of pixels p(t).

Optical flow estimation is mainly based on brightness con-
stancy and spatial smoothness assumption since the pioneering
work of Horn and Schunck [50]. As shown in Figure 2.2, suppose
the red pixel (x, y) in It moves to pixel (x+u, y+v) in It+1 with
the displacement (u, v), then the color of pixel It(x, y) shall be
the same as It+1(x + u, y + v). Then, the brightness constancy
assumption equation can be written as follows:

It(x, y) = It+1(x+ u, y + v). (2.1)

Take the Taylor series expansion of It+1, we can obtain:

It+1(x+u, y+v) = It+1(x, y)+
δIt+1

δx
u+

δIt+1

δy
v+higher order terms.

(2.2)
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Figure 2.2: Brightness constancy.

Assume the motion is small, i.e., pixels don’t move far from
It to It+1, then

It+1(x+ u, y + v) ≈ It+1(x, y) +
δIt+1

δx
u+

δIt+1

δy
v. (2.3)

According to the brightness constancy equation (Equation (2.1))
and the Taylor series expansion (Equation (2.3)), we can rewrite
the brightness constancy constraint as follows:

It(x, y) ≈ It+1(x, y) +
δIt+1

δx
u+

δIt+1

δy
v, (2.4)

or

It+1(x, y) − It(x, y) +
δIt+1

δx
u+

δIt+1

δy
v ≈ 0. (2.5)

Equation (2.5) can be rewritten more compactly as follow:

(It+1(x, y) − It(x, y)) + ∇I · (u, v) ≈ 0, (2.6)

where ∇I = (δIt+1

δx
, δIt+1

δx
) is the spatial intensity gradient.

Equation (2.6) is called 2D motion constraint equation.
In equation (2.6), there are two unknown variables u and v

per pixel. An equation with two variables cannot be solved.
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Figure 2.3: An example of the aperture problem.

As a result, we can only estimate the component of flow that
is parallel to the gradient. This is due the aperture problem:
the local motion information from a small receptive field is
insufficient to measure the global motion. Figure 2.3 shows an
example, where (a) shows the actual motion (bottom right). If
we only estimate the motion from the center circle region in (b),
the perceived motion changes to up right.

The intuitive solution to the aperture problem is to add more
constraint for each pixel. To alleviate the ambiguity, Lucas and
Kanade [92] propose to add spatial smoothness constraint, i.e.,
the pixel’s neighbors have similar motion as itself. Consider n
neighbors of one pixel p, then we can obtain n + 1 equations
according to Equation (2.5):





It+1(p) − It(p) + δIt+1

δx
(p)u+ δIt+1

δy
(p)v ≈ 0

It+1(p1) − It(p1) + δIt+1

δx
(p1)u+ δIt+1

δy
(p1)v ≈ 0

· · ·

It+1(pn) − It(pn) + δIt+1

δx
(pn)u+ δIt+1

δy
(pn)v ≈ 0

, (2.7)

where pi is the neighbor of pixel p. Equation (2.7) can be
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Figure 2.4: Optical flow interpolation from sparse matches.

rewritten as follow:




δIt+1

δx
(p) δIt+1

δx
(p)

δIt+1

δx
(p1)

δIt+1

δx
(p1)

... ...
δIt+1

δx
(pn) δIt+1

δx
(pn)





u

v


 ≈ −




It+1(p) − It(p)
It+1(p1) − It(p1)

...
It+1(pn) − It(pn)



. (2.8)

Equation (2.8) is a simple least square problem. Recall
that only when the assumption of small motion is held, Equa-
tion (2.8) is solvable. To estimate the flow of pixels with
large motion, researchers propose to refine flow in a coarse-
to-fine manner [125]. In particular, they first estimate optical
flow at low resolution for a coarse prediction, then refine the
prediction in high resolution. Later works [13, 143] integrate
feature matching to find reliable sparse matches. The seminal
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Figure 2.5: Optical flow estimation with CNNs. Figure is from [29]

work EpicFlow [117] interpolates dense flow from sparse matches
(Figure 2.4) and has become a widely used post-processing
pipeline. There are also some works that use temporal infor-
mation over multiple frames to improve the robustness and
accuracy by adding temporal constraints, such as constant
velocity [58, 66, 126], constant acceleration [140, 8] and so on.
Recently, [4, 146] use convolutional neural networks (CNNs)
to learn a feature embedding for better matching and have
demonstrated superior performance. However, these methods
are often computationally expensive and can not be trained end-
to-end. In this thesis, we use CNNs to directly estimate optical
flow in an end-to-end manner, which is very efficient.

Supervised Optical Flow Methods. Inspired by the devel-
opment of deep neural networks, CNNs have been successfully
applied to optical flow estimation. The pioneering work FlowNet
[29] proposes two types of CNN, FlowNetS and FlowNetC,
which take two consecutive images as input and output a
dense optical flow map as shown in Figure 2.5. The follow-
up FlowNet 2.0 [54] stacks several basic FlowNet models and
refines the flow iteratively, which significantly improves accu-
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Figure 2.6: Comparison of SpyNet [112] and PWC-Net [127]. Figure is
from [127]

racy. SpyNet [112] proposes a light-weight network architecture
by employing image warping at different scales in a coarse-to-
fine manner. However, its performance is behind the state-
of-the-art. PWC-Net [127] and LiteFlowNet [52] propose to
warp CNN features instead of images at different scales and
introduce cost volume construction, achieving state-of-the-art
performance with compact model size. Figure 2.6 shows the
network architecture comparison between SpyNet [112] and
PWC-Net [127]. PWC-Net was further improved by only using
a single network block with shared weights to iteratively refine
flow at different scales and adding occlusion reasoning [1].
VCN [149] introduces efficient volumetric networks for dense 2D
correspondence matching by exploring high-dimensional invari-
ance during cost volume computation. MaskFlowNet [164] pro-
poses an asymmetric occlusion-aware feature matching module,
which masks out those occluded regions after feature warping.
ScopeFlow [6] introduces an improved training protocol by
fully utilizing cropping randomly sized scene scopes. However,
due to lacking real-world ground truth optical flow, all the
above supervised learning methods highly rely on pre-training
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on synthetic datasets (e.g., FlyingChiars [29] and FlyingTh-
ings3D [96]) and follow specific training schedules. In this
thesis, we propose to employ self-supervised pre-training on
unlabeled image sequences to achieve excellent initializations,
which remove the reliance of pre-training on synthetic datasets.

Unsupervised Optical Flow Methods. Due to lacking
ground truth optical flow for natural image sequences, recent
studies turn to formulate optical flow estimation as an un-
supervised learning problem. Unsupervised flow learning is
similar to traditional flow methods [59, 116], which is based on
the brightness constancy and spatial smoothness assumption.
The basic idea is based on image warping to achieve view
synthesize, and then define a photometric loss measure the
difference between the reference image and the synthesized
warped target image. However, brightness constancy does
not hold anymore for occluded pixels, therefore [98, 142, 57]
propose to detect occlusion and exclude occluded pixels when
computing the photometric loss. Specifically, UnFlow [98] em-
ploys forward-backward consistency check to estimate occlusion,
while Back2FutureFlow [57] learns optical flow with multiple
frames to better handle occlusion and add velocity constancy
constraint. EpipolarFlow [165] proposes to incorporate global
geometric epipolar constraint into network learning to improve
performance. There are also works that propose to jointly learn
flow and depth from monocular videos [167, 171, 153, 113, 83]
or jointly learn flow and disparity from stereoscopic videos [75,
141]. Despite promising progress, they still lack the key ability
to effectively learn optical flow of occluded pixels and their
performance is far behind state-of-the-art supervised learning
methods. In this thesis, we propose a series of knowledge
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distillation based self-supervised learning methods to effectively
learn optical flow of both occluded and non-occluded pixels in a
totally unsupervised manner. Our methods achieve significant
improvement and are even comparable with fully supervised
learning methods.

2.2 Stereo Matching

Stereo disparity is the difference between the projected coor-
dinates in the left and right stereo images. As introduced in
Section 1.1, stereo matching can be regarded as a special case
of optical flow. We first illustrate the difference between stereo
matching and optical flow as follows:

• Stereo matching. Since two stereo images are captured
at the same time, the difference between the left and the
right image is only determined by the relative location of
the two cameras, i.e., the scenes are totally rigid. In this
case, for a pixel on the left image, its corresponding pixel
on the right image shall lie on the epipolar line, and vice
versa. As shown in Figure 1.2(b), the corresponding 3D
location of pixel pt may be P (t), P ′(t) or P ′′(t). Wherever
it is, its projection onto the right image shall lie on the
epipolar line (purple line in the right image). As a result,
stereo matching is a 1D matching problem, where we only
need to find the correspondence along the horizontal line.
For rectified stereo images, the epipolar line is along the
horizontal direction as shown in Figure 1.2(c).

• Optical flow. For optical flow estimation, the difference
between two adjacent images is influenced by two types of
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independent motions: the camera motion and the object
motions. If the object motions occur, epipolar constraint
does not hold, optical flow estimation becomes a 2D
matching problem. This is the most common case in real-
world scenes.

In short, stereo matching is a 1D matching problem, while op-
tical flow estimation is a 2D matching problem. In other words,
stereo matching is a simplified optical flow. Since they are both
correspondence problems, stereo matching methods are very
similar to optical flow estimation, which are mainly based on
brightness constancy and spatial smoothness assumption. One
important difference is that optical flow estimation is mostly
formulated as a local search problem, while stereo matching can
also be formulated as a global search problem. This is because
the computation cost for global search along the epipolar line is
acceptable, while for the whole 2D image region is unacceptable.
Next, we briefly introduce related literature.

Traditional Stereo Matching Methods. Traditional stereo
matching methods usually include four steps: matching cost
computation, cost aggregation, disparity optimization and dis-
parity refinement[122]. In general, traditional stereo matching
can be separated into two classes: local methods and global
methods. Local methods [122, 156, 160, 97] compute matching
cost to find corresponding pixels within a predefined disparity
range. Global methods, such as graph cut [73], belief prop-
agation [71], optimize both matching costs and smoothness
terms, which usually achieve better performance but have higher
computation cost. To improve the efficiency of global methods,
Semi-global matching (SGM) [49] provides an effective approx-
imation of global optimization through dynamic programming.
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Supervised Stereo Matching Methods. To further improve
accuracy and speed, researchers start to utilize CNNs for stereo
matching. Zbontar and LeCun [158] firstly employ CNNs
to compute matching cost between stereo images. Luo et

al. [93] introduce a siamese network which greatly accelerates
the matching cost computation. Chen et al. [24] introduce a
multi-scale deep embedding model which combines features of
different scales and provide good local matching results. Similar
to FlowNet [29], Mayer et al. [95] propose DispNetC, which
computes cost volume along the disparity line using 1D cor-
relation layer. DispNetC is directly trained to regress disparity
in an end-to-end manner. GC-Net [65] firstly proposes to use
3D convolution networks to combine contextual information for
cost volume. It is further improved by PSMNet [20], which
proposes a pyramid stereo matching network and stack several
3D hourglass networks for iterative refinement. There are also
interesting works that utilize semantic information [150], aiming
at real-time performance [67], toward applications-friendly [137]
and generalize deep stereo matching to novel domains [105].
However, all these supervised methods require a large number
of labeled stereo images, which are particularly challenging to
collect in the real world.

Unsupervised Stereo Matching Methods. One promising
direction is to train stereo matching networks with unlabeled
data. Garg et al. [36] present an image synthesis model
which warps target images toward source images using predicted
disparity for single view depth estimation. Godard et al. [40] in-
troduce left-right regularization to further improve the synthesis
results. Besides, it also presents a stereo version whose input is
the concatenation of both left and right view, which is exactly
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unsupervised stereo matching. Zhou et al. [166]employ left-
right consistency check to suitable matching patches for iterative
unsupervised training. Yang et al. [150] consider additional
semantic information, which applies warping reconstruction to
not only image, but also along with semantic maps semantic
feature embedding. Guo et al. [43] propose to first train on
synthetic datasets (e.g. Scene Flow dataset [95]) with ground
truth disparity maps, then fine-tune on real-world rectified
stereo images with left-right check to handle occlusions. In
this thesis, we propose a unified framework to jointly estimate
both flow and stereo in Flow2Stereo [87]. Flow2Stereo not
only handles occlusions but also has the ability to predict the
disparity of occluded pixels.

2.3 3D Face Reconstruction

Most 3D face shape models are derived from Blanz and Vetter
3D morphable models (3DMM) [10], which represents 3D faces
with linear combination of PCA vectors from a collection of
3D face scans. To make 3DMM more representative, Basel
Face Model (BFM) [108] improved shape and texture accuracy,
and FaceWarehouse [18] constructed a set of individual-specific
expression blend-shapes. Let S ∈ R

3N be a 3D face with N

vertices, S ∈ R
3N be the mean face geometry, Bid ∈ R

3N×m and
Bexp ∈ R

3N×n be PCA basis of identity and expression, αid ∈ R
m

and αexp ∈ R
n be the identity and expression parameters, m

and n are the ranks of the identity and expression PCA vectors
respectively. Then the 3DMM face model [10] can be defined as
follows:

S(αid,αexp) = S + Bidαid + Bexpαexp. (2.9)
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Then, a perspective or orthogonal projection model is applied
to project a 3D face point s onto an image plane. Take the
orthogonal projection model as an example, we can obtain:

v(αid,αexp) =


1 0 0
0 1 0


·(f ·R·s+t) =


1 0 0
0 1 0


·

[
f · R t

]
·


s

1


 ,

(2.10)
where v is the projected point on the image plane, f is a scaling
factor, R ∈ R

3×3 indicates a rotation matrix, t ∈ R
3 is a

translation vector. The combination of {f,R, t} are called pose
parameters. In 3D face reconstruction, the task is to fit three
types of parameters: the identity parameters, the expression
parameters and the pose parameters.

3D face landmark detection and 3D face reconstruction are
closely related. On the one hand, if the 3DMM parameters
can be estimated accurately, face landmark detection can be
greatly improved, especially for the occluded landmarks [168].
Therefore, several approaches [168, 90, 41] aligned 3D face by
fitting a 3DMM model. On the other hand, if 3D face landmarks
are precisely estimated, it can provide strong guidance for 3D
face reconstruction. In this thesis, we go towards the second
direction—first estimate 3D face landmarks by regressing UV
position map and then utilize it to guide 3D face reconstruction.
Next, we briefly introduce related work for 3D face reconstruc-
tion.

3D Face Reconstruction from a Single Image. To recon-
struct 3D faces from a single image, prior methods [134, 9, 118]
usually conduct iterative optimization methods to fit 3DMM
models by leveraging facial landmarks or local features e.g.,
color or edges. However, the convergence of optimization is
very sensitive to the initial parameters. Tremendous progress



CHAPTER 2. BACKGROUND REVIEW 27

has been made by CNNs that directly regress 3DMM parame-
ters [168, 30, 136]. Jackson et al. [55] directly regress the full 3D
facial structure via volumetric convolution. However, the volu-
metric convolution is computationally expensive, which restricts
its application for high-resolution reconstructions. Feng et

al. [33] predict a UV position map to represent the full 3D
shape. It is fast and can achieve pretty accurate 3D dense face
alignment performance. However, the estimated face geometry
lacks details and presents an unsmooth face surface that does
not look realistic. MMFace [151] jointly trains a volumetric
network and a parameter regression network, where the former
one is employed to refine pose parameters with ICP as post-
processing. All these three methods need to be trained in a
supervised manner, requiring full 3D face annotations, which
are limited at scale [168]. To bypass the limitation of training
data, Tewari et al. [133] and Genova et al. [38] propose to fit
3DMM models with only unlabeled images. They show that it is
possible to achieve great face reconstruction in an unsupervised
manner by minimizing photometric consistency or facial identity
loss. But due to depth ambiguity, these unsupervised monocular
methods fail to capture precise 3D facial structure. In this thesis,
we propose to mitigate the limitation of datasets by utilizing
both labeled and unlabeled datasets, and to learn better facial
geometry from multiple frames.

3D Face Reconstruction from Multiple Images. Estimat-
ing 3D face from a single image is an ill-posed problem due
to depth ambiguity. Therefore, utilizing multiple images from
multi-view sensors or videos, which can provide complementary
information, seems a more appropriate way to solve this prob-
lem. Piotraschke et al. [109] introduce an automated algorithm
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that selects and combines reconstructions of different facial
regions from multiple images into a single 3D face. RingNet [121]
considers shape consistency across different images of the same
person, while we focus on face reconstruction from videos, where
photometric consistency can be well employed. MVF [144]
regressed 3DMM parameters from multi-view images. However,
MVF assumes that the expressions in different views are the
same, therefore its application is restricted to multi-view images.
Our method does not have such constraint and can be applied
to both single-view and multi-view 3D face reconstruction.
The approach that is closest to ours is FML [131], which
learns face reconstruction from monocular videos by ensuring
consistent shape and appearance across frames. However, it only
adds multi-frame identity consistency constraints, which does
not fully utilize geometric constraints among different images.
Unlike FML, we do not model albedo to estimate texture
parameters, but directly sample textures from images, swap
commonly visible texture and project them onto different image
planes while enforcing photometric and semantic consistency.
Additionally, we introduce a pose guidance network, which
removes the need of pose parameter estimation and enables
our model to produce more accurate identity and expression
estimation.

2.4 Self-Supervised Learning

In this thesis, we aim to use CNNs to learn dense correspon-
dence. The success of training CNNs requires a large amount
of human-annotated labeled data. However, labeling dense
correspondence for real-world scenes is an extremely difficult
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task. Therefore, we propose to employ self-supervised learning
methods to extract knowledge from unlabeled data.

Self-supervised learning usually contains two stages: 1)
generate supervision signals from the data itself; 2) employ
the learned features or labels to train deep learning models
in a supervised manner. To generate the supervision signal,
a pretext task is usually employed[61]. The pretext task
is specially designed to either learn representative futures or
generate reliable labels. The common pretext tasks can be
summarized as follows:

• Image Inpainting [107, 88]: Image inpainting is the task
to restore the damages or fill-in the missing parts of images
with plausible contents. The input is the damaged image,
and the pseudo label (i.e., the output) is the original image
itself. The damaged image can be generated by randomly
selecting rectangle regions and filling them with constant
value or noise. As a result, the training pair can be obtained
easily with negligible cost.

• Image Colorization [161, 76]: Image colorization is
the task to transfer gray-scale images to colorful RGB
images. The input gray-scale image can be generated with a
simple transformation from the RGB image, and the pseudo
label is the original RGB image itself. Similar to image
inpainting, the training pair can be obtained easily.

• Image Super-resolution [77, 162]: Image super-resolution
is the task to transfer a low-resolution image to its high-
resolution counterpart. The input low-resolution images
can be generated by down-sampling high-resolution images
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by nearest sampling, bilinear sampling, etc. The pseudo
label is the high-resolution image itself.

• Video Frame Prediction [35, 89]: Video frame predic-
tion is the task to predict future frames given a sequence
of video frames. The pseudo label can be easily generated
by splitting the video into different clips.

• Order Prediction: Order prediction has many formula-
tions, such as predicting the relative locations (e.g., up,
down, left, right) of image patches [28], solving image jigsaw
puzzle[104], verifying whether the video frame sequences
are in a correct order[100], predicting the order of video
frames [78], etc. The pseudo labels are obtained straight-
forwardly.

Besides, the contrastive learning-based methods [46, 23] have
set the state-of-the-art results in self-supervised learning tasks.
Specifically, they build a dynamic dictionary and with a queue
and a moving-averaged encoder, which enable a large and
consistent dictionary.

For optical flow estimation, the pretext task is synthesizing
reference images by warping target images with the estimated
flow. To obtain more reliable pseudo flow labels, we employ
forward-backward consistency check in DDFlow [85], multi-
frame temporal information in SelFlow [86], geometric con-
straints in Flow2Stereo [87], and model distillation [48] in Dis-
tillFlow. Then we make use of the domain knowledge in optical
flow and utilize data distillation for self-supervision. Our data
distillation is different from [111] that ensembles predictions
from a single model applied to multiple transformations of unla-
beled image pairs as annotations. Instead, we create challenging
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image transformations to create hallucinated occlusions and
less confident predictions for effective self-supervision. Recent
works [84, 62] also show that the self-supervised training can be
simplified as one-stage training, where two forward mappings
are required and the parameters of the teacher model and the
student model are shared.

✷ End of chapter.



Chapter 3

Self-Supervised Learning of

Optical Flow and Stereo

Matching

This chapter presents our exploration on self-supervised learning
of optical flow and stereo matching, which are two fundamental
problems in computer vision. In particular, we propose a series
of continuous improvement methods for optical flow estimation:
Flow2Stereo in Section 3.1, SelFlow in Section 3.2, Flow2Stereo
in Section 3.3, DistillFlow in Section 3.4. In Flow2Stereo, we
regard stereo matching as a special case of optical flow and
jointly learn them with a unified model.

Before introducing each method in detail, we first introduce
Census Transform [157], which plays an important role in
unsupervised flow estimation. Census Transform is a non-
parametric local transform, which relies on the the relative
intensities of pixels rather than the absolute intensities. The
most common implementation of the census transform uses a
3×3 window, where we compare each pixel p with all its 8-
connected neighbors with a δ function:

32
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δ(p, p
′

) =





0, I(p) > I(p
′

)

1, I(p) ≤ I(p
′

)
(3.1)

After Census Transform, the image similarity is calculated
by hamming distance. The image similarity based on Census
Transform is more robust to illumination changes. Since
Hamming distance is discrete and not differentiable, we use a
continuous function to simulate it similar to UnFlow [98]. Next,
we introduce our self-supervised methods in detail.

3.1 DDFlow

3.1.1 Introduction

Optical flow estimation is a core computer vision building block,
with a wide range of applications, including autonomous driving
[99], object tracking [21], action recognition [124] and video
processing [11]. Traditional approaches [50, 12, 13] formulate
optical flow estimation as an energy minimization problem,
but they are often computationally expensive [146]. Recent
learning-based methods [29, 112, 54, 52, 127] overcome this
issue by directly estimating optical flow from raw images using
convolutional neural networks (CNNs). However, in order to
train such CNNs with high performance, it requires a large
collection of densely labeled data, which is extremely difficult
to obtain for real-world sequences.

One alternative is to use synthetic datasets. Unfortunately,
there usually exists a large domain gap between the distribution
of synthetic images and natural scenes [82]. Previous networks
[29, 112] trained only on synthetic data turn to overfit, and
often perform poorly when they are directly evaluated on
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Figure 3.1: Data distillation illustration. We use the optical flow predictions
from our teacher model to guide the learning of our student model.

real sequences. Another promising direction is to learn from
unlabeled videos, which are readily available at a much larger
scale. [59, 116] employ the classical warping idea, and train
CNNs with a photometric loss defined on the difference between
reference and warped target images. Recent methods propose
additional loss terms to cope with occluded pixels [98, 142], or
utilize multi-frames to reason occlusion [57]. However, all these
methods rely on hand-crafted energy terms to regularize optical
flow estimation, lacking the key capability to effectively learn
optical flow of occluded pixels. As a result, there is still a large
performance gap comparing these methods with state-of-the-art
fully supervised methods.

Is it possible to learn optical flow in a data-driven way, while
not using any ground truth at all? In DDFlow, we address this
issue by a data distilling approach. Our algorithm optimizes
two models, a teacher model and a student model (as shown in
Figure 3.1). We train the teacher model to estimate optical
flow for non-occluded pixels (e.g., (x1, y1) in I1). Then, we
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Figure 3.2: Framework overview of DDFlow. Our teacher model and student
model have identical network structures. We train the teacher model with a
photometric loss Lp for non-occluded pixels. The student model is trained
with both Lp and Lo, a loss for occluded pixels. Lo only functions on pixels
that are non-occluded in original images but occluded in cropped patches
(guided by Valid Mask Mf , Mb ). During testing, only the student model is
used.

hallucinate flow occlusion by cropping patches from original
images (pixel (x1, y1) now becomes occluded in Ĩ1). Predictions
from our teacher model are used as annotations to directly guide
the student network to learn optical flow. Both networks share
identical architecture, and are trained end-to-end with simple
loss functions. The student network is used to produce optical
flow at test time and runs in real-time.

The resulted self-training approach yields the highest accu-
racy among all unsupervised learning methods. At the time of
writing, DDFlow outperforms all published unsupervised flow
methods on the Flying Chairs, MPI Sintel, KITTI 2012 and 2015
benchmarks. More notably, our method achieves a Fl-noc error
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(g) Ĩ1 (h) w̃f (i) w̃b (j) Õf (k) Õb (l) Mb

Figure 3.3: Example intermediate results from DDFlow on KITTI. (a) is the
first input image; (b,c) are forward and backward flow; (d,e) are forward
and backward occlusion maps. (g) is the cropped patch of (a); (h,i,j,k) are
the corresponding forward flow, backward flow, forward occlusion map and
backward occlusion map respectively. (f,l) are forward and backward valid
masks, where 1 means the pixel is occluded in (g) but non-occluded in (a),
0 otherwise.

of 4.57% on KITTI 2012, a Fl-all error of 14.29% on KITTI 2015,
even outperforming several recent fully supervised methods
which are fine-tuned for each dataset [29, 112, 4, 172, 146].

3.1.2 Method

We first illustrate our learning framework in Figure 3.2. We
simultaneously train two CNNs (a teacher model and a student
model) with the same structure. The teacher model is employed
to predict optical flow for non-occluded pixels and the student
model is used to predict optical flow of both non-occluded and
occluded pixels. During testing time, only the student model is
used to produce optical flow. Before describing our method, we
define our notations as follows.

Notation

For our teacher model, we denote I1, I2 ∈ R
H×W×3 for two

consecutive RGB images, where H and W are height and width
respectively. Our goal is to estimate a forward optical flow
wf ∈ R

H×W×2 from I1 to I2. After obtaining wf , we can warp
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I2 towards I1 to get a warped image Iw
2 . Here, we also estimate

a backward optical flow wb from I2 to I1 and a backward warp
image Iw

1 . Since there are many cases where one pixel is only
visible in one image but not visible in the other image, namely
occlusion, we denote Of , Ob ∈ R

H×W×1 as the forward and
backward occlusion map respectively. For Of and Ob, value
1 means that the pixel in that location is occluded, while value
0 means not occluded.

Our student model follows similar notations. We distill
consistent predictions (wf and Of) from our teacher model, and
crop patches on the original images to hallucinate occlusion. Let
Ĩ1, Ĩ2, wp

f , wp
b , O

p
f and Op

b denote the cropped image patches of
I1, I2, wf , wb, Of and Ob respectively. The cropping size is h×w,
where h < H, w < W .

The student network takes Ĩ1, Ĩ2 as input, and produces a
forward and backward flow, a warped image, a occlusion map
w̃f , w̃b, Ĩw

2 , Ĩw
1 , Õf , Õb respectively.

After obtaining Op
f and Õf , we compute another mask Mf ,

where value 1 means the pixel is occluded in image patch Ĩ1 but
non-occluded in the original image I1. The backward mask Mb

is computed in the same way. Figure 3.3 shows a real example
for each notation used in DDFlow.

Network Architecture

In principle, DDFlow can use any backbone network to learn
optical flow. We select PWC-Net [127] as our backbone network
due to its remarkable performance and compact model size.
PWC-Net learns 7-level feature representations for two input
images, and gradually conducts feature warping and cost volume
construction from the last level to the third level. As a result,
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the output resolution of the flow map is a quarter of the
original image size. We upsample the output flow to the full
resolution using bilinear interpolation. To train two networks
simultaneously in a totally unsupervised way, we normalize
features when constructing cost volume, and swap the image
pairs in our input to produce both forward and backward flow.

We use the identical network architecture for our teacher and
student model. The only difference between them is to train each
with different input data and loss functions. Next, we discuss
how to generate such data, and construct loss functions for each
model in detail.

Unlabeled Data Distillation

For prior unsupervised optical flow learning methods, the only
guidance is a photometric loss which measures the difference
between the reference image and the warped target image.
However, photometric loss makes no sense for occluded pixels.
To tackle this issue, We distill predictions from our teacher
model, and use them to generate input/output data for our
student model. Figure 3.1 shows a toy example for our data
distillation idea.

Suppose pixel (x2, y2) in I2 is the corresponding pixel of (x1,
y1) in I1. Given (x1, y1) is non-occluded, we can use the classical
photometric loss to find its optical flow using our teacher model.
Now, if we crop image patches Ĩ1 and Ĩ2, pixel (x1, y1) in
Ĩ1 becomes occluded, since there is no corresponding pixel in
Ĩ2any more. Fortunately, the optical flow prediction for (x1, y1)
from our teacher model is still there. We then directly use this
prediction as annotations to guide the student model to learn
optical flow for the occluded pixel (x1, y1) in Ĩ1. This is the key
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intuition behind DDFlow.
Figure 3.2 shows the main data flow for our approach. To

make full use of the input data, we compute both forward and
backward flow wf , wb for the original frames, as well as their
warped images Iw

1 , Iw
2 . We also estimate two occlusion maps

Of , Ow by checking forward-backward consistency. The teacher
model is trained with a photometric loss, which minimizes a
warping error using I1, I2, Of , Ow, Iw

1 , Iw
2 . This model produces

accurate optical flow predictions for non-occluded pixels in I1

and I2.
For our student model, we randomly crop image patches Ĩ1,

Ĩ2 from I1, I2, and we compute forward and backward flow w̃f ,
w̃b for them. A similar photometric loss is employed for the non-
occluded pixels in Ĩ1 and Ĩ2. In addition, predictions from our
teacher model are employed as output annotations to guide those
pixels occluded in cropped image patches but non-occluded in
original images. Next, we discuss how to construct all the loss
functions.

Loss Functions

Our loss functions include two components: photometric loss Lp

and loss for occluded pixels Lo. Optionally, smoothness losses
can also be added. Here, we focus on the above two loss terms
for simplicity. For the teacher model, only Lp is used to estimate
the flow of non-occluded pixels, while for the student model, Lp

and Lo are both employed to estimate the optical flow of non-
occluded and occluded pixels.

Occlusion Estimation. Our occlusion detection is based
on the forward-backward consistency prior [130, 98]. That is,
for non-occluded pixels, the forward flow should be the inverse
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of the backward flow at the corresponding pixel in the second
image. We consider pixels as occluded when the mismatch
between forward flow and backward flow is too large or the
flow is out of the image boundary Ω. Take a forward occlusion
map as an example, we first compute the reversed forward flow
ŵf = wb(p + wf(p)), where p ∈ Ω. A pixel is considered
occluded if either of the following constraints is violated:





|wf + ŵf |2 < α1(|wf |2 + |ŵf |2) + α2,

p + wf(p) /∈ Ω,
(3.2)

where we set α1 = 0.01, α2 = 0.5 for all our experiments.
Backward occlusion maps are computed in the same way.

Photometric Loss. The photometric loss is based on the
brightness constancy assumption, which measures the difference
between the reference image and the warped target image. It is
only effective for non-occluded pixels. We define a simple loss
as follows:

Lp =
∑
ψ(I1 − Iw

2 ) ⊙ (1 −Of)/
∑

(1 −Of)

+
∑
ψ(I2 − Iw

1 ) ⊙ (1 −Ob)/
∑

(1 −Ob), (3.3)

where ψ(x) = (|x| + ǫ)q is a robust loss function, ⊙ denotes
the element-wise multiplication. During our experiments, we
set ǫ = 0.01, q = 0.4. Our teacher model only minimizes this
loss.

Loss for Occluded Pixels. The key element in unsuper-
vised learning is the loss for occluded pixels. In contrast to
existing loss functions relying on smoothing prior to constrain
flow estimation, our loss is purely data-driven. This enables us
to directly learn from real data, and produce more accurate flow.
To this end, we define our loss on pixels that are occluded in the



CHAPTER 3. OPTICAL FLOW AND STEREO MATCHING 41

cropped patch but non-occluded in the original image. Then,
supervision is generated using predictions of the original image
from our teacher model, which produces reliable optical flow for
non-occluded pixels.

To find these pixels, we first compute a valid mask M

representing the pixels that are occluded in the cropped image
but non-occluded in the original image:

Mf = clip(Õf −Op
f , 0, 1). (3.4)

Backward mask Mb is computed in the same way. Then we
define our loss for occluded pixels in the following,

Lo =
∑
ψ(wp

f − w̃f) ⊙Mf/
∑
Mf

+
∑
ψ(wp

b − w̃b) ⊙Mb/
∑
Mb. (3.5)

We use the same robust loss function ψ(x) with the same
parameters defined in Equation (3.3). Our student model
minimizes the simple combination Lp+Lo.

3.1.3 Experiment

We evaluate DDFlow on standard optical flow benchmarks in-
cluding Flying Chairs [29], MPI Sintel [15], KITTI 2012[37], and
KITTI 2015 [99]. We compare our results with state-of-the-art
unsupervised methods including BackToBasic[59], DSTFlow[116],
UnFlow[98], OccAwareFlow[142] and MultiFrameOccFlow[57],
as well as fully supervised learning methods including FlowNet[29],
SpyNet[112], FlowNet2[54] and PWC-Net[127]. Note that
MultiFrameOccFlow [57] utilizes multiple frames as input, while
all other methods use only two consecutive frames. To ensure
reproducibility and advance further innovations, we make our
code and models publicly available on our project website.
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(a) Input Image 1 (b) GT Flow (c) Our Flow (d) GT Occlusion (e) Our Occlusion

Figure 3.4: Sample results on Sintel datasets. The first three rows are from
Sintel Clean, while the last three are from Sintel Final. Our method estimates
accurate optical flow and reliable occlusion maps.

Implementation Details

Data Preprocessing. We preprocess the image pairs using
census transform [157], which is proved to be robust for optical
flow estimation [44]. We find that this simple procedure can
indeed improve the performance of unsupervised optical flow
estimation, which is consistent with [98].

Training procedure. For all our experiments, we use the
same network architecture and train our model using Adam
optimizer [70] with β1 =0.9 and β2=0.999. For all datasets,
we set batch size as 4. For all individual experiments, we use
an initial learning rate of 1e-4, and it decays half every 50k it-
erations. For data augmentation, we only use random cropping,
random flipping, and random channel swapping. Thanks to the
simplicity of our loss functions, there is no need to tune hyper-
parameters.
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(a) Input Image 1 (b) GT Flow (c) Our Flow (d) GT Occlusion (e) Our Occlusion

Figure 3.5: Example results on KITTI datasets. The first three rows are
from KITTI 2012, and the last three are from KITTI 2015. Our method
estimates accurate optical flow and reliable occlusion maps. Note that on
KITTI datasets, the occlusion masks are sparse and only contain pixels
moving out of the image boundary.

Following prior work, we first pre-train DDFlow on Flying
Chairs. We initialize our teacher network from random, and
warm it up with 200k iterations using our photometric loss
without considering occlusion. Then, we add our occlusion
detection check, and train the network with the photometric
loss Lp for another 300k iterations. After that, we initialize
the student model with the weights from our teacher model,
and train both the teacher model (with Lp) and the student
model (with Lp+Lo) together for 300k iterations. This concludes
our pre-training, and the student model is used for future fine-
tuning.

We use the same fine-tuning procedure for all Sintel and
KITTI datasets. First, we initialize the teacher network using
the pre-trained student model from Flying Chairs, and train
it for 300k iterations. Then, similar to pre-training on Flying
Chairs, the student network is initialized with the new teacher
model, and both networks are trained together for another 300k
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Table 3.1: Comparison to state-of-the-art optical flow estimation methods.
All numbers are EPE except for the last column of KITTI 2012 and KITTI
2015 test sets, where we report percentage of erroneous pixels (Fl). Missing
entries (-) indicate that the results are not reported for the respective method.
Parentheses mean that the training is performed on the same dataset. Bold
fonts highlight the best results among supervised and unsupervised methods
respectively. Note that MultiFrameOccFlow [57] utilizes multiple frames,
while all other methods use only two consecutive frames.

Method
Chairs Sintel Clean Sintel Final KITTI 2012 KITTI 2015

test train test train test train test Fl-noc train Fl-all

Su
p

er
vi

se

FlowNetS [29] 2.71 4.50 7.42 5.45 8.43 8.26 – – – –
FlowNetS+ft [29] – (3.66) 6.96 (4.44) 7.76 7.52 9.1 – – –
SpyNet [112] 2.63 4.12 6.69 5.57 8.43 9.12 – – – –
SpyNet+ft [112] – (3.17) 6.64 (4.32) 8.36 8.25 10.1 12.31% – 35.07%
FlowNet2 [54] – 2.02 3.96 3.14 6.02 4.09 – – 10.06 –
FlowNet2+ft [54] – (1.45) 4.16 (2.01) 5.74 (1.28) 1.8 4.82% (2.3) 11.48%
PWC-Net [127] 2.00 3.33 – 4.59 – 4.57 – – 13.20 –
PWC-Net+ft [127] – (1.70) 3.86 (2.21) 5.13 (1.45) 1.7 4.22% (2.16) 9.60%

U
ns

up
er

vi
se

BackToBasic+ft [59] 5.3 – – – – 11.3 9.9 – – –
DSTFlow+ft [116] 5.11 (6.16) 10.41 (6.81) 11.27 10.43 12.4 – 16.79 39%
UnFlow-CSS+ft [98] – – – (7.91) 10.22 3.29 – – 8.10 23.30%
OccAwareFlow [142] 3.30 5.23 8.02 6.34 9.08 12.95 – – 21.30 –
OccAwareFlow+ft-Sintel [142] 3.76 (4.03) 7.95 (5.95) 9.15 12.9 – – 22.6 –
OccAwareFlow-KITTI [142] – 7.41 – 7.92 – 3.55 4.2 – 8.88 31.2%
MultiFrameOccFlow-Hard+ft [57] – (6.05) – (7.09) – – – – 6.65 –
MultiFrameOccFlow-Soft+ft [57] – (3.89) 7.23 (5.52) 8.81 – – – 6.59 22.94%
DDFlow 2.97 3.83 – 4.85 – 8.27 – – 17.26 –
DDFlow+ft-Sintel 3.46 (2.92) 6.18 (3.98) 7.40 5.14 – – 12.69 –
DDFlow+ft-KITTI 6.35 6.20 – 7.08 – 2.35 3.0 4.57% 5.72 14.29%

iterations. The student model is used during our evaluation.
Evaluation Metrics. We consider two widely-used metrics

to evaluate optical flow estimation and one metric of occlu-
sion evaluation: average endpoint error (EPE), percentage of
erroneous pixels (Fl), a harmonic average of the precision and
recall (F-measure). We also report the results of EPE over non-
occluded pixels (NOC) and occluded pixels (OCC) respectively.
EPE is the ranking metric on MPI Sintel benchmark, and Fl is
the ranking metric on KITTI benchmarks.
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Comparison to State-of-the-art

We compare our results with state-of-the-art methods in Table
3.1. As we can see, our approach, DDFlow, outperforms all
existing unsupervised flow learning methods on all datasets. On
the test set of Flying Chairs, our EPE is better than all prior
results, decreasing from previous state-of-the-art 3.30 pixels to
2.97 pixels. More importantly, simply evaluating our model
only pre-trained on Flying Chairs, DDFlow achieves EPE =
3.83 pixels on Sintel Clean and EPE = 4.85 pixels on Sintel
Final, which are even better than the results from state-of-the-
art unsupervised methods [142, 57] fine-tuned specifically for
Sintel. This is remarkable, as it shows the great generalization
capability of DDFlow.

After we fine-tuned DDFlow using frames from the Sintel
training set, we achieved an EPE = 7.40 pixels on the Sintel
Final testing benchmark, improving the best prior result (EPE
= 8.81 pixels from [57]) by a relative margin of 14.0 %. Similar
improvement (from 7.23 pixels to 6.18 pixels) is also observed
on the Sintel Clean testing benchmark. Our model is even
better than some supervised methods including [29] and [112],
which are fine-tuned on Sintel using ground truth annotations.
Figure 3.4 shows sample DDFlow results from Sintel, comparing
our optical flow estimations and occlusion masks with the
ground truth.

On the KITTI dataset, the improvement from DDFlow is
even more significant. On the KITTI 2012 testing set, DDFlow
yields an EPE = 3.0 pixels, 28.6 % lower than the best existing
counterpart (EPE = 4.2 pixels from [142]). For the ranking
measurement on KITTI 2012, we achieve Fl-noc = 4.57 %,
even better than the result (4.82 %) from the well-known
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Table 3.2: Comparison to state-of-the-art occlusion estimation methods. ∗

marks cases where the occlusion map is sparse and only the annotated pixels
are considered.

Method
Sintel Sintel KITTI KITTI
Clean Final 2012 2015

MODOF – 0.48 – –
OccAwareFlow-ft (0.54) (0.48) 0.95∗ 0.88∗

MultiFrameOccFlow-Soft+ft (0.49) (0.44) – 0.91∗

DDFlow (0.59) (0.52) 0.94∗ 0.86∗

FlowNet 2.0. For KITTI 2015, DDFlow performs particularly
well. The Fl-all from DDFlow reaches 14.29%, not only better
than the best unsupervised method by a large margin (37.7 %
relative improvement), but also outperforming several recent
fully supervised learning methods including [112, 4, 172, 146].
Example results from KITTI 2012 and 2015 can be seen in
Figure 3.5.

Occlusion Estimation

Next, we evaluate our occlusion estimation on both Sintel and
KITTI datasets. We compare our method with MODOF[148],
OccAwareFlow-ft[142], MultiFrameOccFlow-Soft+ft[57] using F-
measure. Note KITTI datasets only have sparse occlusion maps.

As shown in Table 3.2, our method achieves the best occlu-
sion estimation performance on Sintel Clean and Sintel Final
datasets over all competing methods. On the KITTI dataset,
the ground truth occlusion masks only contain pixels moving out
of the image boundary. However, our method will also estimate
the occlusions within the image range. Under such settings, our
method can achieve comparable performance.



CHAPTER 3. OPTICAL FLOW AND STEREO MATCHING 47

Table 3.3: Ablation study. We compare the results of EPE over all
pixels (ALL), non-occluded pixels (NOC) and occluded pixels (OCC) under
different settings. Bold fonts highlight the best results.

Occlusion Census Data Chairs Sintel Clean Sintel Final KITTI 2012 KITTI 2015

Handling Transform Distillation ALL ALL NOC OCC ALL NOC OCC ALL NOC OCC ALL NOC OCC

✗ ✗ ✗ 4.06 (5.05) (2.45) (38.09) (7.54) (4.81) (42.46) 10.76 3.35 59.86 16.85 6.45 82.64
✓ ✗ ✗ 3.95 (4.45) (2.16) (33.48) (6.56) (4.12) (37.83) 6.67 1.94 38.01 12.42 5.67 60.59
✗ ✓ ✗ 3.75 (3.90) (1.60) (33.31) (5.23) (2.80) (36.35) 8.66 1.47 56.24 14.04 4.06 77.16
✓ ✓ ✗ 3.24 (3.37) (1.34) (29.36) (4.47) (2.32) (31.86) 4.50 1.10 27.04 8.01 3.02 42.66
✓ ✓ ✓ 2.97 (2.92) (1.27) (23.92) (3.98) (2.21) (26.74) 2.35 1.02 11.31 5.72 2.73 24.68

Ablation Study

We conduct a thorough ablation analysis for different compo-
nents of DDflow. We report our findings in Table 3.3.

Occlusion Handling. Comparing the first row and the
second row, the third row and the fourth row, we can see
that occlusion handling can improve the optical flow estimation
performance over all pixels, non-occluded pixels and occluded
pixels on all datasets. It is because that brightness constancy
assumption does not hold for occluded pixels.

Census Transform. Census transform can compensate for
illumination changes, which is robust for optical flow estimation
and has been widely used in traditional methods. Comparing
the first row and the third row, the second row and the
fourth row, we can see that it indeed constantly improves the
performance on all datasets.

Data Distillation. Since brightness constancy assumption
does not hold for occluded pixels and there is no ground truth
flow for occluded pixels, we introduce a data distillation loss
to address this problem. As shown in the fourth row and the
fifth row, occluded prediction can improve the performance on
all datasets, especially for occluded pixels. EPE-OCC decreases
from 29.36 pixels to 23.93 pixels (by 18.5 %) on Sintel Clean,
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from 31.86 pixels to 26.74 pixels (by 16.1 %) on Sintel Final
dataset, from 27.04 pixels to 11.31 pixels (by 58.2 %) on KITTI
2012 and from 42.66 pixels to 24.68 pixels (by 42.1 %) on KITTI
2015. Such a big improvement demonstrates the effectiveness of
DDFlow.

Our distillation strategy works particularly well near the
image boundary, since our teacher model can distill reliable
labels for these pixels. For occluded pixels elsewhere, our
method is not as effective, but still produces reasonable results
to some extent. This is because we crop at random locations for
the student model, which covers a large amount of occlusions.
Exploring new ideas to cope with occluded pixels at any location
can be a promising research direction in the future.

3.1.4 Summary

We have presented a data distillation approach to learning
optical flow from unlabeled data. We have shown that CNNs can
be self-trained to estimate optical flow, even for occluded pixels,
without using any human annotations. To this end, we construct
two networks. The predictions from the teacher network are
used as annotations to guide the student network to learn optical
flow. Our method, DDFlow, has achieved the highest accuracy
among all prior unsupervised methods on all challenging optical
flow benchmarks. Our work makes a step towards distilling
optical flow knowledge from unlabeled data. Going forward,
our results suggest that our data distillation technique may be
a promising direction for advancing other vision tasks like stereo
matching [159] or depth estimation [31].



CHAPTER 3. OPTICAL FLOW AND STEREO MATCHING 49

3.2 SelFlow

3.2.1 Introduction
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Figure 3.6: A toy example to illustrate our self-supervised learning idea. We
first train our teacher model with the classical photometric loss (measuring
the difference between the reference image (a) and the warped target
image(d)), guided by the occlusion map (g). Then we perturbate randomly
selected superpixels in the target image (b) to hallucinate occlusions. Finally,
we use reliable flow estimations from our teacher model to guide the learning
of our student model for those newly occluded pixels (denoted by self-
supervision mask (i), where value 1 means the pixel is non-occluded in (g)
but occluded in (h)). Note the yellow region is part of the moving dog.
Our self-supervised approach learns optical flow for both moving objects and
static scenes.

In the previous section, we introduce DDFlow, a data dis-
tillation approach to learning optical flow from unlabeled data.
DDFlow employs random cropping to create occlusions for self-
supervision, which works well for occlusions near the image
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boundary, but is not so effective for occlusions elsewhere (e.g.,
image boundary). To make data distillation effective for a wider
range of occlusions, we introduce a superpixel based occlusion
hallucination technique in SelFlow. Figure 3.6 illustrates our
idea to create synthetic occlusions by perturbing superpixels.
We further utilize temporal information from multiple frames
to improve flow prediction accuracy within a simple CNN
architecture (Figure 3.7). SelFlow achieves great performance
improvement over DDFlow and yields the highest accuracy
among all unsupervised optical flow learning methods on Sintel
and KITTI benchmarks.

Besides, existing supervised flow methods highly rely on pre-
training on synthetic labeled datasets [29, 96] due to lack of
large-scale real-world annotations. However, there usually exists
a large gap between the distribution of synthetic data and
natural scenes. In order to train a stable model, they have
to carefully follow specific learning schedules across different
datasets [54, 52, 127]. In SelFlow, We find that the pre-
trained self-supervised model provides an excellent initialization
for supervised fine-tuning. After fine-tuning, SelFlow achieves
the highest reported accuracy (EPE = 4.26 pixels) on the Sintel
benchmark (rank 1 from November 2018 to November 2019).
SelFlow also significantly outperforms all published optical flow
methods on the KITTI 2012 benchmark, and achieves highly
competitive results on the KITTI 2015 benchmark. This is
the first time that a supervised learning method achieves such
remarkable accuracies without using any external labeled data.
The results demonstrate that it is possible to completely reduce
the reliance of pre-training on synthetic labeled datasets in
supervised flow learning.
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3.2.2 Method

In this section, we present our self-supervised approach to
learning optical flow from unlabeled data. To this end, we
train two CNNs (a teacher model and a student model) with
the same network architecture. The former focuses on accurate
flow estimation for non-occluded pixels, and the latter learns
to predict optical flow for all pixels. We distill reliable non-
occluded flow estimations from the teacher model to guide the
learning of the student model for those occluded pixels. Only
the student model is needed during testing. We build our
network based on PWC-Net [127] and further extend it to multi-
frame optical flow estimation (Figure 3.7). Before describing our
approach in detail, we first define our notations.

Notation

Given three consecutive RGB images It−1, It, It+1, our goal is
to estimate the forward optical flow from It to It+1. Let wi→j

denote the flow from Ii to Ij, e.g., wt→t+1 denotes the forward
flow from It to It+1, wt→t−1 denotes the backward flow from It

to It−1. After obtaining optical flow, we can backward warp the
target image to reconstruct the reference image using Spatial
Transformer Network [56, 142]. Here, we use Iw

j→i to denote
warping Ij to Ii with flow wi→j. Similarly, we use Oi→j to denote
the occlusion map from Ii to Ij, where value 1 means the pixel
in Ii is not visible in Ij.

In our self-supervised setting, we create the new target image
Ĩt+1 by injecting random noise on superpixels for occlusion
generation. We can inject noise to any of three consecutive
frames and even multiple of them as shown in Figure 3.6. For
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Figure 3.7: Our network architecture at each level (similar to PWC-
Net [127]). ẇl denotes the initial coarse flow of level l and F̂ l denotes the
warped feature representation. At each level, we swap the initial flow and cost
volume as input to estimate both forward and backward flow concurrently.
Then these estimations are passed to layer l−1 to estimate higher-resolution
flow.

brevity, here we choose It+1 as an example. If we let It−1, It

and Ĩt+1 as input, then w̃, Õ, Ĩw represent the generated optical
flow, occlusion map and warped image respectively.

CNNs for Multi-Frame Flow Estimation

In principle, our method can utilize any CNNs. In our im-
plementation, we build on top of the seminar PWC-Net [127].
PWC-Net employs pyramidal processing to increase the flow
resolution in a coarse-to-fine manner and utilizes feature warp-
ing, cost volume construction to estimate optical flow at each
level. Based on these principles, it has achieved state-of-the-art
performance with compact model size.
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As shown in Figure 3.7, our three-frame flow estimation
network structure is built upon two-frame PWC-Net with sev-
eral modifications to aggregate temporal information. First,
our network takes three images as input, thus producing three
feature representations Ft−1, Ft and Ft+1. Second, apart from
forward flow wt→t+1 and forward cost volume, out model also
computes backward flow wt→t−1 and backward cost volume at
each level simultaneously. Note that when estimating forward
flow, we also utilize the initial backward flow and backward
cost volume information. This is because past frame It−1 can
provide very valuable information, especially for those regions
that are occluded in the future frame It+1 but not occluded
in It−1. Our network combines all this information together
and therefore estimates optical flow more accurately. Third, we
stack initial forward flow ẇl

t→t+1, minus initial backward flow
−ẇl

t+1→t, feature of reference image F l
t , forward cost volume

and backward cost volume to estimate the forward flow at each
level. For backward flow, we just swap the flow and cost volume
as input. Forward and backward flow estimation networks share
the same network structure and weights. For initial flow at each
level, we upscale optical flow of the next level both in resolution
and magnitude.

Occlusion Estimation

For two-frame optical flow estimation, we can swap two images
as input to generate forward and backward flow, then the
occlusion map can be generated based on the forward-backward
consistency prior [130, 98]. To make this work under our three-
frame setting, we propose to utilize the adjacent five frame
images as input as shown in Figure 3.8. Specifically, we estimate
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Figure 3.8: Data flow for self-training with multiple-frame. To estimate the
occlusion map for three-frame flow learning, we use five images as input.
This way, we can conduct a forward-backward consistency check to estimate
occlusion maps between It and It+1, between It and It−1 respectively.

bi-directional flows between It and It+1, namely wt→t+1 and
wt+1→t. Similarly, we also estimate the flows between It and It−1.
Finally, we conduct a forward and backward consistency check
to reason the occlusion map between two consecutive images.

For forward-backward consistency check, we consider one
pixel as occluded when the mismatch between the forward flow
and the reversed forward flow is too large. Take Ot→t+1 as
an example, we can first compute the reversed forward flow as
follows,

ŵt→t+1 = wt+1→t(p + wt→t+1(p)), (3.6)

A pixel is considered occluded whenever it violates the following
constraint:

|wt→t+1 + ŵt→t+1|
2 < α1(|wt→t+1|

2 + |ŵt→t+1|
2) + α2, (3.7)

where we set α1 = 0.01, α2 = 0.5 for all our experiments. Other
occlusion maps are computed in the same way.

Occlusion Hallucination

During our self-supervised training, we hallucinate occlusions
by perturbing local regions with random noise. In a newly
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generated target image, the pixels corresponding to noise regions
automatically become occluded. There are many ways to
generate such occlusions. The most straightforward way is to
randomly select rectangle regions. However, rectangle occlusions
rarely exist in real-world sequences. To address this issue, we
propose to first generate superpixels [2], then randomly select
several superpixels and fill them with noise. There are two
main advantages of using superpixels. First, the shape of a
superpixel is usually random and superpixel edges are often
part of object boundaries. This is consistent with real-world
cases and makes the noise image more realistic. We can choose
several superpixels which are located at different locations to
cover more occlusion cases. Second, the pixels within each
superpixel usually belong to the same object or have similar flow
fields. Prior work has found low-level segmentation is helpful for
optical flow estimation [146]. Note that the random noise should
lie in the pixel value range.

Figure 3.6 shows a simple example, where only the dog
extracted from the COCO dataset [81] is moving. Initially, the
occlusion map between It and It+1 is (g). After randomly se-
lecting several superpixels from (e) to inject noise, the occlusion
map between It and Ĩt+1 changes to (h). Next, we describe how
to make use of these occlusion maps to guide our self-training.

NOC-to-OCC as Self-Supervision

Our self-training idea is built on top of the classical photometric
loss [98, 142, 57], which is highly effective for non-occluded
pixels. Figure 3.6 illustrates our main idea. Suppose pixel p1 in
image It is not occluded in It+1, and pixel p′

1 is its corresponding
pixel. If we inject noise to It+1 and let It−1, It, Ĩt+1 as input,
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p1 then becomes occluded. Good news is we can still use the
flow estimation of the teacher model as annotations to guide
the student model to learn the flow of p1 from It to Ĩt+1. This
is also consistent with real-world occlusions, where the flow of
occluded pixels can be estimated based on surrounding non-
occluded pixels. In the example of Figure 3.6, self-supervision is
only employed to (i), which represents those pixels non-occluded
from It to It+1 but become occluded from It to Ĩt+1.

Loss Functions

Similar to previous unsupervised methods, we first apply pho-
tometric loss Lp to non-occluded pixels. Photometric loss is
defined as follows:

Lp =
∑

i,j

∑
ψ(Ii − Iw

j→i) ⊙ (1 −Oi)
∑

(1 −Oi)
, (3.8)

where ψ(x) = (|x| + ǫ)q is a robust loss function, ⊙ denotes the
element-wise multiplication. We set ǫ = 0.01, q = 0.4 for all our
experiments. Only Lp is necessary to train the teacher model.

To train our student model to estimate optical flow of
occluded pixels, we define a self-supervision loss Lo for those
synthetic occluded pixels (Figure 3.6(i)). First, we compute a
self-supervision mask M to represent these pixels,

Mi→j = clip(Õi→j −Oi→j, 0, 1). (3.9)

Then, we define our self-supervision loss Lo as,

Lo =
∑

i,j

∑
ψ(wi→j − w̃i→j) ⊙Mi→j

∑
Mi→j

. (3.10)

For our student model, we train with a simple combination of
Lp +Lo for both non-occluded pixels and occluded pixels. Note
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our loss functions do not rely on spatial and temporal consistent
assumptions, and they can be used for both classical two-frame
flow estimation and multi-frame flow estimation.

Supervised Fine-tuning

After pre-training on the raw datasets, we use real-world anno-
tated data for fine-tuning. Since there are only annotations for
forward flow wt→t+1, we skip backward flow estimation when
computing our loss. Suppose that the ground truth flow is
wgt

t→t+1, and mask V denotes whether the pixel has a label, where
value 1 means that the pixel has a valid ground truth flow. Then
we can obtain the supervised fine-tuning loss as follows,

Ls =
∑

(ψ(wgt
t→t+1 − wt→t+1) ⊙ V )/

∑
V. (3.11)

During fine-tuning, We first initialize the model with the pre-
trained student model on each dataset, then optimize it using
Ls.

3.2.3 Experiment

We evaluate and compare our methods with state-of-the-art
unsupervised and supervised learning methods on public optical
flow benchmarks including MPI Sintel [15], KITTI 2012 [37] and
KITTI 2015 [99]. To ensure reproducibility and advance further
innovations, we make our code and models publicly available at
https://github.com/ppliuboy/SelFlow.

Implementation Details

Data Preprocessing. For Sintel, we download the Sintel movie
and extract ∼ 10, 000 images for self-training. We first train
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(a) Reference Image (b) GT Flow (c) Our Flow (d) GT Occlusion (e) Our Occlusion

Figure 3.9: Sample unsupervised results on Sintel and KITTI dataset. From
top to bottom, we show samples from Sintel Final, KITTI 2012 and KITTI
2015. Our model can estimate both accurate flow and occlusion maps. Note
that on KITTI datasets, the occlusion maps are sparse, which only contain
pixels moving out of the image boundary.

our model on this raw data, then add the official Sintel training
data (including both "final" and "clean" versions). For KITTI
2012 and KITTI 2015, we use multi-view extensions of the two
datasets for unsupervised pre-training, similar to [116, 142].
During training, we exclude the image pairs with ground truth
flow and their neighboring frames (frame number 9-12) to avoid
the mixture of training and testing data.

We rescale the pixel value from [0, 255] to [0, 1] for un-
supervised training, while normalizing each channel to be the
standard normal distribution for supervised fine-tuning. This is
because normalizing image as input is more robust for luminance
changing, which is especially helpful for optical flow estimation.
For unsupervised training, we apply Census Transform [157]
to images, which has been proved robust for optical flow
estimation [44, 98].

Training procedure. We train our model with the Adam
optimizer [70] and set the batch size to be 4 for all experiments.
For unsupervised training, we set the initial learning rate to be
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Table 3.4: Comparison with state-of-the-art learning based optical flow
estimation methods. All numbers are EPE except for the last column of
KITTI 2012 and KITTI 2015 testing sets, where we report the percentage of
erroneous pixels over all pixels (Fl-all). Missing entries (-) indicate that the
results are not reported for the respective method. Parentheses mean that the
training and testing are performed on the same dataset. Bold fonts highlight
the best results among unsupervised and supervised methods respectively.

Method
Sintel Clean Sintel Final KITTI 2012 KITTI 2015

train test train test train test test(Fl) train test(Fl)

U
ns

up
er

vi
se

d

BackToBasic+ft [59] – – – – 11.3 9.9 – – –
DSTFlow+ft [116] (6.16) 10.41 (6.81) 11.27 10.43 12.4 – 16.79 39%
UnFlow-CSS [98] – – (7.91) 10.22 3.29 – – 8.10 23.30%
OccAwareFlow+ft [142] (4.03) 7.95 (5.95) 9.15 3.55 4.2 – 8.88 31.2%
MultiFrameOccFlow-None+ft [57] (6.05) – (7.09) – – – – 6.65 –
MultiFrameOccFlow-Soft+ft [57] (3.89) 7.23 (5.52) 8.81 – – – 6.59 22.94%
DDFlow+ft [85] (2.92) 6.18 3.98 7.40 2.35 3.0 8.86% 5.72 14.29%
SelFlow (2.88) 6.56 (3.87) 6.57 1.69 2.2 7.68% 4.84 14.19%

Su
p

er
vi

se
d

FlowNetS+ft [29] (3.66) 6.96 (4.44) 7.76 7.52 9.1 44.49% – –
FlowNetC+ft [29] (3.78) 6.85 (5.28) 8.51 8.79 – – – –
SpyNet+ft [112] (3.17) 6.64 (4.32) 8.36 8.25 10.1 20.97% – 35.07%
FlowFieldsCNN+ft [4] – 3.78 – 5.36 – 3.0 13.01% – 18.68 %
DCFlow+ft [146] – 3.54 – 5.12 – – – – 14.83%
FlowNet2+ft [54] (1.45) 4.16 (2.01) 5.74 (1.28) 1.8 8.8% (2.3) 11.48%
UnFlow-CSS+ft [98] – – – – (1.14) 1.7 8.42% (1.86) 11.11%
LiteFlowNet+ft-CVPR [52] (1.64) 4.86 (2.23) 6.09 (1.26) 1.7 – (2.16) 10.24%
LiteFlowNet+ft-axXiv [52] (1.35) 4.54 (1.78) 5.38 (1.05) 1.6 7.27% (1.62) 9.38%
PWC-Net+ft-CVPR [127] (2.02) 4.39 (2.08) 5.04 (1.45) 1.7 8.10% (2.16) 9.60%
PWC-Net+ft-axXiv [128] (1.71) 3.45 (2.34) 4.60 (1.08) 1.5 6.82% (1.45) 7.90%
ProFlow+ft [94] (1.78) 2.82 – 5.02 (1.89) 2.1 7.88% (5.22) 15.04%
ContinualFlow+ft [102] – 3.34 – 4.52 – – – – 10.03%
MFF+ft [115] – 3.42 – 4.57 – 1.7 7.87% – 7.17%

SelFlow+ft (1.68) 3.74 (1.77) 4.26 (0.76) 1.5 6.19% (1.18) 8.42%

10−4, decay it by half every 50k iterations, and use random
cropping, random flipping, random channel swapping during
data augmentation. For supervised fine-tuning, we employ
similar data augmentation and learning rate schedule as [29, 54].

For unsupervised pre-training, we first train our teacher
model with the photometric loss for 200k iterations. Then,
we add our occlusion regularization and train for another 500k
iterations. Finally, we initialize the student model with the
trained weights of the teacher model and train it with Lp+Lo for
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500k iterations. Since training two models simultaneously will
cost more memory and training time, we just generate the flow
and occlusion maps using the teacher model in advance and use
them as annotations (just like KITTI with sparse annotations).

For supervised fine-tuning, we use the pre-trained student
model as initialization, and train the model using our supervised
loss Ls with 500k iterations for KITTI and 1, 000k iterations
for Sintel. Note we do not require pre-training our model on
any labeled synthetic dataset, hence we do not have to follow
the specific training schedule (FlyingChairs [29]→ FlyingTh-
ings3D [96]) as [54, 52, 127].

Evaluation Metrics. We consider two widely-used metrics to
evaluate optical flow estimation: average endpoint error (EPE),
percentage of erroneous pixels (Fl). EPE is the ranking metric
on the Sintel benchmark, and Fl is the ranking metric on KITTI
benchmarks.

Main Results

As shown in Table 3.4, we achieve state-of-the-art results for
both unsupervised and supervised optical flow learning on all
datasets under all evaluation metrics. Figure 3.9 shows sample
results from Sintel and KITTI. Our method estimates both
accurate optical flow and occlusion maps.

Unsupervised Learning. Our method achieves the highest
accuracy for unsupervised learning methods on leading bench-
marks. On the Sintel final benchmark, we reduce the previous
best EPE from 7.40 pixels [85] to 6.57 pixels, with 11.2% relative
improvements. This is even better than several fully supervised
methods including FlowNetS, FlowNetC [29], and SpyNet [112].
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Method
Sintel Sintel KITTI KITTI
Clean Final 2012 2015

MODOF – 0.48 – –
OccAwareFlow (0.54) (0.48) 0.95∗ 0.88∗

MultiFrameOccFlow-Soft (0.49) (0.44) – 0.91∗

DDFlow (0.59) (0.52) 0.94 ∗ 0.86 ∗

Ours (0.59) (0.52) 0.95 ∗ 0.88∗

Table 3.5: Comparison of occlusion estimation with F-measure. “∗” marks
cases where the occlusion annotation is sparse.

On the KITTI datasets, the improvement is more significant.
For the training dataset, we achieve EPE = 1.69 pixels with
28.1% relative improvement on KITTI 2012 and EPE = 4.84
pixels with 15.3% relative improvement on KITTI 2015 com-
pared with the previous best unsupervised method DDFlow.
On KITTI 2012 testing set, we achieve Fl-all = 7.68%, which
is better than state-of-the-art supervised methods including
FlowNet2 [54], PWC-Net [127], ProFlow [94], and MFF [115].
On the KITTI 2015 testing benchmark, we achieve Fl-all =
14.19%, better than all unsupervised methods. Our unsuper-
vised results also outperform some fully supervised methods
including DCFlow [146] and ProFlow [94].

Ablation Study

Occlusion Estimation Following [142, 57, 85], we also report
the occlusion estimation performance using F-measure, which
is the harmonic mean of precision and recall. We estimate the
occlusion map using forward-backward consistency check (no
parameters to learn).

We compare our occlusion estimation results with MODOF [148],
OccAwareFlow [142], MultiFrameOccFlow-Soft [57] and DDFlow.
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Table 3.6: Ablation study. We report EPE of our unsupervised results
under different settings over all pixels (ALL), non-occluded pixels (NOC)
and occluded pixels (OCC). Note that we employ Census Transform when
computing photometric loss by default. Without Census Transform, the
performance will drop.

Occlusion Multiple Self-Supervision Self-Supervision Sintel Clean Sintel Final KITTI 2012 KITTI 2015

Handling Frame Rectangle Superpixel ALL NOC OCC ALL NOC OCC ALL NOC OCC ALL NOC OCC

✗ ✗ ✗ ✗ (3.85) (1.53) (33.48) (5.28) (2.81) (36.83) 7.05 1.31 45.03 13.51 3.71 75.51
✗ ✓ ✗ ✗ (3.67) (1.54) (30.80) (4.98) (2.68) (34.42) 6.52 1.11 42.44 12.13 3.47 66.91
✓ ✗ ✗ ✗ (3.35) (1.37) (28.70) (4.50) (2.37) (31.81) 4.96 0.99 31.29 8.99 3.20 45.68
✓ ✓ ✗ ✗ (3.20) (1.35) (26.63) (4.33) (2.32) (29.80) 3.32 0.94 19.11 7.66 2.47 40.99
✓ ✗ ✗ ✓ (2.96) (1.33) (23.78) (4.06) (2.25) (27.19) 1.97 0.92 8.96 5.85 2.96 24.17
✓ ✓ ✓ ✗ (2.91) (1.37) (22.58) (3.99) (2.27) (26.01) 1.78 0.96 7.47 5.01 2.55 21.86
✓ ✓ ✗ ✓ (2.88) (1.30) (22.06) (3.87) (2.24) (25.42) 1.69 0.91 6.95 4.84 2.40 19.68

Note KITTI datasets only have sparse occlusion maps. As
shown in Table 3.5, we achieve the best occlusion estimation
performance on Sintel Clean and Sintel Final datasets, and
comparable performance on KITTI 2012 and 2015.

Supervised Fine-tuning. We further fine-tune our unsuper-
vised model with the ground truth flow. We achieve state-of-the-
art results on all three datasets, with Fl-all = 6.19% on KITTI
2012 and Fl-all = 8.42% on KITTI 2015. Most importantly, our
method yields EPE = 4.26 pixels on the Sintel final dataset,
achieving the highest accuracy on the Sintel benchmark among
all submitted methods. All these show that our method reduces
the reliance of pre-training with synthetic datasets and we do
not have to follow specific training schedules across different
datasets anymore.

To demonstrate the usefulness of individual technical steps,
we conduct a rigorous ablation study and show the quantitative
comparison in Table 3.6. Figure 3.10 and Figure 3.11 show the
qualitative comparison under different settings, where “W/O
Occlusion” means occlusion handling is not considered, “W/O
Self-Supervision” means occlusion handling is considered but
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Reference Image (training) Ground Truth W/O Occlusion W/O Self-Supervision

Rectangle Two-frame Superpixel Superpixel Finetune

Reference Image (testing) Target image W/O Occlusion W/O Self-Supervision

Rectangle Two-frame Superpixel Superpixel Finetune

Figure 3.10: Qualitative comparison of our model under different settings
on Sintel Clean training and Sintel Final testing datasets. Occlusion
handling, multi-frame formulation and self-supervision consistently improve
the performance.

self-supervision is not employed, “Rectangle” and “Superpixel”
represent self-supervision is employed with rectangle and su-
perpixel noise injection respectively. “Two-Frame Superpixel”
means self-supervision is conducted with only two frames as
input.

Two-Frame vs. Multi-Frame. Comparing row 1 and row
2, row 3 and row 4 row 5 and row 7 in Table 3.6, we can
see that using multiple frames as input can indeed improve
the performance, especially for occluded pixels. It is because
multiple images provide more information, especially for those
pixels occluded in one direction but non-occluded in the reverse
direction.

Occlusion Handling. Comparing the row 1 and row 3, row 2
and row 4 in Table 3.6, we can see that occlusion handling can
improve optical flow estimation performance over all pixels on all
datasets. This is due to the fact that the brightness constancy
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Reference Image (training) Ground Truth W/O Occlusion W/O Self-Supervision

Rectangle Two-frame Superpixel Superpixel Finetune

Reference Image (testing) Target image W/O Occlusion W/O Self-Supervision

Rectangle Two-frame Superpixel Superpixel Finetune

Figure 7. Qualitative comparison of our model under different settings on KITTI 2015 training and testing dataset. Occlusion handling,

Figure 3.11: Qualitative comparison of our model under different settings on
KITTI 2015 training and testing dataset. Occlusion handling, multi-frame
formulation and self-supervision consistently improve the performance.

assumption does not hold for occluded pixels.

Self-Supervision.

We employ two strategies for our occlusion hallucination:
rectangle and superpixel. Both strategies improve performance
significantly, especially for occluded pixels. Take superpixel
setting as an example, EPE-OCC decrease from 26.63 pixels
to 22.06 pixels on Sintel Clean, from 29.80 pixels to 25.42 pixels
on Sintel Final, from 19.11 pixels to 6.95 pixels on KITTI 2012,
and from 40.99 pixels to 19.68 pixels on KITTI 2015. Such
a big improvement demonstrates the effectiveness of our self-
supervision strategy.

Comparing superpixel noise injection with rectangle noise
injection, superpixel setting has several advantages. First, the
shape of the superpixel is random and edges are more correlated
to motion boundaries. Second, the pixels in the same superpixel
usually have similar motion patterns. As a result, the superpixel
setting achieves slightly better performance.

Self-Supervised Pre-training. Table 3.7 compares super-
vised results with and without our self-supervised pre-training
on the validation sets. If we do not employ self-supervised pre-
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Table 3.7: Ablation study. We report EPE of supervised fine-tuning results
on our validation datasets with and without unsupervised pre-training.

Unsupervised Pre-training Sintel Clean Sintel Final KITTI 2012 KITTI 2015

Without 1.97 2.68 3.93 3.10
With 1.50 2.41 1.55 1.86

training and directly train the model using only the ground
truth, the model fails to converge well due to insufficient training
data. However, after utilizing our self-supervised pre-training,
it converges very quickly and achieves much better results.

3.2.4 Summary

We have presented a self-supervised approach to learning ac-
curate optical flow estimation. Our method injects noise into
superpixels to create occlusions, and let one model guide the
another to learn optical flow for occluded pixels. Our simple
CNN effectively aggregates temporal information from multiple
frames to improve flow prediction. Extensive experiments show
our method significantly outperforms all existing unsupervised
optical flow learning methods. After fine-tuning with our
unsupervised model, our method achieves state-of-the-art flow
estimation accuracy on all leading benchmarks. Our results
demonstrate it is possible to completely reduce the reliance of
pre-training on synthetic labeled datasets, and achieve superior
performance by self-supervised pre-training on unlabeled data.
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3.3 Flow2Stereo

3.3.1 Introduction

For DDFlow and SelFlow, the training procedure contains two
stages: unsupervised training for the teacher model (stage 1)
and self-supervised training for the student model (stage 2).
The teacher model is fixed in stage 2, therefore the performance
is upper bounded by the flow prediction from the teacher
model. How to lift the upper bound of confident predictions?
In Flow2Stereo, we propose to utilize stereoscopic videos and
reveal the geometric relationship between optical flow and stereo
disparity. Existing CNNs for flow estimation are drastically
different from those for stereo estimation in terms of network
architecture and training data [29, 95]. Is it possible to train
one single network to estimate both flow and stereo using only
one set of data, even unlabeled? In Flow2Stereo, we propose
to estimate these two forms of dense correspondences with one
single model. Figure 3.13 shows the geometric relationship
between stereo disparity and optical flow. We consider stereo
matching as a special case of optical flow, and compute all 12
cross-view correspondence maps between images captured at
different times and different views (as shown in Figure 3.12).

Besides, after digging into the conventional two-stage self-
supervised learning framework, we show that the key of self-
supervised training is to create challenging input-output pairs,
and then let confident predictions to supervised less confident
predictions. Based on this observation, we propose to create
more challenging transformations (e.g., scaling) apart from
occlusion hallucinated techniques. We also show that it does
not make much difference to distinguish between occluded and
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Figure 3.12: Illustration of 12 cross-view correspondnce maps among 4
stereoscopic frames. We leverage all these geometric consistency constraints,
and train one single network to estimate both flow and stereo.

non-occluded pixels in stage 2.
Flow2Stereo achieves great performance improvement over

DDFlow and SelFlow on KITTI datasets, with Fl − noc =
4.02% on KITTI 2012 and Fl − all = 11.10% on KITTI 2015.
Remarkably, our self-supervised method even outperforms sev-
eral state-of-the-art fully supervised methods, including PWC-
Net [127], FlowNet2 [54], and MFF [115] on KITTI 2012. More
importantly, when we directly estimate stereo matching with our
optical flow model, it also achieves state-of-the-art unsupervised
stereo matching performance. This further demonstrates the
strong generalization capability of our approach.

3.3.2 Geometric Relationship of Flow and Stereo

In this section, we review the geometric relationship between
optical flow and stereo disparity from both the 3D projection
view [45] and the motion view.
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Figure 3.13: 3D geometric constraints between optical flow (wl and wr) and
stereo disparity from time t to t+ 1 in the 3D projection view.

Geometric Relationship in 3D Projection

Figure 3.13 illustrates the geometric relationship between stereo
disparity and optical flow from a 3D projection view. Ol and
Or are rectified left and right camera centers, B is the baseline
distance between two camera centers.

Suppose P (X, Y, Z) is a 3D point at time t, and it moves to
P + ∆P at time t + 1, resulting in the displacement as ∆P =
(∆X,∆Y,∆Z). Denote f as the focal length, p = (x, y) as the
projection point of P on the image plane, then (x, y) = f

s

(X,Y )
Z

,
where s is the scale factor that converts the world space to the
pixel space, i.e., how many meters per pixel. For simplicity, let
f ′ = f

s
, we have (x, y) = f ′ (X,Y )

Z
. Take the time derivative, we

obtain

(∆x,∆y)
∆t

= f ′ 1
Z

(∆X,∆Y )
∆t

− f ′ (X, Y )
Z2

∆Z
∆t

. (3.12)
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Let w = (u, v) be the optical flow vector (u denotes motion in
the x direction and v denotes motion in the y direction) and
the time step is one unit (from t to t+ 1), then Equation (3.12)
becomes,

(u, v) = f ′ (∆X,∆Y )
Z

− f ′∆Z
Z2

(X, Y ). (3.13)

For calibrated stereo cameras, we let P in the coordinate system
of Ol. Then Pl = P = (X, Y, Z) in the coordinate system of Ol

and Pr = (X − B, Y, Z) in the coordinate system of Or. With
Equation (3.13), we obtain,





(ul, vl) = f ′ (∆X,∆Y )
Z

− f ′ ∆Z
Z2 (X, Y )

(ur, vr) = f ′ (∆X,∆Y )
Z

− f ′ ∆Z
Z2 (X −B, Y )

, (3.14)

This can be further simplified as,




ur − ul = f ′B∆Z
Z2

vr − vl = 0
, (3.15)

Suppose d is the stereo disparity (d ≥ 0), according to the depth
Z and the distance between two camera centers B, we have
d = f ′ B

Z
. Take the time derivative, we have

∆d
∆t

= −f ′ B

Z2

∆Z
∆t

. (3.16)

Similarly, we set time step to be one unit, then

dt+1 − dt = −f ′B
∆Z
Z2

. (3.17)

With Equation (3.15) and Equation (3.17), we finally obtain,




ur − ul = (−dt+1) − (−dt)

vr − vl = 0
. (3.18)
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Equation (3.18) demonstrates the 3D geometric relationship
between optical flow and stereo disparity, i.e., the difference
between optical flow from left and right view is equal to
the difference between disparity from time t to t + 1. Note
that Equation (3.18) also works when cameras move, including
rotating and translating from t to t+1. Equation (3.18) assumes
the focal length is fixed, which is common for stereo cameras.

Next, we review the geometric relationship between flow and
stereo in the motion view.

Geometric Relationship in Motion

Optical flow estimation and stereo matching can be viewed as
one single problem: correspondence matching. Optical flow
describes the pixel motion between two adjacent frames recorded
at different times, while stereo disparity represents the pixel
displacement between two stereo images recorded at the same
time. According to stereo geometry, the correspondence pixel
shall lie on the epipolar line between stereo images. However,
optical flow does not have such a constraint, this is because both
the camera and object can move at different times.

To this end, we consider stereo matching as a special case of
optical flow. That is, the displacement between stereo images
can be seen as a one-dimensional movement. For rectified stereo
image pairs, the epipolar line is horizontal and stereo matching
becomes finding the correspondence pixel along the horizontal
direction x.

In the following, we consider stereo disparity as a form of
motion between stereo image pairs. For simplicity, let I1, I3

denote the left-view images at time t and t + 1, I2, I4 denote
the right-view images at time t and t + 1 respectively. Then
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we let w1→3 denote the optical flow from I1 to I3, w1→2 denote
the stereo disparity from I1 to I2. For stereo disparity, we only
keep the horizontal direction of optical flow. For optical flow
and disparity of other directions, we denote them in the same
way.

Apart from optical flow in the left and right view, disparity
at time t and t + 1, we also compute the cross-view optical
flow between images captured at different time and different
view, such as w1→4 (green row in Figure 3.12). In this case,
we compute the correspondence between every two images,
resulting in 12 optical flow maps as shown in Figure 3.12. We
employ the same model to compute optical flow between every
two images.

Suppose pl
t is a pixel in I1, pr

t ,p
l
t+1,p

r
t+1 are its correspon-

dence pixels in I2, I3 and I4 respectively, then we have,




pr
t = pl

t + w1→2(pl
t)

pl
t+1 = pl

t + w1→3(pl
t)

pr
t+1 = pl

t + w1→4(pl
t)

. (3.19)

A pixel directly moves from I1 to I4 shall be identical to the
movement from I1 to I2 and from I2 to I4. That is,

w1→4(p
l
t) = (pr

t+1 − pr
t ) + (pr

t − pl
t)

= w2→4(p
r
t ) + w1→2(p

l
t).

(3.20)

Similarly, if the pixel moves from I1 to I3 and from I3 to I4, then

w1→4(p
l
t) = (pr

t+1 − pl
t+1) + (pl

t+1 − pl
t)

= w3→4(p
l
t+1) + w1→3(p

l
t).

(3.21)

From Equation (3.20) and Equation (3.21), we obtain,

w2→4(p
r
t ) − w1→3(p

l
t) = w3→4(p

l
t+1) − w1→2(p

l
t). (3.22)
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For stereo matching, the correspondence pixel shall lie on the
epipolar lines. Here, we only consider rectified stereo cases,
where epipolar lines are horizontal. Then, Equation (3.22)
becomes





u2→4(pr
t ) − u1→3(pl

t) = u3→4(pl
t+1) − u1→2(pl

t)

v2→4(pr
t ) − v1→3(pl

t) = 0
. (3.23)

Note Equation (3.23) is exactly the same as Equation (3.18).
In addition, since epipolar lines are horizontal, we can re-

write Equation (3.20) and Equation (3.21) as follows:




u1→4(pl
t) = u2→4(pr

t ) + u1→2(pl
t)

v1→4(pl
t) = v2→4(pr

t )

u1→4(pl
t) = u3→4(pl

t+1) + u1→3(pl
t)

v1→4(pl
t) = v1→3(pl

t)

. (3.24)

This leads to the two forms of geometric constraints we
used in our training loss functions: quadrilateral constraint in
Equation (3.23) and triangle constraint in Equation (3.24).

3.3.3 Method

In this section, we first dig into the bottlenecks of the state-
of-the-art two-stage self-supervised learning framework [85, 86].
Then we describe an enhanced proxy learning approach, which
can improve its performance greatly in both two stages.

Two-Stage Self-Supervised Learning Scheme

Both DDFlow [85] and SelFlow [86] employ a two-stage learning
approach to learning optical flow in a self-supervised manner.
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Figure 3.14: Our self-supervised learning framework contains two stages:
In stage 1, we add geometric constraints between optical flow and stereo
disparity to improve the quality of confident predictions; In stage 2, we
create challenging proxy tasks to guide the student model for effective self-
supervised learning.

In the first stage, they train a teacher model to estimate optical
flow for non-occluded pixels. In the second stage, they first pre-
process the input images, e.g., cropping and inject superpixel
noises to create hand-crafted occlusions, then the predictions
of teacher model for those non-occluded pixels are regarded as
ground truth to guide a student model to learn optical flow of
hand-crafted occluded pixels.

The general pipeline is reasonable, but the definition of
occlusion is in a heuristic manner. At the first stage, forward-
backward consistency is employed to detect whether the pixel
is occluded. However, this brings in errors because many
pixels are still non-occluded even if they violate this principle,
and vice versa. Instead, it would be more proper to call
those pixels reliable or confident if they pass the forward-
backward consistency check. From this point of view, creating
hand-crafted occlusions can be regarded as creating more
challenging conditions, under which the prediction would be
less confident. Then in the second stage, the key point is
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to let confident predictions to supervise those less confident
predictions.

During the self-supervised learning stage, the student model
is able to handle more challenging conditions. As a result, its
performance improves not only for those occluded pixels, but
also for non-occluded pixels. Because when creating challenging
conditions, both occluded regions and non-occluded regions
become more challenging. The reason why optical flow for
occluded pixels improves more than non-occluded regions is
that, during the first stage, the photometric loss does not hold
for occluded pixels, the model just does not have the ability to
predict them. In the second stage, the model has the ability to
learn optical flow of occluded pixels for the first time, therefore
its performance improves a lot.

To lift the upper bound of confident predictions, we propose
to utilize stereoscopic videos to reveal their geometric nature.

Proxy Learning Scheme

Following [85, 86], our proxy learning scheme contains two stages
(as shown in Figure 3.14) and our network structure is built upon
PWC-Net [127].

Stage 1: Predicting confident optical flow with geomet-

ric constraints. With the estimated optical flow map wi→j, we
warp the target image Ij toward the reference image Ii. Then
we measure the difference between the warped target image Iw

j→i

and the reference image Ii with a photometric loss. Similar to
[98, 85, 86], we employ forward-backward consistency check to
compute a confident map, where value 1 indicates the prediction
is confident, 0 indicates the prediction is non-confident.
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Apart from photometric loss, we also apply geometric con-
straints to our teacher model, including the triangle constraint
and quadrilateral constraint. Note that geometric constraints
are only applied to those confident pixels. This turns out to
be highly effective and greatly improves the accuracy of those
confident predictions.

Stage 2: Self-supervised learning from teacher model

to the student model. As discussed earlier, the key point
of self-supervision is to create challenging input-output pairs.
In our framework, we create challenging conditions by random
cropping input image pairs, injecting random noise into the
second image, random scale (down-sample) the input image
pairs, to make correspondence learning more difficult. These
hard input-output pairs push the network to capture more
information, resulting in a large performance gain in practice.

Different from [85, 86], we do not distinguish between “oc-
cluded” and “non-occluded” pixels anymore in the self-supervision
stage. As the forward-backward consistency check cannot
perfectly determine whether a pixel is occluded, there may
be many erroneous judgments. In this case, the confident
prediction from the teacher model will provide guidance for both
occluded or non-occluded pixels no matter whether the forward-
backward check is employed or not.

Next, we describe our training losses for each stage.

Loss Functions

For stage 1, our loss function mainly contains three parts:
photometric loss Lp, triangle constraint loss Lt and quadrilateral
constraint loss Lq. For stage 2, we only apply self-supervision
loss Ls.
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Photometric loss. Photometric loss is based on the brightness
constancy assumption, which only works for non-occluded pix-
els. During our experiments, we employ census transform, which
has shown to be robust for illumination change [98, 85, 86].
Denote Mi→j as the confident map from Ii to Ij, then Lp is
defined as,

Lp =
∑

i,j

∑
p ψ(Ii(p) − Iw

j→i(p)) ⊙Mi→j(p)
∑

pMi→j(p)
, (3.25)

where ψ(x) = (|x|+ǫ)q. During our experiments, we set ǫ = 0.01
and q = 0.4.

Quadrilateral constraint loss. Quadrilateral constraint
describes the geometric relationship between optical flow and
stereo disparity. Here, we only employ Lq to those confident
pixels. Take w1→4, w2→4, w1→2 and w3→4 for an example,
we first compute the confident map for quadrilateral constraint
Mq(p) = M1→2(p) ⊙ M1→3(p) ⊙ M1→4(p). Then according to
Equation (3.23), we divide Lq into two components on the x

direction Lqu and y direction Lqv respectively:

Lqu =
∑

pl
t

ψ(u1→2(p
l
t) + u2→4(p

r
t ) − u1→3(p

l
t)−

u3→4(p
l
t+1)) ⊙Mq(p

l
t)/

∑

pl
t

Mq(p
l
t).

(3.26)

Lqv =
∑

pl
t

ψ(v2→4(p
r
t ) − v1→3(p

l
t)) ⊙Mq(p

l
t)/

∑

pl
t

Mq(p
l
t). (3.27)

where Lq = Lqu + Lqv. Quadrilateral constraint loss at other
directions are computed in the same way.

Triangle constraint loss. Triangle constraint describes the
relationship between optical flow, stereo disparity and cross-
view optical flow. Similar to quadrilateral constraint loss, we
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only employ Lt to confident pixels. Take w1→3, w2→4, w1→2 as
an example, we first compute the confident map for triangle
constraint Mt(p) = M1→2(p) ⊙ M1→4(p), then according to
Equation (3.20), Lt is defined as follows,

Ltu =
∑

pl
t
ψ(u1→4(pl

t) − u2→4(pr
t ) − u1→2(pl

t)) ⊙Mt(p)
∑

pl
t
Mt(pl

t)
, (3.28)

Ltv =
∑

pl
t

ψ(v1→4(p
l
t) − v2→4(p

r
t )) ⊙Mt(p)

∑

pl
t

Mt(p
l
t), (3.29)

where Lt = Ltu + Ltv. Triangle constraint losses at other
directions are computed in the same way.

The final loss function for the teacher model is L = Lp +
λ1Lq + λ2Lt, where we set λ1 = 0.1 and λ2 = 0.2 during
experiments.

Self-Supervision loss. During the first stage, we train our
teacher model to compute proxy optical flow w and confident
map M , then we define our self-supervision loss as,

Ls =
∑

i,j

∑
p ψ(wi→j(p) − w̃i→j(p)) ⊙Mi→j(p)

∑
pMi→j(p)

. (3.30)

At test time, only the student model is needed, and we can use
it to estimate both optical flow and stereo disparity.

3.3.4 Experiment

We evaluate our method on the challenging KITTI 2012 and
KITTI 2015 datasets and compare our method with state-of-the-
art unsupervised and supervised optical flow learning methods.
Besides, since our method is able to predict stereo disparity,
we also compare its stereo matching performance with related
methods.
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Figure 3.15: Qualitative evaluation on KITTI 2015 optical flow benchmark.
For each case, the top row is optical flow and the bottom row is error map.
Our model achieves much better results both quantitatively and qualitatively
(e.g., shaded boundary regions). Lower Fl is better.

Experimental Setting

During training, we use the raw multi-view extensions of KITTI
2012 [37] and KITTI 2015 [99] and exclude neighboring frames
(frame 9-12) as [116, 142, 85, 86]. For evaluation, we use
the training sets of KITTI 2012 and KITTI 2015 with ground
truth optical flow and disparity. We also submit our results
to optical flow and stereo matching benchmarks for comparison
with current state-of-the-art methods.

We implement our algorithm using TensorFlow with Adam
optimizer. For the teacher model, we set the batch size to be
1, since there are 12 optical flow estimations for the 4 images.
For the student model, the batch size is 4. We adopt a similar
data augmentation strategy as [29]. During training, we random
crop [320, 896] as input, while during testing, we resize images
to resolution [384, 1280]. We employ a two-stage training
procedure as [85, 86]. The key difference is that during the first
stage, we add geometric constraints that enable our model to
predict more accurate reliable predictions. Besides, during the
second stage, we do not distinguish between occluded and non-
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Figure 3.16: Qualitative evaluation with other unsupervised stereo matching
methods on KITTI 2015 training dataset. For each case, the top row is stereo
disparity and the bottom row is the error map. Our models estimate more
accurate disparity maps (e.g., image boundary regions and moving-object
boundary regions). Lower D1 is better.

occluded pixels, and set all our confident predictions as ground
truth. For each experiment, we set the initial learning rate to
be 1e-4 and decay it by half every 50k iterations.

For evaluation metrics, we use the standard EPE (average
end-point error) and Fl (percentage or erroneous pixels). A
pixel is considered as correctly estimated if end-point-error is
<3 pixel or <5%. For stereo matching, there is another metric
D1, which shares the same definition as Fl.

Main Results

Our method achieves the best unsupervised results for all evalu-
ation metrics on both KITTI 2012 and KITTI 2015 datasets.
More notably, our unsupervised results are even comparable
with state-of-the-art supervised learning methods. Our ap-
proach bridges the performance gap between supervised learning
and unsupervised learning methods for optical flow estimation.

Optical Flow. As shown in Table 3.8, our method outperforms
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Table 3.8: Quantitative evaluation of optical flow estimation on KITTI.
Bold fonts highlight the best results among supervised and unsupervised
methods. Parentheses mean that training and testing are performed on the
same dataset. fg and bg denote results of foreground and background regions
respectively.

Method
KITTI 2012 KITTI 2015

Train train test train test

Stereo EPE-all EPE-noc EPE-all EPE-noc Fl-all Fl-noc EPE-all EPE-noc Fl-all Fl-fg Fl-bg

Su
p

er
vi

se
d

SpyNet [112] ✗ 3.36 – 4.1 2.0 20.97% 12.31% – – 35.07% 43.62% 33.36%
FlowFieldsCNN [4] ✗ – – 3.0 1.2 13.01% 4.89% – – 18.68% 20.42% 18.33%
DCFlow [146] ✗ – – – – – – – – 14.86% 23.70% 13.10%
FlowNet2 [54] ✗ (1.28) – 1.8 1.0 8.80% 4.82% (2.3) – 10.41% 8.75% 10.75%
UnFlow-CSS [98] ✗ (1.14) (0.66) 1.7 0.9 8.42% 4.28% (1.86) – 11.11% 15.93% 10.15%
LiteFlowNet [52] ✗ (1.05) – 1.6 0.8 7.27% 3.27% (1.62) – 9.38% 7.99% 9.66%
PWC-Net [127] ✗ (1.45) – 1.7 0.9 8.10% 4.22% (2.16) – 9.60% 9.31% 9.66%
MFF [115] ✗ – – 1.7 0.9 7.87% 4.19% – – 7.17% 7.25% 7.15%

SelFlow [86] ✗ (0.76) – 1.5 0.9 6.19% 3.32% (1.18) – 8.42% 7.61% 12.48%

U
ns

up
er

vi
se

d

BackToBasic [59] ✗ 11.3 4.3 9.9 4.6 43.15% 34.85% – – – – –
DSTFlow [116] ✗ 10.43 3.29 12.4 4.0 – – 16.79 6.96 39% – –
UnFlow-CSS [98] ✗ 3.29 1.26 – – – – 8.10 – 23.30% – –
OccAwareFlow [142] ✗ 3.55 – 4.2 – – – 8.88 – 31.2% – –
MultiFrameOccFlow-None [57] ✗ – – – – – – 6.65 3.24 – – –
MultiFrameOccFlow-Soft [57] ✗ – – – – – – 6.59 3.22 22.94% – –
DDFlow [85] ✗ 2.35 1.02 3.0 1.1 8.86% 4.57% 5.72 2.73 14.29% 20.40% 13.08%
SelFlow [86] ✗ 1.69 0.91 2.2 1.0 7.68% 4.31% 4.84 2.40 14.19% 21.74% 12.68%
Lai et al. [75] ✓ 2.56 1.39 – – – – 7.134 4.306 – – –
UnOS [141] ✓ 1.64 1.04 1.8 – – – 5.58 – 18.00% – –
Flow2Stereo+Lp+Lq+Lt ✓ 4.91 0.84 – – – – 7.88 2.24 – – –
Flow2Stereo+Lp+Lq+Lt+Self-Supervision ✓ 1.45 0.82 1.7 0.9 7.63% 4.02% 3.54 2.12 11.10% 16.67% 9.99%

all unsupervised learning methods for all metrics on both KITTI
2012 and KITTI 2015 datasets. Specifically, on the KITTI
2012 dataset, we achieve EPE-all = 1.45 pixels, which achieves
14.2% relative improvement than previous best SelFLow [86].
For the testing set, we achieve EPE = 1.7 pixels, resulting in
22.7% improvement. More notably, we achieve FL-all = 7.68%
and Fl-noc = 4.02%, which is even better than state-of-the-
art fully supervised learning methods including PWC-Net [127],
MFF [115], and is highly competitive with LiteFlowNet [52] and
SelFlow [86].

On KITTI 2015, the improvement is also impressive. For
the training set, we achieve EPE-all = 3.54 pixels, resulting
in 26.9% relative improvement than the previous best method
SelFlow. On the testing benchmark, we achieve Fl-all = 11.10%,
which is not only better than the previous best unsupervised
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Table 3.9: Quantitative evaluation of stereo disparity on KITTI training
datasets (apart from the last columns). Our single model achieves the highest
accuracy among all unsupervised stereo learning methods. * denotes that we
use their pre-trained model to compute the numbers, while other numbers
are from their paper. Note that Guo et al. [43] pre-train stereo model on
synthetic Scene Flow dataset with ground truth disparity before fine-tuning
on KITTI dataset.

Method
KITTI 2012 KITTI 2015

EPE-all EPE-noc EPE-occ D1-all D1-noc D1-all (test) EPE-all EPE-noc EPE-occ D1-all D1-noc D1-all (test)

Joung et al. [63] – – – – – 13.88% – – – 13.92% – –
Godard et al. [40] * 2.12 1.44 30.91 10.41% 8.33% – 1.96 1.53 24.66 10.86% 9.22% –
Zhou et al. [166] – – – – – – – – – 9.41% 8.35% –
OASM-Net [79] – – – 8.79% 6.69% 8.60% – – – – – 8.98%
SeqStereo et al. [150] * 2.37 1.63 33.62 9.64% 7.89% – 1.84 1.46 26.07 8.79% 7.7% –
Liu et al. [83] * 1.78 1.68 6.25 11.57% 10.61% – 1.52 1.48 4.23 9.57% 9.10% –
Guo et al. [43] * 1.16 1.09 4.14 6.45% 5.82% – 1.71 1.67 4.06 7.06% 6.75% –
UnOS [141] – – – – – 5.93% – – – 5.94% – 6.67%

Flow2Stereo+Lp 1.73 1.13 27.03 7.88% 5.87% – 1.79 1.40 25.24 9.83% 7.74% –
Flow2Stereo+Lp+Lq+Lt 1.62 0.94 29.26 6.69% 4.69% – 1.67 1.31 19.55 8.62% 7.15% –
Flow2Stereo+Lp+Lq+Lt+Self-Supervision 1.01 0.93 4.52 5.14% 4.59% 5.11% 1.34 1.31 2.56 6.13% 5.93% 6.61%

learning methods by a large margin (21.8% relative improve-
ment), but also competitive with state-of-the-art supervised
learning methods. To the best of our knowledge, this is the
first time that an unsupervised method achieves comparable
performance compared with state-of-the-art fully supervised
learning methods. Qualitative comparisons with other methods
on KITTI 2015 optical flow benchmark are shown in Figure 3.15.

Stereo Matching. We directly apply our optical flow model
to stereo matching (only keeping the horizontal direction of
flow), it achieves state-of-the-art unsupervised stereo matching
performance as shown in Table 3.9. Specifically, we reduce EPE-
all from 1.61 pixels to 1.01 pixels on KITTI 2012 training dataset
and from 1.71 pixels to 1.34 pixels on KITTI 2015 dataset.

Compared with previous state-of-the-art method UnOS [141],
we reduce Fl-all from 5.93% to 5.11% on KITTI 2012 testing
dataset and from 6.67% to 6.61% on KITTI 2015 testing
dataset. This is a surprisingly impressive result, since our
optical flow model performs even better than other models
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Table 3.10: Ablation study on KITTI training datasets. For self-supervision,
v1 means employing self-supervision of [85, 86], v2 means not distinguishing
between occluded and non-occluded pixels, v3 means adding more challeng-
ing conditions (our final model), and v4 means adding geometric constraints
in the self-supervision stage (slightly degrade the performance).

Lp Lq Lt

Self-Supervision KITTI 2012 KITTI 2015

v1 v2 v3 v4 EPE-all EPE-noc EPE-occ Fl-all Fl-noc EPE-all EPE-noc EPE-occ Fl-all Fl-noc

✓ ✗ ✗ ✗ ✗ ✗ ✗ 4.41 1.06 26.54 14.18% 5.13% 8.20 2.85 42.01 19.50% 9.97%
✓ ✓ ✗ ✗ ✗ ✗ ✗ 5.15 0.84 33.74 13.53% 3.42% 8.24 2.33 45.46 18.31% 8.15%
✓ ✗ ✓ ✗ ✗ ✗ ✗ 4.98 0.86 32.33 12.64% 3.54% 7.99 2.34 43.50 17.89% 8.14%
✓ ✓ ✓ ✗ ✗ ✗ ✗ 4.91 0.84 31.81 12.57% 3.47% 7.88 2.24 43.92 17.68% 7.97%
✓ ✗ ✗ ✓ ✗ ✗ ✗ 1.92 0.95 7.86 6.56% 3.82% 5.85 2.96 24.17 13.26% 9.06%
✓ ✗ ✗ ✗ ✓ ✗ ✗ 1.89 0.93 7.76 6.44% 3.76% 5.48 2.78 22.05 12.62% 8.53%
✓ ✗ ✗ ✗ ✗ ✓ ✗ 1.62 0.89 6.21 5.62% 3.38% 4.12 2.36 15.04 10.93% 8.31%
✓ ✓ ✓ ✗ ✗ ✓ ✗ 1.45 0.82 5.52 5.29% 3.27% 3.54 2.12 12.58 10.04% 7.57%

✓ ✓ ✓ ✗ ✗ ✗ ✓ 1.56 0.86 6.20 5.83% 3.41% 3.66 2.16 13.18 10.44% 7.80%

specially designed for stereo matching. It also demonstrates the
generalization capability of our optical flow model toward stereo
matching. Qualitative comparisons with other unsupervised
stereo matching approaches are shown in Figure 3.16.

Ablation Study

We conduct a thorough analysis of different components of our
proposed method.

Quadrilateral and Triangle Constraints. We add both con-
straints during our training in the first stage, aiming to improve
the accuracy of the confident pixels, since only these confident
pixels are used for self-supervised training in the second stage.
confident pixels are usually non-occluded in the first stage,
because we optimize our model with photometric loss, which
only holds for non-occluded pixels. Therefore, we are concerned
about the performance over those non-occluded pixels (not for
all pixels). As shown in the first 4 rows of Table 3.10, both
constraints significantly improve the performance over those
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non-occluded pixels, and the combination of them produces the
best results, while the EPE-occ may degrade. This is because we
are concerned about the performance over those non-occluded
pixels, since only confident pixels are used for self-supervised
training. Specifically, EPE-noc decreases from 1.06 pixels to
0.84 pixels on KITTI 2012 and from 2.85 pixels to 2.24 pixels
on KITTI 2015. It is because that we achieve more accurate
confident flow predictions, we are able to achieve much better
results in the second self-supervision stage. We also achieve
big improvement for stereo matching performance over non-
occluded pixels as in Table 3.9.

Self-Supervision. We employ four types of self-supervision
(check comparison of row 5, 6, 7, 8 in Table 3.10). For row 5
and row 6 (v1 and v2), we show that it does not make much
difference to distinguish occluded or non-occluded pixels de-
noted by forward-backward consistency check. Because forward-
backward consistency predicts confident or non-confident flow
predictions, but not occluded or non-occluded pixels. Therefore,
the self-supervision will be employed to both occluded and
non-occluded pixels whenever the forward-backward check is
employed. Comparing row 6 and row 7 (v2 and v3), we
show that after adding additional challenging conditions, flow
estimation performance is improved greatly. Currently, we are
not able to successfully apply geometric constraints in the self-
supervision stage. As shown in row 7 and row 8 (v2 and
v3), geometric constraints will slightly degrade the performance.
This is mainly because there is a correspondence ambiguity
within occluded pixels, and it is challenging for our geometric
consistency to hold for all occluded pixels.
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Discussion

Similar to other unsupervised learning methods [116, 98, 57, 85,
86] for optical flow estimation, our method is based on brightness
constancy. Therefore, for cases where brightness changes greatly
(e.g., shadow and reflection), our method does not work well.
Also, we only successfully apply geometric constraints during the
first stage. Adding geometric constraints in the self-supervision
stage is a potential direction to further improve the performance.

3.3.5 Summary

We have presented a method to jointly learn optical flow
and stereo matching with one single model. We show that
geometric constraints improve the quality of those confident
predictions, which further help in the self-supervision stage
to achieve much better performance. Besides, after digging
into the self-supervised learning approaches, we show that
creating challenging conditions is the key to improve the per-
formance. Our approach has achieved the best unsupervised
optical flow performance on KITTI 2012 and KITTI 2015, and
our unsupervised performance is comparable with state-of-the-
art supervised learning methods. More notably, our unified
model also achieves state-of-the-art unsupervised stereo match-
ing performance, demonstrating the generalization capability of
our model.
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3.4 DistillFlow

3.4.1 Introduction

In DistillFlow, we improve the training protocol compared with
DDFlow, SelFlow and Flow2Stereo in three aspects: model
distillation, improved network structure and spatial regularizer.
For model distillation, we train multiple teacher models and
use their ensembled high-quality flow predictions to supervise
the student model (Figure 3.17). For network structure, we
use a shared decoder for all levels in PWC-Net. Besides,
we employ dilated convolution to improve both the capacity
and receptive field of the decoder. For spatial regularizer, we
add an edge-aware smoothness loss term to regularize the flow
learning. Experimental results show that these modifications
greatly improve the performance on both KITTI and Sintel
datasets. Specifically, we improve the flow accuracy over the
monocular version of Flow2Stereo by 15% (1.38 pixels vs 1.62
pixels) on KITTI 2012 training dataset and 29% (2.93 pixels vs

4.12 pixels) on KITTI 2015 training dataset. On KITTI 2012
and 2015 flow benchmarks, we achieve Fl-all = 7.18% and Fl-all
= 10.54% respectively, which even outperform the stereo version
of Flow2Stereo that uses stereo data during training (Fl-all =
7.68% on KITTI 2012 and Fl-all = 11.10 on KITTI 2015). On
the Sintel benchmark, we improve flow accuracy over SelFlow
by 36% on Sintel Clean (4.23 pixels vs 6.56 pixels) and by 12%
on Sintel Final (5.81 pixels vs 6.57 pixels).

In Flow2Stereo, we show the key of self-supervised training
is to create challenging transformations, but do not give the
definitions of these challenging transformations. In DistillFlow,
we summarize the challenging transformations in three cate-
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Figure 3.17: Framework illustration. We distill confident optical flow
estimations from teacher models (stage 1) to guide the flow learning of the
student model (stage 2) under different challenging transformations.

gories: occlusion hallucination based transformations, geomet-
ric transformations and color transformations. Besides, we
summarize two variants of knowledge distillation: from the
occlusion view (DDFlow and SelFlow) and from the confidence
view (Flow2Stereo), and then show the comparison of these two
variants.

Moreover, we demonstrate the generalization capability of
DistillFlow in three aspects: framework generalization, corre-
spondence generalization and cross dataset generalization. In
framework generalization, we first show that our knowledge
distillation framework is applicable to different network struc-
tures (e.g., PWC-Net [127], FlowNetS [29] and FlowNetC [29]),
then extend the knowledge distillation idea to semi-supervised
learning. With semi-supervised learning, we achieve Fl = 5.94%
on KITTI 2015 benchmark (rank 1st among all monocular meth-
ods) and EPE = 4.095 pixels on Sintel Final benchmark (rank
1st among all published methods). For correspondence gener-
alization, we directly use our self-supervised flow model trained
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Figure 3.18: Framework overview. For simplicity, we only show one teacher
model. Our teacher models and the student model have identical network
structures. In stage 1, We train the teacher model with photometric loss Lpho

and edge-aware smoothness loss Lsmo. In stage 2, we employ challenging
transformations to the input to create hallucinated occlusions and less
confident predictions. We present two variants of knowledge distillation
from different points of view: occlusion view (variant 1) and confidence view
(variant 2). During testing, only the student model is needed.

on monocular videos to estimate stereo disparity. Surprisingly,
DistillFlow achieves comparable performance with state-of-the-
art unsupervised stereo matching methods on KITTI datasets.
For cross data generalization, we evaluate the performance of
the model trained on another dataset (e.g., Sintel → KITTI
and KITTI → Sintel) and show that DistillFlow still achieves
comparable performance with previous methods.
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3.4.2 Method

In this section, we illustrate our self-supervised learning frame-
work based on knowledge distillation (as shown in Figure 3.18).
We train two types of CNN (multiple teacher models and a
student model) with the same network architecture. The self-
supervised learning framework contains two stages: in stage 1,
we train teacher models to obtain confident flow predictions; in
stage 2, we distill confident predictions from the teacher models
to guide the student model to learn optical flow of both occluded
and non-occluded pixels. We introduce two variants in stage
2, where variant 1 is from the occlusion view and variant 2 is
from the confidence view. These two variants achieve similar
performance improvements, especially for occluded pixels. Only
the student model is needed during testing. Before describing
our method in detail, we first define our notations.

Notation

For our teacher models, we denote I1, I2 ∈ R
H×W×3 for two

consecutive RGB images, where H and W are height and width
respectively. Our goal is to estimate the forward optical flow
wf ∈ R

H×W×2 from I1 to I2. After obtaining wf , we can warp I2

towards I1 to get the warped image Iw
2→1. Here, we also estimate

the backward optical flow wb from I2 to I1 and a backward
warped image Iw

1→2. Since there are many cases where one pixel
is only visible in one image but not visible in the other image,
namely occlusion, we denote Of , Ob ∈ R

H×W×1 as the forward
and backward occlusion map respectively. The occlusion map
is a binary mask, where value 1 denotes that the pixel in that
location is occluded and value 0 denotes non-occluded.
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After creating challenging transformations to the input image
pairs, the input images to the student model are denoted as Ĩ1,
Ĩ2 ∈ R

h×w×3. Similarly, optical flow, occlusion map and confi-
dent map from teacher models need to perform corresponding
transformations as input images. We use wT

f , wT
b , OT

f , OT
b , MT

f

and MT
b to denote their transformed results.

Our student model follows similar notations. The student
network takes Ĩ1, Ĩ2 as input, and produces optical flow w̃f , w̃b,
warped images Ĩw

2→1, Ĩ
w
1→2, occlusion maps Õf , Õb.

For stage 2 variant 1, knowledge distillation is performed from
the occlusion view. Therefore, we define another occlusion map
O

′

f and O
′

b to denote hallucinated occlusions (i.e., hand-crafted
occlusions). Hallucinate occlusion map is computed from the
transformed occlusion mask OT (in our teacher models) and
occlusion mask Õ (in our student model).

For stage 2 variant 2, knowledge distillation is performed from
the confidence view. Therefore, we define confidence maps MT

f

and MT
b to denote which pixels can be accurately estimated by

our teacher models after transformations. For confidence maps,
value 1 denotes that flow prediction of that pixel is confident
and value 0 denotes not confident.

Network Architecture

In principle, DistillFlow can use any backbone network to learn
optical flow. In our implementation, we build on top of PWC-
Net [127] due to its remarkable performance and compact model
size. Same as PWC-Net, we learn 7-level feature representations
{F l

1}, {F l
2} for two input images, and gradually employs feature

warping and cost volume construction to estimate optical flow
{wl

f} in a coarse-to-fine manner. The finest flow is at level 2,
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Figure 3.19: Our network architecture at each level (similar to PWC-
Net [127]). We first upsample (×2) and upscale (×2) optical flow at previous
level wl+1

f to obtain initial coarse flow ẇl
f at current level. Then coarse flow,

cost volume and current feature representations (aligned by 1×1 convolution
layer) are concatenated together as the input to the decoder to learn the
residual flow. The decoder is shared at different levels.

therefore the full-resolution flow is obtained by upsampling (×4)
and upscaling (×4) w2

f .
Figure 3.19 shows our network architecture at each level,

where we first upsample (×2) and upscale (×2) optical flow
at previous level wl+1

f to obtain initial coarse flow ẇl
f at

current level. After that, coarse flow, cost volume and current
feature representations (aligned by 1 × 1 convolution layers) are
concatenated as the input to the decoder to learn the residual
flow. Finally, the coarse flow ẇl

f and the residual flow are added
to obtain refined flow at level l. These estimations are passed
to layer l - 1 to estimate higher-resolution flow.

We make several modifications to make PWC-Net more
powerful. First, our decoder is shared at different levels, while
PWC-Net employs different decoders at different levels. Using
a shared decoder can significantly reduce the model parameters,
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and the shared formulation enables our decoder to learn optical
flow more effectively in an iterative manner. Since there are
different numbers of features at different levels, we add a
1 × 1 convolution layer to align the features similar to [1].
Second, for the decoder, we add additional dilated convolutional
layers [154], while PWC-Net only uses convolutional layers.
Adding dilated convolutional layers can not only improve the
capacity of decoder, but also increase the receptive field without
incurring a large computational burden. This is inspired by the
context network used in PWC-Net to refine flow at level 2.

We use the identical network architecture for multiple teacher
models and one student model. Next, we introduce how to train
teacher models in an unsupervised manner, how to train the
student model in a self-supervised manner and how to fine-tune
the student model.

Stage 1: Unsupervised Flow Learning

To train our teacher models in an unsupervised manner, we swap
the image pairs in our input to produce both forward flow wf

and backward flow wb. After that, we estimate the occlusion
map based on the forward-backward consistency prior [130, 98].
That is, for non-occluded pixels, the forward flow should be
the inverse of the backward flow at the corresponding pixel in
the second image. We consider pixels as occluded when the
mismatch between forward flow and backward flow is too large.
Take forward occlusion map as an example, we first compute
the reversed forward flow as follow:

ŵf(p) = wb(p + wf(p)), (3.31)
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where p is a pixel in the first image I1. A pixel is considered
occluded (i.e., Of(p) = 1) when the following constraint is
violated:

|wf(p) + ŵf(p)|2 < α1(|wf(p)|2 + |ŵf(p)|2) + α2, (3.32)

where we set α1 = 0.01, α2 = 0.5 for all our experiments.
Backward occlusion map wb is computed in the same way.

Unsupervised flow estimation is based on brightness con-
stancy and spatial smoothness assumption. We use photometric
loss Lpho and edge-aware smoothness loss Lsmo for the above two
assumptions. Photometric loss measures the difference between
the reference image and the warped target image. Take forward
flow wf as an example, we can use wf to warp I2 to reconstruct
I1:

Iw
2→1(p) = I2(p + wf(p)). (3.33)

Photometric loss Lpho only makes sense for non-occluded pixels,
which is defined as follows:

Lpho =
∑
ψ(I1 − Iw

2→1) ⊙ (1 −Of)/
∑

(1 −Of)

+
∑
ψ(I2 − Iw

1→2) ⊙ (1 −Ob)/
∑

(1 −Ob). (3.34)

where ψ(x) = (|x| + ǫ)q is a robust loss function, ⊙ denotes
the element-wise multiplication. During our experiments, we
set ǫ = 0.01, q = 0.4.

Photometric loss is not informative in homogeneous regions,
therefore existing unsupervised methods usually add a smooth-
ness loss to regularize the flow [98, 142]. Besides, smoothness
can be regarded as a regularizer for some occluded pixels,
since it makes the prediction of occluded pixels similar to the
neighborhood pixels. Here we adopt an edge-aware smoothness
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loss weighted by the image gradient:

Lsmo =
1

H ×W

∑

p
|e−β∇I1(p)|T · |∇wf(p)|

+
1

H ×W

∑

p
|e−β∇I2(p)|T · |∇wb(p)|, (3.35)

where ∇ denotes gradient, T represents transpose and β is a
factor to control the smoothness effect on edges. We set β = 10
in our experiment.

The final loss to train teacher models in stage 1 is the
combination of Lpho and Lsmo:

L1 = Lpho + 0.1 ∗ Lsmo. (3.36)

Stage 2: Self-Supervised Flow Learning with Knowledge

Distillation

Since photometric loss does not make sense for occluded pixels,
prior unsupervised optical flow learning methods lack the key
ability to effectively learn optical flow of occluded pixels. To
tackle this issue, we distill confident predictions from our teacher
models, and use them to generate input/output data for our
student model by creating challenging transformations. Next,
we first introduce our occlusion hallucination techniques, then
describe challenging transformations employed in DistillFlow,
finally we explain two variants of knowledge distillation.

Occlusion Hallucination Figure 3.20 demonstrates two kinds
of occlusion hallucination techniques used in DistillFlow: ran-
dom cropping and random superpixel noise injection. In both
Figure 3.20 (a) and (b), suppose pixel p1 is non-occluded from
I1 to I2 and pixel p

′

1 in its corresponding pixel. After creating
challenging transformation to I1 and I2, p1 becomes occluded
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Figure 3.20: Occlusion hallucination scheme. The scheme creates hand-
crafted occlusions, e.g., pixel p1 is non-occluded from I1 to I2 but become
occluded from Ĩ1 to Ĩ2 (p

′

1 moves out of the image boundary for case (a)
and is covered by noise for case (b)). The scheme also creates less confident
predictions, e.g., though pixel p2 is non-occluded, its patch similarity from
Ĩ1 to Ĩ2 is smaller than patch similarity from I1 to I2 due to the partially
missing regions.

from Ĩ1 to Ĩ2, because p
′

1 moves out of image boundary in (a)
and is covered by noise in (b). We call the above procedures of
creating hand-crafted occlusions as occlusion hallucination.

Even though p1 becomes occluded from Ĩ1 to Ĩ2, the location
of its corresponding pixel p

′

1 does not change. As a result, the
flow of p1 does not change during occlusion hallucination. This is
the basic assumption of our knowledge distillation idea. Since p1

is non-occluded from I1 to I2, our teacher models can accurately
estimate its flow; however, p1 becomes occluded from Ĩ1 to Ĩ2,
therefore our student model cannot accurately estimate its flow
anymore. Luckily, we can distill confident flow estimation of p1

from teacher models to guide the student model to learn the flow
of p1 from Ĩ1 to Ĩ2. This explains why our knowledge distillation
approach enables our student model to effectively learn optical
flow of occluded pixels in a totally unsupervised manner.
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(a) Reference Image 𝐼1 (b) Flow 𝐰𝑓 (c) Flow 𝐰𝑓 (Confident) (d) Error Map (e) Error Map (Confident)

(a) Reference Image ሚ𝐼1 (b) Flow 𝐰𝑓 (c) Transformed Flow 𝐰𝑓𝑇 (d) Error Map (e) Transformed Error Map
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Figure 3.21: Knowledge distillation examples. The redder the color in the
error map, the greater the error. In the (d) of the first row, flow wf has
many erroneous pixels; however the confident flow predictions after forward-
backward consistency check in (c) are mostly reliable (as shown in (e)).
After creating challenging transformations to the input (e.g., row 2-4), the
flow predictions by the student model are usually less confident than the
transformed predictions wT

f from confident flow, e.g., rectangle regions in
the error maps. We only use confident predictions in (c) of row 1 to guide
the learning of the student model. In general, wT

f shall be sparse as in (c) of
row 1. For better visual comparison with w̃f , we show transformed results
from (b) of row 1.

Strategy in (a) generates hallucinated occlusions near the
image boundary. However, for occlusion elsewhere (e.g., motion
boundary of objects), it is not so effective. Strategy in (b)
can generate hallucinated occlusions in a wider range of cases.
This is because the shape of a superpixel is usually random
and superpixel edges are often part of object boundaries, which
is consistent with the real-world cases. We can choose several
superpixels at different locations to cover more occlusion cases.
The combination of (a) and (b) can generate a variety of
hallucinated occlusions.

Challenging Transformations. From the analysis of occlu-
sion hallucination, we conclude that our proposed knowledge
distillation enables our student model to more effectively learn
optical flow of occluded regions. In this part, we show that
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knowledge distillation also helps learn the optical flow of non-
occluded pixels. We introduce three kinds of challenging
transformations: occlusion hallucination based transformations,
geometric transformations and color transformations.

Occlusion hallucination based transformations. When
searching pixel correspondences, we care about not only the
color of specific pixels, but also the color of their neighbors
or context, that is, image patch similarity. In Figure 3.20, p2

is non-occluded both from I1 to I2 and from Ĩ1 to Ĩ2, and p
′

2

is its corresponding pixel. When considering the image patches
around pixel p2 and p

′

2, patch similarity from Ĩ1 to Ĩ2 is obviously
smaller than patch similarity from I1 to I2, due to the partially
missing regions (part regions move out of the image boundary in
(a) and part regions are covered by noise in (b)). In this case, the
flow estimation of p2 by teacher models is more confident than
the student model. Then, we can use the confident predictions
from teacher models to guide the student model to learn the flow
of p2. This explains why knowledge distillation also improves the
optical flow of non-occluded pixels with occlusion hallucination
based transformations.

Geometric transformations. Geometric transformations
include cropping, scaling, rotation, translation and so on, which
are defined by 6 parameters as in the affine transformation from
Spatial Transformer Network [56]. Cropping used in occlusion
hallucination is just one kind of geometric transformation, which
is proven effective in knowledge distillation. Actually, other
kinds of geometric transformation are also effective as long
as they can create challenging scenes, where flow predictions
become less confident after transformations. Take scaling as
an example, suppose we downsample I1 and I2 as input to the
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student model. In general, image information will lose during
the downsampling operation, which makes the student model
difficult to predict flow. Therefore, the flow prediction by the
student model is less confident than teacher models.

Color transformations. Color transformations represent
those transformations that change the appearance of images,
such as changing contrast, brightness, saturation, hue, etc.
Though such transformations do not create hallucinated occlu-
sions, they can create challenging scenes. For example, gener-
ating images with overexposure and underexposure changes the
image appearance, and decreasing image contrast makes pixels
less distinguishable.

Overall, the purpose of creating challenging transformations
is to create hallucinated occlusion or less confident predictions,
so that knowledge distillation can be effectively employed. Other
recent data transformation strategies (e.g., [25, 26]) are also
applicable in our self-supervised learning framework and can be
explored in the future.

Figure 3.21 shows a real-world example of different transfor-
mations. The raw flow predictions from teacher models have
many erroneous pixels, but confident predictions after forward-
backward consistency check are mostly correct ((d) → (e) in row
1). After creating challenging transformations, many confident
predictions become less confident (e.g., rectangle regions in (d)
and (e)).

Knowledge Distillation. Knowledge distillation is performed
at stage 2 to train our student model in the self-supervision
framework. We first introduce two variants of knowledge
distillation, then make some comparisons between them.

Stage 2 variant 1: from the occlusion view. As
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illustrated in the occlusion hallucination section, there exist
new occlusions (i.e., hallucinated occlusion maps O

′

f and O
′

b

in Figure 3.18) after creating challenging transformations. Hal-
lucinated occlusion maps O

′

f and O
′

b are computed as follows:




O

′

f = min(max(Õf −OT
f , 0), 1)

O
′

b = min(max(Õb −OT
b , 0), 1).

(3.37)

Then the pixels in Ĩ1, Ĩ2 can be divided into three types:
old occluded pixels (pixels that are occluded from I1 to I2),
hallucinated occlusions (pixels that are non-occluded from I1 to
I2 but become occluded from Ĩ1 to Ĩ2), and non-occluded pixels
both from I1 to I2 and from Ĩ1 to Ĩ2).

As shown in Figure 2, we define the loss for occluded pixels
on hallucinated occlusions:

Locc =
∑
ψ(wT

f − w̃f) ⊙O
′

f/
∑
O

′

f

+
∑
ψ(wT

b − w̃b) ⊙O
′

b/
∑
O

′

b, (3.38)

where wT
f and wT

b are the transformed flow of wf and wb from
teacher models.

Photometric loss for non-occluded pixels and edge-aware
smoothness loss are computed in the same way as the teacher
models. The final loss to train our student model in stage 2
variant 1 is the combination of Lpho, Locc and Lsmo:

L2_1 = Lpho + Locc + 0.1 ∗ Lsmo. (3.39)

Stage 2 variant 2: from the confidence view. Creating
hallucinated occlusions can be regarded as a special case of
creating challenging transformations. As shown in Figure 3.20,
patch similarity of p1 and p

′

1 from Ĩ1 to Ĩ2 is smaller than from I1
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to I2. As a result, we can regard creating hallucinated occlusions
as a subset of creating challenging transformations.

In stage 1, the forward-backward consistency check is em-
ployed to detect whether the pixel is occluded or not. However,
this brings in errors because many pixels are still non-occluded
even if they violate this principle, and vice versa. Instead, it
would be more proper to call those pixels confident if they pass
the forward-backward consistency check. From this point of
view, the key point of knowledge distillation is to let confident
predictions to supervise those less confident predictions. We
define confidence map M as the reverse of occlusion map O:




MT

f = 1 −OT
f

MT
b = 1 −OT

b

(3.40)

When creating challenging transformations, both occluded re-
gions and non-occluded regions become more challenging. Dur-
ing the self-supervised learning stage, the student model is
able to handle more challenging conditions. As a result, its
performance improves not only for those occluded pixels, but
also for non-occluded pixels.

As shown in Figure 3.18, we define knowledge distillation loss
Ldis as follows:

Ldis =
∑
ψ(wT

f − w̃f) ⊙MT
f /

∑
MT

f

+
∑
ψ(wT

b − w̃b) ⊙MT
b /

∑
MT

b . (3.41)

The final loss to train our student model in stage 2 variant 2 is
the combination of Ldis and Lsmo:

L2_1 = Ldis + 0.1 ∗ Lsmo. (3.42)

Comparison of two variants. Variant 2 can well explain why
knowledge distillation improves flow learning of both occluded
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and non-occluded pixels. However, variant 1 cannot well explain
why knowledge distillation also improves flow learning of non-
occluded pixels, since photometric loss is still applied to non-
occluded pixels. Though not well explained, variant 1 can indeed
improve flow learning of non-occluded pixels, since forward-
backward consistency check cannot accurately detect whether
the pixel is occluded or not (e.g., some non-occluded pixels are
regarded as occluded by forward-backward consistency check).

In our experiments, variant 1 and variant 2 achieve very
similar performances. However, it takes more time to train
variant 1 than variant 2. This is because for variant 1, apart from
Locc, we also need to compute Lpho, which is time-consuming.
While for variant 2, we can directly train it in a supervised
manner after pre-computing flow and confidence maps. As a
result, we set variant 2 as our default knowledge distillation
approach. For variant 2, its performance is up-bounded by
the prediction of the teacher model. To obtain more reliable
predictions from stage 1, we employ model distillation and
ensemble flow predictions from multiple teacher models.

Supervised Fine-tuning

Inspired by the knowledge distillation from unsupervised flow
learning, we extend the idea of distillation to semi-supervised
learning. That is, after supervised fine-tuning, we can compute
reliable flow and confidence maps for unlabeled data, which
are denoted as self-annotated data. Then we mix the real
annotated data and self-annotated data and train our model
in a supervised manner. Note that the count of real annotated
data is very limited, therefore we make a balance between real
annotated data and self-annotated data. Suppose there are n1
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real annotated image pairs, n2 self-annotated image pairs, we
will repeat real annotated image pairs n2

n1
times.

3.4.3 Experiment

We evaluate and compare our method with state-of-the-art
unsupervised and supervised learning methods on standard
optical flow benchmarks, including KITTI 2012 [37], KITTI
2015 [99] and MPI Sintel [15].

Implementation Details

Datasets. KITTI 2012 and KITTI 2015 datasets consist of
real-world road scenes with sparse ground truth flow. KITTI
2012 contains 194 training image pairs and 195 testing pairs,
while KITTI 2015 contains 200 training pairs and 200 testing
pairs. We use the combination of their multi-view extensions
raw datasets for unsupervised training, similar to [116, 142]. To
avoid the mixture of training and testing data, we exclude the
image pairs with ground truth flow and their neighboring frames
(frame number 9-12), resulting in 5,796 image pairs for KITTI
2012 and 6,000 pairs for KITTI 2015. For supervised fine-tuning,
we use the combination of their official training pairs.

MPI Sintel is a challenging optical flow dataset, which
contains naturalistic video sequences with long-range motion,
motion blur and non-rigid motion. Sintel includes a ‘clean’
version and a ‘final’ version, where the "final" version is more
realistic and challenging. We extract images from the Sintel
movie and manually split them into 145 scenes as the raw
dataset, resulting in 10,990 image pairs. For unsupervised
training, we first train our model on the raw dataset, then
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fine-tune on the official Sintel training dataset (including both
‘clean’ and ‘final’ versions). For supervised fine-tuning, we use
the combination of ‘clean’ and ‘final’ training pairs with dense
annotations.

Data preprocessing. We rescale the pixel value from [0,
255] to [0, 1] for unsupervised training, while normalizing each
channel to be the standard normal distribution for supervised
fine-tuning. This is because normalizing image as input is
more robust for illumination changing, which is especially
helpful for optical flow estimation. For unsupervised training,
we apply Census Transform [157] to images when computing
photometric loss, which has been proved robust for optical flow
estimation [44, 98].

We employ similar data augmentation strategies with previ-
ous works [29, 127, 52, 164], including geometric augmentations
(e.g., random cropping, scaling, flipping, rotation, translation)
and color augmentations (e.g., random contrast, brightness,
hue, saturation, gamma) for both unsupervised and supervised
training. We decrease the degree of augmentations on KITTI
datasets.

During training, we crop 320 × 896 patches for KITTI
datasets and 384 × 768 patches for Sintel datasets in all
experiments. During testing, we resize the images to 384 ×

1280 for KITTI datasets and 448 × 1024 for Sintel datasets.

Training procedures. As shown in Figure 3.17, we train
multiple teacher models and ensemble their predictions as
annotations to obtain more reliable predictions, which will be
employed to guide the learning of the student model. However,
training two many models will cost a lot of computational
resources. In our experiments, we make a compromise and only
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train two teacher models independently. For each teacher model,
we use the last five checkpoints to obtain five flow predictions.
As a result, our flow annotations from teacher models are the
average of ten predictions.

We train our model with Adam optimizer and set the batch
size to be 4 for all experiments. To avoid the trivial solution that
all pixels are regarded occluded, we pre-train teacher models for
200k iterations before unsupervised training, where photometric
loss is applied to all pixels (including both non-occluded pixels
and occluded pixels).

For unsupervised training, we set the initial learning rate
as 10−4 and disrupt the learning rate as suggested by [128] for
a better minimum. In stage 1, we train teacher models with
L1, the combination of photometric loss with occlusion handling
Lpho and edge-aware smoothness loss Lsmo for 600k iterations.
Then we generate the ensembled flow predictions and confidence
maps using teacher models and regard them as annotations (just
like KITTI with sparse annotations). In stage 2, we initialize our
student model with one of the pre-trained teacher models, and
then train the student model using the knowledge distillation
variant 2 (from the confidence view) for another 600k iterations.
Thanks to the simplicity of our loss functions, there is no need
to tune hyper-parameters.

For KITTI datasets, the unsupervised training is only per-
formed on the raw datasets and the pre-trained student model
will be severed as initialization for supervised fine-tuning. For
Sintel datasets, we conduct unsupervised training on both the
raw dataset and the official training set (as shown in Table 3.19),
where the former is served as initialization for supervised fine-
tuning and the latter is used for a fair comparison with previous
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unsupervised methods.
We extend our knowledge distillation idea from unsupervised

learning to semi-supervised learning, therefore our supervised
fine-tuning also contains two stages. In the first stage, we train
our student model on the official training image pairs for 1,000k
iterations using a similar disturbed learning rate schedule as in
[128]. Then we generate flow predictions and confidence maps
as self-annotations for raw data. In stage 2, we train our model
with the combination of official training pairs with ground truth
and raw data with self-annotations for 600k iterations.

Evaluation Metrics. We consider two widely-used metrics to
evaluate optical flow estimation: average endpoint error (EPE,
lower is better), percentage of erroneous pixels (Fl, lower is
better). Fl is the ranking metric on KITTI benchmarks, and
EPE is the ranking metric on the Sintel benchmark. We also
report the results over non-occluded pixels (noc) and occluded
pixels (occ) respectively. Stereo matching is the byproduct of
our flow models, we use EPE and D1 (share the same definition
as Fl) as evaluation metrics. Besides, we use the harmonic
average of the precision and recall (F-measure, higher is better)
to measure the performance of occlusion estimation.

Main Results

To alleviate the variance of flow prediction from one single
model, we average the results of 10 models (2 independent
runs with the last 5 checkpoints for each run). We first
run each model to obtain results of different metrics, then
average the metric results, which makes our results more reliable
especially for ablation studies to analyze the effect of different
components. For submission to the benchmark, we average the
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(a) Reference Image (b) GT Flow (c) DistillFlow Flow (d) GT Occlusion (e) DistillFlow Occlusion

Figure 3.22: Sample unsupervised results of DistillFlow on KITTI (top 3)
and Sintel (bottom 3) training datasets. DistillFlow estimates both accurate
optical flow and occlusion map. Note that on KITTI datasets, the occlusion
maps are sparse, which only contain pixels moving out of the image boundary.

flow predictions from 2 independent runs.

KITTI. As shown in Table 3.11, DistillFlow achieves the best
unsupervised results on both KITTI 2012 and KITTI 2015
datasets and outperforms them by a large margin. Specifi-
cally, on KITTI 2012 training set, DistillFlow achieves EPE-
all = 1.38 pixels, outperforming the previous best unsuper-
vised monocular method EpipolarFlow [165] by 45%. Note
that EpipolarFlow [165] fine-tunes its model on the KITTI
2012 training set, while DistillFlow is only trained on the
raw dataset. DistillFlow outperforms UnOS [141] by 16%,
which utilizes stereo videos and additional constraints during
training. On KTTI 2012 benchmark, DistillFlow achieves EPE-
all = 1.6 pixels and Fl-all = 7.18%, not only outperforms
all previous unsupervised methods, but also outperforms some
famous fully supervised methods, including FlowNet2 [54], Lite-
FlowNet [52], PWC-Net [127] and MFF [115]. On the KITTI
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Table 3.11: Quantitative evaluation of optical flow estimation on KITTI
2012 and KITTI 2015 datasets. Missing entries (-) indicate that the results
are not reported for the respective method. Bold fonts highlight the best
results among unsupervised and supervised methods. Parentheses mean
that training and testing are performed on the same dataset. fg and bg

denote results of foreground and background regions respectively. (+Stereo)

denotes stereo data is used during training, and * denotes using more than
two frames to estimate flow.

Method
KITTI 2012 KITTI 2015

train test train test

EPE-all EPE-noc EPE-all EPE-noc Fl-all Fl-noc EPE-all EPE-noc Fl-all Fl-fg Fl-bg

U
ns

up
er

vi
se

d

BackToBasic [59] 11.3 4.3 9.9 4.6 43.15% 34.85% – – – – –
DSTFlow [116] 10.43 3.29 12.4 4.0 – – 16.79 6.96 39% – –
UnFlow-CSS [98] 3.29 1.26 – – – – 8.10 – 23.30% – –
OccAwareFlow [142] 3.55 – 4.2 – – – 8.88 – 31.2% – –
Back2FutureFlow-None [57]* – – – – – – 6.65 3.24 – – –
Back2FutureFlow-Soft [57]* – – – – – – 6.59 3.22 22.94% 24.27% 22.67%
EpipolarFlow [165] (2.51) (0.99) 3.4 1.3 – – (5.55) (2.46) 16.95% – –
Lai et al. [75](+Stereo) 2.56 1.39 – – – – 7.13 4.31 – – –
UnOS [141](+Stereo) 1.64 1.04 1.8 – – – 5.58 – 18.00% – –
DDFlow [85] 2.35 1.02 3.0 1.1 8.86% 4.57% 5.72 2.73 14.29% 20.40% 13.08%
SelFlow [86]* 1.69 0.91 2.2 1.0 7.68% 4.31% 4.84 2.40 14.19% 21.74% 12.68%
Flow2Stereo [87](+Stereo) 1.45 0.82 1.7 0.9 7.63% 4.02% 3.54 2.12 11.10% 16.67% 9.99%
DistillFlow (trained on Sintel) 2.33 1.08 – – – – 8.16 4.20 – – –
DistillFlow 1.38 0.83 1.6 0.9 7.18% 3.91% 2.93 1.96 10.54% 16.98% 9.26%

Su
p

er
vi

se
d

FlowNetS [29] 7.52 – 9.1 – 44.49% – – – – – –
SpyNet [112] 3.36 – 4.1 2.0 20.97% 12.31% – – 35.07% 43.62% 33.36%
FlowFieldsCNN [4] – – 3.0 1.2 13.01% 4.89% – – 18.68% 20.42% 18.33%
DCFlow [146] – – – – – – – – 14.86% 23.70% 13.10%
FlowNet2 [54] (1.28) – 1.8 1.0 8.80% 4.82% (2.3) – 10.41% 8.75% 10.75%
UnFlow-CSS [98] (1.14) (0.66) 1.7 0.9 8.42% 4.28% (1.86) – 11.11% 15.93% 10.15%
LiteFlowNet [52] (1.05) – 1.6 0.8 7.27% 3.27% (1.62) – 9.38% 7.99% 9.66%
LiteFlowNet2 [53] (0.95) – 1.4 0.7 6.16% 2.63% (1.33) – 7.62% 7.64% 7.62%
PWC-Net [127] (1.45) – 1.7 0.9 8.10% 4.22% (2.16) – 9.60% 9.31% 9.66%
PWC-Net+ [128] (1.08) – 1.4 0.8 6.72% 3.36% (1.45) – 7.72% 7.88% 7.69%
ContinualFlow [103] – – – – – – – – 10.03% 17.48% 8.54%
HD3Flow [152] (0.81) – 1.4 0.7 5.41% 2.26% (1.31) – 6.55% 9.02% 6.05%
IRR-PWC [1] – – 1.6 0.9 6.70% 3.21% (1.45) – 7.65% 7.52% 7.68%
MFF [115]* – – 1.7 0.9 7.87% 4.19% – – 7.17% 7.25% 7.15%
VCN [149] – – – – – – (1.16) – 6.30% 8.66% 5.83%
SENSE [60] (1.18) – 1.5 – – 3.03% (2.05) – 8.16% – –
ScopeFlow [6] – – 1.3 0.7 5.66% 2.68% – – 6.82% 7.36% 6.72%
MaskFlowNet-S [164] – – 1.1 0.6 5.24% 2.29% – – 6.81% 8.21% 6.53%
MaskFlowNet [164] – – 1.1 0.6 4.82% 2.07% – – 6.11% 7.70% 5.79%
SelFlow [86]* (0.76) (0.47) 1.5 0.9 6.19% 3.32% (1.18) (0.82) 8.42% 7.61% 12.48%
DistillFlow (0.79) (0.45) 1.2 0.6 5.23% 2.33% (1.14) (0.74) 5.94% 7.96% 5.53%

2015 dataset, the improvement is also significant. DistillFlow
achieves EPE-all = 2.93 pixels on the training set, outperform-
ing Back2FutureFlow [57](utilizes multiple frames during the
training) by 56%, EpipolarFlow [165] and UnOS [141] by 42%.
On the benchmark, DistillFlow achieves Fl-all = 10.54%, which
is a relative 38% improvement compared with previous best
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It

It+1 Fl: 22.65% Fl: 9.17% Fl: 7.41% Fl: 6.63%

It

It+1 Fl: 27.14% Fl: 16.40% Fl: 9.59% Fl: 8.04%

Input Images Back2FutureFlow [57] SelFlow [86] Flow2Stereo [87] DistillFlow

Figure 3.23: Qualitative comparison with state-of-the-art unsupervised
learning methods on KITTI 2015 benchmark. For each case, the top row
is optical flow and the bottom row is the error map. The redder the color in
the error map, the greater the error. More examples are available on KITTI
2015 benchmark.

EpipolarFlow [165] (Fl-all = 16.95%).
After fine-tuning, DistillFlow also achieves state-of-the-art

supervised learning performance on KITTI datasets. Specifi-
cally, on KITTI 2012, DistillFlow outperforms PWC-Net+ [128],
LiteFlowNet2 [53], HD3Flow [152], IRR-PWC [1] and Scope-
Flow [6], is only inferior to MaskFlowNet [164], which incor-
porates an asymmetric feature matching module and direct
occlusion reasoning. On KITTI 2015, DistillFlow achieves Fl-all
= 5.94%, ranking 4th on the benchmark (the top three methods
all use stereo data), outperforming all monocular optical flow
methods (including the most recent MaskFlowNet [164] and
ScopeFlow [6]). This is a remarkable result, since we do not
require pre-training our model on any labeled synthetic dataset,
while all other state-of-the-art supervised learning methods rely
on pre-training on synthetic datasets and follow the specific
training schedule (FlyingChairs [29]→ FlyingThings3D [96]).

DistillFlow consistently outperforms our previous work DDFlow [85],
SelFlow [86] and Flow2Stereo [87] (uses stereo data). Specif-
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Table 3.12: Quantitative evaluation of optical flow estimation on Sintel
dataset. Missing entries (-) indicate that the results are not reported for the
respective method. Bold fonts highlight the best results among unsupervised
and supervised methods. Parentheses mean that training and testing are
performed on the same dataset.

Method
Sintel Clean Sintel Final

EPE-train EPE-test EPE-train EPE-test

U
ns

up
er

vi
se

d

DSTFlow [116] (6.16) 10.41 (6.81) 11.27
UnFlow-CSS [98] – – (7.91) 10.22
OccAwareFlow [142] (4.03) 7.95 (5.95) 9.15
Back2FutureFlow-None [57]* (6.05) – (7.09) –
Back2FutureFlow-Soft [57]* (3.89) 7.23 (5.52) 8.81
EpipolarFlow [165] (3.54) 7.00 (4.99) 8.51
DDFlow [85] (2.92) 6.18 (3.98) 7.40
SelFlow [86]* (2.88) 6.56 (3.87) 6.57
DistillFlow (trained on KITTI) 4.21 – 5.06 –
DistillFlow (2.61) 4.23 (3.70) 5.81

Su
p

er
vi

se
d

FlowNetS [29] (3.66) 6.96 (4.44) 7.76
FlowNetC [29] (3.78) 6.85 (5.28) 8.51
SpyNet [112] (3.17) 6.64 (4.32) 8.36
FlowFieldsCNN [4] – 3.78 – 5.36
DCFlow [146] – 3.54 – 5.12
FlowNet2 [54] (1.45) 4.16 (2.01) 5.74
LiteFlowNet [52] (1.35) 4.54 (1.78) 5.38
LiteFlowNet2 [53] (1.41) 3.48 (1.83) 4.69
PWC-Net [127] (2.02) 4.39 (2.08) 5.04
PWC-Net+ [128] (1.71) 3.45 (2.34) 4.60
ContinualFlow [103] – 3.34 – 4.52
HD3Flow [152] (1.70) 4.79 (1.17) 4.67
IRR-PWC [1] (1.92) 3.84 (2.51) 4.58
MFF [115]* – 3.42 – 4.57
VCN [149] (1.66) 2.81 (2.24) 4.40
SENSE [60] (1.54) 3.60 (2.05) 4.86
ScopeFlow [6] – 3.59 – 4.10

MaskFlowNet-S [164] – 2.77 – 4.38
MaskFlowNet [164] – 2.52 – 4.17
SelFlow [86]* (1.68) 3.74 (1.77) 4.26
DistillFlow (1.63) 3.49 (1.76) 4.10

ically, for unsupervised setting, DistillFlow outperforms SelF-
low [86] 23% on KITTI 2012 benchmark and 26% on KITTI
2015 benchmark; for supervised setting, DistillFlow outperforms
SelFlow [86] 20% on KITTI 2012 and 29% on KITTI 2015.
The improvements mostly come from three aspects: improved
network architecture, edge-aware smoothness regularizer and
model distillation (ensemble multiple teacher models). We will
analyze the effect of each component in the ablation study.

MPI Sintel. Table 3.12 summarizes the comparison of Dis-
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tillFlow with existing unsupervised and supervised learning
methods on Sintel dataset, and Table 3.13 shows the detailed
comparison with state-of-the-art methods on the Sintel Final
benchmark. DistillFlow outperforms all previous unsupervised
methods for all metrics. On Sintel Clean benchmark, DistillFlow
achieves EPE-all = 4.23 pixels, while previous best method
EpipolarFlow [165] achieves EPE-all = 7.00 pixels, around
40% relative improvement. On the Sintel Final benchmark,
DistillFlow achieves 21% relative improvement. Our initial data
distillation method DDFlow [85] even outperforms all other
unsupervised methods (including works that come out later
than it, e.g., EpipolarFlow), demonstrating the effectiveness
of our proposed knowledge distillation framework. As shown
in Table 3.13, DistillFlow consistently improves greatly over
different kinds of pixels, e.g., occluded pixels, non-occluded
pixels, pixels with different speeds and locations. DistillFlow
significantly reduces the gap between state-of-the-art supervised
learning methods and unsupervised methods.

After supervised fine-tuning, DistillFlow achieves EPE-all
= 4.095 pixels on Sintel Final, and outperforms all published
method on the benchmark, including our previous winner entry
SelFlow [86] and most recent publications e.g., ScopeFlow [6]
and MaskFlowNet [164].

Similarly to KITTI, DistillFlow also achieves improvements
over our previous method DDFlow [85] and SelFlow [86], with
32% relative improvement on Sintel Clean and 12% relative
improvement on Sintel Final.

Qualitative results. Figure 3.22 shows sample unsupervised
results from KITTI and Sintel datasets. DistillFlow can esti-
mate accurate flow and occlusion maps in a totally unsupervised
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Table 3.13: Detailed comparison with state-of-the-art supervised learning
methods on Sintel Final optical flow benchmark, where s denotes velocity
and d denotes distance from the nearest occlusion boundary.

Method EPE-all EPE-noc EPE-occ d0−10 d10−60 d60−140 s0−10 s10−40 s40+

Unsupervised

UnFlow [98] 10.219 6.061 44.110 8.407 5.828 4.665 1.742 6.689 60.765
Back2FutureFlow [57]* 8.814 5.031 39.647 7.153 4.880 3.904 1.752 5.961 50.725
EpipolarFlow [165] 8.506 4.070 44.676 6.286 3.897 2.777 1.246 3.761 56.015
DDFlow [85] 7.401 3.409 39.936 5.357 3.092 2.430 1.548 4.198 44.188
SelFlow [86]* 6.571 3.119 34.721 5.275 2.834 2.092 1.358 3.883 38.945
DistillFlow 5.810 2.709 31.098 4.993 2.483 1.644 1.181 3.817 33.599

Supervised

LiteFlowNet2 [53] 4.686 2.248 24.571 4.049 1.899 1.473 0.811 2.433 29.375
PWC-Net+ [128] 4.596 2.254 23.696 4.781 2.045 1.234 0.945 2.978 26.620
ContinualFlow [103] 4.528 2.723 19.248 5.050 2.573 1.713 0.872 3.114 26.063
HD3Flow [152] 4.666 2.174 24.994 3.786 1.719 1.647 0.657 2.182 30.579
IRR-PWC [1] 4.579 2.154 24.355 4.165 1.843 1.292 0.709 2.423 28.998
MFF [115]* 4.566 2.216 23.732 4.664 2.017 1.222 0.893 2.902 26.810
VCN [149] 4.404 2.216 22.238 4.381 1.782 1.423 0.956 2.725 25.570
SENSE [60] 4.860 2.301 25.732 4.121 1.991 1.493 0.812 2.606 30.402
ScopeFlow [6] 4.098 1.999 21.214 4.028 1.689 1.180 0.725 2.589 24.477

MaskFlowNet-S [164] 4.384 2.120 22.840 3.905 1.821 1.359 0.645 2.526 27.429
MaskFlowNet [164] 4.172 2.048 21.494 3.783 1.745 1.310 0.592 2.389 26.253
SelFlow [86]* 4.262 2.040 22.369 4.083 1.715 1.287 0.582 2.343 27.154
DistillFlow 4.095 2.031 20.934 4.300 1.666 1.236 0.673 2.448 25.068

manner. Figure 3.23 and Figure 3.24 show the qualitative
comparison with state-of-the-art supervised learning methods
on KITTI 2015 and Sintel Final benchmarks respectively. Dis-
tillFlow achieves better flow prediction, especially for occluded
pixels. Figure 3.25 shows the visual comparison with state-of-
the-art supervised learning methods, where DistillFlow better
preserves object structures.

Occlusion estimation. Following previous works [142, 57], we
evaluate our occlusion estimation performance on both KITTI
and Sintel datasets. Note KITTI datasets only have sparse
occlusion maps. As shown in Table 3.14, DistillFlow achieves
best occlusion estimation performance on Sintel Clean and Sintel
Final datasets over all competing methods. On KITTI datasets,
the ground truth occlusion masks only contain pixels moving out
of the image boundary. However, our method will also estimate
the occlusions within the image range. Under such settings,
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Table 3.14: Comparison of occlusion estimation with F-measure. Note that
on KITTI datasets, occlusion only contains pixels moving out of the image
boundary and occlusion maps are sparse.

Method
KITTI KITTI Sintel Sintel
2012 2015 Clean Final

MODOF [147] – – – 0.48
OccAwareFlow [142] 0.95 0.88 (0.54) (0.48)
Back2Future [57]* – 0.91 (0.49) (0.44)

DDFlow [85] 0.94 0.86 (0.59) (0.52)
SelFlow [86]* 0.95 0.88 (0.59) (0.52)
DistillFlow 0.96 0.89 (0.59) (0.53)

Table 3.15: Ablation study for the generalization capability of our proposed
distillation framework to FlowNetS and FlowNetC on KITTI and Sintel
datasets. Default experimental settings: census transform (yes), occlusion
handling (yes), edge-aware smoothness loss (yes).

Network Knowledge KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

Backbone Distillation EPE-all EPE-noc EPE-occ EPE-all EPE-noc EPE-occ EPE-all EPE-noc EPE-occ EPE-all EPE-noc EPE-occ

FlowNetS
✗ 4.26 1.53 22.34 8.85 3.82 40.63 (5.05) (3.09) (30.01) (5.38) (3.38) (31.00)
✓ 2.70 1.38 11.44 6.33 3.44 24.59 (4.20) (2.36) (27.66) (4.83) (2.90) (29.49)

FlowNetC
✗ 3.63 1.26 19.31 8.11 3.45 37.61 (4.20) (2.36) (27.66) (4.83) (2.90) (29.49)
✓ 2.18 1.16 8.97 5.47 2.95 21.38 (3.45) (1.90) (23.27) (4.17) (2.52) (25.36)

our method can achieve comparable performance. DistillFlow
consistently outperforms our previous method [85, 86], suggest-
ing better occlusion reasoning ability. This also explains why
DistillFlow achieves performance improvement.

Generalization

We demonstrate the generalization capability of DistillFlow
in three aspects: framework generalization, correspondence
generalization and cross dataset generalization.

Framework generalization. Our proposed knowledge distil-
lation based self-supervised learning framework is effective for
different network structures and is applicable to both unsuper-
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It

It+1 EPE: 9.313 EPE: 9.198 EPE: 7.168 EPE: 6.749

It

It+1 EPE: 8.690 EPE: 6.479 EPE: 6.081 EPE: 5.786

Input Images Back2FutureFlow [57] EpipolarFlow [165] SelFlow [86] DistillFlow

Figure 3.24: Qualitative comparison with state-of-the-art unsupervised
learning methods on Sintel Final benchmark. For each case, the top row
is optical flow and the bottom row is the error map. The whiter the color in
the error map, the greater the error. More examples are available on Sintel
benchmark.

vised setting and supervised setting. To verify the former one,
apart from PWC-Net based network backbones (as shown in
Table 3.18 and Table 3.19), we also apply our self-supervised
learning framework to FlowNetS and FlowNetC (Table 3.15).
With knowledge distillation, we achieve more than 30% relative
improvement on average on KITTI datasets for both FlowNestS
and FlowNetC, and 15% relative improvement on Sintel Clean
and Final datasets. More importantly, FlowNetS and FlowNetC
trained with knowledge distillation achieve EPE-all = 6.33 pixels
and 5.47 pixels on KITTI 2015 training dataset, EPE-all =
4.83 pixels and 4.17 pixels on Sintel Final training dataset,
which even outperform Back2FutureFlow [57] based on PWC-
Net. This also has the same conclusion as [128]: model matters,
so does training. Our knowledge distillation approach enables
more effective training. All the above results demonstrate the
generalization of our distillation framework to different network
structures.
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It

It+1 EPE: 0.472 EPE: 0.615 EPE: 0.530 EPE: 0.466

It

It+1 EPE: 35.031 EPE: 26.664 EPE: 32.545 EPE: 25.845

Input Images LiteFlowNet2 [53] PWC-Net+ [128] VCN [149] DistillFlow

Figure 3.25: Qualitative comparison with state-of-the-art supervised learning
methods on Sintel Final benchmark. For each case, the top row is optical flow
and the bottom row is the error map. The whiter the color in the error map,
the greater the error. More examples are available on Sintel benchmark.

Table 3.16: Ablation study for the generalization capability of our proposed
distillation framework to semi-supervised learning on KITTI and Sintel
datasets. In this experiment, we split KITTI and Sintel dataset into training

and validation datasets and evaluate the performance of the validation

part.

Semi-Supervised KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

Learning EPE-all EPE-noc Fl-all Fl-noc EPE-all EPE-noc Fl-all Fl-noc EPE-all EPE-noc EPE-occ EPE-all EPE-noc EPE-occ

✗ 1.01 0.58 3.46% 1.69% 1.50 0.94 5.17% 3.54% 1.64 0.77 15.65 2.44 1.51 17.59
✓ 0.95 0.57 3.35% 1.65% 1.44 0.94 4.96% 3.51% 1.56 0.72 15.21 2.38 1.47 17.16

Besides, we also extend our knowledge distillation idea from
unsupervised learning to supervised fine-tuning, resulting in a
semi-supervised learning setting. The semi-supervised setting
enables us to utilize more data. As shown in Table 3.16,
we achieve improvement on both KITTI and Sintel datasets
with knowledge distillation. The improvement comes from the
assumption that we create challenging transformations and let
confident predictions to supervise less confident predictions. As
long as this assumption holds, knowledge distillation is effective.

Correspondence generalization. Stereo disparity, which
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describes the pixel displacement between two stereo images, can
be regarded as a special case of optical flow on the epipolar
line. They can both be regarded as a correspondence matching
problem. From this point of view, if a model can accurately
estimate optical flow, it shall have the ability to accurately
estimate stereo disparity as well. Then as a byproduct, we
directly use our flow model trained on monocular videos to
estimate disparity. Surprisingly, our flow model achieves com-
parable stereo matching performance with current state-of-
the-art unsupervised stereo matching methods. As shown in
Table 3.17, DistillFlow achieves D1-all = 4.81% on KITTI
2012 training dataset and D1-all = 6.37% on KITTI 2015
dataset, outperforming some famous stereo matching methods
e.g., SeqStereo et al. [150] and Guo et al. [43]. On KTITI
2012 and 2015 benchmarks, DistillFlow achieves D1-all 5.14%
and 6.81%, which are comparable with previous state-of-the-art
methods UnOS [141] and Flow2Stereo [87]. The results on stereo
matching demonstrate the generalization of DistillFlow to find
correspondences.

Cross dataset generalization. Although deep learning based
optical flow methods have outperformed classical methods on
challenging benchmarks, their generalization ability is very poor
due to limited annotated training data. Therefore, currently
learning based methods still cannot apply to many scenes.
However, our proposed DistillFlow is a self-supervised learning
approach, which can utilize unlimited in-the-wild videos and
effectively learn optical flow without requiring any annotations.
Since a large collection of unlabeled image sequences can be
used, the learned model shall have the strong generalization
capability. As shown in Table 3.11 (DistillFlow (trained on
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Table 3.17: Quantitative evaluation of stereo disparity on KITTI 2012 and
KITTI 2015 training datasets (apart from the last columns). Our flow model
trained on monocular videos achieves comparable performance with state-of-
the-art unsupervised stereo learning methods. ⋆ denotes that we use their
pre-trained model to compute the numbers, while other numbers are from
their paper. Note that Guo et al. [43] pre-train stereo model on synthetic
Scene Flow dataset with ground truth disparity before fine-tuning on KITTI
dataset.

Method
KITTI 2012 KITTI 2015

EPE-all EPE-noc EPE-occ D1-all D1-noc D1-all (test) EPE-all EPE-noc EPE-occ D1-all D1-noc D1-all (test)

Joung et al. [63] – – – – – 13.88% – – – 13.92% – –
Godard et al. [40] ⋆ 2.12 1.44 30.91 10.41% 8.33% – 1.96 1.53 24.66 10.86% 9.22% –
Zhou et al. [166] – – – – – – – – – 9.41% 8.35% –
OASM-Net [79] – – – 8.79% 6.69% 8.60% – – – – – 8.98%
SeqStereo et al. [150] ⋆ 2.37 1.63 33.62 9.64% 7.89% – 1.84 1.46 26.07 8.79% 7.7% –
Liu et al. [83] ⋆ 1.78 1.68 6.25 11.57% 10.61% – 1.52 1.48 4.23 9.57% 9.10% –
Guo et al. [43] ⋆ 1.16 1.09 4.14 6.45% 5.82% – 1.71 1.67 4.06 7.06% 6.75% –
UnOS [141] – – – – – 5.93% – – – 5.94% – 6.67%

Flow2Stereo [87] 1.01 0.93 4.52 5.14% 4.59% 5.11% 1.34 1.31 2.56 6.13% 5.93% 6.61%

DistillFlow (no distillation) 1.25 1.03 10.57 6.67% 4.94% – 1.44 1.30 9.13 8.19% 6.90% –
DistillFlow 1.02 0.95 3.72 4.81% 4.40% 5.14% 1.23 1.21 2.78 6.37% 6.17% 6.81%

Sintel)) and Table 3.12 (DistillFlow (trained on KITTI)),
we use models trained on Sintel to estimate flow on KITTI
and vice versa. Surprisingly, for cross dataset Sintel → KITTI,
DistillFlow achieves EPE = 2.33 pixels on KITTI 2012 training
dataset, outperforming previous state-of-the-art unsupervised
learning method Back2FutureFlow [57]. On KITTI 2015, Dis-
tillFlow outperforms OccAwareFlow [142] is also comparable
with Back2FutureFlow [57]. For KITTI → Sintel, DistillFlow
achieves EPE = 5.06 pixels on Sintel Final training dataset,
which outperforms Back2FutureFlow [57] and is comparable
with EpipolarFlow [165]. This is indeed a remarkable result,
since KITTI datasets only have street views while Sintel dataset
contains many complex scenes. Our model trained only KITTI
datasets can perform comparable or even better with state-
of-the-art unsupervised learning methods fine-tuned on Sintel
dataset. This fully demonstrates the cross dataset generaliza-
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Table 3.18: Main ablation study on KITTI training datasets. In this
experiment, we employ census transform when computing photometric loss.
PWC-Net is the network backbone used in DDFlow [85] and Flow2Stereo [87],
PWC-Net† is the improved network backbone used in this paper.

Network Occlusion Edge-Aware Data Model KITTI 2012 KITTI 2015

Backbone Handling Smoothness Distillation Distillation EPE-all EPE-noc EPE-occ Fl-all Fl-noc EPE-all EPE-noc EPE-occ Fl-all Fl-noc

PWC-Net

✗ ✗ ✗ ✗ 7.73 1.41 49.63 18.08% 6.90% 14.02 4.57 73.74 25.34% 14.37%
✓ ✗ ✗ ✗ 4.67 1.05 28.61 14.93% 5.32% 9.21 3.26 46.85 21.20% 11.07%
✓ ✓ ✗ ✗ 3.36 0.97 19.18 13.31% 4.30% 7.83 3.28 36.55 19.91% 10.12%
✓ ✓ ✓ ✗ 1.68 0.87 7.10 5.73% 3.56% 4.61 2.53 17.77 11.71% 8.66%
✓ ✓ ✓ ✓ 1.64 0.85 6.84 5.67% 3.53% 4.32 2.40 16.43 11.61% 8.64%

PWC-Net†

✗ ✗ ✗ ✗ 7.33 1.30 47.26 16.27% 5.97% 12.49 3.59 68.82 23.07% 12.40%
✓ ✗ ✗ ✗ 3.22 0.98 18.07 13.57% 4.40% 6.57 2.88 29.87 19.90% 10.01%
✓ ✓ ✗ ✗ 2.92 0.93 16.06 12.44% 3.94% 6.45 2.59 30.90 19.08% 9.48%
✓ ✓ ✓ ✗ 1.46 0.85 5.44 5.17% 3.38% 3.20 2.08 10.28 10.05% 8.03%
✓ ✓ ✓ ✓ 1.38 0.83 4.98 4.99% 3.25% 2.93 1.96 9.04 9.79% 7.81%

tion capability of our model. Moreover, since our knowledge
distillation method can work well without requiring any labeled
data, we can actually train it on a specific scene to achieve better
performance. This makes DistillFlow effective to a wider range
of applications.

Table 3.19: Main ablation study on Sintel training datasets. In this
experiment, we employ census transform when computing photometric loss
and use PWC-Net† backbone.

Training Occlusion Edge-Aware Data Model Sintel Clean Sintel Final

Dataset Handling Smoothness Distillation Distillation EPE-all EPE-noc EPE-occ Fl-all Fl-noc EPE-all EPE-noc EPE-occ Fl-all Fl-noc

Sintel Raw

✗ ✗ ✗ ✗ 4.17 1.85 33.95 10.21% 5.11% 5.36 2.86 37.30 14.46% 9.42%
✓ ✗ ✗ ✗ 3.58 1.65 28.67 8.96% 4.17% 4.67 2.61 31.08 13.39% 8.49%
✓ ✓ ✗ ✗ 3.29 1.54 25.70 8.25% 3.76% 4.41 2.50 28.75 12.89% 8.18%
✓ ✓ ✓ ✗ 3.04 1.42 23.72 7.56% 4.58% 3.98 2.26 25.81 11.14% 6.92%
✓ ✓ ✓ ✓ 2.98 1.39 23.43 7.45% 3.49% 3.90 2.21 25.52 10.98% 6.76%

Sintel Train

✗ ✗ ✗ ✗ (3.93) (1.56) (34.23) (9.61%) (4.45%) (5.19) (2.66) (37.54) (13.64%) (8.54%)
✓ ✗ ✗ ✗ (3.22) (1.34) (27.24) (8.43%) (3.51%) (4.40) (2.36) (30.49) (12.72%) (7.44%)
✓ ✓ ✗ ✗ (2.93) (1.24) (24.66) (7.63%) (3.15%) (4.17) (2.32) (27.83) (12.31%) (7.62%)
✓ ✓ ✓ ✗ (2.66) (1.16) (21.89) (7.03%) (3.14%) (3.76) (2.10) (24.92) (10.70%) (6.55%)
✓ ✓ ✓ ✓ (2.61) (1.12) (21.63) (6.87%) (2.99%) (3.70) (2.07) (24.60) (10.61%) (6.45%)

Ablation Study

We conduct a thorough ablation study to demonstrate the
effectiveness of different components proposed by DistillFlow.
In Figure 3.26, we show visual comparisons on the KITTI and
Sintel datasets.
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(a) Reference Image (b) W/O OCC Handling (c) OCC Handling (d) Distillation (e) Fine-tune (f) Ground Truth

Figure 3.26: Ablation study on KITTI 2015 (top 3) and Sintel Final training
datasets (bottom 3). (b) and (c) are the results of without and with occlusion
handling. (d) shows that results with knowledge distillation and (f) are the
supervised fine-tuned results. With knowledge distillation, the flow looks
more smooth. After fine-tuning, more details are preserved.

Occlusion handling. As shown in Table 3.18 (row 1 vs. row 2
and row 6 vs. row 7) and Table 3.19 (row 1 vs. row 2 and row 6
vs. row 7), occlusion handling can improve the flow estimation
performance on all datasets for all metrics. This is because
the brightness constancy assumption does not hold for occluded
pixels. Occlusion handling can reduce the misleading guidance
information provided by occluded pixels, which makes the model
easier to learn good correspondence.

Edge-aware smoothness. As shown in Table 3.18 (row 2 vs.
row 3 and row 7 vs. row 8) and Table 3.19 (row 2 vs. row 3
and row 7 vs. row 8), edge-aware smoothness regularizer can
consistently improve the performance on all datasets. This is
because that photometric loss is not informative in homogeneous
regions and cannot handle occlusions. The spatial smooth
assumption regularizes the flow to be locally similar, which helps
predict flow of homogeneous or texture-less regions. Besides,
smoothness can be regarded as a regularizer for some occluded
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Table 3.20: Ablation study of different knowledge distillation strategies
on KITTI and Sintel datasets. For ‘v1’, ‘v2’ and ‘v3’, we use knowledge
distillation variant 1 (from occlusion view and split pixels in occluded
and non-occluded), while for ‘v2’ we use variant 2 (from confidence view).
‘v1’ denotes distillation used in DDFlow [85], ‘v2’ denotes distillation used
in SelFlow [86], ‘v3’ and ‘v4’ denotes distillation with more challenging
transformations as in Flow2Stereo [87]. Default experimental settings:
network backbone (PWC-Net†), census transform (yes), occlusion handling
(yes), edge-aware smoothness loss (yes).

Knowledge KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

Distillation EPE-all EPE-noc EPE-occ EPE-all EPE-noc EPE-occ EPE-all EPE-noc EPE-occ EPE-all EPE-noc EPE-occ

no 2.92 0.93 16.06 6.45 2.59 30.90 (2.93) (1.24) (24.66) (4.17) (2.32) (27.83)
v1 1.62 0.87 6.21 3.88 2.19 15.24 (2.76) (1.16) (22.98) (3.94) (2.16) (25.72)
v2 1.54 0.87 5.77 3.57 2.10 12.88 (2.71) (1.18) (22.51) (3.87) (2.19) (25.38)
v3 1.41 0.85 5.12 3.12 2.01 9.48 (2.63) (1.12) (21.72) (3.74) (2.09) (24.81)
v4 1.38 0.83 4.98 2.93 1.96 9.04 (2.61) (1.12) (21.63) (3.70) (2.07) (24.60)

pixels, since it makes the prediction of occluded pixels similar to
the neighborhood non-occluded pixels. However, it is just a very
weak regularizer, therefore we propose knowledge distillation to
more effectively learn optical flow of occluded pixels.

Data distillation. Our proposed knowledge distillation ap-
proach contains both data distillation and model distillation.
Among them, data distillation is the key point, where we create
challenging transformations and let confident predictions to
supervise less confident predictions. As shown in Table 3.18 (row
3 vs. row 4), we reduce EPE-all from 3.36 pixels to 1.68 pixels,
from 7.83 pixels to 4.16 pixels for PWC-Net backbone on KITTI
2012 and KITTI 2016 datasets, with 50% and 47% relative
improvement. Similarly, for our improved network backbone
PWC-Net† (row 8 vs. row 9), we achieve more than 50% relative
improvement on both KITTI 2012 and KITTI 2015 datasets.
The improvement over occluded pixels is even more significant,
with 62% relative improvement on average. This is because our



CHAPTER 3. OPTICAL FLOW AND STEREO MATCHING 119

proposed data distillation enables the model to have the ability
to effectively learn flow of occluded pixels for the first time.

As shown in Table 3.19 (row 3 vs. row 4 and row 8 vs.
row 9), we also achieve great improvement on Sintel datasets.
Specifically, we achieve 9% average relative improvement on
both Sintel Clean and Sintel Final. All these results demonstrate
the effectiveness of our proposed data distillation approach.

Model distillation. Since flow prediction from one single
teacher model has big variance, we thus propose model distilla-
tion to ensemble flow predictions of multiple teacher models.
Model distillation can provide more reliable confident flow
predictions, which can therefore improve the performance. As
shown in Table 3.18 (row 4 vs. row 5 and row 9 vs. row 10)
and Table 3.19 (row 4 vs. row 5 and row 9 vs. row 10), model
distillation can indeed consistently improve the performance.

Improved network backbone. PWC-Net [127] utilizes differ-
ent decoders to estimate optical flow at different levels, where
similar procedures are employed: at each level, the combination
of feature representation, cost volume and initial coarse flow
as severed as input to estimate the refined flow at the current
level. Intuitively, we can share the decoders to reduce the
model size [1]. More importantly, sharing the decoder enables
the decoder to learn optical flow with different resolutions,
enabling PWC-Net to more effectively handle images of different
resolutions. Apart from this, we also add dilated convolutions at
each level to improve both the capacity and the receptive field of
the decoder without incurring a large computational burden. As
shown in Table 3.18 (row 1-5 vs. row 6-10), our improved net-
work backbone PWC-Net† consistently outperforms the original
PWC-Net under all conditions with smaller model size.
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Knowledge distillation strategies. In Section 3.4.2, we
introduce two variants for knowledge distillation: from the
occlusion view and from the confidence view, resulted in two
knowledge distillation strategies ‘v3’ and ‘v4’ in Table 3.20.
Besides, we also provide two knowledge distillation strategies
as in our previous work DDFlow [85] and SelFlow [86], de-
noted as ‘v1’ and ‘v2’. Both ‘v1’ and ‘v2’ are from the
occlusion view. As shown in Table 3.20, all of these four
kinds of knowledge distillation strategies can greatly improve
the performance, especially for occluded pixels. Comparing ‘v1’
and ‘v2’, we show that superpixel occlusion hallucination can
handle occlusion in a wider range of cases. Compared with
‘v2’, we add more challenging transformations for ‘v3’, such
as geometric transformations and color transformations. As a
result, we achieve slight performance improvements. However,
most performance gains come from occlusion hallucination tech-
niques. Comparing ‘v3’ and ’v4’, we show that it does not make
much difference to distinguish occluded or non-occluded pixels
during the knowledge distillation stage. This is because that
forward-backward consistency only predicts confident or non-
confident flow predictions, but not occluded or non-occluded
pixels. However, variant 2 from the confidence view can reduce
the training time and simplify the training procedure (can be
trained in a supervised manner), therefore we use variant 2 in
our experiments.

Photometric losses. When computing photometric loss,
certain transformations are usually applied to the images to
make them more robust for illumination changes. As a result,
different papers employ different strategies, e.g., raw pixel inten-
sity [142, 57], SSIM [153] and census transform [98]. To analyze
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Table 3.21: Ablation study of different photometric loss functions on KITTI
and Sintel training datasets. In this experiment, the default settings are as
follows: network backbone (PWC-Net†), edge-aware smoothness loss (no),
occlusion handling (yes), distillation (no).

Pixel
SSIM

Census KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

Brightness Transform EPE-all EPE-noc EPE-occ EPE-all EPE-noc EPE-occ EPE-all EPE-noc EPE-occ EPE-all EPE-noc EPE-occ

✓ ✗ ✗ 6.58 2.03 36.69 10.63 3.99 52.62 (4.44) (2.12) (34.16) (6.86) (4.42) (38.05)
✓ ✓ ✗ 5.75 1.09 36.62 9.85 3.14 52.32 (4.15) (1.98) (32.00) (6.22) (3.71) (38.29)
✗ ✗ ✓ 3.22 0.98 18.07 6.57 2.88 29.87 (3.22) (1.34) (27.24) (4.40) (2.36) (30.49)

the effect of different photometric loss, we make a comparison in
Table 3.21, where SSIM is better than the raw pixel intensity and
census transform achieves the best performance. This is because
census transform is specially designed to handle the change of
illumination. However, we believe census transform is not the
optimal transformation for optical flow estimation. Exploring
more robust transformation when computing the photometric
difference is a potential direction for future research.

Model Size and Run Time As stated in Section 3.4.2,
our proposed self-supervised learning framework is agnostic to
network backbones. During testing, the model size and run time
are totally dependent on the choice of the network backbone. In
this thesis, we build our network upon PWC-Net [127], therefore
the model size and run time are also similar to PWC-Net [127].
As shown in Table 3.22, when our network backbone is PWC-
Net, the model size and run time are the same as PWC-Net [127].
With our improved network backbone, the model parameters are
greatly reduced, due the shared parameters of flow estimators
at different levels. The run time is similar, since it still need
forward across all levels.
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Table 3.22: Comparison of model size and run time with state-of-the-art
optical flow methods on the final pass of the Sintel dataset.

Method Model Parameters Time

FlowNet2 [54] 162M 0.12s
LiteFlowNetX [52] 0.9M 0.03s
LiteFlowNet [52] 5.4M 0.09s

IRR-PWC [1] 6.4M 0.20s
PWC-Net+ [127] 9.4M 0.03s

VCN [149] 6.2M 0.08s
Ours (PWC-Net) 9.4M 0.03s
Ours (PWC-Net†) 4.6M 0.03s

3.4.4 Summary

We have presented DistillFlow, a knowledge distillation based
approach to effectively learn optical flow in a self-supervised
manner. To this end, we train multiple teacher models and
a student model, where teacher models are used to generate
confident flow predictions, which are then employed to guide the
learning of the student model. To make the knowledge distilla-
tion effective, we create three types of challenging transforma-
tions: occlusion hallucination based transformations, geometric
transformations and color transformations. With knowledge
distillation, DistillFlow achieves the best performance on both
KITTI and Sintel datasets and outperforms previous unsu-
pervised methods by a large margin, especially for occluded
pixels. More importantly, our self-supervised pre-trained model
provides an excellent initialization for supervised fine-tuning.
We show that it is possible to completely remove the reliance of
pre-training on synthetic labeled datasets, and achieve superior
performance by self-supervised pre-training on unlabeled data.

Besides, we demonstrate the generalization capability of
DistillFlow in three aspects: framework generalization, corre-
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spondence generalization and cross dataset generalization. In
framework generalization, we show that knowledge distillation
is insensitive to different network backbones (e.g., PWC-Net,
FlowNetS and FlowNetC) and applicable to both unsuper-
vised learning and supervised fine-tuning. For correspondence
generalization, our flow model trained on monocular videos
achieves comparable performance with state-of-the-art unsuper-
vised stereo matching methods on KITTI datasets. For cross
data generalization, we show that benefited from a large col-
lection of unlabeled data, DistillFlow still performs well across
different datasets e.g., Sintel → KITTI and KITTI → Sintel.

✷ End of chapter.



Chapter 4

Self-Supervised Learning of 3D

Face Reconstruction

This chapter presents our exploration on a special case of
dense correspondence: 3D face reconstruction. To alleviate
the ill-posed nature of regressing 3D face geometry from a
single image, we propose a self-supervised learning framework
to learn 3D face reconstruction from multiple images in a video.
In multi-frame training, we apply optical flow as a 2D dense
constraint. Therefore, 3D face reconstruction can be regarded
as an application of optical flow in this thesis.

4.1 Introduction

Monocular 3D face reconstruction with precise geometric details
serves as a foundation to a myriad of computer vision and
graphics applications, including face recognition [9, 108], digital
avatars [101, 51], face manipulation [134, 68], etc. However, this
problem is extremely challenging due to its ill-posed nature, as
well as difficulties to acquire accurate 3D face annotations.

Most successful attempts to tackle this problem are built
on parametric face models, which usually contain three sets
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Figure 4.1: Our CNN baseline takes an RGB image as input, and regresses
the identity, expression and pose parameters simultaneously. The three
sets of parameters are obtained by minimizing the 3D vertex error. We
compute the Normalized Mean Error (NME) of this face model and denote
it as Baseline. Then we replace the predicted identity, expression, pose
parameters with their ground truth, and recompute the NME respectively:
With GT Identity, Expression, Pose. As we can see in (b), With GT

Pose yields the highest performance gain, and the gain is even more
significant as the face orientation degree increases. Our Pose Guidance

Network takes advantage of this finding (Section 4.2.2), and greatly reduces
the error caused by inaccurate pose parameter regression.

of parameters: identity, expression, and pose. The most
famous one are 3D Morphable Model (3DMM) [10] and its
variants [134, 119, 16, 17]. Recently, CNN-based methods
that directly learn to regress the parameters of 3D face models
[121, 151, 19, 144], achieve state-of-the-art performance.

Are these parameters well disentangled and can they be
accurately regressed by CNNs? To answer this question, we
conduct a careful study of a CNN baseline on the AFLW2000-
3D dataset [168]. Figure 4.1(a) illustrates our setting. We
first train a neural network that takes an RGB image as
input to simultaneously regress the identity, expression and
pose parameters. The Baseline 3DMM model is obtained by
minimizing the 3D vertex error. Then, we independently replace
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the predicted identity, expression, and pose parameters with
their corresponding ground truth parameters (denoted as GT

Identity, GT Expression, and GT Pose), and recompute the
3D face reconstruction error shown in Figure 4.1(b).

Surprisingly, we found that GT Pose yields almost 5 times
more performance gain than its two counterparts. The im-
provement is even more significant when the face orientation
degree increases. We posit that there are two reasons causing
this result: (1) These three sets of parameters are heavily
correlated, and predicting a bad pose will dominate the identity
and expression estimation of the 3D face model; (2) 3D face
annotations are scarce especially for those with unusual poses.

To address these issues, we propose a pose guidance network
(shown in Figure 4.2) to isolate the pose estimation from
the original 3DMM parameter regression by estimating a UV
position map [33] for 3D face landmark vertices.

Utilizing the predicted 3D landmarks helps to produce more
accurate face poses compared to joint parameter regression
(i.e., Baseline in Figure 4.1), and the predicted 3D landmarks
also contain the valuable identity and expression information
that further refines the estimation of identity and expression.
Moreover, this enables us to learn from both accurate but limited
3D annotations, and unlimited in-the-wild images with pseudo
2D landmarks (from off-the-shelf landmark extractor like [14])
to predict more accurate 3D landmarks. Consequently, with our
proposed pose guidance network, the performance degradation
brought by inaccurate pose parameter regression is significantly
mitigated as shown in Figure 4.1(b).

To further overcome the scarcity of 3D face annotations, we
leverage the readily available in-the-wild videos by introducing
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a novel set of self-consistency loss functions to boost the per-
formance. Given 3D face shapes in multiple frames of the same
subject, we render a new image for each frame by replacing
its texture with that of commonly visible vertices from other
images. Then, by forcing the rendered image to be consistent
with the original image in photometric space, optical flow space
and semantic space, our network learns to avoid depth ambiguity
and predicts better 3D shapes even without explicitly modeling
albedo. At test time, our network can achieve both single-frame
and multi-frame 3D face reconstruction.

We summarize our key contributions as follows:
1. With a careful study, we unveil the fact that when pre-

dicting pose, identity and expression parameters simultaneously,
regressing pose dominates the optimization procedure, making
it hard to obtain accurate 3D face parameters. We solve this
problem by designing a pose guidance network to solely predict
3D landmarks for estimating the pose parameters. The trained
pose guidance network effectively reduces the error compared to
directly regressing the pose parameters and provides informative
priors for reconstructing the 3D face.

2. Our pose guidance network enables us to utilize both
fully annotated datasets with 3D landmarks and pseudo 2D
landmarks from unlabeled in-the-wild datasets. This leads to
a more accurate landmark estimator and thus helping better 3D
face reconstruction.

3. Built on a visible texture swapping module, our method
explores multi-frame shape and texture consistency in a self-
supervised manner, while carefully handling the occlusion and
illumination change across frames.

4. Evaluated on ALFW-2000-3D [168], Florence [3] and
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Figure 4.2: Framework overview. Our shared encoder extracts semantic
feature representation from multiple images of the same person. Then, our
identity and expression regression networks regress 3DMM face identity and
expression parameters (Section 4.2.1) with accurate guidance of our pose
guidance network that predicts 3D face landmarks (Section 4.2.2). Finally,
We utilize multiple frames (Section 4.2.3) to train our proposed network with
a set of self-consistency loss functions (Section 4.2.4).

FaceWarehouse [18] datasets, our method achieves superior
qualitative and quantitative results compared to our baselines
and other state-of-the-art approaches.

4.2 Method

We illustrate our framework overview in Figure 4.2. First, we
utilize a shared encoder to extract semantic feature represen-
tations from multiple frames of the same person. Then, an
identity regression branch and an expression regression branch
are employed to regress 3DMM face identity and expression
parameters (Section 4.2.1) with the help of our pose guidance
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network that predicts 3D face landmarks (Section 4.2.2). Fi-
nally, we explore self-consistency (Section 4.2.3) with our newly
designed consistency losses (Section 4.2.4).

4.2.1 Preliminaries

Let S ∈ R
3N be a 3D face with N vertices, S ∈ R

3N be the mean
face geometry, Bid ∈ R

3N×199 and Bexp ∈ R
3N×29 be PCA basis

of identity and expression, αid ∈ R
199 and αexp ∈ R

29 be the
identity and expression parameters. The classical 3DMM face
model [10] can be defined as follows:

S(αid,αexp) = S + Bidαid + Bexpαexp. (4.1)

Here, we adopt BFM [108] to obtain S and Bid, and expres-
sion basis Bexp is extracted from FaceWareHouse [18]. Then,
we employ a orthogonal projection model to project a 3D face
point s onto an image plane:

v(αid,αexp) =


1 0 0
0 1 0


 · (f · R · s + t)

=


1 0 0
0 1 0


 ·

[
f · R t

]
·


s

1


 ,

(4.2)

where v is the projected point on the image plane, f is a
scaling factor, R ∈ R

3×3 indicates a rotation matrix, t ∈ R
3 is

a translation vector.
However, it is challenging for neural networks to regress

identity parameter αid, expression parameter αexp and pose
parameter {f,R, t} together, because these parameters cannot
be easily disentangled and pose parameters turn to dominate the
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optimization, making it more difficult to estimate accurate iden-
tity and expression (as discussed in Section 4.1 and illustrated
in Figure 4.1).

To address this issue, we design a robust landmark-based
pose guidance network to obtain the transformation matrix T =
[
f · R t

]
instead of directly regressing its parameters. Next, we

will describe our pose guidance network in detail.

4.2.2 Pose Guidance Network

To decouple the optimization of pose parameter {f,R, t} with
identity parameter αid and expression parameter αexp, we design
a multi-task architecture with two output branches (shown
in Figure 4.2). One branch optimizes the traditional 3DMM
identity and expression parameters αid,αexp. The other branch
is trained to estimate a UV position map [33] for 3D face
landmarks, which provide key guidance for pose estimation.

Specifically, Let X be the 3D landmark positions in the face
geometry S, and XUV be the 3D landmarks estimated from our
UV position map decoder, we estimate a transformation matrix
T by,

min
T

||T ·


X

1


 − XUV ||2. (4.3)

Here, T has a closed-form solution:

T = XUV ·


X

1




T

·
( 

X

1


 ·


X

1




T )−1

. (4.4)

As a result, we convert the estimation of T into the estimation
of a UV position map for 3D face landmarks rather than
regressing T’s parameters. This disentangles the pose estima-
tion and results in better performance than joint regression of
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αid,αexpand {f,R, t}. Another merit of this design is enabling
us to train our network with two types of images: images with
3D landmark annotations and in-the-wild unlabeled images with
2D facial landmarks extracted by off-the-shelf detectors. During
training, we sample one image batch with 3D landmark labels
and another image batch from unlabeled datasets. 3D landmark
loss and 2D landmark loss are minimized for them, respectively.
For 3D landmarks, we calculate the loss across all x, y and z

channels of the UV position map, while for 2D landmark loss,
only x and y channels are considered. More abundant training
data leads to more accurate pose estimation, and hence better
face reconstruction.

Note our work is different from PRN [33], which utilizes a
CNN to regress dense UV position maps for all 3D face points.
PRN requires dense 3D face labels which are extremely difficult
to obtain. Our network learns directly from sparse landmark
annotations, which are much easier to obtain and more accurate
than the synthetic data derived from facial landmarks.

4.2.3 Learning from Multiple Frames

The pose guidance network combined with identity and expres-
sion parameters regression can achieve quite accurate 3D face
reconstruction, but the estimated 3D mesh lacks facial details.

This is because 3D landmarks can only provide a coarse pre-
diction of identity and expression. To generate meshes with finer
details, we leverage multi-frame images from monocular videos
as input and explore their inherent complementary information.
In contrast to the common perspective that first estimates
albedo maps and then enforces photometric consistency [131], we
propose a self-consistency framework based on a visible texture
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swapping scheme.
Every vertex in a 3DMM model has a specific semantic

meaning. Given multiple images of the same identity, we can
generate one 3D mesh for each image; and every corresponding
vertex of different meshes share the same semantic meaning,
even though these images are captured with different poses,
expressions, lightings, etc. If we sample texture from one
image and project it onto another image that has different pose
and expression, the projected image should still keep the same
identity, expression and pose as the original one despite the
illumination change. Our multi-image 3D reconstruction is built
on this key intuition.

More specifically, our method takes multiple frames of the
same subject as input, and estimates the same set of identity
parameters for all images, and different expressions and poses
(obtained from 3D face landmarks output by our pose guidance
network) for each image. To generate the same identity param-
eters, we adopt a similar strategy as [131], which fuses feature
representations extracted from the shared encoders of different
images via average pooling (Feature Fusion in Figure 4.2). In
this way, we can achieve both single-image and multi-image face
reconstruction.

For simplicity, we assume there are two images of the same
person as input (the framework can easily extend to more
than two images), denoted as I1 and I2 respectively. Then, as
illustrated on the left side of Figure 4.2, we can generate two
3D meshes with the same identity parameter αid, two differ-
ent expression parameters α

1
exp,α

2
exp, and pose transformation

matrices T1,T2 obtained by our pose guidance network. After
that, we sample two texture maps C1, C2 with Equation (4.2),
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and project the first texture C1 onto the second image I2 with its
expression parameter α

2
exp and pose transformation matrix T2

to obtain the rendered image I1→2. Similarly, we can project
C2 to I1 to obtain rendered image I2→1. Ideally, if there is
no illumination change, I2 shall be the same as I1→2 over their
non-occluded facial regions. However, there exists occlusion and
illumination usually changes a lot for different images in real-
world scenarios. To this end, we introduce several strategies to
overcome these issues.

Occlusion Handling. We adopt a simple strategy to effectively
determine if a pixel is occluded or non-occluded based on
triangle face normal direction. Given a triangle with three
vertices, we can compute its normal n = (nx, ny, nz). If the
normal direction towards outside of the face mesh (i.e., nz > 0),
we regard these three vertices as non-occluded; otherwise they
are occluded. According to this principle, we can compute two
visibility maps M1 and M2, where value 1 indicates the vertex
is non-occluded and 0 otherwise. A common visibility map M12

is then defined as:
M12 = M1 ⊙M2, (4.5)

where value 1 means that the vertex is non-occluded for both
3D meshes.

Considering the occlusion, when projecting C1 onto the
second image, we combine C1 and C2 by

C1→2 = C1 ⊙M12 + C2 ⊙ (1 −M12). (4.6)

That is, we alleviate the influence of the occlusion by only
projecting the commonly visible texture from I1 to I2 to
generate C1→2, while keeping the original pixels for the

occluded part. In this way, the rendered image I1→2 shall
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have the same identity, pose and expression information as I2.
The projection from I2 to I1 can be derived in the same manner.

Illumination Change. The sampled texture is not disentan-
gled to albedo, lighting and light direction and so on. Due
to lighting and exposure changes, even if we can estimate
accurate 3D geometry, the rendered texture I1→2 is usually
different from I2. To cope with these issues, we propose three
schemes. First, we adopt the Census Transform [44] from
optical flow estimation, which has shown to be very robust
to illumination change when computing photometric difference
(Equation (4.9)). Specifically, we apply a 7×7 census transform
and then compute the Hamming distance between the reference
image I2 and the rendered image I1→2. Second, we employ an
optical flow estimator [85] to compute the flow between I2 and
the rendered image I1→2. Since optical flow provides a 2D dense
correspondence constraint, if the face is perfectly aligned, the
optical flow between I2 and I1→2 should be zeros for all pixels, so
we try to minimize the difference, i.e., minimize the magnitude
of optical flow between them (Equation (4.10))

Third, even though illumination changes, the identity, expres-
sion and pose shall be the same for I2 and I1→2. Therefore, they
must share similar semantic feature representation. Since our
shared encoder can extract useful information to predict facial
landmarks, identity and expression parameters, we use it as a
semantic feature extractor and compare the feature difference
between I2 and I1→2 (Equation (4.11)).

4.2.4 Training Loss

To train our network for accurate 3D face reconstruction, we
define a set of self-consistency loss functions, and minimize the
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following combination:

L = Ll + λpLp + λfLf + λsLs + λrLr, (4.7)

where λp, λf , λs and λr are weights to balance different loss
functions. Each loss term is defined in detail as follows. Note
that for simplicity, we only describe these loss terms regarding
projecting I1 to I2 (i.e., I1→2) and the other way around (I2→1)
can be defined similarly.

Sparse Landmark Loss. Our landmark loss measures the
difference between the landmarks of transformed face geometry
T · X and the prediction of pose guidance network XUV :

Ll =
∑

|T · X − XUV |. (4.8)

This is the core guidance loss, which can be trained with both
3D and 2D landmarks.

Photometric Consistency Loss. Photometric loss measures
the difference between the target image and the rendered image
over those visible regions. We can obtain the visible mask M 2d

on the image plane with differentiable mesh render [38]. Note
that M 2d is different from the vertex visibility map M , where
the former denotes whether the pixel is occluded on the image
plane, and the latter denotes whether the vertex in 3D mesh
is occluded. Besides, considering that most of the face regions
have very similar color, we apply a weighted mask W to the
loss function, where we emphasize eye, nose, and mouth regions
with a larger weight of 5, while the weight is 1 for other face
regions [33]. The photometric loss then writes:
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Lp =
∑

Hamming|Census(I2) − Census(I1→2)| ⊙M 2d
2 ⊙W

∑
M 2d

2 ⊙W
,

(4.9)
where Census represents the census transform, Hamming denotes
Hamming distance, and M 2d

2 is the corresponding visibility mask
on image plane projected by M2.

Flow Consistency Loss. We use optical flow to describe
the dense correspondence between the target image and the
rendered image, then the magnitude of optical flow is minimized
to ensure the visual consistency between two images:

Lf =
∑

|w(I2, I1→2)| ⊙W/
∑
W, (4.10)

where w is the optical flow computed from [85] and the same
weighted mask W is applied as in the photometric consistency
loss.

Semantic Consistency Loss. Photometric loss and 2D cor-
respondence loss may break when the illumination between two
images changes drastically. However, despite the illumination
changes, I2 and I1→2 should share the same semantic feature
representation, as the target image and the rendered image share
the same identity, expression and pose. To this end, we minimize
the cosine distance between our semantic feature embeddings:

Ls = 1− <
F (I2)

||F (I2)||2
,
F (I1→2)

||F (I1→2)||2
>, (4.11)

where F denotes our shared feature encoder. Note that unlike
existing approaches (e.g., [38]) which align semantic features in
a pre-trained face recognition network, we simply minimize the
feature distance from our learned shared encoder. We find that
this speeds up our training process and empirically works better.
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Regularization Loss. Finally, we add a regularization loss to
identity and expression parameters to avoid over-fitting:

Lr =
199∑

i=1

|
αid(i)
σid(i)

| + 0.5
29∑

i=1

|
αexp(i)
σexp(i)

|, (4.12)

where σid and σexp represent the standard deviation of αid and
αexp, respectively.

4.3 Experiment

Training Datasets. To train the shared encoder and pose
guidance network, we utilize two types of datasets: synthetic
dataset with pseudo 3D annotations and in-the-wild datasets.
For the synthetic dataset, we choose 300W-LP [168], which
contains 60k synthetic images with fitted 3DMM parameters.
These images are synthesized from around 4k face images with
face profiling synthetic method [170]. To enable more robust
3D face landmark detection, we choose a corpus of in-the-
wild datasets, including Menpo [27], CelebA [91], 300-VW [123]
and Multi-PIE [42] with their 68 2D landmarks automatically
extracted by [14].

To train identity and expression regression networks with our
proposed self-consistency losses, we utilize 300-VW [123] and
Multi-PIE [42], where the former contains monocular videos,
and the latter contains faces images of the same identity under
different conditions, e.g., different lightings, poses, expressions
and scenes.

Evaluation Datasets and Metrics. We evaluate our model
on AFLW-2000-3D [168], Florence [3] and FaceWarehouse [18]
datasets. AFLW-2000-3D contains the first 2000 images from
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AFLW [72], which is annotated with fitted 3DMM parameters
and 68 3D landmarks in the same way as 300W-LP. We evaluate
face landmark detection performance and 3D face reconstruction
performance on this dataset, which is measured by Normalized
Mean Error (NME) as in [33]. Florence dataset contains 53
subjects with ground truth 3D scans, where each subject con-
tains three corresponding videos: “Indoor-Cooperative", “PTZ-
Indoor" and “PIZ-Outdoor". We report Point-to-Plane Distance
as in [38, 144] to evaluate 3D shape reconstruction performance.
The Florence dataset only contains 3D scans with neutral
expression, which can only be used to evaluate the performance
of shape reconstruction. To evaluate the expression part, we
further evaluate our method on the FaceWarehouse dataset.
Following previous work [133, 132, 135, 131], we use a subset
with 180 meshes (9 identities and 20 expressions each) and
report per-vertex error. Florence and FaceWarehouse are also
employed to verify the effectiveness of our proposed multi-frame
consistency scheme.

Training Details. The face regions are cropped according
to either pseudo 3D face landmarks or detected 2D facial
landmarks [14]. Then the cropped images are resized to 256×256
as input. The shared encoder and pose guidance network
structures are the same as PRN [33], which employs residual
blocks for the encoder and transposed convolution layers for
the decoder. The identity and expression regression networks
take the encoder output as input, followed by one convolutional
layer, one average pooling layer and finally three fully-connected
layers. When taking multiple images as input, we employ
differentiable mesh render [38] to project 3D mesh onto 2D
image plane, and utilize state-of-the-art unsupervised optical
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Table 4.1: Performance comparison on AFLW2000-3D (68 landmarks)
dataset. The NME (%) for 68 landmarks with different face orientation
along Y-axis are reported.

Method
NME68

2d

0 to 30 30 to 60 60 to 90 Mean
SDM[145] 3.67 4.94 9.67 6.12
3DDFA [168] 3.78 4.54 7.93 5.42
3DDFA + SDM [168] 3.43 4.24 7.17 4.94
Yu et al. [155] 3.62 6.06 9.56 -
3DSTN[7] 3.15 4.33 5.98 4.49
DeFA[90] - - - 4.50
Face2Face [134] 3.22 8.79 19.7 10.5
3DFAN [14] 2.77 3.48 4.61 3.62
PRN [33] 2.75 3.51 4.61 3.62
ExpNet [19] 4.01 5.46 6.23 5.23
MMFace-PMN [151] 5.05 6.23 7.05 6.11
MMFace-ICP-128 [151] 2.61 3.65 4.43 3.56
Ours (Pose Guidance Network) 2.49 3.30 4.24 3.34

Ours (3DMM) 2.53 3.32 4.21 3.36

flow estimator [85] to extract dense 2D correspondence cues
between the target image and the rendered image. The optical
flow estimator is fixed during training.

Our whole training procedure contains 3 steps: (1) We first
train the shared encoder and pose guidance network. We
randomly sample one batch images from 300W-LP and another
batch from in-the-wild datasets, then employ 3D landmark and
2D landmark supervision respectively. We set the batch size
to 16 and train the network for 600k iterations. After that,
both the shared encoder and pose guidance network parameters
are fixed. (2) For identity and expression regression networks,
we first pre-train them with only one image for each identity
as input using Ll and Lr for 400k iterations. This results in
a coarse estimation and speeds up the convergence for training
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with multiple images. (3) Finally, we sequentially choose 2 and
4 images for each identity as input and train for another 400k
iterations by minimizing Equation (4.7). The balance weights
for loss terms are set to λp = 0.2, λf = 0.2, λs = 10, λr =
1. We give more weights to Ls and Ll, less weights to Lp

and Lf , because the landmark and semantic features shall be
consistency independent of illumination change, while Lp and
Lf are likely to be influenced by illumination difference. But if
the illuminations are very similar among input faces, Lp and Lf

will provide very strong positive guidance. Due to the memory
consumption brought by rendering and optical flow estimation,
we reduce the batch size to 4 for multi-image input. All 3 steps
are trained using Adam [70] optimizer with an initial learning
rate of 10−4. Learning rate decays half after 100k iterations.

3D Face Alignment Results. Table 4.1 shows the 68 facial
landmark detection performance on AFLW2000-3D dataset [168].
AFLW2000-3D is a very challenging dataset, since it contains
faces with large pose variations. We bypass the limitation of
the synthetic dataset (e.g.300W-LP) and propose to make full
use of both the synthetic dataset and in-the-wild face images.
By training with a large corpus of unlabeled in-the-wild data,
our model greatly improves over previous state-of-the-art 3D
face alignment methods (e.g.PRN [33], MMFace [151]) that
heavily rely on 3D annotations. Our method achieves the best
performance without any post-processing such as the ICP used
in MMFace. Moreover, our pose guidance network is robust.
We can fix it and directly use its output as ground truth of 3D
landmarks to guide the learning of 3D face reconstruction.

Quantitative 3D Face Reconstruction Results. We evalu-
ate 3D face reconstruction performance with NME on AFLW2000-
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Figure 4.3: 3D face reconstruction comparison on AFLW2000-3D dataset.
X-axis denotes the NME normalized by outer interocular distance, the Y-
axis denotes the percentage of images. Following [33], around 45k points are
used for evaluation.

3D, Point-to-Plane error on Florence and Per-vertex error
on FaceWarehouse. Thanks to the robustness of our pose
guidance network, we can directly fix it and obtain accurate
pose estimation without further learning the pose parameters.
Therefore, our model can focus more on shape and expression
estimation. As shown in Figure 4.3, we achieve the best results
on AFLW2000-3D dataset, reducing NME3d of previous state-
of-the-art from 3.96 to 3.31, with 16.4% relative improvement.

On Florence dataset, we compare with MoFA [133], Genova
et al.[38] and MVF [144] in Table 4.2. In contrast to MVF
that concatenates encoder features as input to estimate a share
identity parameter, we employ average pooling for encoder
features, enabling us to perform both single-image and multi-
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Table 4.2: Comparison of mean point-to-plane error on the Florence dataset.
Our method outperforms state-of-the-art methods for all metrics.

Method
Indoor-Cooperative PTZ-Indoor
Mean Std Mean Std

Tran et al.[136] 1.443 0.292 1.471 0.290
Tran et al.+ pool 1.397 0.290 1.381 0.322
Tran et al.+ [109] 1.382 0.272 1.430 0.306
MoFA [133] 1.405 0.306 1.306 0.261
MoFA + pool 1.370 0.321 1.286 0.266
MoFA + [109] 1.363 0.326 1.293 0.276
Genova et al.[38] 1.405 0.339 1.271 0.293
Genova et al.+ pool 1.372 0.353 1.260 0.310
Genova et al.+ [109] 1.360 0.346 1.246 0.302
MVF [144] - pretrain 1.266 0.297 1.252 0.285
MVF [144] 1.220 0.247 1.228 0.236
Ours 1.122 0.219 1.161 0.224

Table 4.3: Per-vertex geometric error (measured in mm) on FaceWarehouse
dataset. PGN denotes pose guidance network. Our approach obtains the
lowest error, outperforming the best prior art [131] by 7.5%.

Method MoFA Inversefacenet Tewari et al. FML
Ours Ours Ours Ours

Single-Frame Single-Frame Mult-Frame Multi-Frame
[133] [69] [132] [131] without PGN with PGN without PGN with PGN

Error 2.19 2.11 2.03 2.01 2.18 2.09 1.98 1.86

image face reconstruction. However, in the evaluation setting, it
does not make much difference using single-frame or multi-frame
as input, because we’ll finally average all the video frame output.
Therefore, we just use a single image as input and average the
final geometry. Notably, our method is more general than the
previous state-of-the-art MVF that assumes expressions are the
same among multiple images (i.e., multi-view images), while our
methods can directly train on monocular videos.

On FaceWarehouse dataset, we compare with MoFA [133],
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(a) Input (b) 3DDFA (c) PRN (d) Ours (e) GT

Figure 4.4: Qualitative comparison of 3D face reconstruction on AFLW2000-
3D. (a) Input images. (b-d) are results of 3DDFA [168], PRNet [33] and ours.
(e) is the pseudo ground truth provided by [168]. The estimated shape of
3DDFA is close to mean face geometry and the results of PRN lack geometric
details. Our model generates more accurate shapes and expressions. In many
cases, our results look even more visually convincing than ground truth.
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(a) Input (b) 3DDFA (c) PRN (d) MVF (e) Ours

Figure 4.5: Qualitative comparison of 3D face reconstruction on Florence
dataset. (a) Input images. (b-e) are results of 3DDFA [168], PRNet [33],
MVF [144] and ours. Our model can generate more accurate shapes and
expressions.

Inversefacenet [69], Tewari et al. [132] and FML [131] as in
Table 4.3. For single frame setting, without modeling albedo,
we can still achieve comparable performance with MoFA [133],
Inversefacenet [69] and Tewari et al. [132]. For the multi-
frame setting, we achieve better results than FML [131]. For
both single-frame and multi-frame settings, we achieve improved
performance with pose guidance network. All these show the
effectiveness of our proposed pose guidance network and self-
consistency losses.

Qualitative 3D Face Reconstruction Results. Figure 4.4
shows the qualitative comparisons with 3DDFA [168], PR-
Net [33] and the pseudo ground truth. 3DDFA regresses identity,
expression and pose parameters together and is only trained
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(a) Input (b) 3DDFA (c) PRN (d) FML (e) Ours

Figure 4.6: Qualitative comparison of 3D face reconstruction on Face-
Warehouse dataset. (a) Input images. (b-e) are results of 3DDFA [168],
PRNet [33], FML [131] and ours. Compared with FML, our results are more
smooth and visibly pleasing.

with synthetic datasets 300W-LP, leading to performance degra-
dation. The estimated shape and expression of 3DDFA is close
to mean face geometry and looks generally similar. PRNet
directly regresses all vertices stored in UV position map, which
cannot capture the geometric constraints well; thus, it does not
look smooth and lacks geometric details, e.g., eye and mouth
regions. In contrast, our estimated shape and expression look
visually convincing. Even when compared with the pseudo
ground truth generated with traditional matching methods,
our estimation is more accurate in many cases. Figure 4.5
shows the comparison on the Florence dataset, which further
demonstrates the effectiveness of our method. Compared with
FML on FaceWarehouse dataset, our results can generate more
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Table 4.4: Ablation study on Florence dataset. Lp− means census transform
is not applied when computing photometric difference. We find that census
transform is robust for illumination variations.

Lp− Lp Ls Lf

Indoor-Cooperative PTZ-Indoor
Mean Std Mean Std

✗ ✗ ✗ ✗ 1.364 0.352 1.379 0.326
✓ ✗ ✗ ✗ 1.263 0.312 1.323 0.251
✗ ✓ ✗ ✗ 1.219 0.261 1.255 0.256
✗ ✓ ✗ ✓ 1.193 0.230 1.221 0.247
✗ ✓ ✓ ✗ 1.161 0.268 1.269 0.276
✗ ✓ ✓ ✓ 1.122 0.219 1.161 0.224

(a) Input (b) Pre-train (c) Lp− (d) Lp (e) Full Loss

Figure 4.7: Ablation study on Multi-PIE dataset [42]. (a) Input image. (b)
Pre-trained model with only landmark loss and regularizer loss. (c) Employ
photometric loss. (d) Employ census transform when computing photometric
consistency. (e) Full loss. We can find that key components of our model
improve the accuracy of shape and expression. Zoom in for details.
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accurate expressions with visibly pleasing face reconstruction
results (Figure 4.6.

Ablation Study. The effectiveness of pose guidance network
has been shown in Table 4.1 (for face alignment) and Table 4.3
(for face reconstruction). To better elaborate the contributions
of different components in our self-consistency scheme, we
perform detailed ablation study in Figure 4.7.

Our baseline model is single-image face reconstruction trained
only with Ll and Lr. However, it doesn’t lead to accurate shape
estimation, because our pose guidance network with sparse
landmarks can only provide a coarse shape estimation. To
better estimate the shape, we employ multi-frame images as
input. As shown in Table 4.4, even without census transform,
the photometric consistency (Lp−) improves the performance.
However, the photometric loss does not work well when the
illumination changes among video frames. Therefore, we en-
hance the photometric loss with census transform to make
the model more robust to illumination change. This improves
the performance quantitatively (Table 4.4), and qualitatively
(Figure 4.7(b-f)). Applying semantic consistency (Ls) and flow
consistency (Lf) enforces the rendered image and the target
image to look semantically similar and generates better face
geometry.

Video Results. Our proposed multi-image face reconstruction
method is based on texture sampling, which is different from
other methods such as FML [131]. Therefore, our method
can obtain better face reconstruction accuracy with higher
texture quality (higher video resolution). To verify it, we
fine-tune our model on a high-quality video from the Internet,
i.e., the fine-tuned model is specialized for the video. No 3D
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(a) Input (b) 3DDFA (c) PRN (d) MVF (e) Ours

Figure 4.8: Qualitative comparison of 3D face reconstruction on a real-
world high-resolution videos. Our consistency losses work especially well
for high resolution images with few steps of fine-tuning. We can generate
very accurate shape and expression, such as the challenging expression of
complete eye-closing.
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ground truth is used here. As shown in Figure 4.8(d), our
estimated shape and expression look surprisingly accurate after
several thousand iterations. Specifically, our model captures the
detailed expression (e.g., totally closed eyes) and face shape very
well. This can be an interesting application when we need to
obtain accurate 3D face reconstruction for one specific person.

4.4 Summary

We have presented a pose guidance network that yields superior
performance on 3D face reconstruction from a single image
or multiple frames. Our approach effectively makes use of
in-the-wild unlabeled images and provides accurate 3D land-
marks as intermediate supervision to help reconstruct 3D faces.
Furthermore, we have demonstrated that swapping textures of
multiple images and exploring their photometric and semantic
consistency greatly improve the final performance. We hope that
our work can inspire future research to develop new techniques
that leverage informative intermediate representations (e.g., 3D
landmarks in this paper) and learn from unlabeled images or
videos.

✷ End of chapter.



Chapter 5

Conclusion and Future Work

In this chapter, we conclude the thesis and provide some
potential directions that deserve further exploration.

5.1 Conclusion

In this thesis, we propose self-supervised learning methods
for three types of dense correspondences: optical flow, stereo
matching and 3D face reconstruction. Among them, stereo
matching can be regarded as a special case of optical flow,
and optical flow is served as a 2D dense constraint for 3D face
reconstruction. Therefore, the topic of this thesis can be referred
to as optical flow and the applications of optical flow.

In particular, we propose a series of self-supervised learning
approaches for optical flow estimation: DDFlow, SelFlow,
Flow2Steeo and DistillFlow. Firstly, we observe that existing
unsupervised optical flow methods lack the key ability to
effectively learn flow of occluded pixels. To cope with this
issue, we propose a data distillation approach in DDFlow,
where two models are optimized: reliable flow estimations
from the teacher model are served as annotations to supervise

150
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the student model. However, the cropping based occlusion
hallucination technique only creates hand-crafted occlusions
near the image boundary. To make data distillation effective
for a wider range of occlusions, we introduce a superpixel based
occlusion hallucination technique in SelFlow. Later, we find
that the key factor for performance improvement is creating
challenging input-output pairs and letting confident predictions
to supervise less confident predictions. In DistillFlow, we
summarize the challenging transformations into three categories:
occlusion hallucination based transformations, geometric trans-
formations, and color transformations. In our proposed self-
supervised training framework, the performance of the teacher
model determines the upper bound of the student model. To
further improve flow estimation, we explore three improvement
directions. Specifically, we propose to utilize more frames and
explore temporal information in SelFLow, use stereo videos and
explore the relationship between optical flow and stereo disparity
in Flow2Stereo, and employ model distillation in DistillFlow.
Our proposed self-supervised learning approaches outperform
previous unsupervised flow methods by a large margin on all
datasets, including KITTI 2012, KITTI 2015 and MPI-Sintel.
Besides, we demonstrate the generalization capability of our
self-supervised learning framework in three aspects: framework
generalization, correspondence generalization and cross dataset
generalization. Moreover, current supervised learning methods
highly rely on pre-training on synthetic datasets. Our self-
supervised pre-trained model provides an excellent initialization
for supervised fine-tuning and reduces the reliance on synthetic
datasets. This provides an alternate training paradigm in
supervised flow learning. For stereo matching, we propose
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to use one unified model to estimate both flow and stereo in
Flow2Stereo, and show that directly estimating stereo disparity
with the flow model also achieves state-of-the-art stereo match-
ing performance. For 3D face reconstruction, we explore face
geometry information embedded in multiple frames of the same
person, which can alleviate the ill-posed nature of regressing
3D face geometry from a single image. With a self-supervised
learning scheme based on visible texture swapping, our method
achieves superior qualitative and quantitative results on AFLW-
2000-3D, Florence and FaceWarehouse datasets.

5.2 Future Work

For the future work, there are two main directions: learning
more accurate optical flow and applying optical flow to other
interesting applications.

5.2.1 Accurate Optical Flow Estimation

For accurate optical flow estimation, we expect five directions
to be explored.

1. Occlusion Detection.We apply the forward-backward
consistency check to estimate occlusion maps. The method
can detect those obvious occlusions, but not works well for
ambiguous cases. As a result, the generated occlusion maps
usually lack details. Besides, the occlusion map is a hard
mask (either 1 or 0), which may lose crucial information
if the mask is wrongly estimated. A good choice is to use
a soft mask (range from 0 to 1), where the value is near
to 1 if the pixel is more likely to be occluded. Moreover,
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the occlusion generation procedure is not integrated into
the end-to-end training framework. In the future, we
will integrate occlusion map generation into the end-to-
end training framework for estimation and replace the hard
mask with a soft mask as [57].

2. Robust Transform in Feature Space. We apply Census
Transform to images when computing the photometric
loss. However, Census Transform is a traditional image
processing method which extracts hand-crafted features.
Obviously, Census Transform is not the optimal transform
for optical flow estimation. With the rapid development
of deep learning, it is widely known that learned features
are more robust and have the potential to achieve better
performance if applied properly. Therefore, we will explore
how to extract effective features from CNNs to replace
Census Transform.

3. Network Architecture. Our network structures are all
mainly based on PWC-Net [127], which employs three
principles: pyramidal processing, feature warping and cost
volume construction. However, PWC-Net has obvious
drawbacks. First, the output flow resolution is a quarter
of the full-resolution image, therefore the flow map looks
blurry and lacks detail. Second, the feature warping
operation will provide the ghosting effect and generate
distorted features, which affect flow learning. We will
explore estimating optical flow at full-resolution and re-
placing feature warping with feature sampling. Besides,
iterative residual learning has been shown powerfully in flow
estimation [54, 1], we will explore how to apply it in a more
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proper manner.

4. Regression vs. Classification. Existing learning based
methods consider optical flow estimation as a regression
problem. However, directly optimizing it as a regression
problem suffers from slow convergence and unsatisfactory
local solutions. Compared with the regression problem,
classification is easier to train and converge more quickly.
Therefore, we can apply a spacing-increasing discretization
(SID) strategy to discretize optical flow and recast flow
network learning as an ordinal regression problem, just like
[34] do in depth estimation. The basic idea is that if the
flow magnitude is larger, the estimated flow error is larger
normally. In this case, we utilize more split for smaller flow
and less split for larger flow when employing discretization.

5. External Guidance. In our self-supervised learning
framework, the performance of the teacher model de-
termines the upper bound of the student model. We
have explored several directions for improvement, includ-
ing using more frames, using stereo data and employing
model distillation. There are other directions that deserve
exploration, such as utilizing precise dense annotations in
synthetic data, jointing learning flow and depth, etc.

5.2.2 Optical Flow based Applications

Optical flow estimation is core computer vision building block
and has many applications, such as 3D scene reconstruction [110],
object tracking [21], video super-resolution [120], video frame
interpolation [5], action recognition [124] and object detec-
tion [169, 106], etc. We have successfully applied optical flow
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in 3D face reconstruction. Other interesting applications also
deserve exploration.

Besides, optical flow is always served as a feature for down-
stream application, i.e., we first pre-compute optical flow, and
then apply these features to specific tasks. It is straightforward
but does not work well for task-specific applications. Instead,
it will be much better to integrate optical flow estimation with
task-specific networks and formulate them into an end-to-end
learning framework just like TV-Net[32]. In this case, the whole
framework is end-to-end trainable and it can learn richer and
task-specific patterns beyond exact optical flow. Usually, the
extracted features are likely to optical flow, but have more
appropriate features for specific tasks. In the future, we will
go beyond optical flow to extract task-specific flow-like features
for better performance in specific applications.

✷ End of chapter.
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