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Introduction

Google harms your computer Destruction of NASA Mariner 1

• Software bugs annoy users or even cause 
great losses! 

• Software failures cost the US economy 
about $60 billion every year [NIST Report 
2002]



• The primary way for removing bugs
• Three steps

– Generate test inputs
– Run test inputs
– Inspect test results (check actual outputs or 

properties against test oracles)
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Software Testing



• A system test
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Software Testing

Test 
Oracles

Test 
Inputs



• A unit test
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Software Testing

Test 
Oracles

Test 
Inputs

public void testSearch()
{

// test input
Stack var0 = new Stack();
String var1 = "hi!";
var0.push((Object)var1);
int var2 = var0.search(var1);

// test oracle
assertTrue(var2==1);

}



Software Testing

• Manual software testing
– Difficult to create a good set of test inputs

• Software systems become large-sized and 
complex

– Tedious to inspect a large set of test results
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Automatic Software Testing
• Test input generation

– Random testing, combinatorial testing, 
model-based testing, grammar-based testing

• Test result inspection
– Model-based testing

Test Input Generation

Test Result Inspection

Specification
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Automatic Software Testing
• Specification: a complete description of the 

behavior of a software to be developed
– Constraints on test inputs

• socket->bind->listen->accept
• For a method f(int x, int y), x>0,y>0

– Constraints on program states
• From state s and action x, the next state should be t.
• There should be no memory errors, e.g., double free

– Constraints on test outputs
• For a method sort(x), the output is sorted
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Challenges
• The specification is often unavailable or 

incomplete

Test Input Generation

Test Result Inspection

Specification
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My Thesis
• Mining specifications from software data 

to guide test input generation and test 
result inspection

Test Input Generation

Test Result Inspection

SpecificationSoftware Data
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My Thesis
• Part 1: unit-test generation via mining relevant 

APIs
– A unit-test is a method call sequence

Test Input GenerationSource Code Relevant APIs

f g
• Contribution

– Reduce the search space of possible method call 
sequences by exploiting the relevance of methods
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My Thesis
• Part 2: test selection via mining operational models

– Control rules, data rules

Operational ModelsExecution Traces Test Result Inspection

• Contribution
– Propose two kinds of operational models that can 

detect failing tests effectively and can be mined 
efficiently

Br1 => Br2
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My Thesis
• Part 3: mining test oracles of Web search 

engines

Program Outputs Test Result InspectionOutput Rules and 
Classification Models

• Contribution
– Apply test selection techniques to Web Search 

Engines
– Select failing tests by exploiting application-level 

knowledge

P1 => P2
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My Thesis

• Overview

Software Data Mined/Learned Specifications Testing Tasks

Source Code Relevant APIs
(Specifications about Program Inputs)

Test Input Generation

Execution
Traces

Operational Models
(Specifications about Program States)

Test Result Inspection
(Test Selection)

Program
Inputs and
Outputs

Output Rules
(Specifications about Program Outputs)

Test Result Inspection
(Test Selection)

Part 1

Part 2

Part 3



Part 1: Unit-Test Generation via Mining 
Relevant APIs
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Problem

• Given a set of methods under test 
(MUTs), generate inputs (method-call 
sequences) that explore different 
behaviors of each method.



Existing Approaches
• Random

– Select parameters of methods randomly
A.f(B) means f is a method class A and it has an argument of class B
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Stack var0 = new Stack(); String var1 = "hi!";

Stack.push(Object)

Stack var0 = new Stack();
String var1 = "hi!";
var0.push((Object)var1);

Stack.search(Object)

Stack var0 = new Stack();
String var1 = "hi!";
var0.push((Object)var1);
int var2 = var0.search(var1);



Existing Approaches
• Feedback-directed generation

– Discard sequences whose execution throw 
exceptions

• Adaptive random generation
– Select sequences that are most different 

from previous selected ones

• They do not consider how the specific 
method under test is implemented
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The Idea

• A method cannot affect the execution of the 
method under test (MUT) if it does not mutate 
an input’s fields accessed by the MUT.

– the size() method has no effect because it does not 
change any fields that search() access.

Stack var0 = new Stack(); Stack var0 = new Stack();
String var1 = "hi!";
var0.push((Object)var1);

Stack var0 = new Stack();
int var1 = var0.size();

Stack.search(Object)

X



21

Example

• openDatabase()  calls setupDatabase() calls getAllowCreate()  
accesses allowCreate

• setAllowCreate() accesses allowCreate
• To test openDatabse(), for sequences of DatabaseConfig objects, 

we prefer the sequences that call setAllowCreate()



• Mining relevant APIs
– Use Eclipse JDT Compiler to analyze the 

object fields accessed by each method
• Each method is represented as an itemset of the 

object fields that it accesses

– Find relevant APIs that access the same 
object fields

• openDatabase() is relevant to setAllowCreate()
22

Our Approach

Environment.envImpl, DatabaseConfig.allowCreate, ...openDatabase() :

setAllowCreate() : DatabaseConfig.allowCreate



• RecGen: recommendation-based test 
generation 
– For each parameter, recommend a method 

call sequence from the existing sequences
• Assign more weights to short sequences with 

more relevant APIs

Our Approach 

23A.f(B)

Method Call 
Sequences 
of Type A

Method Call 
Sequences 
of Type B



Experiments
• Three subjects

– Berkeley DB Java Edition (BDB)
– Java Data Structure Library (JDSL)
– Science Computing Library (JScience)

• Compared with three representitive tools
– JCrasher
– Randoop
– ARTGen

• Metrics
– Code Coverage
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Experiments
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• With feedback is better
• With sequence recommendation is better



Experiments
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• With feedback is better
• With sequence recommendation is better



Summary of Part 1
• Problem

– Unit-Test input generation (method call sequence)
• Our approach

– Mine relevant APIs that access common fields
– For each parameter, select short method call 

sequences that have more relevant APIs
• Contribution

– Reduce the search space of possible method call 
sequences by exploiting the relevance of methods

27



Part 2: Test Selection via Mining 
Operational Models



Problem

• Given a large set of test results, find the 
failing tests from them
– Without executable test oracles
– Manual test result inspection could be labor-

intensive
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Solution

• Test selection for result inspection
– Select a small subset of tests that are likely to 

reveal faults

Hey! Check only these tests!

30



• Code coverage based selection
• Clustering based selection
• Operational model based selection

Existing Approaches
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Code Coverage Based Selection

• Select a new test if it increases some 
coverage criteria, otherwise discard it
– Method, line, branch coverage
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           Br1  Br2  Br3  Br4  …
Test1    1      0      1      1    …
Test2    1      0      1      1    …
Test3    0      1      0      0    …
Test4    1      0      1      0    …

Test1, Test3



Clustering Based Selection
• Use hierarchical clustering of execution profiles 

and perform one-per-cluster sampling
– Failing tests are often grouped into small clusters

33



Operational Model Based Selection

• Mine invariants from passing tests (Daikon, 
DIDUCE)

• Select tests that violate the existing invariants 
(Jov, Eclat, DIDUCE)
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Our Approach

• Mine common operational models from 
unverified tests
– The models are often but not always true in 

the observed traces 
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Our Approach

• Why is it difficult?
– The previous templates of operational models 

generate too much candidates
– Examine all the candidates at runtime may 

incur high runtime overhead
• For passing tests, we can discard any violation
• For unverified tests, we cannot! 
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Our Approach

• Effective mining of operational models
– Collect simple traces at runtime

• Branch coverage
• Data value bounds

– Generate and evaluate potential operational 
models after running all the tests

• Control rules: implication relationships between 
branches

• Data rules: implicit data value distributions

37



• Control rules: implication relationships 
between branches

           Br1  Br2  Br3  Br4  …
Test1    1      0      1      1    …
Test2    1      0      1      1    …
Test3    0      1      0      0    …
Test4    1      0      1      0    …

Common Operational Models
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Br1 => !Br2

Br1 => Br3



• Data rules: implicit data value distributions
           min(Var1)  max(Var1)  min(Var2)   max(Var2)  …
Test1         0                 10               0                 11         …
Test2         0                 32               -1                1           …
Test3         0                  1                1                  3          …
Test4         0                 23               2                  6          …

Common Operational Models
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The distribution of max(Var1)
Too large or too small values are suspicious



• Select tests for result inspection
– Sort the mined rules in the descending order 

of confidence
– Select tests that violate the rules from the top 

to bottom

Test Selection

40



Experiments
• Subject programs

– Siemens suite: 130 faulty versions of 7 programs
– grep program: 20 faulty versions
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Experiments
• Effectiveness

– The number of the selected tests
– The percentage of revealed faults
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Experiments
• Our approach is more effective

43



Control Rules vs. Data Rules
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• Control rules reveal more faults



Random Test Suites
• Our approach works well on automatically 

generated test suites

45



Summary of Part 2

• Problem
– Test selection for result inspection

• Our approach
– Mining common operational models (control 

rules, data rules) from execution traces of 
unverified tests

• Contribution
– Propose two kinds of operational models that 

can detect failing tests effectively and can be 
mined efficiently 46



Part 3: Mining Test Oracles of Web 
Search Engines



Background

• Find defects of Web search engines with 
respect to retrieval effectiveness.
– Web search engines have major impact in 

people’s everyday life.
– Retrieval effectiveness is one of the major 

concerns of search engine users
• How well a search engine satisfies users’ 

information need
• Relevance, authority, and freshness

48



• An example
– Declaration from the PuTTY Website for Google’s 

search result change

– This declaration suggests that Google’s search 
results for “putty” at some time may not be 
satisfactory and may cause confusions of the users.

Background

49



Problem

• Given a large set of search results, find 
the failing tests from them
– Test oracles: relevance judgments

50



Problem
• It is labor-intensive to collect the relevance 

judgments of search results
– For a large number of queries

• Previous relevance judgments may not be 
reusable
– The desired search results may change over 

time
51



Existing Approaches
• The pooling process

– Different information retrieval systems submit 
the top K results per query

– The assessors judge for relevance manually
• The idea

– Inspect parts of search results for all queries
• Limitations

– Too costly, hardly reusable

52



Existing Approaches

• Click through data as implicit feedback
– Clicked results are relevant

• The idea
– Let users inspect all search results of all 

queries
• Limitations

– Position bias, summary bias 
• E.g., cannot find relevant pages that are not in the 

search results
53



Our Approach

• Test selection
– Inspect parts of search results for some 

queries by mining search results of all queries
– Exploit application-level knowledge

• Execution traces may not help
– Utilize the existing labels of testers

• The process needs to be repeated

54



• Mining and learning output rules

Our Approach
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Queries and 
Search Results

Feature Vectors 
(Itemsets)

Association Rules

Failing/Passing 
Labels

Classification 
Models

Detecting 
Violations

Predicting 
Failing Tests



• Query items
– Query words, query types, query length, etc.

• Search result items
– Domain, domain’s Alexa rank, etc.

• Query-result matching items
– Whether the domain name has the query, 

whether the title has the query, etc.
• Search engine items

– Search engine names

Mining Output Rules

56



• SE:bing, Q:boston colleges, QW:boston, 
QW:colleges, TwoWords, CommonQ, 
top10:searchboston.com, top1:searchboston.com, 
top10:en.wikipedia.org, …, SOMEGE100K, 
SOMELE1K

• SE:bing, Q:day after day, QW:day, QW:after, 
ManyWords, CommonQ, top10:en.wikipedia.org, 
top1:en.wikipedia.org, top10:dayafterday.org, …, 
SOMEGE100K, SOMELE1K

Example Itemsets
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Mining Association Rules
• Mining frequent itemsets with length constraint 

– An itemset is frequent if its support is larger than the 
min_support

{SE:bing, top10:en.wikipedia.org}
• Generating rules with only one item in the right 

hand side
– For each item xi in Y, generate a rule Y-xi => xi

SE:bing=>top10:en.wikipedia.org
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• Feature Vectors
– Can describe more general types of properties

Learning Classification Models
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                                   wordLength  queryType  max(domainRank)  google.com facebook.com …
Search Result List 1         2              common               900                      1                     0           …
Search Result List 2         3                  hot                 100000                   0                     1           …
Search Result List 3         1                  hot                    9782                    1                     1           …



Learning Classification Models

• Learn classification models of the failing 
tests based on the training data 

• Given new search results, use the learned 
model to predict whether they fail.
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Experiments

• Search engines 
– Google
– Bing
These two search engines, together with many other 
search engines powered by them (e.g., Yahoo! 
Search is now powered by Bing and AOL Search is 
powered by Google), possess more than 90 percent 
search market share in U.S.
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Experiments

• Queries
– Common queries

• Queries in KDDCUP 2005, 800 queries
– Hot queries

• 3432 unique hot queries from Google Trends and 
Yahoo! Buzz from November 25, 2010 to April 21, 
2011
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Experiments

• Search results
– Use the Web services of Google and Bing to 
collect the top 10 search results of each query 
from December 25, 2010 to April 21, 2011
– 390797 ranked lists of search results (each 

list contains the top 10 search results)
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The Mined Rules
• Mining from one search engine' results in one 

day
– Google's search results on Dec. 25, 2010
– minsup = 20, minconf = 0.95, and maxL = 3
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The Mined Rules
• Mining from multiple search engines' results in 

one day
– Google and Bing's search results on Dec. 25, 2010
– minsup = 20, minconf = 0.95, and maxL = 3

– Rules 9-12 show the different opinions of search 
engines to certain Websites
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The Mined Rules
• Mining from one search engine' results in 

multiple days
– Google's search results from December 25, 2010 to 

March 31, 2011.
– minsup = 20, minconf = 0.95, and maxL = 2

– Rules 13-18 show the rules about the top 1 results for 
the queries 66



Example Violations
• Search results of Bing on April 1st, 2011 violate 

the following rule

• The actual result of Bing
http://www.jcu.edu/index.php
points to the homepage of the John Carroll University, 
not easy to get the answer of the query
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Learning Classification Models
• Conduct experiments with the following classes

– Unexpected top 1 change
• the other search engines oppose the change (they returned 

the same top 1 result and do not change)
– Normal top 1 change

• the other search engines do not oppose the change

• Task
– Given a top 1 change of the search engine under test, 

predict whether it is an unexpected change

68



Learning Classification Models
• Data

– Training data: December 26, 2010 to March 31, 2011
– Testing data: April 1, 2011 to April 22, 2011

• Results of predicting unexpected top 1 changes

– Decision Tree is more accurate, but Naive Bayes is 
faster
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Summary of Part 3
• Problem

– Search engine testing
• Our Approach

– Mine and learn output rules to find suspicious search 
results automatically

• Contribution
– Apply test selection techniques to Web Search 

Engines
– Select failing tests by exploiting application-level 

knowledge

70



Conclusions



72

Conclusions

• Mining specifications from software data to 
guide test input generation and test result 
inspection
– Part 1: unit-test generation via mining relevant 

APIs
• Reduce the search space of possible method call 

sequences by exploiting the relevance of methods
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Conclusions
– Part 2: test selection via mining operational 

models
• Propose two kinds of operational models that can 

detect failing tests effectively and can be mined 
efficiently

– Part 3: mining test oracles of web search 
engines

• Apply test selection techniques to Web Search 
Engines

• Select failing tests by exploiting application-level 
knowledge
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