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Abstract

Regularized Least Squares (RLS) algorithms have the ability to avoid over-fitting
problems and to express solutions as kernel expansions. However, we observe
that the currentRLSalgorithms cannot provide a satisfactory interpretation even
on the penalty of a constant function. Based on the intuition that a good kernel-
based inductive function should be consistent with both the data and the kernel, a
novel learning scheme is proposed. The advantages of this scheme lie in its cor-
responding Representer Theorem, its strong interpretation ability about what kind
of functions should not be penalized, and its promising accuracy improvements
shown in a number of experiments. Furthermore, we provide a detailed techni-
cal description about heat kernels, which serves as an example for the readers to
apply similar techniques for other kernels. Our work provides a preliminary step
in a new direction to explore the varying consistency between inductive functions
and kernels under various distributions.

1 Introduction

Regularized Least Squares (RLS) algorithms have been drawing people’s attention since they were
proposed due to their ability to avoid over-fitting problems and to express solutions as kernel ex-
pansions in terms of the training data [4, 9, 12, 13]. Various modifications ofRLSare made to
improve its performance either from the viewpoint of manifold [1] or in a more generalized form
[7, 11]. However, despite these modifications, problems still remain. We observe that the previous
RLS-related work has the following problem:

Over Penalization. For a constant functionf = c, a nonzero term||f ||K is penalized in both
RLSandLapRLS[1]. As a result, for a distribution generalized by a nonzero constant function,
the resulting regression function by bothRLSandLapRLSis not a constant as illustrated in the left
diagram in Fig. 1. For such situations, there is an over-penalization.

In this work, we aim to provide a new viewpoint for supervised or semi-supervised learning prob-
lems. By such a viewpoint we can provide a general condition under which constant functions
should not be penalized. The basic idea is that, if a learning algorithm can learn an inductive func-
tion f(x) from examples generated by a joint probability distribution P onX × R, then the learned
functionf(x) and the marginalPX represents a new distribution onX × R, from which there is a
re-learned functionr(x). The re-learned function should be consistent with the learned function in
the sense that the expected difference on distributionPX is small. Because the re-learned function
depends on the underlying kernel, the differencef(x) − r(x) depends onf(x) and the kernel, and
from this point of view, we name this work.
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Figure 1: Illustration for over penalization. Left diagram:The training set contains 20 points, whose
x is randomly drawn from the interval[0 1], whereas the test set contains another 20 points, and
y is generated by1 + 0.005ε, ε ∼ N(0, 1). The over penalized constant functions in the term
||f ||K cause the phenomena that smallerγ can achieve better results. On the other hand, the over-
fitting phenomenon whenγ = 0 suggests the necessity of the regularization term. Based on these
observations, an appropriate penalization on a function is expected. Middle diagram:r(x) is very
smooth, andf(x)−r(x) remains the uneven part off(x); thereforef(x)−r(x) should be penalized
while f is over penalized in||f ||K . Right diagram: the proposed model has a stable property so that
a large variant ofγ results in small changes of the curves, suggesting a right way of penalizing
functions.

2 Background

The RKHS Theory enables us to express solutions ofRLSas kernel expansions in terms of the
training data. Here we give a brief description of the concepts. For a complete discussion, see [2].
Let X be a compact domain or manifold,ν be a Borel measure onX, andK : X × X → R be
a Mercer kernel, then there is an associated Hilbert space RKHSHK of functionsX → R with
the corresponding norm|| · ||K . HK satisfies thereproducing property, i.e., for allf ∈ HK ,
f(x) = 〈Kx, f〉, whereKx is the functionK(x, ·). Moreover, an operatorLK can be defined on
HK as:(LKf)(x) =

∫

X
f(y)K(x, y)dν(y), whereL2

ν(X) is the Hilbert space of square integrable
functions onX with the scalar product〈f, g〉ν =

∫

X
f(x)g(x)dν(x).

Given a Mercer kernel and a set of labeled examples(xi, yi) (i = 1, ..., l), there are two popular
inductive learning algorithms:RLS[12, 13] and the Nadaraya-Watson Formula [5, 8, 14]. By the
standard Tikhonov regularization,RLSis a special case of the following functional extreme problem:

f∗ = arg min
f∈HK

1

l

l
∑

i=1

V (xi, yi, f) + γ||f ||2K (1)

whereV is some loss function.

The Classical Representer Theorem states that the solution to this minimization problem exists in
HK and can be written as

f∗(x) =
l

∑

i=1

αiK(xi, x). (2)

Such a Representer Theorem is general because it plays an important role in bothRLSin the case
whenV (x, y, f) = (y − f(x))2, and SVM in the case whenV (x, y, f) = max(0, 1 − yf(x)).



The Nadaraya-Watson Formula is based on local weighted averaging, and it comes with a closed
form:

r(x) =
l

∑

i=1

yiK(x, xi)/
l

∑

i=1

K(x, xi). (3)

The formula has a similar appearance as Eq. (2), but it plays an important role in this paper because
we can write it in an integral form which makes our idea technically feasible as follows. Letp(x) be
a probability density function overX, P (x) be the corresponding cumulative distribution function,
andf(x) be an inductive function. We observe that, if(xi, f(xi))(i = 1, 2, . . . , l) are sampled from
the functiony = f(x), then

A Re-learned Function can be expressed as

r(x) = lim
l→∞

∑l
i=1

f(xi)K(x, xi)
∑l

i=1
K(x, xi)

=

∫

X
f(α)K(x, α)dP (α)

∫

X
K(x, α)dP (α)

=
LK(f)

∫

X
K(x, α)dP (α)

, (4)

based onf(x) andP (x). From this form, we show two points: (1) Ifr(x) = f(x), thenf(x) is
completely predicted by itself through the Nadaraya-Watson Formula, and sof(x) is considered
to be completely consistent with the kernelK(x, y); if r(x) 6= f(x), then the difference||f(x) −
r(x)||K can measure how badlyf(x) is consistent with the kernelK(x, y) and (2) Intuitivelyr(x)
can also be understood as the smoothed function off(x) through a kernelK. Consequently,f(x)−
r(x) represents the intrinsically uneven part off(x), which we will penalize. This intuition is
illustrated in the middle diagram in Fig. 1.

Throughout this paper, we assume that
∫

X
K(x, α)dP (α) is a constant, and for simplicity all kernels

are normalized byK/
∫

X
K(x, α)dP (α) so thatr(x) = LK(f). Moreover, we assume thatX is

compact, and the measureν is specified asP (x).

3 Partially-penalized Regularization

For a given kernelK and an inductive functionf , LK(f) is the prediction function produced byK
through the Nadaraya-Watson Formula. Based on Eq. (1), penalizing the inconsistent partf(x) −
LK(f) leads to the following Partially-penalized Regularization problem:

f∗ = arg min
f∈HK

1

l

l
∑

i=1

V (xi, yi, f) + γ||f − LK(f)||2K . (5)

To obtain a Representer Theorem, we need one assumption.

Assumption 1 Let f1, f2 ∈ HK . If 〈f1, f2〉K = 0, then ||f1 − LK(f1) + f2 − LK(f2)||
2
K =

||f1 − LK(f1)||
2
K + ||f2 − LK(f2)||

2
K .

It is well-known that the operatorLK is compact, self-adjoint, and positive with respect toL2
ν(X),

and by the Spectral Theorem [2, 3], its eigenfunctionse1(x), e2(x), . . . form an orthogonal basis of
L2

ν(X) and the corresponding eigenvaluesλ1 ≥ λ2, . . . are either finitely many that are nonzero,
or there are infinitely many, in which caseλk → 0. Let f1 =

∑

i aiei(x), f2 =
∑

i biei(x), then
f1−LK(f1) =

∑

i aiei(x)−LK(
∑

i aiei(x)) =
∑

i aiei(x)−
∑

i λiaiei(x) =
∑

i(1−λi)aiei(x),
and similarly,f2 − LK(f2) =

∑

i(1 − λi)biei(x). By the discussions in [1], we have〈ei, ej〉ν = 0
if i 6= j, and〈ei, ei〉ν = 1; 〈ei, ej〉K = 0 if i 6= j, and〈ei, ei〉K = 1

λi
. If we consider the situation

thatai, bi ≥ 0 for all i ≥ 1, then〈f1, f2〉K = 0 implies thataibi = 0 for all i ≥ 1, and consequently
〈f1 − LK(f1), f2 − LK(f2)〉K =

∑

i(1 − λi)
2aibi〈ei(x), ei(x)〉K = 0. Therefore, under some

constrains, this assumption is a fact. Under this assumption, we have a Representer Theorem.

Theorem 2 Letµj(x) be a basis inH0 of the operatorI −LK , i.e.,H0 = {f ∈ HK |f −LK(f) =
0}. Under Assumption 1, the minimizer of the optimization problem in Eq. (5) is

f∗(x) =
o

∑

j=1

βjµj(x) +
l

∑

i=1

αiK(xi, x) (6)



Proof of the Representer Theorem. Any functionf ∈ HK can be uniquely decomposed into a
componentf|| in the linear subspace spanned by the kernel functions{K(xi, ·)}

l
i=1, and a compo-

nentf⊥ orthogonal to it. Thus,f = f|| + f⊥ =
l

∑

i=1

αiK(xi, ·) + f⊥. By the reproducing property

and the fact that〈f⊥,K(xi, ·)〉 = 0 for 1 ≤ i ≤ l, we have

f(xj) = 〈f,K(xj , ·)〉 = 〈

l
∑

i=1

αiK(xi, ·),K(xj , ·)〉+ 〈f⊥,K(xj , ·)〉 = 〈

l
∑

i=1

αiK(xi, ·),K(xj , ·)〉.

Thus the empirical terms involving the loss function in Eq. (5) depend only on the value of the
coefficients{αi}

l
i=1 and the gram matrix of the kernel function. By Assumption 1, we have

||f − LK(f)||2K = ||
l

∑

i=1

αiK(xi, ·) − LK(
l

∑

i=1

αiK(xi, ·))||
2
K + ||f⊥ − LK(f⊥)||2K

≥ ||
l

∑

i=1

αiK(xi, ·) − LK(
l

∑

i=1

αiK(xi, ·))||
2
K .

It follows that the minimizer of Eq. (5) must have||f⊥ − LK(f⊥)||2K = 0, and therefore admits a

representationf∗(x) = f⊥ +
l

∑

i=1

αiK(xi, x) =
o
∑

j=1

βjµj(x) +
l

∑

i=1

αiK(xi, x).

3.1 Partially-penalized Regularized Least Squares (PRLS) Algorithm

In this section, we focus our attention in the case thatV (xi, yi, f) = (yi − f(xi))
2, i.e, the Regu-

larized Least Squares algorithm. In our setting, we aim to solve:

min
f∈HK

1

l

∑

(yi − f(xi))
2 + γ||f − LK(f)||2K . (7)

By the Representer Theorem, the solution to Eq. (7) is of the following form:

f∗(x) =

o
∑

j=1

βjµj(x) +

l
∑

i=1

αiK(xi, x). (8)

By the proof of Theorem 2, we havef⊥ =
o
∑

j=1

βjµj(x) and 〈f⊥,
l

∑

i=1

αiK(xi, x)〉K = 0. By

Assumption 1 and the fact thatf⊥ belongs to the null spaceH0 of the operatorI − LK , we have

||f∗ − LK(f∗)||2K = ||f⊥ − LK(f⊥)||2K + ||
∑l

i=1
αiK(xi, x) − LK(

∑l
i=1

αiK(xi, x))||2K
= ||

∑l
i=1

αiK(xi, x) −
∑l

i=1
αiLK(K(xi, x))||2K = αT (K − 2K ′ + K ′′)α,

(9)
where α = [α1, α2, . . . , αl]

T , K is the l × l gram matrix Kij = K(xi, xj), K ′ and
K ′′ are reconstructedl × l matrices K ′

ij = 〈K(xi, x), LK(K(xj , x))〉K , and K ′′
ij =

〈LK(K(xi, x)), LK(K(xj , x))〉K . Substituting Eq. (8) and Eq. (9) to the problem in Eq. (7), we ar-
rive at the following quadratic objective function of thel-dimensional variableα ando-dimensional
variableβ = [β1, β2, . . . , βo]

T :

[α∗, β∗] = arg min
1

l
(Y − Kα − Ψβ)T (Y − Kα − Ψβ) + γαT (K − 2K ′ + K ′′)α, (10)

whereΨ is anl×o matrixΨij = µj(xi), andY = [y1, y2, . . . , yl]
T . Taking derivatives with respect

to α andβ, since the derivative of the objective function vanishes at the minimizer, we obtain

(γl(K − 2K ′ + K ′′) + K2)α + KΨβ = KY, ΨT (Y − Kα − Ψβ) = 0. (11)

In the term||f−LK(f)||, f is subtracted byLK(f), and so it partially penalized. For this reason, the
resulting algorithm is referred as Partially-penalized Regularized Least Squares algorithm (PRLS).



3.2 The PLapRLS Algorithm

The idea in the previous section can also be extended toLapRLSin the manifold regularization
framework [1]. In the manifold setting, the smoothness on the data adjacency graph should be
considered, and Eq. (5) is modified as

f∗ = arg min
f∈HK

1

l

l
∑

i=1

V (xi, yi, f)+γA||f−LK(f)||2K+
γI

(u + l)2

l+u
∑

i,j=1

(f(xi)−f(xj))
2Wij , (12)

whereWij are edge weights in the data adjacency. FromW , the graph LaplacianL is given by
L = D−W , whereD is the diagonal matrix withDii =

∑l+u
j=1

Wij . For this optimization problem,
the result in Theorem 2 can be modified slightly as:

Theorem 3 Under Assumption 1, the minimizer of the optimization problem in Eq. (12) admits an
expansion

f∗(x) =

o
∑

j=1

βjµj(x) +

l+u
∑

i=1

αiK(xi, x). (13)

Following Eq. (13), we continue to optimize the(l + u)-dimensional variableα =
[α1, α2, . . . , αl+u]α and theo-dimensional variableβ = [β1, β2, . . . , βo]

T . In a similar way as
the previous section andLapRLSin [1], α andβ are determined by the following linear systems:

{

(KJK + λ1(K − 2K ′ + K ′′) + λ2KLK)α + (KJΨ + λ2KLΨ)β = KJY,
(Ψ′JK − λ2Ψ

′LK)α + (Ψ′Ψ − λ2Ψ
′LΨ)β = Ψ′ ∗ Y,

(14)

whereK,K ′,K ′′ are the(l+u)× (l+u) Gram matrices over labeled and unlabeled points;Y is an
(l + u) dimensional label vector given by:Y = [y1, y2, . . . , yl, 0, . . . , 0], J is an(l + u) × (l + u)
diagonal matrix given byJ = diag(1, 1, . . . , 1, 0, . . . , 0) with the firstl diagonal entries as1 and the
rest0, andΨ is an(l + u) × o matrixΨij = µj(xi).

4 Discussions

4.1 Heat Kernels and the Computation of K ′ and K ′′

In this section we will illustrate the computation ofK ′ andK ′′ in the case of heat kernels. The basic
facts about heat kernels are excerpted from [6], and for more materials, see [10].

Given a manifoldM and pointsx andy, the heat kernelKt(x, y) is a special solution to the heat
equation with a special initial condition called the delta functionδ(x−y). More specifically,δ(x−y)
describes a unit heat source at positiony with no heat in other positions. Namely,δ(x − y) = 0 for
x 6= y and

∫ +∞

−∞
δ(x − y)dx = 1. If we let f0(x, 0) = δ(x − y), thenKt(x, y) is a solution to the

following differential equation on a manifoldM:

∂f

∂t
− Lf = 0, f(x, 0) = f0(x), (15)

wheref(x, t) is the temperature at locationx at timet, beginning with an initial distributionf0(x) at
time zero, andL is theLaplace-Beltrami operator. Equation (15) describes the heat flow throughout
a geometric manifold with initial conditions.

Theorem 4 Let M be a complete Riemannian manifold. Then there exists a functionK ∈
C∞(R+ × M × M), called the heat kernel, which satisfies the following properties for
all x, y ∈ M, with Kt(x, y) = K(t, x, y): (1) Kt(x, y) defines a Mercer kernel. (2)
Kt(x, y) =

∫

M
Kt−s(x, z)Ks(z, y)dz for any s > 0. (3) The solution to Eq. (15) isf(x, t) =

∫

M
Kt(x, y)f0(y)dy. (4) 1 =

∫

M
Kt(x, y)1dy and (5) WhenM = R

m, Lf is simplified as
∑

i
∂2f

∂x2

i

, and the heat kernel takes the Gaussian RBF formKt(x, y) = (4πt)−
m
2 e−

||x−y||2

4t .



K ′ andK ′′ can be computed as follows:

K ′
ij = 〈Kt(xi, x), LK(Kt(xj , x))〉K (by definition)

= LK(Kt(xj , x))|x=xi
(by the reproducing property of a Mercer kernel)

=
∫

X
Kt(xj , y)Kt(xi, y)dν(y) (by the definition ofLK)

= K2t(xi, xj) (by Property 2 in Theorem4)

(16)

Based on the fact thatLK is self-adjoint, we can similarly deriveK ′′
ij = K3t(xi, xj). For other

kernels,K ′ andK ′′ can also be computed.

4.2 What should not be penalized?

From Theorem 2, we know that the functions in the null spaceH0 = {f ∈ HK |f − LK(f) =
0} should not be penalized. Although there may be looser assumptions that can guarantee the
validity of the result in Theorem 2, there are two assumptions in this work:X is compact and
∫

X
K(x, α)dP (α) in Eq. (4) is a constant. Next we discuss the constant functions and the linear

functions.

Should constant functions be penalized? Under the two assumptions, a constant functionc should
not be penalized, becausec =

∫

X
cK(x, α)p(α)dα/

∫

X
K(x, α)p(α)dα, i.e., c ∈ H0. For heat

kernels, ifP (x) is uniformly distributed onM, then by Property 4 in Theorem 4,
∫

X
K(x, α)dP (α)

is a constant, and soc should not be penalized.

For polynomial kernels, the theory cannot guarantee that constant functions should not be penalized
even with a uniform distributionP (x). For example, considering the polynomial kernelxy+1 in the
intervalX = [0 1] and the uniform distribution onX,

∫

X
(xy+1)dP (y) =

∫ 1

0
(xy+1)dy = x/2+1

is not a constant. As a counter example, we will show in Section 5.3 that not penalizing constant
functions in polynomial kernels will result in much worse accuracy. The reason for this phenomenon
is that constant functions may not be smooth in the feature space produced by the polynomial kernel
under some distributions. The readers can deduce an example forp(x) such that

∫ 1

0
(xy + 1)dP (y)

happens to be a constant.

Should linear function aT x be penalized? In the case whenX is a closed ballBr with radius
r whenP (x) is uniformly distributed overBr and whenK is the Gaussian RBF kernel, thenaT x
should not be penalized whenr is big enough.1 Sincer is big enough, we have

∫

Rn ·dx ≈
∫

Br
·dx

and
∫

Br
Kt(x, y)dy ≈ 1, and soaT x =

∫

Rn Kt(x, y)aT ydy ≈
∫

Br
Kt(x, y)aT ydy ≈ LK(aT x).

Consequently||aT x−LK(aT x)||K will be small enough, and so the linear functionaT x needs not
be penalized. For other kernels, other spaces, or otherPX , the conclusion may not be true.

5 Experiments

In this section, we evaluate the proposed algorithmsPRLSandPLapRLSon a toy dataset (size: 40),
a medium-sized dataset (size: 3,119), and a large-sized dataset (size: 20,000), and provide a counter
example for constant functions on another dataset (size: 9,298). We use the Gaussian RBF kernels in
the first three datasets, and use polynomial kernels to provide a counter example on the last dataset.
Without any prior knowledge about the data distribution, we assume that the examples are uniformly
distributed, and so constant functions are considered to be inH0 for the Gaussian RBF kernel, but
linear functions are not considered to be inH0 since it is rare for data to be distributed uniformly on
a large ball. The data and results for the toy dataset are illustrated in the left diagram and the right
diagram in Fig. 1.

5.1 UCI Dataset Isolet about Spoken Letter Recognition

We follow the same semi-supervised settings as that in [1] to compareRLSwith PRLS, and compare
LapRLSwith PLapRLSon the Isolet database. The dataset contains utterances of 150 subjects who

1Note that a subset ofRn is compact if and only if it is closed and bounded. SinceR
n is not bounded, it

is not compact, and so the Representer Theorem cannot be established. This is the reason why we cannot talk
aboutRn directly.
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Figure 2: Isolet Experiment

pronounced the name of each letter of the English alphabet twice. The speakers were grouped into
5 sets of 30 speakers each. The data of the first 30 speakers forms a training set of 1,560 examples,
and that of the last 29 speakers forms the test set. The task is to distinguish the first 13 letters from
the last 13. To simulate a real-world situation, 30 binary classification problems corresponding to 30
splits of the training data where all 52 utterances of one speaker were labeled and all the rest were
left unlabeled. All the algorithms use Gaussian RBF kernels. ForRLSandLapRLS, the results were
obtained with widthσ = 10, γl = 0.05, γAl = γI l/(u + l)2 = 0.005. For PRLSandPLapRLS,
the results were obtained with widthσ = 4, γl = 0.01, andγAl = γI l/(u + l)2 = 0.01. In Fig. 2,
we can see that bothPRLSandPLapRLSmake significant performance improvements over their
corresponding counterparts on both unlabeled data and test set.

5.2 UCI Dataset Letter about Printed Letter Recognition

In Dataset Letter, there are 16 features for each example, and there are 26 classes representing the
upper case printed letters. The first 400 examples were taken to form the training set. The remaining
19,600 examples form the test set. The parameters are set as follows:σ = 1, γl = γA(l+u) = 0.25,
andγI l/(u + l)2 = 0.05. For each of the four algorithmsRLS,PRLS,LapRLS, andPLapRLS, for
each of the 26 one-versus-all binary classification tasks, and for each of 10 runs, two examples for
each class were randomly labeled. For each algorithm, the averages over all the 260 one-versus-all
binary classification error rates for unlabeled 398 examples and test set are listed respectively as
follows: (5.79%, 5.23%) forRLS, (5.12%, 4.77%) forPRLS, (0%, 2.96%) forLapRLS, and (0%,
3.15%) for PLapRLSrespectively. From the results, we can see thatRLS is improved on both
unlabeled examples and test set. The fact that there is no error in the total 260 tasks forLapRLS
andPLapRLSon unlabeled examples suggests that the data is distributed in a curved manifold. On
a curved manifold, the heat kernels do not take the Gaussian RBF form, and soPLapRLSusing the
Gaussian RBF form cannot achieve its best. This is the reason why we can observe thatPLapRLS
is slightly worse thanLapRLSon the test set. This suggests the need for a vast of investigations on
heat kernels on a manifold.

5.3 A Counter Example in Handwritten Digit Recognition

Note that, polynomial kernels with degree 3 were used on USPS dataset in [1], and 2 images for each
class were randomly labeled. We follow the same experimental setting as that in [1]. ForRLS, if we



use Eq. (2), then the averages of 45 pairwise binary classification error rates are 8.83% and 8.41%
for unlabeled 398 images and 8,898 images in the test set respectively. If constant functions are not
penalized, then we should usef∗(x) =

∑l
i=1

αiK(xi, x)+a, and the corresponding error rates are
9.75% and 9.09% respectively. By this example, we show that leaving constant functions outside
the regularization term is dangerous; however, it is fortunate that we have a theory to guide this in
Section 4: ifX is compact and

∫

X
K(x, α)dP (α) in Eq. (4) is a constant, then constant functions

should not be penalized.

6 Conclusion

A novel learning scheme is proposed based on a new viewpoint of penalizing the inconsistent part
between inductive functions and kernels. In theoretical aspects, we have three important claims: (1)
On a compact domain or manifold, if the denominator in Eq. (4) is a constant, then there is a new
Representer Theorem; (2) The same conditions become a sufficient condition under which constant
functions should not be penalized; and (3) under the same conditions, a function belongs to the
null space if and only if the function should not be penalized. Empirically, we claim that the novel
learning scheme can achieve accuracy improvement in practical applications.
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