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Support vector machine (SVM) active learning is one popular and successful technique for relevance
feedback in content-based image retrieval (CBIR). Despite the success, conventional SVM active
learning has two main drawbacks. First, the performance of SVM is usually limited by the num-
ber of labeled examples. It often suffers a poor performance for the small-sized labeled examples,
which is the case in relevance feedback. Second, conventional approaches do not take into account
the redundancy among examples, and could select multiple examples that are similar (or even
identical). In this work, we propose a novel scheme for explicitly addressing the drawbacks. It first
learns a kernel function from a mixture of labeled and unlabeled data, and therefore alleviates the
problem of small-sized training data. The kernel will then be used for a batch mode active learning
method to identify the most informative and diverse examples via a min-max framework. Two novel
algorithms are proposed to solve the related combinatorial optimization: the first approach approx-
imates the problem into a quadratic program, and the second solves the combinatorial optimization
approximately by a greedy algorithm that exploits the merits of submodular functions. Extensive
experiments with image retrieval using both natural photo images and medical images show that
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the proposed algorithms are significantly more effective than the state-of-the-art approaches. A
demo is available at http://msm.cais.ntu.edu.sg/LSCBIR/.
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1. INTRODUCTION

Relevance feedback [Rui et al. 1998] is the key technique that improves the
accuracy of content-based image retrieval (CBIR) by exploiting the users’ in-
teraction with CBIR systems. In particular, users are encouraged to provide
relevance judgments for the images retrieved by CBIR systems, and relevance
feedback algorithms are designed to learn and understand users’ information
needs from the judged images [Smeulders et al. 2000; Lew et al. 2006]. One
important research question related to relevance feedback is to decide which
images should be presented to the users to maximize the information gained.
To this end, active learning has been proposed to identify the image examples
that could be most helpful for understanding users’ information needs. Thisisin
contrast to passive relevance feedback, where only the images with the highest
relevance scores are presented to users. A popular approach toward active rele-
vance feedback in CBIR is support vector machine (SVM) active learning [Tong
and Chang 2001]. This learns an SVM model from previous feedback exam-
ples, and employs the learned SVM model to identify the informative image
examples for relevance feedback. Empirical studies showed that SVM active
learning outperformed passive relevance feedback significantly in CBIR [Tong
and Chang 2001; Panda et al. 2006; Rui et al. 1998].

Despite this success, conventional SVM active learning is limited by two
major shortcomings when deployed for relevance feedback in CBIR. First, the
performance of SVM is usually limited by the number of training data. When
the number of labeled examples is small, which is the case in relevance feed-
back, conventional SVM may deliver poor classification accuracy, which could
significantly affect the performance of SVM active learning. Second, in each
round of relevance feedback, multiple image examples are presented to users
for relevance judgments. Since conventional SVM active learning is designed to
select a single example for each learning iteration, it may select similar images
when applied to the task of choosing multiple examples. We refer to these two
problems as the small training size problem and the batch sampling problem,
respectively.

To address the above problems, we propose a novel scheme for active learning,
termed Semisupervised support vector machine batch mode active learning. Our
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scheme handles the small training size problem via a semisupervised learning
technique, and the batch sampling problem in active learning by a min-max
framework. In addition, we present two algorithms to efficiently solve the re-
lated combinatorial optimization problem, one by a quadratic programming
technique and the other by submodular functions. Our extensive empirical
study shows encouraging results in comparison to the state-of-the-art active
learning algorithms for relevance feedback.

The rest of this article is organized as follows. Section 2 reviews related work.
Section 3 presents the problem formulation and our solution. Section 4 gives
extensive evaluations in CBIR. Section 5 concludes this work.

2. RELATED WORK

Learning with relevance feedback in CBIR has been extensively studied, and
has been shown as one way to attack the semantic gap issue between low-
level features and high-level semantic concepts [Smeulders et al. 2000; Rui
et al. 1998]. From a general machine learning view, existing relevance feedback
techniques can be grouped into two categories: passive learning versus active
learning. In the past decade, a wide variety of techniques have been proposed
for relevance feedback with passive learning approaches. Some earlier tech-
niques include the well-known MARS [Rui et al. 1997], MindReader [Ishikawa
et al. 1998], and some query reweighting approaches [Rui et al. 1998], among
others. In lines with the rapid advances in machine learning research in recent
years, various passive machine learning methods have been applied to rele-
vance feedback, including Bayesian learning [Vasconcelos and Lippman 1999;
King and Zhong 2003], decision tree [MacArthur et al. 2000], boosting [Tieu
and Viola 2000], discriminant analysis [Zhou and Huang 2001], incremental
kernel biased discriminant analysis [Tao et al. 2006], negative samples anal-
ysis [Tao et al. 2007; Yan et al. 2003], nonparametric discriminant analysis
[Tao and Tang 2004a], self-organizing map (SOM) [Laaksonen et al. 1999],
EM algorithms [Wu et al. 2000], Gaussian mixture model [Qian et al. 2002],
and Support Vector Machines (SVM) [Zhang et al. 2001; Hong et al. 2000;
Tao and Tang 2004b; Hoi and Lyu 2004; Hoi et al. 2006d], among others. Be-
cause of limited space, we are unable to enumerate all existing approaches;
more passive learning techniques for relevance feedback can be found in
Huang and Zhou [2001], Zhou and Huang [2003], and Lew et al. [2006].
Among these various solutions, the SVM-based method might be one of the
most active research topics for relevance feedback due to its solid founda-
tion in theory [Vapnik 1998] and excellent generalization performance in real
applications.

In contrast to the passive learning techniques, active learning has recently
been intensively studied with the aim of improving the learning efficiency of
relevance feedback. In CBIR, one popular active learning approach for rele-
vance feedback is the SVM active learning proposed by Tong and Chang [2001].
This approach suffers from certain limitations, although these have been ad-
dressed by some recent research work. For instance, to overcome the small
sample learning issue, Wang et al. [2003] proposed modifying the SVM active
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learning by engaging the unlabeled data with a transductive SVM. Hoi and Lyu
[2005] developed a more effective solution by combining semisupervised learn-
ing techniques with supervised SVM active learning. Li et al. [2006] proposed a
multitraining SVM method by adapting cotraining techniques to CBIR. Despite
the success, none of these studies addressed the batch mode active learning
problem in which multiple unlabeled examples are selected in each iteration
of active learning. A simple approach toward batch mode active learning is to
select unlabeled examples close to decision boundary. However, as already in-
dicated in Dagli et al. [2006], the examples selected by this simple approach
could be redundant, which leads to suboptimal solutions. Several approaches
have been proposed to address the batch sampling issue. Goh et al. [2004] and
Panda et al. [2006] adopted the active learning method by incorporating the an-
gular diversity measure, which was originally studied in the machine learning
community [Brinker 2003]. Dagli et al. [2006] recently proposed another simi-
lar approach using a diversity measure approach-based information theory and
reported slightly better results than the angular diversity measure. However,
our empirical results in this article seem to be somewhat different from their
claims. This may be due to the difference in the testbeds used. In this work,
in contrast to previous heuristic approaches for solving the batch sampling
problem, we formally formulate this problem in a min-max learning frame-
work, and propose two novel and effective algorithms to solve the optimization
problems.

Apart from its connection with research work in multimedia information
retrieval, our work is also related to two broad research topics in machine
learning: semisupervised learning and active learning. In contrast to tra-
ditional supervised learning, semisupervised learning exploits both labeled
and unlabeled data, an approach which has been actively studied in recent
years [Chapelle et al. 2006]. We investigate here the semisupervised SVM tech-
nique [Sindhwani et al. 2005] as applied to relevance feedback in CBIR for
solving the problem of learning with small numbers of labeled examples. Ac-
tive learning has also been extensively studied in the machine learning in the
past decade [Cohn et al. 1995; Liere and Tadepalli 1997; McCallum and Nigam
1998; Schohn and Cohn 2000; Tong and Koller 2000]. However, traditional ap-
proaches often choose only one example for labeling in each active learning it-
eration and seldom explicitly address the batch sampling issue. Recently, some
work has emerged on studying batch mode active learning [Hoi et al. 2006a,
2006b; Yuhong Guo 2007]. However, most of the solutions presented were de-
veloped under the probabilistic framework of kernel logistic regressions, which
is not directly applicable to the SVM models. Our batch mode active learn-
ing technique in this work is motivated and built under the same theoretical
framework used for SVMs.

3. SEMISUPERVISED SVM BATCH MODE ACTIVE LEARNING

In this section, we first formulate relevance feedback in CBIR as a problem of
batch mode active learning, and then present a semisupervised kernel learning
approach and a min-max framework for SVM based batch mode active learning.
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3.1 Preliminaries

Let us denote by £ = {(x1, y;)..., (X7, ¥7)} a set of [ labeled image examples
that are solicited through relevance feedback, and by ¢/ = {x;,1,...,X,} a set
of n — [ unlabeled image examples, where x; € R? represents an image by a
d -dimensional vector.

We first formulate the relevance feedback of a CBIR system as an active
learning problem. Let S be a set of £ unlabeled image examples to be selected
in relevance feedback, and risk(f, S, £,U) be a risk function that depends on
the classifier f, the labeled data £, the unlabeled data ¢/, and the selected un-
labeled examples S for relevance judgments. We chose S by minimizing the risk
function risk(f, S, £,U), which leads to the following combinatorial optimiza-
tion problem:

S* = arg min risk(f, S, L,U). (D)
SCUN|S|=F
We refer to the above problem as batch mode active learning because it selects
multiple examples simultaneously. We emphasize that solving the problem in
(1) is challenging since it is in general an NP-hard problem. This is in contrast
to the conventional active learning where a single example is selected in each
iteration of active learning.

Next, we briefly review the basics of SVM since our study is focused on ap-
plying SVM for batch mode active learning. The key idea of SVM is to learn an
optimal hyperplane that separates training examples with the maximal mar-
gin [Vapnik 1998]. A linear SVM finds an optimal hyperplane f(x) = w'x + b
by solving the following optimization problem:

w,b

l
. A
min §||w||2+§ &
’ i=1

such that y,(w/x; +b)>1-§,&>0,i=1,...,1, (2)

where 1 is the regularization parameter and &;s are slack variables that are in-
troduced for the nonseparable examples. Kernel tricks are often used to extend
the linear SVM in (2) to the nonlinear case, that is,
l
. A 2

min 3 max(0,1 = 3 f 650+ 51 1 ®
where Hg is the Hilbert space reproduced by a kernel function K. As indicated
in (3), one of the key issue with the kernel SVM is to design an appropriate
kernel function, which will be discussed in the following subsection.

3.2 A Semisupervised Support Vector Machine

Conventional SVM active learning relies on a supervised SVM model to train
classifier f(x) from labeled examples [Tong and Koller 2000; Tong and Chang
2001]. Supervised SVM models are often sensitive to the number of training
examples and could deliver poor performance when the number oflabeled exam-
ples is small. We address this problem by exploiting a semisupervised learning
technique that learns a classifier from both labeled and unlabeled data.
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Semisupervised learning has been actively studied in recent years ([Chapelle
et al. 2006] and references therein). In this work, we employ a unified kernel
learning approach for semisupervised learning [Hoi et al. 2006¢; Zhang and
Ando 2005]. Our approach first learns a data-dependent kernel from both la-
beled and unlabeled data, and then trains a supervised SVM model using the
learned kernel function. Compared to the other SSL approaches, the unified
kernel learning scheme is advantageous in its computational efficiency because
the framework is divided into two independent stages, that is, one stage for un-
supervised kernel learning and the other stage for supervised kernel classifier
training. A kernel deformation principle is adopted to learn a data-dependent
kernel function [Sindhwani et al. 2005]. Below we briefly review the kernel
deformation principle in Sindhwani et al. [2005].

Let H denote the original Hilbert space reproduced by the kernel function
k(.,-), and H denote the deformed Hilbert space. We assume the following rela-
tionship between the two Hilbert spaces, that is,

(f,8)n = (f,8)n+f Mg, (4)

where f(.) and g(.) are two functions. f = (f(x1),..., f(x,)) and g =
(g(x1),..., g(x,)) evaluate functions f(-) and g(-) for both labeled and un-
labeled examples, and M is the distance metric that captures the geometry
relationship among all the data points. The deformation term in (4), that is,
f" Mg, is introduced to assess the relationship between the function f(-) and
g(-) based on the observed data points. Based on the above assumption in (4),
Sindhwani et al. [2005] derived the new kernel function £(., -) associated with
the deformed space 7, that is,

k(x,y) = k(x,y) — Ky (I + MK)"' M £y, (5)

where K = [k(X;, X;)],x, is the original kernel matrix for all the data points,
and Ky is defined as (k(x1, X) ... k(x,, X)) . To capture the geometrical structure
of the data, a common approach is to define M as a function of graph Laplacian
L, that is, M = L. Here, a graph Laplacian L is defined as L = diag(S1) — S
where S € R"*" is a similarity matrix and each element S; ; is calculated by an
RBF function exp(—|x; — x;|2/0?).

Remark. To better understand the kernel deformation, we can rewrite (5)
as follows:

K=K-KI+MK'MK=K"1'+M),

where K = [k(x;,X;)],xn is the kernel matrix computed by the new kernel
function k(-, -). As indicated by the above equation, the new kernel matrix K
can be viewed as the “reciprocal mean” of matrix K and M ~!. Hence, when
we have a strong geometrical relationship among all the data points, namely,
M is “large,” we expect the resulting new kernel matrix K to be significantly
deformed by the geometrical relationships in M.

Finally, for the remaining part of this article, notation K, instead of K, is
used to refer to the kernel specified in (5), just for brevity.
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3.3 SVM Batch Mode Active Learning

Conventional SVM active learning method employs the notion of version space
for measuring the risk in active learning. Given training data £ and a kernel
function k(. -), the version space is defined as a set of hyperplanes that are
able to separate training data from different classes in the feature space Hx
induced by the kernel function k(, -). The optimal unlabeled example is found
by maximizing the reduction in the volume of the version space. More details
of SVM active learning can be found in Tong and Koller [2000]. Although the
above idea works well for selecting a single unlabeled example, it is difficult
to extend it to select multiple examples because the number of partitions of
version space increases exponentially in the number of selected examples. In
the following subsections, we first present a new principle, termed the min-max
principle, for active learning, and then apply the min-max framework to batch
mode active learning.

3.3.1 Active Learning as Min-Max Optimization. To support the min-max
view of active learning, we first examine the SVM-based active learning for
selecting single example, and show that it can be reformulated as a min-max
optimization.

Let g(f, £, K) denote the margin-based objective function in the regulariza-
tion framework in Equation (3), that is,

l
A
gUf, LK) = Ly, f@D) + 51 f Iy
i=1

wherel(y, ) = max(0,1 — y 7). The SVM-based active learning method [Tong
and Koller 2000] selects the unlabeled example that is closest to the decision
boundary. This can be expressed by the following optimization problem:

x* = argmin | f(x)|. (6)

xeld

The following theorem shows that the selection criterion in (6) is equivalent to
a min-max formulation.

THEOREM 1. The problem in (6) is equivalent to the following min-max opti-

mization problem:
x*=argmin max g(f,LU(x,y),K). (7

xeld ye{-1,+1)

The proof of Theorem 1 can be found in Appendix A. The above analysis indi-
cates that active learning can be viewed as a worst-case analysis. In particu-
lar, to identify the most informative example, we select the unlabeled example
x that minimizes the objective function g(f, £, K) regardless of its assigned
class label y. The above analysis also allows us to identify the weakness of the
SVM-based approach. In particular, when we measure the impact of an addi-
tional example (x, ¥) on the objective function g(f, £, K), we assume that the
classifier f remains unchanged even with additional example (x, y). This is
evidently an incorrect assumption, and will lead to an overestimation of the
impact of (x, y) on the objective function. Hence, to address this problem, we
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remove the assumption of fixed classifier f, and propose to cast active learning
as the following min-max optimization problem:

argmin max min g(f,LU(x, y), K). (8)

xe  ye{-1,+1} feHk

It is important to note that, by including the classifier f as part of the min-
max formulation, the unlabeled example selected by the above formulation
will depart from the idea of selecting unlabeled examples that are close to
the decision boundary, which is the key idea behind the SVM-based active
learning. In the next subsection, we extend the formulation in (8) to SVM
batch mode active learning, which selects multiple examples in each round of
learning.

3.3.2 Min-Max Framework for Batch Mode Active Learning. To extend the
min-max framework for batch mode active learning, we extend the problem in
(8) to the following optimization problem:

argmin max ming(f,LU(S,y), K), 9
SCUA|S|=k Yel-1,+1}F feHK
where y = (y1,..., yz) stands for the class labels assigned to the & selected
examples in S. Notation (S, y) is defined as

(S, y) ={xi;, ;) ) =1,... ,kIx;; € S}.

We emphasize that our objective, as specified in (9), is to find the unlabeled
examples that will result in a smaller value for the SVM objective func-
tion g(f, £, K) regardless of the assigned class labels. Since the objective
function of SVM is related to the generalization performance of test error,
we believe the min-max criterion should improve the generalization error
effectively.

Before discussing the strategies for optimization, we simplify the problem in
(9) by removing the maximization with respect to y. The result is summarized
by the following theorem.

THEOREM 2. The optimization problem in (9) is equivalent to the following
problem:

argmin ming(f, L, S, K), (10)
ScUn|S|=k €Mk
where
3 l
8L, 8, K) = S [y + ) Ly, &)+ D 1f (). (11)
i=1 x;eS

The detailed proof can be found in Appendix B.

Next, we simplify the combinatorial optimization problem in (10) by replac-
ing discrete variables with continuous ones. In particular, we introduce a con-
tinuous variable g; € [0, 1] to represent the “degree” of selection for each un-
labeled example in ¢{. This variable will replace the hard membership in (10).
Since g; € [0, 1], it can be viewed as some kind of probability of selecting an
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example for feedback. The following theorem shows a continuous version of the
optimization problem in (10) using the probability g;:

THEOREM 3. The optimization problem in (10) is equivalent to the following
optimization problem:

argmin min 3(f, £, q, K), (12)
q1=k,0=<q=<1 feHk

where

A !
g(f, L, K) = Sl F 3 + 31y, F&D) + ) ajl Fx))I.
i=1

XJ'EZ/{

The detailed proof can be found in Appendix C.

Through the above derivation, we have arrived at (12), a substantially sim-
pler problem compared to (9). In the next two subsections, we will discuss two
approximate approaches that can solve the problem in (12) efficiently.

3.4 Approximate Approach (l): Quadratic Programming Approach for SVM Batch
Mode Active Learning

Solving the optimization problem in (12) directly is challenging. The upper-
bound result in the following theorem allows us to simplify the optimization
problem significantly.

THEOREM 4.
min g(f, L K)_}i < (f*,CK)Jr1 Ti‘+i K (13)
fEHKg ) ’q’ )\’ —_ g ’ 9 )\’q 2)\’2q u,uq,
where £ = (| f*&;31)l, ..., | f*&))T. Function f*(x)is defined as
f* = argmin g(f, L, K). (14)
feHxk

The details of the proof can be found in Appendix D.

Now, using the upper bound from Theorem 4 above, instead of optimizing
the the objective function min ¢y, 8(f, £, q, K) directly, we can solve the prob-
lem by optimizing its upper bound, which leads to the following optimization
problem for q:

~ 1
min q'f+-—q'K,.q (15)
qeRn 2\ ’

suchthat q'1=%,0=<q =<1,

where A is a parameter introduced between the two terms. The above optimiza-
tion is a standard quadratic programming (QP) problem that can be solved
effectively by existing convex optimization software packages [Boyd and Van-
denberghe 2004]. Finally, given the estimated g;, we select the first £ unla-
beled examples with the largest probabilities g;. Figure 1 summarizes the over-
all algorithm (SVME%;&IP:)) for semisupervised SVM batch mode active learning
with quadratic programming. It consists of two major steps: (a) learn a data-
dependent kernel matrix K, and (b) train an SVM model with the kernel K
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Algorithm 1 Semi-Supervised SVM Batch Mode Active Learning with QP (SVMSB?V(&E))

INPUT:
L, U /* labeled and unlabeled data */
1, n, k /* label size, total data size, batch size */
K /* an input kernel, e.g. an RBF kernel */
PARAMETERS:
A /* batch mode active learning regularization parameter */
K /*a data-dependent kernel */
VARIABLES:
q /* probabilities of selecting unlabeled examples for labeling™/
OUTPUT:
S /* a batch of unlabeled examples selected for labeling*/
PROCEDURE
/* Unsupervised kernel design procedure (Offline)*/
1: Build a graph Laplacian from data L = Laplacian(£ U U);
2: Learn a data-dependent kernel K by Eq. (5);
/* Start batch mode active learning procedure (Online) */
Train an SVM classifier: f* = SVM_Train(L, K); /* call a standard SVM solver */
Compute £ = (|f*(xi1)], - [£*(xa)]) 75
H=)K;f =1,
Aeq=1ixu;beq=k;
q = quadprog(H, f, Aeq, beq,0 < q =< 1); /* call a standard QP solver */
S =g,
while (|S| < k) do
x* = arg maxxeu ¢(X);
9: S—Su{x'}y, U—U\{x"}
10: end while
11: return S.
END

A S o

Fig. 1. Quadratic Programming (QP) approach for the proposed Semisupervised SVM batch mode

active learning (SVME?&E)).

and find q by solving the optimization problem for batch mode active learning.
Note that the first step can be done offline without knowing user queries, while
the second step must be solved online for each individual query.

Remark I. 1t is important to note that since (15) is only an Approximation
of (12), the optimal solution to (15) is no longer binary. We will come back to
this issue when we present the second approximate strategy.

Remark II. 1t is interesting to examine the meanings of the two terms in
the objective function in (15). The first term, that is, q'f, is related to the
classification uncertainty. By minimizing q ' f, we preferentially select examples
close to the decision boundary. Meanwhile, the second term, q" K, ,,q, is related
to the redundancy among the selected examples. By minimizing q' K, ,q, the
selected examples tend to have small similarity among themselves. This is
consistent with our intuition that we should select the most uncertain and
diversified examples for labeling by a batch mode active learning algorithm.
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3.5 Approximate Approach (II): Combinatorial Optimization Algorithm for SVM
Batch Mode Active Learning

Although Equation (15) provides decent performance for batch mode active
learning, it requires solving a quadratic programming problem, which could be
computationally expensive when the number of unlabeled examples is large. In
this subsection, we aim to directly address the binary selection problem with a
simple yet rather effective greedy combinatorial optimization algorithm based
on the theory of submodular functions.

Let S denote the collection of unlabeled examples that were selected for active
learning. Then, the discrete version of Equation (15) is written as

. ~ A

snin ZS fits i;S[Ku,u]L,J. (16)
It is important to note the difference between the discrete version in (16) and
the continuous version in (15). In particular, in the discrete version in (16), only
the submatrix of K that involves the selected elements in S will contribute to
the overall objective function. In contrast, the objective function in (15) involves
all the elements in the kernel matrix K because of the soft memberships in q.
In this sense, the objective function in (16) is more accurate in identifying the
selected examples than (16).

We further note that Equation (16) is a combinatorial optimization problem,
and is usually NP-hard. In order to efficiently solve the above problem, we will
exploit the properties of submodular functions. Before we present our algorithm
for Equation (16), we will first give an overview the concept of submodular
functions and its properties related to combinatorial optimization.

To define submodular functions, we consider functions of sets, denoted by
f(S) where S is a set. A set function f(S) is called a submodular function if
and only if the following condition holds for any set A C B and any element
e ¢ B:

f(AUe) — f(A) > f(BUe) — f(B), a7

where we abbreviate A U {e} by A Ue. Given a submodular function f(S) and
the related combinatorial optimization problem, that is,

max [ (S), (18)
IS|=k
a straightforward approach is to solve it by the following greedy approach: we
start with an empty set for S; in each iteration, we expand the set S with the
element e that maximizes the difference f(S Ue) — f(S). We keep on expand-
ing S till the number of elements in S is k. The following theorem provides a
performance guarantee for this greedy algorithm.

THEOREM 5 (NEMHAUSER ET AL. 1978). Consider the combinatorial optimiza-
tion problem in (18). Let S* denote the global optimal solution that solves (18),
and S denote the approximate solution found by the greedy algorithm. We have

f(S) = f(SH1-1/C)
if f(S) satisfies the following conditions:
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(1) f(S)is a nondecreasing function, namely f(A) < f(B)if AC B,
(2) f(S)isasubmodular function, and
3 f@=0

Here, C, refers to the natural exponential.

In order to fully explore Theorem 5, we need to convert the problem in (16)
into a maximization problem with the objective function that satisfies the three
criteria stated in Theorem 5. To this end, we define the following objective
function for maximization:

~ ~ A
g®) =3 (fo- o+ (Zef— doa —8i,j>[Ku,u]i,j>

ieS ieS i,jeS

o A A ~ A
|S| (fO + igﬁ) + 5 Z[Ku,u]i,i - (qgf+ §q:SrKu,uqS> 5 (19)
ieS
where
fo=max f;, 6 = tr(K,.), (20)

1<i<n

and § and qs are respectively defined as follows:

1 ifi =, 1 ifies,
8ij = o i= } 21
" {0 ifi # J, lqs] {O otherwise. 2D

Let’s compare (19) with the objective function in (15). When compared to
(15), two additional terms are introduced in (19), that is, |S| (fo + 50+/7) and
% Y icsKuulii. It will later be revealed in Theorem 6 that it is these two terms
that ensure (19) is a submodular function, which makes it possible to apply
the result in Theorem 5. Furthermore, when the number of selected examples
is fixed (i.e., |S| is a constant) and the self kernel similarity is constant (i.e.,
[K,.li; is constant for any example x;),! the first two terms in (19) are inde-
pendent from the selected examples S. As a result, maximizing g(S) in (19) is
equivalent to the minimization problem in (15). Hence, in the following discus-
sion, we focus on the problem of maximizing g(S), that is,

~ A A -~ A
max g(S) = k (fo + 59\5) +3 ;[Ku,u]i,i - (q§f+ quKu,uqS> . (22)
A simple approach for the above optimization problem is the greedy approach.
At the tth iteration, we denote by S; the set of selected examples for the current
iteration. The next example is chosen to maximize g(S), which is equivalent to
the following problem:

F =minh(j;S;), 23
JT=min (J;8¢) (23)
where
h(.]aSt) = fj +)LZ[Ku,u]i,j' (24)
iESz

1An example of such a kernel is the RBF kernel.
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Algorithm 2 Semi-Supervised SVM Batch Mode Active Learning with CO (SVMSB?V(&?))

INPUT:

L, U /* labeled and unlabeled data */

l, n, k /* label size, total data size, batch size */

K /* an input kernel, e.g. an RBF kernel */
PARAMETERS:

A /* batch mode active learning regularization costs */

K /*a data-dependent kernel */
VARIABLES:

h /* cost function of selecting unlabeled examples for labeling™*/
OUTPUT:

S /* a batch of unlabeled examples selected for labeling*/
PROCEDURE
/* Unsupervised kernel design procedure (Offline)*/
1:  Build a graph Laplacian from data L = Laplacian(£ U U);
2: Learn a data-dependent kernel K by Eq. (5);
/* Start batch mode active learning procedure (Online) */

1: Train an SVM classifier: f* = SVM_Train(L, K); /* call a standard SVM solver */
2: Compute f = (|£* (xu1)l,.., |f* (xu)]) "

3 S=g;

4:  while (|S| < k) do

5: for each x; € U do ~

6: h(x;) = f(x5) + A2 4. cs, K uwulis

7: end for

8: X; = arg maxyx; ey h(X;);

9: S—SU{xj}; U—U\{x}};

10: end while
11: return S.
END

Fig. 2. The greedy Combinatorial Optimization (CO) approach for the proposed Semisupervised
SVM batch mode active learning (SVM%%;&?).

Figure 2 summarizes the proposed greedy Combinatorial Optimization (CO)
algorithm for semisupervised SVM batch mode active learning (SVM5yoo).
The following theorem provides the performance guarantee for the proposed

algorithm in Figure 2.

THEOREM 6. Assume all elements in the kernel matrix are nonnegative, that
is, [Kyuli,j = 0 for any i and j. Let S denote the set found by the greedy CO
algorithm in Figure 2, and S* denote the optimal set that solves the problem in
(22). We have the following performance guarantee:

g(S) o1 1

g(8*) ~ C.

The key to proving the above theorem is to show that g(S) defined in (19)
satisfies the three conditions specified in Theorem 5. The details of the proof
can be found in Appendix E.
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Fig. 3. Some image samples from the two image datasets used in our experiments.

4. EXPERIMENTAL RESULTS

4.1 Overview

To evaluate the performance of the proposed algorithm, we conducted an exten-
sive set of CBIR experiments by comparing the proposed algorithm to several
state-of-the-art active learning methods that have been used in image retrieval.
Specifically, we designed the experiments to evaluate two major factors that
could significantly affect the results of batch mode active learning within the
context of CBIR:

(1) label size, that is, the number of labeled images judged by a user in the first
around of image retrieval when no relevance feedback is applied;

(2) batch size, that is, the number of data examples to be selected for labeling
by active learning in each iteration of relevance feedback.

4.2 Experimental Testbed and Feature Extraction

Two benchmark CBIR datasets (available online?) were used in our experi-
ments: (1) COREL photo images [Hoi et al. 2006d], and (2) ImageCLEF medical
images [Muller et al. 2007].

4.2.1 COREL Photo Image Dataset. For COREL images, we formed
dataset that contains 5000 images from 50 different categories. Each category
consisted of exactly 100 images randomly selected from relevant examples in
the COREL database. Every category represented a different semantic topic,
such as antelope, butterfly, car, cat, dog, horse, and lizard. Figure 3 (a) shows
some image examples in this dataset.

For feature representation on this testbed, we extracted three types of fea-
tures. (1) Color: for each image, we extracted three moments: color mean, color
variance, and color skewness in each color channel (H, S, and V), respectively.
Thus, a nine-dimensional color moment was adopted as in our testbed. (2) Edge:
An edge direction histogram was extracted for each image. Each image was

2http://www.cais.ntu.edu.sg/” chhoi/SVMBMAL/.
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converted into a gray image, and a Canny edge detector was applied to obtain
the edges, from which the edge direction histogram was computed. The edge
direction histogram was quantized into 18 bins of 20° each; thus a total of 18
edge features were extracted. (3) Texture: The Discrete Wavelet Transformation
(DWT) was performed on the gray images. Each wavelet decomposition on a
gray two-dimensional image resulted in four scaled-down subimages. In total,
3-level decomposition was conducted and features were extracted from nine of
the subimages by computing entropy. Thus, a nine-dimensional wavelet vector
was used. Thus, in total, a 36-dimensional feature vector was used to represent
each image.

4.2.2 ImageCLEF Medical Image Dataset. For ImageCLEF medical im-
ages, we formed a 20-category dataset that contained 6157 images from 20
semantic categories. Each category consisted of at least 100 medical images
from ImageCLEF [Muller et al. 2007], which were either x-ray or CT images.
Every category represented a different semantic topic, such as chest, cranium,
hand, cervical spine, foot, and pelvis. Figure 3 (b) shows some image examples
in this dataset.

For feature representation on this dataset, we only considered the texture
features, as most medical images are gray images. To this purpose, we ex-
tracted the Gabor feature [Manjunath and Ma 1996], which captures the local
structures corresponding to different spatial frequencies (scales), spatial local-
izations, and orientations. For each image, we applied the Gabor wavelet trans-
formation with five scale levels and eight orientations, which resulted in a total
of 40 subimages for the input image. We then calculated three statistical mo-
ments to represent the texture features, namely, mean, variance, and skewness.
In total, a 120-dimensional Gabor vector was used to represent a medical image.

4.3 Compared Schemes and Experimental Setup

In the experiments, we compared a number of state-of-the-art algorithms for ac-
tive learning in CBIR. The compared algorithms included the following existing
algorithms:

(1) Random:the simplest and most naive approach for relevance feedback with
SVM [Tong and Koller 2000], denoted by Random.

(2) SVM Active Learning: the baseline is the original SVM active learning al-
gorithm that samples examples closest to the decision boundary [Tong and
Chang 2001], denoted by SVMar..

(3) SVM Active Learning with Angular Diversity: a heuristic modification of
SVM active learning that incorporates diversity in batch sampling [Brinker
2003], in which the diversity measure is based on the cosine value of
the maximum angle with a set of induced hyperplanes. We denote it by
SVMAYA,

(4) SVM Active Learning with Entropic Diversity: similar to (2), a recently pro-
posed active learning method that incorporates diversity for active learn-
ing [Dagli et al. 2006], which employed an information-theoretic approach
for the diversity measure. We denote it by SVMy; -
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(5) Semisupervised Active Learning: a fusion of semisupervised learning and
SVM active learning, intended to overcome the small sample learning issue
of regular SVM active learning [Hoi and Lyu 2005], denoted by SSAL.

There are also four variants of our proposed batch mode active learning (BMAL)
algorithms:

(6) SVM BMAL with Quadratic Programming: the proposed BMAL method
solved by the quadratic programming algorithm with the supervised SVM
method, denoted by SVM;?I\EAL.

(7) SVM BMAL with Combinatorial Optimization: the proposed BMAL method
solved by the combinatorial optimization algorithm with the supervised
SVM method, denoted by SVMoox; -

(8) Semisupervised SVM BMAL with Quadratic Programming: the proposed
semisupervised SVM BMAL method solved by the quadratic programming

algorithm, denoted bySVMsBi,([?é).

(9) Semisupervised SVM BMAL with Combinatorial Optimization: the pro-
posed semisupervised SVM BMAL method solved by the combinatorial op-
timization algorithm, denoted by SVMpy ey

To evaluate the average performance, we conducted every experiment on a
set of 200 random queries with image examples sampled from the datasets.

We simulated the CBIR procedure by returning the [ images with the short-

est Euclidean distance to a given query example. The retrieved / images were

then labeled and used as the set of initially labeled data to train the relevance
feedback algorithms. An RBF kernel with fixed kernel width was used for all
the algorithms. Regarding the parameter setting, the regularization parame-
ter A was set to 0.01 (or C = 100) for SVM in all experiments, and the A set
to 1 for both proposed semisupervised batch mode active learning algorithms
(i.e., SVMSB%QE) and SVM%%))). The combination parameters used in the two
diversity-based active learning methods SVM:"* and SVMa"" were tuned by
cross validation using a holdout set. For performance evaluation metrics, aver-
age precision (AP) and average recall (AR) were adopted, in which the relevance
judgments were based on whether the query image and the retrieved image be-
longed to the same category. The same evaluation methodology has been widely

adopted in previous CBIR research [Tong and Chang 2001; Hoi and Lyu 2005].

We implemented the proposed algorithms and other compared methods all in

MATLAB and evaluated their performances on a Windows PC with Dual-Core

3.4-GHz CPU and 3-GB RAM. Because of limited space, in the following sub-

sections, we focus on the methods’ quantitative performance. More results on
visual retrieval comparison are available online.?

4.4 Experiment I: Fixed Label Size and Batch Size

We first conduct experiments with both label size and baich size fixed to 10.
Figures 4 and 5 show the average precision for the first four rounds of relevance

Shttp://www.cais.ntu.edu.sg/” chhoi/SVMBMAL/.
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Fig. 4. Performance of several active learning algorithms with fixed label and batch sizes on the
COREL image testbed.

feedback on the two datasets. In these figures, the black line represents the
random method, the blue line represents the baseline SVM,1, method, the two
green dotted lines are SVMEL'2, and SVMIL'E, the cyan solid line is SSAL, the
two pink dotted lines are the two proposed BMAL algorithms with supervised
SVMs SVM;?I\RL and SVM{SQ), , and the two red solid lines are the two proposed

BMAL algorithms with semisupervised SVMs SVME%&E) and SVMSB%)).
Several observations can be drawn from the results. First, we observe that all
the eight active learning methods outperformed the baseline random method
across all the iterations for both datasets. This result indicates that all the
active learning methods were indeed working well. Second, we observe that
through all the iterations, for both datasets, the four active learning meth-

ods that exploited semisupervised learning techniques (i.e., SSAL, SVM%?&X%),

and SVME%,([?UP:)) outperformed the other six methods, which did not utilize un-
labeled data. We also observe that, without the assistance of semisupervised
learning, the two proposed algorithms for batch mode active learning performed
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Fig. 5. Performance of several active learning algorithms with fixed label and batch sizes on the
ImageCLEF testbed.

considerably worse than SSAL; however, with the help of semisupervised learn-
ing, we notice a very significant improvement in the batch mode active learning.
All these results indicate the importance of combining semisupervised learning
techniques with active learning methods. Third, we observe that the two pro-
posed algorithms, that is, SVMpray, and SVM%?,}%E), outperformed all the other
algorithms. In particular, the two proposed algorithms outperformed SSAL, the
third best algorithm, by a considerable margin. Since the two proposed algo-
rithms are distinguished from SSAL in that they are designed for batch mode
active learning while SSAL is not, we thus note the importance of batch mode
active learning when multiple examples were selected in each iteration. Finally,
comparing the two proposed batch mode active learning methods, we find they
performed similarly. For most cases, they performed almost the same except

for the second iteration, where SVMSB%&? achieved slightly better performance

on the COREL dataset while SVMSB%}%E) performed better on the ImageCLEF
dataset.
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Table I. Average Precision Performance of Top 20 Returned Results with Different Label
Sizes on COREL Image Testbed

Label size | SVMyy, | SVMBIYA | SVMRIVE | SSAL | svMpyy, | SVMESGY

0872 0.366 0.426 0.484 0.481

5 0365 | 184 | +02% | +168% | +327% | +31.8%
" oaos | 0430 0.426 0.493 0547 0.555

$11% | +02% | +159% | +287% | +305%
. oars | 049 0.489 0557 0.607 0.604

+29% | +22% | +165% | +269% | +264%
0550 0549 0.600 0.651 0.642

20 0548 | L 08% | +01% | +96% | +189% | +172%
0599 0590 0.642 0.681 0.682

25 0592 | 11% | —03% | +84% | +150% | +153%
0.627 0.612 0.667 0.700 0.696

30 0616 | 19 | —07% | +83% | +137% | +13.0%
0511 0505 0564 0.612 0.610

MAP 0504 |\ 45% | +02% | +11.9% | +214% | +21.0%

Table II. Average Precision Performance of Top 20 Returned Results with Different Label
Sizes on ImageCLEF Medical Image Testbed

Label size | SVMyy, | SVMBIYA | sSVMRIVE | sSAL | svMpyy | SVMESCY

5 0.440 0.454 0.445 0.509 0.544 0.554
) +32% +11% +15.6 % +23.6 % +25.9%
10 0511 0.520 0.522 0.583 0.630 0.620
) +1.6% +21% +14.1% +232% +213%
15 0.579 0.568 0.570 0.629 0.659 0.664
-18% -15% + 8.6 % +139% +14.7 %
0.626 0.628 0.644 0.677 0.687
20 0-608 +3.0% +33% +6.0% +11.4 % +129%
0.665 0.666 0.678 0.712 0.709
25 0-654 +16% +1.7% + 3.6 % +8.8% +8.3 %
0.681 0.684 0.702 0.730 0.737
30 0.666 +2.3 % +2.7T% +54% +9.6 % +10.6 %
0.586 0.586 0.624 0.659 0.662
MAP 0.576 +1.6% +1.6% +83% +143 % +14.8%

4.5 Experiment II: Varied Label Size

The second set of experiments were carried out to evaluate the performance
with varied label sizes. Tables I and II show the results of average precision for
the top 20 returned images with one active learning iteration for both datasets
obtained by varying the label size and fixing the batch size to 10. In the tables,
MAP and MAR stand for the mean of average precision results and th mean
of average recall results, respectively. Due to space limitations, we omit the
results for SVM%AOI\;[L and SVM;;QI\R, the two variants of the proposed algorithms
that do not exploit unlabeled data. This is because their performance was sig-
nificantly worse than the two proposed semisupervised algorithms, as already
demonstrated in the previous subsection.

From the results in both tables, we observe first that the two diversity-
based active learning methods SVMAL* and SVMA1'F achieve no more than
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Table III. Average Recall Performance of Top 100 Returned Results with Different Label
Sizes on COREL Image Testbed

Label size | SVMyy, | SVMBIYA | SVMRIVE | sSAL | svMpyy | SVMESGY

; o101 | 0193 0.189 0.208 0.251 0.248
: +10% | —13% | +86% | +312% | +298%
" oo0s | 0209 0.207 0227 0.285 0.292
+19% | +09% | +11.0% | +390% | +425%
. oate | 0225 0022 0.252 0.301 0.302
+26% | +11% | +147% | +372% | +374%
0.261 0.260 0.288 0.333 0332
20 0253 | 31 | +25% | +136% | +314% | +31.2%
0255 0277 0.306 0.348 0.353
25 0279 | L 90% | —07% | +95% | +245% | +263%
” oor | 0302 0.293 0325 0.364 0.365
£27% | —05% | +105% | +238% | +24.0%
0.246 0241 0.267 0514 0315
MAP 0240 | 934 | +03% | +113% | +805% | +31.1%

Table IV. Average Recall Performance of Top 100 Returned Results with Different Label
Sizes on ImageCLEF Medical Image Testbed

Label size | SVMa, | SVMRIVA | SVMRIYE | SSAL [ SVMpry | SVMESCO)

0.088 0.086 0.097 0.107 0.108

5 0.086 | 30 | +05% | +136% | +245% | +257%
" ooor | 0103 0.102 0.108 0.122 0.118

1 58% | +47% | +109% | +259% | +21.6%
. 105 | 0110 0.109 0.120 0.126 0.128

04% | +00% | +97% | +155% | +16.7%
0115 0116 0121 0131 0.134

20 0114 | 070 | +17% | +59% | +145% | +169%
0123 0122 0.128 0.138 0.137

25 0122 1 11% | +03% | +50% | +137% | +13.1%
0.126 0127 0133 0.142 0.142

30 0123 | 99 | +32% | +79% | +148% | +15.0%
0111 0.110 0118 0.128 0.128

MAR 0109 | 91 | +17% | +85% | +176% | +17.7%

4% improvement over the baseline. In contrast, SSAL achieves considerably
better performance with 4% to 16% improvement over the baseline. The two
proposed algorithms achieve the best results on both datasets, with improve-
ments almost double that of SSAL. Comparing the two proposed algorithms, we
found that their performances were very close; the difference in their overall
improvements over the baseline was smaller than 0.5%.

In addition, we found that the average improvement was reduced when the
size of initially labeled images became larger. For example, on the COREL
dataset, the relative improvement made by the proposed SVM%%}&? algorithm
was 30.5% when the label size was 10, and was reduced to 13.0% when the label
size was 30. This again shows that the proposed method is able to effectively
address the problem of small training size. Finally, we also show the average
recall results for the top 100 returned images on the two datasets in Tables III
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Table V. Average Precision Performance of Top 20 Returned Results with Different Batch
Sizes on COREL Image Testbed

Batch size | SVMur, | SVMEIA | SVMRIVE [ SSAL | svMpy) | SVMESCO)

5 0492 0.506 0.496 0.560 0.640 0.622
+28% | +08% | +13.7% | +299% | +263%
" 0570 0586 0571 0.630 0.718 0.717
+28% | +02% | +105% | +260% | +259%
. 0610 0.630 0.636 0.687 0.798 0.776
$32% | +42% | +127% | +308% | +271%
0.688 0.697 0.745 0.835 0.835
20 0691 |\ o040 | +09% | +78% | +209% | +209%
0.749 0.729 0.790 0.860 0.868
25 0738 | L 16% | —12% | +70% | +166% | +17.7%
0.778 0.763 0.817 0.886 0.889
30 0769 | L 11% | +-08% | +63% | +152% | +156%
0.656 0.648 0.705 0.789 0.784
MAP 0645 | 17 | +06% | +93% | +224% | +216%

Table VI. Average Precision Performance of Top 20 Returned Results with Different
Batch Sizes on ImageCLEF Medical Image Testbed

Batch size | SVM,r, | SVMRIA | SVMRIVE | SSAL | sVML R | SVMSSCO)

0.592 0590 0.653 0.689 0.697

5 059 | _05% | —09% | +97% | +158% | +17.1%
0 ) 0.701 0.698 0.748 0.802 0.797

: +39% | +35% | +109% | +189% | +182%
0.759 0.757 0.803 0.850 0.852

15 0755 | L 06% | +03% | +64% | +126% | +128%
0.808 0.807 0.835 0.878 0.882

20 0793 | L 19% | +18% | +54% | +107% | +11.3%
0.848 0.850 0.862 0.902 0.900

25 0832 | 190 | +22% | +36% | +85% +83%
0.868 0.874 0.875 0.918 0.913

30 0852 | 18 | +26% | +26% | +77% +71%
0.763 0.763 0.796 0.840 0.840

MAP 0750 | 17% | +17% | +61% | +119% | +120%

and IV; the observations are similar to those for average precision, further
validating the advantages of the proposed algorithms as compared to the others.

4.6 Experiment lll: Varied Batch Size

The third set of experiments was done to evaluate the performance with varied
batch size. Tables V and VI show the average precision performance on the
top 20 returned results with three active learning iterations on both datasets
by varying the batch size and fixing the label size at 10. As in the previous
subsection, we omit the results for SVMS&L and SVM;QNP[’A.

Similar to previous observations, the two proposed algorithms SVM%?&E) and

SVM%%,}X? consistently outperformed the other four approaches by a significant
margin. By examining the results in detail, we find that, when the batch size

increased, the relative improvements achieved by our algorithms compared
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Table VII. Average Recall Performance of Top 100 Returned Results with Different Batch
Sizes on COREL Image Testbed

Batch size | SVM,r, | SVMRIYA | SVMBRIVE | SSAL | sVML %) | SVMEYCY

5 0.948 0.254 0.249 0.272 0.332 0.321
+24% +0.4% +9.6% +33.9% +29.4 %

10 0.291 0.301 0.289 0.316 0.373 0.377
+34% —0.7 % +85% +281% +29.5%

15 0.317 0.325 0.327 0.349 0.423 0.412
+2.7% +34% +10.1% +33.7% +30.2%

0.354 0.358 0.380 0.451 0.447
20 0-351 +0.7% +1.9% +81% + 283 % +272%

%5 0.376 0.380 0.371 0.409 0.468 0.471
+11% -1.3 % +8.8 % +24.6 % +25.4 %

30 0.393 0.401 0.398 0.427 0.490 0.493
+22% +13% + 8.6 % +24.8 % +25.5 %

0.336 0.332 0.358 0.423 0.420
MAR 0-329 +2.0% +0.8% +89% + 284 % +27.6 %

Table VIII. Average Recall Performance of Top 100 Returned Results with Different
Batch Sizes on ImageCLEF Medical Image Testbed

Batch size | SVMy;, | SVMAI™® | SVMALY® | SSAL | SVMLie’ | SVMprGY

0.116 0.116 0.119 0.139 0.138
5 0.113 +29% +23% +52% +22.9% + 225 %
10 0.134 0.140 0.138 0.140 0.166 0.164
+49% +3.0% +4.9% +24.1% +22.7 %
15 0.153 0.153 0.154 0.156 0.184 0.184
+02% +0.9% +23% + 204 % +20.5 %
20 0.162 0.166 0.169 0.168 0.198 0.199
+2.7% +4.6 % +3.7% +222% +23.0%
0.180 0.186 0.183 0.214 0.217
25 0-177 +2.0% +5.6% +3.8% +21.3% +22.9 %
30 0.182 0.192 0.197 0.191 0.228 0.225
+5.5% +81% +48% +24.9 % +23.7 %
0.158 0.160 0.160 0.188 0.188
MAR 0.153 +31% +4.3 % +41% +22.6 % +22.6 %

to SSAL tended to become more significant. For example, on the ImageCLEF
dataset, when the batch size equaled 10, the improvement of SVM%?&E) over
the baseline was about 1.6 times the improvement achieved by SSAL. This ratio
increased to 3 when the batch size was increased to 30. Similar observations
are also found in the average recall results for the top 100 returned images,
as shown in Tables VII and VIII. These results again show that the proposed
batch mode active learning method is more effective for selecting a batch of

informative unlabeled examples for relevance feedback in CBIR.

4.7 Experiment |V: Efficiency and Scalability of the Proposed Algorithms

The last experiment was done to evaluate the efficiency and scalability perfor-
mance of the two proposed algorithms: SVMlsgi,ﬁE) and SVM%%,}%?. To this pur-

pose, we measured the time cost of the two algorithms with respect to different
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Fig. 6. Time performance of the two proposed algorithms.

database sizes. Figure 6 shows the results of average time performance of the
two proposed algorithms for an active learning round with different database
sizes where both the label size and the batch size were fixed to 10. Note that
we did not count in the SVM training time, but focused on comparing the time
used for the batch sampling task.

From the results, we clearly see that the combinatorial optimization ap-
proach with the greedy algorithm was significantly more efficient and scal-
able than the QP approach. As we observe, when the database size increased,

the time cost of SVMSB%‘%E) increased dramatically, while the SVM%%,(&? in-

creased linearly. Specifically, when the database size equaled 1000, SVME%&E)

took about 420 s, while SVMSB%)) needed only about 0.06 s. Hence, we can

conclude that the SVME?}ICA? solution, with comparable retrieval performance,

is more efficient and scalable than SVME?}&E) for large applications. Finally,

as indicated in Figure 6, the time cost of SVME%,([CA? was very small (less

than a millisecond even for selecting 100 examples), and was almost negli-
gible when compared to the time cost of training a SVM classifier. As a result,
the computational time of SVM]SS‘;’/([CA?, a greedy implementation of semisuper-
vised batch mode active learning, was largely dictated by the training of SVM

classifiers.

5. CONCLUSIONS

We have proposed a novel semisupervised SVM batch mode active learning
scheme for solving relevance feedback in content-based image retrieval, which
explicitly addressed two main drawbacks of the regular SVM active learning.
In particular, we presented a unified learning framework incorporating both
labeled and unlabeled data to improve the retrieval accuracy, and developed a
new batch mode active learning scheme based on the min-max framework. We
proposed two novel algorithms to solve the batch mode active learning problem
effectively and efficiently. We conducted an extensive set of experiments to eval-
uate the performance of our techniques for relevance feedback in CBIR, from
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which the promising results showed the advantages of the proposed solution
compared to several state-of-the-art methods.

Despite promising results, the proposed technique still suffers from the fol-
lowing limitations. First, the proposed approach does not explicitly address the
issue of imbalanced class distribution, which is one of the critical issues in rel-
evance feedback. Second, theoretic questions need to be investigated regarding
how the proposed active learning method affects the generalization error of
classification models. In addition, we aim to further improve the efficacy of the
proposed greedy algorithm. To this end, we plan to alleviate the greedy nature
of the algorithm by exploring some backward and forward method, which is em-
ployed in feature selection. More specifically, we will first conduct the forward
selection procedure by following the greedy algorithm presented in this article.
With the £ unlabeled examples selected by the greedy algorithm, we will then
conduct the backward refinement by trying to replace each selected unlabeled
example with other unlabeled examples. We expect the backward refinement to
further improve the quality of selected image examples, and therefore enhance
the retrieval accuracy.

APPENDIX A: PROOF OF THEOREM 1
Proor. First, we have g(f, LU (x, y), K) written as

l
g(f, LU, ), K) = SIF I +1Gy, OO+ Y Ly, £

=1

Since

yeI{lzéll,)il}l(y’ f(x) = yel(rialtﬁ” max(0,1 - yf(x) =1+,

the problem in (7) can be rewritten as

xeld

A l
x* = argmax | f (x)| + {1 + 511 F 1B + ;l(yi, f(xi))} .

Since the second term is independent form x, the above problem is equivalent
to (6). O

APPENDIX B: PROOF OF THEOREM 2
Proor. First, note that

max min g(f,LU(S,y),K) = max min g(f,LU(S,y),K)
ye{-1,+1)k feHk yel-1,+11* feHk

= mi LLUS,y), K).
Py Ty (1 £SO

In the last step, we apply the von Neuman lemma to switch min with max
because g(f, LU(S,y), K)is concave in y and convex in f(-). We then examine
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quantity [mlaxl]k g(f,LU(S,y), K), which can be simplified as follows:
yel-1,+

max g(f,LU(S,y), K)
ye{—1,+1}%

A
= §||f||%K +Zl<yi, fx)+ Z yj$%§+l}1(yj, f(x;)

= IIfIIHK +Zl<y” fx)+ Y max(0,1+ f(x,),1- f(x;))

x;eS

= IIfIIHK +Zz<yl, F&)+ Y A+ f&x)D.

x;eS

By removing constant 1 from the above equation, we have the result in the
theorem. O

APPENDIX C: PROOF OF THEOREM 3

Proor. First, note that the objective function in (12), that is, g(f, £, q, K),
is linear in q. Therefore, according to linear programming results, one of the
optimal solutions to (12) should be its extreme point, which corresponds to a
binary solution for q. Hence, the optimal solution to (12) is indeed a feasible
solution for (10). Second, since the optimal value for (12) is no larger than the
optimal value for (10), the binary optimal solution q found by (12) is guaranteed
to be an optimal solution for (10). We thus conclude the equivalence between
(10) and (12). O

APPENDIX D: PROOF OF THEOREM 4
Proor. First, we derive the dual form of (12), that is,

n—l1
K 21:%+JZIVJ|——(aoy) K (aoy)
1
—57 Y Kuuy — (o y) K47, (25)
such that |y;| < —,j =1,...,n—1, (26)
1.
O<%SX 1=1,...,1. (27)

In above, the subindices ! and u are used to refer to the columns and rows in
matrix K that are related to labeled examples and unlabeled examples, respec-
tively; operator o stands for the element-wise product between two vectors.

We then rewrite the objective function in the dual in (25) into three parts,
that is,
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/
1
hiy = Zdi - Q(a oy)'K;(aoy),

n—l

1
w =D Wil = 5v Kuwy iy =(aoy) Kiuy.
j=1

Then, the optimal value for ,Icn%{n g(f, L, q, K) is upper bounded by %, , + hi; +
€Mk

ﬁl,u where ﬁu ws ﬁl 1, and ﬁl » are defined as follows:

h” = max hyy, huu = max Ay, ﬁl,u = max hiy
0=<a=1/x lvI=a/r 0=a=1/a,lvI=q/r
Note that s1nce0mai( hi; = mln g(f, L, K), we have h;; = g(f*, L, K). Fur-
<ax1/x

thermore, we can bound hu,u as follows

3 3 Bl
hu,ufx_l’:‘lllql})"y Kuu7<_ Zq Kuuq

Finally, #; ,, is bounded by

n—l
H lu = _[a*]TKl uY = ZV] Za yzk(XHl,Xz) = _q f
j=1 i=1

where o* are the optimal solution to the dual problem of ;11711n g(f, L, K). Com-
€Nk

bining the above three bounds together, we have the result in Theorem 4. O

APPENDIX E: PROOF OF THEOREM 6

Proor. As we already pointed out, the key is to show that g(S) defined in
(19) satisfies the three conditions specified in Theorem 5. First, we show g(S)
is a nondecreasing set function. Without loss of generality, we consider set A
and B = AU while i ¢ A. It is sufficient to show

g(B) > g(A)

for any set A and any element i ¢ A. We thus compute the difference g(B)—g(A),
that is,

g(B)_g(-A) fO_fl (ex/ﬁ_ZZ[Kuu )
jeA

It is clear that the first two terms are nonnegative since f is the maximum
value among all the unlabeled examples. We now show the term 6./n — 2
> je 4Ky .1, is also nonnegative. To this end, we consider the submatrix

A
( kA" (K, ) ’

where K/ A ., refers to the submatrix of K, , that involves the examples in A. kA
includes the kernel similarity between the ith example and the examples in A
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Since K, , > 0, according to the Schur complement, we have

1
(Kualic = D)) R 2 o
1 N 2
z [Ku,u]i,') .
(9 - [Ku,u]i,i)|A| <JXE;4 /

In the above derivation, the second inequality follows the fact

K, < tr(Kg I < (0 = [Kyulidl,

u,u —

and the last inequality uses the Cauchy inequality. Using the above result, we
have

Z[Ku,u]i,j = \/[Ku,u]i,i(e - [Ku,u]i,i)|~A| = @97

JjeA 2
and therefore have g(A4) < g(B) when B= A Ui.

The third property, that is, g(¥) = 0, can be easily verified. We thus focus
on proving the second property, that is, g(S) is a submodular function. It is
sufficient to show that, for any set A, and two elements i and j that do not
belong to A, we have

g(AUj)—g(A) > g(AUfi, j}) — g(AUID).

To this end, we evaluate the quantity g(AU j) — g(A) — g(AU{i, j}) + g(AUID),
which results in the following expression:

gAUj)—g(A) —g(AU{, jD+ g(AUD) = A[K, ] ; = 0.

Therefore, g(A) is a submodular function. Using the result in Theorem 5, we
prove Theorem 6. O
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