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Abstract

Regularized Least Squares (RlaBjorithms have the ability to avoid over-fitting
problems and to express solutions as kernel expansions. However, we observe
that the currenRLSalgorithms cannot provide a satisfactory interpretation even
on the penalty of a constant function. Based on the intuition that a good kernel-
based inductive function should be consistent with both the data and the kernel, a
novel learning scheme is proposed. The advantages of this scheme lie in its cor-
responding Representer Theorem, its strong interpretation ability about what kind
of functions should not be penalized, and its promising accuracy improvements
shown in a number of experiments. Furthermore, we provide a detailed techni-
cal description about heat kernels, which serves as an example for the readers to
apply similar techniques for other kernels. Our work provides a preliminary step
in a new direction to explore the varying consistency between inductive functions
and kernels under various distributions.

1 Introduction

Regularized Least Squares (RleByorithms have been drawing people’s attention since they were
proposed due to their ability to avoid over-fitting problems and to express solutions as kernel ex-
pansions in terms of the training data [4, 9, 12, 13]. Various modificatiorBL&are made to
improve its performance either from the viewpoint of manifold [1] or in a more generalized form
[7, 11]. However, despite these modifications, problems still remain. We observe that the previous
RLSrelated work has the following problem:

Over Penalization. For a constant functiorf = ¢, a nonzero term| f||x is penalized in both
RLSandLapRLS[1]. As a result, for a distribution generalized by a nonzero constant function,
the resulting regression function by bd®h. SandLapRLSis not a constant as illustrated in the left
diagram in Fig. 1. For such situations, there is an over-penalization.

In this work, we aim to provide a new viewpoint for supervised or semi-supervised learning prob-
lems. By such a viewpoint we can provide a general condition under which constant functions
should not be penalized. The basic idea is that, if a learning algorithm can learn an inductive func-
tion f(z) from examples generated by a joint probability distribution PXox R, then the learned
function f(x) and the marginaPx represents a new distribution df x R, from which there is a
re-learned functiom(x). The re-learned function should be consistent with the learned function in
the sense that the expected difference on distribufigris small. Because the re-learned function
depends on the underlying kernel, the differeri¢e) — r(x) depends orf (z) and the kernel, and

from this point of view, we name this work.
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Figure 1: lllustration for over penalization. Left diagraithe training set contains 20 points, whose

z is randomly drawn from the intervéd 1], whereas the test set contains another 20 points, and
y is generated by + 0.005¢, ¢ ~ N(0,1). The over penalized constant functions in the term
||f]|x cause the phenomena that smalleran achieve better results. On the other hand, the over-
fitting phenomenon whef = 0 suggests the necessity of the regularization term. Based on these
observations, an appropriate penalization on a function is expected. Middle diagtanis very
smooth, and(z) —r(x) remains the uneven part fitz); thereforef (x) —r(x) should be penalized
while f is over penalized i f|| k. Right diagram: the proposed model has a stable property so that
a large variant ofy results in small changes of the curves, suggesting a right way of penalizing
functions.

2 Background

The RKHS Theory enables us to express solutionsRifSas kernel expansions in terms of the
training data. Here we give a brief description of the concepts. For a complete discussion, see [2].
Let X be a compact domain or manifold,be a Borel measure o, andK : X x X — R be

a Mercer kernel, then there is an associated Hilbert space RKH®f functions X — R with

the corresponding norf} - ||x. Hx satisfies thaeproducing property, i.e., for alf € Hg,

flx) = (Kl,f) whereK is the functionK (z, -). Moreover, an operatat ;. can be defined on

Hi as:(Li f)(z) = [y f( (z,y)dv(y), whereﬁz( )is the Hilbert space of square integrable

functions onX Wlth the scalar produdtf, g), = [y f(z)g(z)dv(z).

Given a Mercer kernel and a set of labeled exampiesyi) (i = 1,...,1), there are two popular
inductive learning algorithmskRLS[12, 13] and the Nadaraya-Watson Formula [5, 8, 14]. By the
standard Tikhonov regularizatioRLSis a special case of the following functional extreme problem:

l
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f arg min 7 ;:1 V(@i yi, f) + I fll% 1)

whereV is some loss function.

The Classical Representer Theorem states that the solution to this minimization problem exists in
Hx and can be written as
Z a; K l‘“ (2)

Such a Representer Theorem is general because it plays an important role RLBaththe case
whenV (z,y, f) = (y — f(x))?, and SVM in the case whé¥i(z,y, f) = max(0,1 — yf(z)).



The Nadaraya-Watson Formulais based on local weighted averaging, and it comes with a closed

form: . .
=1 i=1

The formula has a similar appearance as Eq. (2), but it plays an important role in this paper because
we can write it in an integral form which makes our idea technically feasible as followg(Lgbe

a probability density function oveX, P(z) be the corresponding cumulative distribution function,
andf(x) be an inductive function. We observe thatf, f(x;))(i = 1,2,...,1) are sampled from

the functiony = f(z), then

A Re-learned Function can be expressed as

l—>oo Zz 1K(IL'ZL'Z) fX Z‘Oédp() fX JZOédP()

based onf(z) and P(x). From this form, we show two points: (1) #{z) = f(z), thenf(x) is
completely predicted by itself through the Nadaraya-Watson Formula, arfidzgds considered
to be completely consistent with the kerdélz, y); if r(z) # f(x), then the differencé f(x) —

r(x)||x can measure how badlf(x) is consistent with the kerné{ (z, y) and (2) Intuitivelyr(z)
can also be understood as the smoothed functigif:of through a kernek’. Consequentlyf(x) —
r(x) represents the intrinsically uneven part fifr), which we will penalize. This intuition is
illustrated in the middle diagram in Fig. 1.

Throughout this paper, we assume tfiatK (x, a)dP(c) is a constant, and for simplicity all kernels
are normalized by</ [, K(z,a)dP(«) so thatr(z) = Lk (f). Moreover, we assume thaf is
compact, and the measures specified ag(x).

3 Partially-penalized Regularization

For a given kernel and an inductive functiorf, Lk (f) is the prediction function produced ly
through the Nadaraya-Watson Formula. Based on Eq. (1), penalizing the inconsistefi{tcpart
Lk (f) leads to the following Partially-penalized Regularization problem:

J* = arg min fZsz,yu )+ IS = L ()l 5)
To obtain a Representer Theorem, we need one assumption.

Assumption 1 Let f1, fo € Hi. If (f1,fa)x = 0, then||f1 — Lix(f1) + fo — Lx(f)||% =
1 = L (f)ll5 + [ f2 = L (f2)% -

It is well-known that the operatal i is compact, self-adjoint, and positive with respectff X),
and by the Spectral Theorem [2, 3], its eigenfunctief(s:), e2(z), . . . form an orthogonal basis of
L2(X) and the corresponding eigenvalues > )\, ... are either finitely many that are nonzero,
or there are infinitely many, in which case — 0. Let fi = ). a;e;(z), fo = >, be;(z), then
f—Li(f1) = 3, aiei(w)~Lr (3, aiei(w) = ¥, azei(z) =33, hiaes (x) = S (1-A)ages (x),
and similarly,fo — Lx(f2) = >_,(1 — A\i)bse;(x). By the discussions in [1], we ha\(el, ej)y =0

if ¢ # j,and(e;, e;), = 1; (es,e5)xk = 01if ¢ # j, and(e;, e;) k = 5. If we consider the situation
thata;,b; > 0forall i > 1, then(f;, fa)x =0 |mpI|es thata;b; = Oforall 1 > 1, and consequently

(Fi = Lic(f1), fo — Lic(fa))ic = 52,(1 — Ai)2abi{ei(), e(x))xc = 0. Therefore, under some
constrains, this assumption is a fact. Under this assumption, we have a Representer Theorem.

Theorem 2 Lety;(x) be a basis i, of the operatod — L, i.e.,Ho = {f € Hx|f — Lk (f) =
0}. Under Assumption 1, the minimizer of the optimization problem in Eq. (5) is

z) = Biu;(x +Zaz (i, (6)
j=1



Proof of the Representer Theorem. Any function f € Hy can be unlquely decomposed into a
componentf| in the linear subspace spanned by the kernel funcdngr;, -)}!_,, and a compo-

nentf, orthogonal to it. Thusf = f|, + f1 = Z o; K (x;,-) + f1. By the reproducing property

and the fact thatf, , K (x;,-)) =0for1 <i < l We have

f(xj) < LL'],‘ Zal ml" ) x]?')>+<fJ_7 1’]»' Zaz xz;' > xj,‘)>-

Thus the empirical terms involving the loss function in Eq. (5) depend only on the value of the
coefficients{«; }._, and the gram matrix of the kernel function. By Assumption 1, we have

! l
If = Le(PllE = |l 2 cil(wi, o) = Lie( 2 il (@i, Ml + 11f2 = Lee(f0)ll%
1 T
> ||Z:laiK(xiv')_LK(;aiK(l’ia'))H%('
It follows that the minimizer of Eq. (5) must havgf, — LK(fL)H = 0, and therefore admits a

representatiorf* (z) = f, + Xl: o K(x,2) = ZO: B () + Z i K (z;, 7).
i=1 j=1

3.1 Partially-penalized Regularized L east Squares (PRLS) Algorithm

In this section, we focus our attention in the case What;, v;, f) = (v; — f(z;))?, i.e, the Regu-
larized Least Squares algorithm. In our setting, we aim to solve:

min 3"~ F)) 11~ Lic() k- ™

By the Representer Theorem, the solution to Eqg. (7) is of the following form:

l

= Zﬂjuj(x) +Zo¢iK(mi,m). (8)
j=1 i=1
By the proof of Theorem 2, we havg = i Bipi(z) and (f, Z a; K(z;,x))k = 0. By
j=1

Assumption 1 and the fact thgt belongs to the null spade, of the operatori Lk, we have

17 = L (P = [1£1 = L (POl + 10y @i (24, @) = Lic(Ci_y K (s, 2)) |

= | iy ik (wi,2) = iy L (K (2,0)) | i = o (K = 2K' + K")a,

9)

where o = [ai,q9,...,q]%, K is thel x | gram matrix K;; = K(z;,x;), K' and
K" are reconstructed x [ matrices K/, = (K(z;,2),Lx(K(z;,r)))x, and K, =
(Lk (K (zi,)), L (K(xj,x))) k. Substituting Eq. (8) and Eq. (9) to the problem in Eq. (7), we ar-
rive at the following quadratic objective function of theimensional variable: ando-dimensional

Variableﬁ = [ﬁl? ﬂZa cee 760]T:
[a, 0%] = argmin — ;i (Y Ka—-9p)T Y- Ka-903)+ yal (K — 2K’ + K"a, (10)

whereW is anl x o matrix ¥;; = p;(x;), andY” = [y1,y2, ...,y . Taking derivatives with respect
to « andg, since the derivative of the objective function vanishes at the minimizer, we obtain

(YUK —2K' + K") + K?)a+ K¥3 = KY, ¥I(Y — Ka — ¥3) = 0. (11)

Inthe term||f— Lk (f)]|, f is subtracted by.x (f), and so it partially penalized. For this reason, the
resulting algorithm is referred as Partially-penalized Regularized Least Squares algorithn. (PRLS



3.2 ThePLapRLSAlgorithm

The idea in the previous section can also be extendddyp®RLSin the manifold regularization
framework [1]. In the manifold setting, the smoothness on the data adjacency graph should be
considered, and Eq. (5) is modified as

l I+u
* . 2
f* = arg min 7 z; (@i, yis f)+yallf =L (f )HK+(U+Z 5 Z )= f(x;))"Wij, (12)
whereWV;; are edge weights in the data adjacency. Fidimthe graph Laplaciad is given by
L = D—W,whereD is the diagonal matrix wittD;; = Z;Z{ W;;. For this optimization problem,
the result in Theorem 2 can be modified slightly as:

Theorem 3 Under Assumption 1, the minimizer of the optimization problem in Eg. (12) admits an
expansion

o l+u
= Zﬁj’uj(x) +ZaiK(mi,m). (13)
j=1 i=1

Following Eq. (13), we continue to optimize th@ + wu)-dimensional variablea =

[1,qz, ..., ar4]a and theo-dimensional variabled = [31, 52, .., 3,]T. In a similar way as

the previous section arldhpRLSIn [1], « and are determined by the following linear systems:
(KJK + M\ (K —2K' + K") + Mo KLK)o + (KJU + M KLY)§ = K.JY, (14)
(W JK — XV LK)+ (U0 — N W LU)G =W +Y,

whereK, K', K" are the(l +u) x (I + ) Gram matrices over labeled and unlabeled pofritis an
(I + w) dimensional label vector given by = [y1,y2,...,4,0,...,0], Jisan(l 4+ u) x (I +u)

diagonal matrix given by = diag(1,1,...,1,0,...,0) with the firstl diagonal entries asand the
rest0, and¥ is an(l + u) x o matrix ¥,; = p1;(x;).

4 Discussions

4.1 Heat Kernelsand the Computation of K’ and K"

In this section we will illustrate the computation 7 and K" in the case of heat kernels. The basic
facts about heat kernels are excerpted from [6], and for more materials, see [10].

Given a manifoldM and pointsz andy, the heat kerneK(z, y) is a special solution to the heat
equation with a special initial condition called the delta function—y). More specifically(x—y)
describes a unit heat source at positiorith no heat in other positions. Namedfxz — y) = 0 for

x £y andfjof 0(x —y)dx = 1. If we let fo(x,0) = é6(x — y), thenK;(x, y) is a solution to the
following differential equation on a manifoldi1:

of
ot
wheref(z, t) is the temperature at locatiarat timet, beginning with an initial distributiorfy (x) at

time zero, and_ is theLaplace-Beltrami operator. Equation (15) describes the heat flow throughout
a geometric manifold with initial conditions.

—Lf =0, f(z,0) = fo(x), (15)

Theorem 4 Let M be a complete Riemannian manifold. Then there exists a funétior
C*®(Ry x M x M), called the heat kernel, which satisfies the following properties for
all z,y € M, with Ky(z,y) = K(t,z,y): (1) Ki(z,y) defines a Mercer kernel. (2)
Ki(z,y) = [y Ki—s(w,2)K(z,y)dz for anys > 0. (3) The solution to Eq. (15) ig(x,t) =

Iy Kt (z,y)fo(y)dy. @)1 = [, Ki(z,y)ldy and (5) WhenM = R™, Lf is simplified as

m H"/—?IHZ
at

Zl o 2,and the heat kernel takes the Gaussian RBF féfrte, y) = (4nt) "2 e™




K’ and K" can be computed as follows:

Ki; = (Ki(z, ), Lx(Ki(zj,7)))x (by definition)

L (Ki(zj,z))|z=2, (bythe reproducing property of a Mercer kemel
= [y Ki(x;,y)Ki(xi,y)dv(y) (by the definition ofL )

= Ky (x;,z;) (by Property 2 in Theorenh)

(16)

Based on the fact that k. is self-adjoint, we can similarly deriv 7’3 = Ks(x;,2;). For other
kernels,K’ and K"’ can also be computed.

4.2 What should not be penalized?

From Theorem 2, we know that the functions in the null spiige= {f € Hx|f — Lx(f) =

0} should not be penalized. Although there may be looser assumptions that can guarantee the
validity of the result in Theorem 2, there are two assumptions in this warkis compact and

Jx K(z,0)dP () in Eq. (4) is a constant. Next we discuss the constant functions and the linear
functions.

Should constant functions be penalized? Under the two assumptions, a constant functishould
not be penalized, because= [, cK(z,a)p(a)da/ [y K(z,a)p(a)de, ie.,c € Hy. For heat
kernels, ifP(x) is uniformly distributed on\1, then by Property 4 in Theorem 4, K (z,a)dP(c)
is a constant, and soshould not be penalized.

For polynomial kernels, the theory cannot guarantee that constant functions should not be penalized
even with a uniform distributio®(x). For example, considering the polynomial keragh-1 in the
interval X = [0 1] and the uniform distribution o, [ (zy+1)dP(y) = fol(:cy+1)dy =x/2+1

is not a constant. As a counter example, we will show in Section 5.3 that not penalizing constant
functions in polynomial kernels will result in much worse accuracy. The reason for this phenomenon
is that constant functions may not be smooth in the feature space produced by the polynomial kernel

under some distributions. The readers can deduce an examplerjosuch thatfol(xy + 1)dP(y)
happens to be a constant.

Should linear function o™z be penalized? In the case whetX is a closed ballB, with radius
r when P(z) is uniformly distributed ove3, and whenk is the Gaussian RBF kernel, thehx
should not be penalized wheris big enough? Sincer is big enough, we havﬁw dr =~ fBr -dx

ander Ki(z,y)dy = 1, and soa”z =[5, Ki(z,y)a"ydy ~ [, Ki(z,y)a"ydy ~ Lk (a” ).
Consequentlyja®z — L (a”z)||x will be small enough, and so the linear functishr needs not
be penalized. For other kernels, other spaces, or dthethe conclusion may not be true.

5 Experiments

In this section, we evaluate the proposed algoritfRé SandPLapRLSon a toy dataset (size: 40),

a medium-sized dataset (size: 3,119), and a large-sized dataset (size: 20,000), and provide a counter
example for constant functions on another dataset (size: 9,298). We use the Gaussian RBF kernels in
the first three datasets, and use polynomial kernels to provide a counter example on the last dataset.
Without any prior knowledge about the data distribution, we assume that the examples are uniformly
distributed, and so constant functions are considered to b& ifor the Gaussian RBF kernel, but

linear functions are not considered to béHp since it is rare for data to be distributed uniformly on

a large ball. The data and results for the toy dataset are illustrated in the left diagram and the right
diagram in Fig. 1.

5.1 UCI Dataset Isolet about Spoken Letter Recognition

We follow the same semi-supervised settings as that in [1] to conifleBavith PRLS, and compare
LapRLSwith PLapRLSon the Isolet database. The dataset contains utterances of 150 subjects who

!Note that a subset d&&" is compact if and only if it is closed and bounded. Sifiteis not bounded, it
is not compact, and so the Representer Theorem cannot be established. This is the reason why we cannot talk
aboutR™ directly.
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Figure 2: Isolet Experiment

pronounced the name of each letter of the English alphabet twice. The speakers were grouped into
5 sets of 30 speakers each. The data of the first 30 speakers forms a training set of 1,560 examples,
and that of the last 29 speakers forms the test set. The task is to distinguish the first 13 letters from
the last 13. To simulate a real-world situation, 30 binary classification problems corresponding to 30
splits of the training data where all 52 utterances of one speaker were labeled and all the rest were
left unlabeled. All the algorithms use Gaussian RBF kernelsRE@andLapRLS, the results were
obtained with widtho = 10, v = 0.05, yal = y71/(u +1)?> = 0.005. For PRLSandPLapRLS,

the results were obtained with width= 4, v/ = 0.01, andyal = ~71/(u + 1)? = 0.01. In Fig. 2,

we can see that botARLSand PLapRLSmake significant performance improvements over their
corresponding counterparts on both unlabeled data and test set.

5.2 UCI Dataset Letter about Printed L etter Recognition

In Dataset Letter, there are 16 features for each example, and there are 26 classes representing the
upper case printed letters. The first 400 examples were taken to form the training set. The remaining
19,600 examples form the test set. The parameters are set as fatlews; vl = v4(I+u) = 0.25,
and~;l/(u +1)? = 0.05. For each of the four algorithnBLS,PRLS,LapRLS, andPLapRLS, for

each of the 26 one-versus-all binary classification tasks, and for each of 10 runs, two examples for
each class were randomly labeled. For each algorithm, the averages over all the 260 one-versus-all
binary classification error rates for unlabeled 398 examples and test set are listed respectively as
follows: (5.79%, 5.23%) foRLS, (5.12%, 4.77%) fdPRLS, (0%, 2.96%) fokapRLS, and (0%,
3.15%) for PLapRLSrespectively. From the results, we can see fRBSis improved on both
unlabeled examples and test set. The fact that there is no error in the total 260 taskgRaS
andPLapRLSon unlabeled examples suggests that the data is distributed in a curved manifold. On
a curved manifold, the heat kernels do not take the Gaussian RBF form, &idpBRLSusing the
Gaussian RBF form cannot achieve its best. This is the reason why we can obsePR/eaipat S

is slightly worse thar.apRLSon the test set. This suggests the need for a vast of investigations on
heat kernels on a manifold.

5.3 A Counter Examplein Handwritten Digit Recognition

Note that, polynomial kernels with degree 3 were used on USPS dataset in [1], and 2 images for each
class were randomly labeled. We follow the same experimental setting as that in [FL&pif we



use Eq. (2), then the averages of 45 pairwise binary cladsificarror rates are 8.83% and 8.41%

for unlabeled 398 images and 8,898 images in the test set respectively. If constant functions are not

penalized, then we should ugé(x) = Zﬁzl o; K (z;, z) + a, and the corresponding error rates are

9.75% and 9.09% respectively. By this example, we show that leaving constant functions outside
the regularization term is dangerous; however, it is fortunate that we have a theory to guide this in
Section 4: ifX is compact and’, K (z,)dP(«) in Eq. (4) is a constant, then constant functions
should not be penalized.

6 Conclusion

A novel learning scheme is proposed based on a new viewpoint of penalizing the inconsistent part
between inductive functions and kernels. In theoretical aspects, we have three important claims: (1)
On a compact domain or manifold, if the denominator in Eq. (4) is a constant, then there is a new
Representer Theorem; (2) The same conditions become a sufficient condition under which constant
functions should not be penalized; and (3) under the same conditions, a function belongs to the
null space if and only if the function should not be penalized. Empirically, we claim that the novel
learning scheme can achieve accuracy improvement in practical applications.
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