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Abstract

Random feature map is popularly used to scale up
kernel methods. However, employing a large num-
ber of mapped features to ensure an accurate ap-
proximation will still make the training time con-
suming. In this paper, we aim to improve the train-
ing efficiency of shift-invariant kernels by using
fewer informative features without sacrificing pre-
cision. We propose a novel feature map method by
extending Random Kitchen Sinks through fast data-
dependent subspace embedding to generate the de-
sired features. More specifically, we describe two
algorithms with different tradeoffs on the running
speed and accuracy, and prove that O(l) features
induced by them are able to perform as accurately
as O(l2) features by other feature map methods. In
addition, several experiments are conducted on the
real-world datasets demonstrating the superiority of
our proposed algorithms.

1 Introduction
Kernel methods are powerful since they can achieve excel-
lent performance when learning the non-linear relationship
embedded in the training data. Usually, the non-linear re-
lationship is encoded by a kernel function, k : k(x,y) =
〈Φ(x),Φ(y)〉, where Φ(·) : Rm → H maps the training
data in the original m-dimensional feature space to a high-
dimensional or even infinite-dimensional feature space, H.
Kernel methods can then train on the kernel matrix that rep-
resents the similarity of pairs of training data points without
explicitly defining the mapping function Φ(·). This obviously
can overcome the curse of dimensionality.

Although kernel methods have attracted extensive investi-
gation in the past two decades due to their significant per-
formance advantage, yet one main issue is that they scale
poorly with the size of the training dataset. Taking the ker-
nel ridge regression (KRR) [Saunders et al., 1998] as an ex-
ample, given a data matrix X ∈ Rn×m consisting of n data
points in m dimension, KRR incurs O(n3 + n2m) time for
training, much more than O(nm2) in the linear counterpart
when n � m. Therefore, the huge time complexity makes
kernel methods impractical to use in large datasets.

To resolve the scalability issue, random feature map is
proposed to map the data explicitly to a low-dimensional
Euclidean inner product space using the Fourier transform.
Through the feature map Z : Rm → Rl, one can obtain
k(x,y) = 〈Φ(x),Φ(y)〉 ≈ 〈Z(x),Z(y)〉. Then instead of
KRR, we can directly employ linear ridge regression with the
mapped features, taking O(nl2 +nml) time that depends lin-
early on n.

The number of mapped features l, however, exerts great
influence on the effectiveness and efficiency of random fea-
ture map. Only using a small l can speed up the training,
while this loses the accuracy in the kernel matrix approx-
imation and the learning. In contrast, a large l can ensure
the precision, but it takes more training time. Unfortunately,
demonstrated in many literatures [Rahimi and Recht, 2009;
Dai et al., 2014], l should be chosen in the same order of
n. In this regard, even for the linear ridge regression, it will
take O(n3 + n2m) training time, leading to a computation
complexity almost as the same as that in the original kernel
methods.

In this paper, we consider accelerating the training using an
important kernel functions which are shift-invariant, namely
k(x,y) = k(x − y). This kind of kernels (e.g., Gaussian,
Laplacian and Cauchy) is popularly and widely used. Our
contributions in this work are summarized as follows:
• First, we propose a training-efficient feature map

(TEFM) method by extending the Random Kitchen
Sinks (RKS) [Rahimi and Recht, 2007; 2009] via fast
data-dependent subspace embedding (FDSE). It can en-
joy both the advantages of the RKS and FDSE, where
RKS is a much more representative and efficient feature
map for shift-invariant kernels. On the other hand, FDSE
stands for a powerful dimensionality reduction tool on
both the accuracy and speed.
• Second, we specify the proposed method TEFM by two

algorithms: TEFM-G and TEFM-S. The former may be
a bit more accurate, while the latter runs much faster.
• Third, we give provable results indicating that O(l) fea-

tures from TEFM-G or TEFM-S are able to perform al-
most as accurately asO(l2) features from other methods,
which is also confirmed by extensive experiments.

The rest of paper is organized as follows. In Section 2,
we summarize some related work. In Section 3, we present
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our method with the theoretical analysis. In Section 4, we
provide empirical results. Finally, in Section 5, we conclude
the whole work.

Notation. We use bold letters to denote either a vector or a
matrix. The transpose of X is denoted by XT . X† denotes
its Moore-Penrose inverse, Tr(X) its trace and span(X) its
column spaces. ‖X‖ and ‖X‖F represent the spectral norm
and Frobenius norm of X, respectively. Finally, we use X 4
Y to represent that Y −X is positive semidefinite.

2 Related Work
In this section, we review and discuss several existing feature
map methods for shift-invariant kernels. Then, we outline the
subspace embedding and analyze its properties.

2.1 Random Feature Maps for Shift-Invariant
Kernels

Existing random feature maps for shift-invariant kernels in-
clude the RKS and its variants. We first spend some efforts
on the RKS, a basic and effective method. The RKS is due
to Bochner’s theorem [Rudin, 1990], by which each entry of
kernel matrix K ∈ Rn×n can be approximated as:

Kij = k(xi − xj) =

∫
p(z)eiz

T (xi−xj)dz (1)

≈ 2

l

l/2∑
s=1

〈eiz
T
s xi , eiz

T
s xj 〉

=

l/2∑
s=1

〈 1√
l/2

cos(zTs xi),
1√
l/2

cos(zTs xj)〉 . . .

. . .+ 〈 1√
l/2

sin(zTs xi),
1√
l/2

sin(zTs xj)〉

= 〈Z(xi) ∈ Rl,Z(xj) ∈ Rl〉, (2)

or

Eq. (1) ≈ 1

l

l∑
s=1

〈eiz
T
s xi , eiz

T
s xj 〉

≈
l∑

s=1

〈
√

2

l
cos(zTs xi + bs),

√
2

l
cos(zTs xj + bs)〉

= 〈Z(xi) ∈ Rl,Z(xj) ∈ Rl〉, (3)

where zs is sampled based on a proper probability density
function p(z) set to be the inverse Fourier transform of shift-
invariant kernel function k(·) and bs is uniformly sampled
over [0, 2π] [Rahimi and Recht, 2007].

Training kernel methods can then gain acceleration by
using linear algorithms incorporated with {Z(xi)}ni=1 and
achieve higher accuracy than the linear algorithms directly
operated on {xi}ni=1, simultaneously. Compared with ker-
nel methods, linear algorithms using {xi}ni=1 run much more
quickly especially in the low-dimensional data space, but gain
less accuracy. However, this disadvantage can be alleviated
by applying {Z(xi)}ni=1 which contains the information of
kernels.

The linear algorithms may be still impractical, since a
large d has to be chosen to ensure a comparable accuracy
as the kernel methods. The performance of kernel approxi-
mation using RKS is given by the proved assertion: |Kij −
〈Z(xi),Z(xj)〉| 6 O(1/

√
l) holds with a constant proba-

bility ∀i, j ∈ [n] if drawing d features [Rahimi and Recht,
2007]. Therefore, RKS converges at the rate of O(1/

√
l) in

the kernel approximation error. Accordingly, this kernel ap-
proximation error degenerates the learning accuracy by in-
creasing the generation error from O(1/

√
n) in the kernel

methods to O(1/
√
n+ 1/

√
l) in the linear algorithms trained

by RKS features. This suggests that l should be set on the or-
der of n to guarantee the generalization performance [Rahimi
and Recht, 2009; Dai et al., 2014].

There are some follow-up works to improve RKS, but they
still suffer from certain training inefficiency problems. [Le et
al., 2013] ideally reduces the feature generation time of RKS
fromO(nml) toO(nl logm) by using fast Hadamard matrix,
while the kernel approximation error is larger than RKS with
the same number of features. Hence, to guarantee the same
accuracy, more features have to be employed requiring more
training time. In [Yang et al., 2014], an advanced sampling
technique Quasi-Monte Carlo is introduced, but it improves
the convergence rate of kernel approximation error only when
the feature number d is exponential in the data dimension m.
This is not well satisfied in many real-world datasets and thus
more features are needed in the training.

In a conclusion, RKS is still a better choice to reduce train-
ing time. Next, we review subspace embedding to be applied
in our proposed method.

2.2 Subspace Embedding
Subspace embedding, informally, is able to reduce dimen-
sionality by performing a map f : Rm → Rl on the dataset
X = {xi ∈ Rm}ni=1, where l < m. Briefly, it can be cast
into two categories: data-independent or data-dependent one.

In the data-independent subspace embedding such as ran-
dom projection [Bingham and Mannila, 2001], f is prede-
fined without knowing how the dataset is distributed in the
original spaces, and it retains the data information (e.g., ‖xi‖,
‖X‖, ‖X‖F , etc.) by ensuring an approximate isometry over
the embedded subspaces with high probability. These whole
embedding procedures can be quickly completed, but the
dimensionality of the embedded subspaces cannot be suffi-
ciently low, otherwise it will be impossible to approximate an
isometry accurately [Nelson and Nguyn, 2014]. In contrast,
the data-dependent subspace embedding maps the dataset into
some important spaces determined by the data distribution.
The insight is that, typically the dataset is distributed differ-
ently in each space, and most of the distribution lies in only a
few spaces also regarded as important. Therefore, dimension-
ality can be substantially reduced without sacrificing much
information. The issue is that getting the important spaces
usually takes much time.

To effectively and efficiently reduce the dimensionality,
[Halko et al., 2011] proposes a fast and accurate method to
find certain important space on the dataset, which is referred
to as FDSE in our paper. This essentially belongs to the data-
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dependent category. The difference lies in that the important
spaces are approximated by performing the data-independent
subspace embedding on the data, by which the whole compu-
tation time can be reduced.

3 Training-Efficient Feature Map
In this section, first we propose our method together with two
algorithms. Later, we provide error analysis of the proposed
algorithms in the kernel approximation and related learning
tasks. Finally, we compare and discuss the time complexity
of each method on the regression task.

3.1 Methods and Algorithms
Here, we are at the stage to specify our method TEFM. [Yang
et al., 2012] has pointed out that features in RKS are ran-
domly sampled from a distribution independent of the train-
ing data, leading to a data-independent vector representation
whose most information will be restricted within some spe-
cific spaces. Thus, we propose to improve the RKS fur-
ther via FDSE, i.e., the FDSE maps the RKS feature ma-
trix F ∈ Rn×d into its l-dimensional important orthogo-
nal row space fast obtained by combining random projec-
tion (e.g., Gaussian projection matrix) with QR decomposi-
tion, and thus yields the desired feature matrix G ∈ Rn×l.
This is expected to run faster than the standard QR decom-
position with the time complexity reduced from O(nd2) to
O(ndl + dl2), where we assume n > d > l.

Algorithm 1: TEFM-G
Input: data XT = {xi ∈ Rm}ni=1, shift-invariant ker-
nel function k(·), scalars [q, d, l].
Output: G ∈ Rn×l.
1: Form F ∈ Rn×d with each row vector constructed

by method as shown in Eq. (2) or Eq. (3).
2: Draw Θ ∈ Rn×l from N (0, 1).
3: Construct Y = (FTF)qFTΘ.
4: Run QR decomposition on Y such that QR = Y

where Q ∈ Rd×l is column-orthogonal.
5: G = FQ.

We summarize this method in Algorithm 1. As can be seen,
there are two parts in this algorithm. Step 1 represents a fea-
ture matrix F, where the inverse Fourier transform p(z) of
different k(·) can be found in [Rahimi and Recht, 2007].
Steps 2 to 5 show the FDSE. q is typically set by 0, 1 or
2, which is used to speed up the decay of the singular value
of F and thus improves the accuracy of the whole algorithm
[Halko et al., 2011].

Moreover, step 4 in Algorithm 1 can still be acceler-
ated by replacing Θ with SRHT (Subsampled Randomized
Hadamard Transform), then running QR decomposition only
requires O(nd log l + dl2) time. For the details of SRHT,
please refer to [Tropp, 2011]. We summarize this method in
Algorithm 2 that runs faster than Algorithm 1.

3.2 Kernel Approximation Analysis
In this part, we provide theoretical analysis to show that O(l)
features generated by our algorithms can approximate kernel

Algorithm 2: TEFM-S
Input: data XT = {xi ∈ Rm}ni=1, shift-invariant ker-
nel function k(·), scalars [d, l].
Output: G ∈ Rn×l.
1: Run step 1 of Algorithm 1.
2: Draw a SRHT matrix Θ ∈ Rn×l.
3: Construct Y = FTΘ.
4: Run steps 4, 5 of Algorithm 1.

matrix as accurately as O(l2) features induced by other exist-
ing methods like RKS and its extensions. Before proceeding,
we first state two extracted and reformulated propositions.
Proposition 1. [Tropp, 2015] Suppose {Si}ni=1 are ran-
dom square matrices with ESi = 0 and ‖Si‖ 6 L. De-
fine Z =

∑n
i=1 Si, Ξ1 and Ξ2 satisfying E(ZZT ) 4 Ξ1

and E(ZTZ) 4 Ξ2. Let ξ = max {‖Ξ1‖, ‖Ξ2‖} and
r = Tr(Ξ1 + Ξ2)/ξ. Then, P {‖Z‖ > t} 6 4r exp( −t

2/2
ξ+Lt/3 )

for t >
√
ξ + L/3.

Proposition 2. [Halko et al., 2011] Denote the SVD of
A ∈ Rm×n by A = Udiag(Σ1,Σ2)(V1,V2)T where
Σ1 ∈ Rk×k, Σ2 ∈ R(n−k)×(n−k), V1 ∈ Rn×k, V2 ∈
Rn×(n−k) and diag(Σ1,Σ2) ∈ Rn×n with Σ1 and Σ2

on its main diagonal. Given Ω ∈ Rn×l and define
Y = (AAT )qAΩ. If VT

1 Ω has full row rank, then
‖(I − YY†)A‖2 6 ‖(I − YY†)(ATA)qA‖2/(2q+1) 6
(‖Σ2‖4q+2 + ‖Σ4q+2

2 (VT
2 Ω)(VT

1 Ω)†‖2)1/(2q+1).
They are our main tools to derive the theoretical analysis.

Then, we present our main results.
Theorem 1. Suppose we have a kernel matrix K ∈ Rn×n
constructed from shift-invariant functions and run Algorithm
1 to get features G ∈ Rn×l. Then, with limited failure prob-
ability,

‖K−GGT ‖ 6 O(n/l). (4)

Proof. Without loss of generality, we analyze the case in de-
tail where F in step 1 corresponds to Eq. (2) and Gaussian
kernel function k(xi,xj) = exp(−‖xi − xj‖2/2σ2). The
theorem and analysis can be applied in other cases. Revisit
the variables and parameters in Algorithm 1, we have

‖K−GGT ‖ = ‖K− FQQTFT ‖
6 ‖K− FFT ‖+ ‖FFT − FQQTFT ‖
= ‖K− FFT ‖+ ‖F(I−QQT )2FT ‖ (5)

= ‖K− FFT ‖+ ‖(I−QQT )FT ‖2 (6)

6 O(n/
√
d) +O(n/l), (7)

where Eq. (5) follows from the fact (I−QQT ) is an orthog-
onal projection matrix and Eq. (7) will be proved as follows.

The first term in Eq. (7) is proved by Proposition 1. Define
a = d/2 and Hi ∈ Rn×2 formed by columns 2i−1 and 2i of
F, i.e., {cos(zTi xj)/

√
a, sin(zTi xj)/

√
a}nj=1 ∈ Rn×2, ∀i ∈

[a]. Let Si = (K−aHiHi
T )/a. Then, K−FFT =

∑a
i=1 Si

and ESi = 0. Ei6=j(STi Sj) = 0 also holds by that {Hi}ai=1
are independent. Moreover, ‖K‖ 6 n due to Kjj 6 1, and
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‖Hi‖2 = ‖HiH
T
i ‖ 6 (

√
1/a)2n = n/a. Thus, ‖Si‖ 6

2n/a = L. We accordingly define Ξ1 = Ξ2 = E(ZTZ) =
E(

∑a
i=1 Si)

T (
∑a
i=1 Si) = aE(STi Si) since Z =

∑a
i=1 Si

is symmetric and Ei6=j(STi Sj) = 0. Then ξ = ‖Ξ1‖ =
‖aE(K − aHiH

T
i )2/a2‖ = ‖{a2E(HiH

T
i )2 −K2}/a‖ =

‖{a2E(HiH
T
i HiH

T
i )−K2}/a‖ 6 ‖{a2E(‖Hi‖2HiH

T
i )−

K2}/a‖ 6 ‖(nK −K2)/a‖ = ‖{U(nΣ −Σ2)UT }/a‖ =
‖(nΣ−Σ2)/a‖ 6 n2/(4a), where UΣUT is the SVD of K
with the eigenvalues Σii = σi listed in the descending order.
In the above inequalities, the first one holds by 0 4 Ξ1 =
{a2E(HiH

T
i HiH

T
i ) − K2}/a 4 {a2E(‖Hi‖2HiH

T
i ) −

K2}/a due to that xTHiH
T
i HiH

T
i x = ‖xTHiH

T
i ‖2 6

‖xTHi‖2‖HT
i ‖2 = xTHiH

T
i x‖HT

i ‖2 for any x ∈ Rn, and
the last one follows from that max06σi6n |(nσi − σ2

i )/a| =
n2/(4a). r = Tr(Ξ1 + Ξ2)/ξ usually can satisfy that
1 6 r � O(n). Now we can get the concentration bound
that P(‖K − FFT ‖ > t) 6 4r exp{ −t2/2

n2/(4a)+2nt/(3a)}.

Let δ = 4r exp{ −t2/2
n2/(4a)+2nt/(3a)} and θ = 4r/δ. Then,

‖K−FFT ‖ 6 ln θ{2n/3a+
√

4n2/9a2 + n2/(2a ln θ)} =

O(n/
√
a) = O(n/

√
d) holds with failure probability at most

δ, where we can regard ln θ as a small value and also easily
check that t >

√
ξ + L/3 holds.

To prove the second term in Eq. (7), we use Proposition 2
and get

‖(I−QQT )FT ‖2 6 ‖(I−YY†)FT ‖2 (8)

6 (‖Σ2‖4q+2 + ‖Σ4q+2
2 (VT

2 Θ)(VT
1 Θ)†‖2)1/(2q+1)

6 (1 + ‖(VT
2 Θ)(VT

1 Θ)†‖2)1/(2q+1)‖Σ2‖2, (9)

where F = UΣVT = Udiag(Σ1,Σ2)(V1,V2)T with
Σ1 ∈ Rk×k and Σ2 ∈ R(d−k)×(d−k), and Eq. (8) holds be-
cause span(Y) ⊂ span(Q).

Notice that Θ is a centered Gaussian matrix, thus VT
1 Θ

has full row rank with probability one and Proposition
2 can be applied. The derivation for the upper bound
of ‖(V2Θ)(VT

1 Θ)†‖ follows from [Halko et al., 2011].
Then, combining and reformulating them, we get that ‖(I −
QQT )FT ‖2 6 [k, q, d, p]1/(2q+1)n/(k + 1) = O(n/l)
holds with failure probability at most 6 exp(−p), where l =
k + p with p typically set to be a small constant (e.g.,5),
[k, q, d, p] means an expression on variables k, q, d, p, which
turns smaller as p increases and is briefly represented here
due to limited space. [k, q, d, p]1/(2q+1) can be considered as
a small value if with a slightly big q.

By union bound and setting d = Ω(l2), we prove Eq. (4)
holds with failure probability at most δ + 6 exp(−p).

The bound in Eq. (7) actually is incurred by RKS and
FDSE. The first term of Eq. (7) denotes a spectral norm bound
for RKS by Eq. (2) or Eq. (3), which is slightly tighter and
more general than the expectation bound in [Lopez-paz et
al., 2014], and reflects the same convergence rate on RKS fea-
ture number as the element-wise bound [Rahimi and Recht,
2007]. If d = Ω(l2), then training on O(l) feature gener-
ated by our two algorithms will be much faster than O(l2)
features by RKS with the approximation error almost on the

same scale. In the experiments, we will see the accuracy ver-
sus the computation time for the training and feature map.
Remark. [Hamid et al., 2014] tries to approximate the poly-
nomial kernel more concisely and accurately, by which our
approach is motivated similarly but has important differences.
First, we use FDSE instead of random projection to approxi-
mate more accurately while maintaining the computation ef-
ficiency. Second, the theoretical result therein shows that the
extent of approximation improvement relies on the degree of
the polynomial kernel, while ours depends on the number of
final generated features, which directly demonstrates that we
can use much fewer informative features to train. Third, the
experiment shows that our method can achieve improvement
in the shift-invariant kernels, while [Hamid et al., 2014] even
degenerates the performance, which we conjecture is due to
the different sampling procedures for the feature maps.
Theorem 2. Suppose we have a kernel matrix K ∈ Rn×n
constructed from shift-invariant functions and run Algorithm
2 to get features G ∈ Rn×l. Then, with limited failure prob-
ability,

‖K−GGT ‖ 6 O(n/l). (10)

Proof. The proof is similar to that in Theorem 1 by setting
q = 0 in Eq. (9). Then, with failure probability at most
c/k, ‖(V2Θ)(VT

1 Θ)†‖ has a constant upper bound if l =
Ck log k, where c and C are some constants [Tropp, 2011].
Treating log k as a small value and using ‖Σ2‖2 6 n/(k+1)
can complete the proof.

Here, q has to be zero and c/k can be larger than 6 exp(−p)
in Theorem 1. This implies Algorithm 1 may perform more
accurately than Algorithm 2 although it runs slower.

3.3 Impact on Learning Tasks
In this part, we show how our features impact the learning
accuracy on regression and classification tasks. The related
algorithms including KRR and SVM can be unified into the
following optimization problem [Yang et al., 2011a; 2011b],

min
w

λ

2
‖w‖2 +

1

n

n∑
i=1

`{~(wTZ(xi), yi)}, (11)

where `(t) means convex loss functions such as `(t) = t2/2,
l(t) = log{1 + exp(−t)} and l(t) = max(0, 1 − t). t =
~(wTZ(xi), yi) denotes wTZ(xi) − yi or wTZ(xi)yi. We
also assume the magnitude of gradient `′(t) can be upper
bounded by C (nondifferentiable loss function like l(t) =
max(0, 1− t) in SVM can be made differentiable by smooth-
ing techniques [Nesterov, 2005; Zhang et al., 2013]).
Theorem 3. Suppose we get kernel matrix K ∈ Rn×n by op-
erating shift-invariant functions on data matrix XT = {xi ∈
Rm}ni=1, and feature matrix GT = {Gi ∈ Rl}ni=1 by Algo-
rithm 1 or 2. Denote by L(w∗) the optimal value of Eq. (11).
Then, let L(w∗G) be the obtained optimal value by training
on Z(xi) = Gi, and L(w∗K) the optimal value by by training
on K (i.e.,Z(xi) = Φ(xi)), where w∗G ∈ Rl and w∗K may be
infinite-dimensional. Then, with limited failure probability,

L(w∗G) 6 L(w∗K) +O(1/l). (12)
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Proof. Instead of directly applying Representer Theorem
[Schölkopf et al., 2001] on Eq. (11), a desired tight result can
be obtained using its Lagrangian duality. Rewrite Eq. (11)
into a constrained convex optimization problem by introduc-
ing new variables gT = {gi = ~(wTZ(xi), yi)}ni=1 ∈ R1×n,
and combine the Lagrangian with KKT conditions, then we
get an equivalent dual problem without duality gap, i.e.,
L(w∗) = maxα

∑n
i=1 `∗(αi)−

1
2λα

TZ(X)Z(X)Tα−αTy,
where αT = {αi}ni=1 ∈ R1×n, yT = {yi}ni=1 ∈ R1×n,
each row of Z(X) is formed by Z(xi), ~(wTZ(xi), yi) =
wTZ(xi) − yi without loss of generality, and `∗(αi) =
inf{−αTg +

∑n
i=1 `(gi)/n} is supposed to be finite with

αi = `′(gi)/n, ∀i ∈ [n]. Then we have,

L(w∗G) = max
α

n∑
i=1

`∗(αi)−
1

2λ
αTGGTα−αTy

6 L(w∗K) + max
α

1

2λ
αT (K−GGT )α

6 L(w∗K) +
1

2λ
‖α‖‖K−GGT ‖‖α‖

6 L(w∗K) +
n(C/n)

2

2λ
‖K−GGT ‖

6 L(w∗K) +
C2

2nλ
O(
n

l
) = L(w∗K) +O(

1

l
),

where λ is assumed to be a certain fixed value and the last in-
equality holds with limited failure probability by using The-
orem 1 or 2.

We can extend the above result to other features with differ-
ent kernel approximation performances, showing that a faster
convergence of the kernel approximation error can lead to
faster convergence in the minimized regularized training er-
ror. This can be used as a simplified measurement to quantify
the impact of kernel approximation on the learning accuracy
[Cortes et al., 2010; Cesa-Bianchi et al., 2014]. Therefore,
applying the features that ensure a good kernel approxima-
tion favors an accurate learning on the learning tasks.

3.4 Computation Analysis
In this part, we compare the computation performance on
ridge regression task written in the form of Eq. (11) using the
square loss function. We use ridge regression due to that it
can give a closed-form solutions for the mapped features and
standard kernel, then the computation time does not depend
on some specific optimization techniques.

We summarize the result in Table 1, where nnz(·) means
the number of non-zero value and t the number of test points.
As we can see, with d = O(l2) set, our two algorithms take
much less time, and also significantly reduce the the overall
time with the dominant training time decreased.

For RKS, only a ’seed’ is needed for random number gen-
erator to reproduce random sequence for the testing [Dai et
al., 2014]. After getting w by Eq. (11), we practically mul-
tiply it with Q of Algorithm 1 or 2 for the testing. Finally,
our algorithms only stores a ’seed’ and a vector QwT for the
testing, taking comparable storage with other methods.

Mapping Training Prediction
M1 O(nnz(X)n) O(n3) O(t(m)n)
M2 O(nnz(X)d) O(nd2) O(t(m+ 1)d)

M3
O(nnz(X)d

O(nl2)
O(t(m+ 1)d

+l2d+ nld) +dl)

M4
O(nnz(X)d

O(nl2)
O(t(m+ 1)d

+l2d+ nd log l) +dl)

Table 1: Time complexity ofM1 toM4 representing 4 meth-
ods respectively, i.e., Kernel method, RKS, TEFM-G and
TEFM-S.

4 Empirical Evaluation
In this section, we empirically demonstrate the superiority of
the proposed methods on the Gaussian kernel matrix approxi-
mation and related regression task. We compare the following
random feature map methods:

1. Random Kitchen Sinks (denoted by RKS).
2. Quasi-Monte Carlo method [Yang et al., 2014] (denoted

by Quasi). We use Digital Net to generate QMC sequence, as
it yields the lowest approximation error and supports the high
dimensional data [Yang et al., 2014].

3. Compact feature maps [Hamid et al., 2014] (denoted by
Comp). The proposed method should not be restricted to the
polynomial kernel, we thus apply it to Gaussian kernel in our
experiments.

4. Fastfood method [Le et al., 2013] (denoted by Ffood).
We use ‘Hadamard features’ for its better performance.

5. Our proposed algorithms TEFM-G and TEFM-S.

We use six publicly available real-world datasets listed in
Table 2, and they can be downloaded from LIBSVM web-
site [Chang and Lin, 2011] or UCI machine learning reposi-
tory. All our experiments are run on Matlab with single thread
mode in order to fairly compare the running time.

Dataset # instances # features
Cpu 6554 21
A9a 48842 123

BlogFeedback 60021 280
SliceLocalization 53500 384

UJIIndoorLoc 21048 520
Mnist 70000 784

Table 2: Details of datasets in our experiments.

4.1 Kernel Approximation Quality
We compare the features generated by above methods on the
kernel approximation. We report the approximation accuracy
of each method measured by ‖K−Kapp‖/‖K‖, where Kapp
is the approximation matrix reconstructed by the random fea-
tures. To facilitate the computation of full kernel matrix K for
the comparison purposes, we randomly sample these datasets
so that only 6554, 8141, 8733, 8917, 6646 and 6006 instances
are used, respectively.

We summarize the results in Figure 1. The x-axis stands
for the number of features l. In our two algorithms, typi-
cally approximation error will turn down as d or l increases,
however, d cannot be very large or even infinite, otherwise
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Figure 1: Kernel approximation.

our two feature generation algorithms will be time consum-
ing. Thus, d actually affects the tradeoff between the accu-
racy and computation. If we keep d = 4l, then Figure 1
shows that our algorithms incur nearly half of approximation
error compared to others, which almost coincides with our
theoretical result. This implies that it is possible to train the
leaning tasks with fewer features while maintaining the accu-
racy. In particular, our methods beat the counterpart ‘Comp’
which implements data-independent subspace embedding for
original features [Hamid et al., 2014]. This also reflects that
data-independent subspace embedding is not suitable for the
random features on shift-invariant kernels.

4.2 Performance on KRR
First, we compare the prediction ability of different features
on KRR. The parameters are chosen by cross-validation. We
report the relative root mean square error (RMSE) of each
method in the testing datasets. The relative RMSE is defined
by ‖y − yo‖/‖y‖, where yo is the predicted value and y is
the ground truth. We consider the regression dataset ‘Slice-
Localization’ and list the result in Figure 2. As we can see,
using much fewer informative features, our two algorithms
can obtain the same accuracy as others. Thus, training using
our fewer features can keep the learning accuracy and require
much less time. This also implies that, accurate learning can
be achieved by applying the features that ensure a good kernel
matrix approximation.

Second, we report the prediction error versus the time (in-
cludes feature mapping time and training time) in Figure
3. Our algorithms require slightly more feature map time.
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Figure 2: Accuracy comparison on regression.

They, however, use fewer features to get the same approxi-
mation performance. Therefore, this substantially decreases
the training time. As can be seen, even we consider the time
used for the feature map, our two algorithms still outperform
the other methods with smaller RMSE achieved. Particularly,
the advantage of our methods will be more evident when we
need a much smaller RMSE. The reason is that, to obtain a
much smaller RMSE, more features in other methods should
be generated, and as the feature number grows large, the time
used for training regression task will be dominant compared
to the time for feature map.
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Figure 3: Time comparison on regression.

5 Conclusion

In this paper, we describe an effective feature map method
that can generate better features to make the learning tasks
trained accurately and more efficiently. The basic idea of our
method is to combine fast data-dependent subspace embed-
ding with the RKS. We also present two algorithms TEFM-G
and TEFM-S. Our theoretical analysis indicates these two al-
gorithms achieve better kernel approximation and faster train-
ing on learning tasks without losing precision. We report ex-
tensive empirical results of our algorithms on several real-
world datasets, which support our analysis and demonstrate a
good practical performance.
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