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Natural Language Understanding (NLU) is focusing on enabling
machine to understand and process unstructured human lan-
guage. NLU is one of the core parts of natural language
processing with a wide range of applications, such as text classi-
fication, sentiment analysis, question answering, etc. However,
most learning based NLU methods either rely on pre-defined,
hand-crafted features, or high-quality human annotated data
for training.

With the risen of social media and arrival of information
explosion era, the large volume and short nature of social
media text data bring a lot of challenges to conversational NLU
methods, making the feature engineering and data annotation
very labor-intensive and domain-specific. In this thesis, we
propose to model latent variables (i.e., topics and discourse)
on social media text (e.g., microblog, online forum) in an
unsupervised way, based on which, we design our NLU models
and demonstrate their superior performance on two social media
NLU tasks: short text classification and argumentation mining.

First, we propose an unsupervised framework for jointly
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modeling topic content and discourse behavior in microblog
conversations for understanding the semantics and interaction
of social media messages. Concretely, we propose a neural
model to discover word clusters indicating what a conversation
concerns (i.e., topics) and those reflecting how participants voice
their opinions (i.e., discourse). Extensive experiments show
that our model can yield both coherent topics and meaningful
discourse behavior. Our model can be easily extended with
other neural networks. Further study shows that our topic
and discourse representations can benefit the classification of
microblog messages, especially when they are jointly trained
with the classifier.

Second, we focus on the short text classification, which is
one of the most fundamental techniques in social media text
understanding. To address data sparsity issue in social media
short text, we propose topic memory networks for short text
classification with a novel topic memory mechanism to encode
latent topic representations indicative of class labels. Different
from most prior work that focuses on extending features with
external knowledge or pre-trained topics, our model jointly
explores topic inference and text classification with memory
networks in an end-to-end manner. Experimental results on four
benchmark datasets show that our model outperforms state-of-
the-art models on short text classification, meanwhile generates
coherent topics.

Third, we focus on the online argumentation, which is a
growing and challenging field in social media text understanding.
We present a novel study that automatically analyzes the key
factors of persuasiveness in argumentation process, beyond
simply predicting who will win the debate. Specifically, we
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propose a novel neural model which is able to dynamically
track the changes of latent topics and discourse in argumen-
tative conversations, allowing the investigation of their roles in
influencing the outcomes of persuasion. Extensive experiments
have been conducted on argumentative conversations on both
online forum and supreme court. The results show that our
model outperforms state-of-the-art models in identifying per-
suasive arguments. We further analyze the effects of topics and
discourse on persuasiveness, and draw some findings from our
empirical results, which will help people better engage in future
persuasive conversations.
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論文題目：基于隱變量建模的自然語言理解

作者 ：曾紀川

學校 ：香港中文大學

學系 ：計算機科學與工程學系

修讀學位：哲學博士

摘要 ：

自然語言理解(NLU)關注于使機器能理解和處理非結構化的人
類語言。NLU是自然語言處理核心部分之一，有廣泛的應用，
比如文本分類，情感分析，問題解答等。然而，大多數基於學

習的NLU方法或者依賴於預定義的人為製作的特徵，或者訓練
所需的高質量的人工標註數據。隨著社交媒體和信息爆炸時代

的到來，大量簡短的社交媒體文本給對話式NLU方法帶來了大
量的挑戰，使得特徵工程和數據標註極為需要人力和領域特

定。本論文中，我們提出了社交媒體文本（比如微博和在論

壇）上的無監督模型隱變量（即主題和論述），基於此，我們

設計了新的NLU模型並且展示了它們在兩個社交媒體自然語言
理解任務上優越的性能：短文本分類和辯論挖掘。

首先，我們提出了微博對話中聯合建模主題內容和論述行為的

無監督模型以理解社交媒體信息的意義和交互。具體地，我們

提出了一個神經模型來發現表徵一組對話設計的內容（即主

題）和反應參與者如何表達他們觀點（即論述）的詞聚類。大

量實驗表明我們的模型可以生成連貫的主題和有意義的論述行

為。我們的模型可以比較容易地跟其它的神經網絡結合擴展。

進一步的研究表明我們的主題和論述表徵能夠有助於微博信息

的分類，特別是當它們與分類器聯合訓練的時候。
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其次，我們集中在短文本分類這個最基本的社交媒體文本理解

的技術。為了解決社交媒體短文本的數據稀疏問題，我們提出

了為短文本分類的主題記憶網絡，即用一個新的主題記憶機制

來編碼表示類標註的隱含主題表徵。不同於大多數以往關注在

用外部知識擴展特徵或者預訓練的主題，我們的模型用端到端

的方式基於記憶網絡聯合探索了主題推斷和文本分類。在四個

基準數據集上的實驗結果表明我們的模型在短文本分類上優於

最新的模型，且生成連貫的主題。

再其次，我們關注在辯論這個在社交媒體文本理解中不斷增長

的且有挑戰性的領域。我們呈現了一個新的自動分析辯論階段

中說服的關鍵因素的研究，而不僅僅是簡單地預測誰講在辯論

中獲勝。特別地，我們提出了一個新的神經模型，來自動地動

態追蹤隱含主題和論述在辯論對話中的變化，並允許探索它們

在影響說服結果中的角色。大量在辯論對話場景中的實驗被執

行，包括在論壇和最高法院。結果表明我們的模型在識別說服

性的辯論上優於最新的模型。我們進一步分析了主題和論述在

說服中的影響，並發現它們都很有用。此外，我們總結了基於

實驗結果的一些發現，可以幫助人們更好地參與未來的說服性

對話。
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Chapter 1

Introduction

This thesis presents our research on latent variable modeling for
natural language understanding, which is an important field of
natural language processing with a wide range of applications.
We provide a brief overview of the research problems under
study in Section 1.1, and highlight the main contributions of this
thesis in Section 1.2. Section 1.3 outlines the thesis structure.

1.1 Overview

In the last decades, we’ve witnessed the risen and popularity
of the Internet. The way of communication between people
has been revolutionized by breaking the limitation of region,
space and time. Online platforms, such as Twitter1, Sina
Weibo2, and Reddit3 become important outlets for people to
share information and voice opinion, evidenced by many recent
events like “Notre-Dame de Paris fire”, and Donald J. Trump
on Twitter. The flourish of social media has led to the
large amount of text data produced by various social media

1twitter.com
2weibo.com
3reddit.com

1

twitter.com
weibo.com
reddit.com


CHAPTER 1. INTRODUCTION 2

services every day. Those social media text data fertilize a
wide range of real-life applications, for example, breaking event
detection [74, 100, 138], real-time sentiment analysis [117, 132],
user profiling [22, 139], advertising [67] and social chatbot [114].
However, the explosive growth of the social media text data far
outpaces human beings’ ability of reading and understanding.
Table 1.1 tells two stories that commonly happen in our daily
life. Although the advance of big data analysis technology
enables large scale text analysis, people are still being exposed
to superfluous information, facing the challenge of information
explosion. Such problem can seriously affect lots of web appli-
cations, such as market decision [42], and stock prediction [15],
if they have a superficial understanding of the social media
messages. As a consequence, there is a pressing need for
automatic language understanding techniques for processing and
analyzing social media texts [163]
Social media text provides us rich information and insight for
detecting social event and understanding social interaction. To
help users to distill the useful information among the huge
quantity of social media textual data, in this thesis, we focus
on the research problem of natural language understanding of
social media text. Unfortunately, different from the conventional
formal and well-edit text, such as news article [162] and scientific
paper [111], textual data in social media presents many new
challenges due to its distinct characteristics. We conclude three
challenges for understanding the social media text:
Short and noisy. Certain social media platforms have char-
acter limit on the message user created. In Twitter, users are
restricted to type the message less than 280 characters. Similar,
Pinterest board description is limited to 500 characters length.
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Story of Justin Ng
Justin Ng is a typical office worker in Hong Kong, another identify
of him is a fan of Jay Chou, an pop singer. Once he knew that
Jay Chou was going to give concert in Hong Kong at March 19,
but unfortunately, he missed the sale time of ticket, and found
that only expansive seats are available. So he started to search on
the microblog hoping that there is someone that want to transfer
the ticket. But he quickly gave up, since he was overwhelmed by
enormous replicated irrelevant messages.

Story Jie Zhang
Jie Zhang is a computer science Ph.D student in CUHK from
Mainland China. Recently, she was invited to join to a Wechat
group, which is for sharing research experience and communicating
ideas, and the group has over 400 members. Jie Zhang edited her
profile and turned off the notification of this Wechat group, since
lots of conversations on it are irrelevant to her research. One day,
Jie Zhang received a message from this Wechat group, which “@”
her, and says “It is a nice work, should be helpful for you@jiezhang”.
She was very confused: which work it refers to? To find out the
answer, she spent half an hour to trace the chat history.

Table 1.1: Two stories in the Internet era.
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Figure 1.1: A message from Twitter.

Although the character limitations have been extended (e.g.,
Twitter [2]) or even canceled (e.g., Weibo [3]) over time, people
still get used to writing shorter messages. For example, the
average length of a tweet is 28 characters, and most Facebook
posts are within 40-80 characters [2]. People like when a
message makes its point quickly and concisely. Shorter tweets
or posts usually receive more likes, comments, and shares. As
a consequence, short length social media text is ubiquitous on
the web. In addition to short in length, social media messages
are typically informal and full of noise. Because most of social
media usage coming via mobile devices, it is common that people
write messages with misspelling words, emojis, abbreviations,
and slang, as shown in a tweet example of Figure 1.1. Short and
noisy social media text data have very limited textual features
and lack the contextual information, current existing method
for well-edited and formal text are inevitable compromised when
facing such data. Therefore, successful processing of such short
and noisy text is essential for social media text understanding.
Huge volume. With the flourish of social media, a massive
amount of social media messages generated every day. Take
Sina Weibo, the most widely-used microblog site in China, as
an example. In 2018, the number of monthly active users has
reached 462 million, over 130 million posts are created every
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day [1]. Such huge volume of social media text far outpaces
human beings’ ability of reading and understanding. There is a
pressing need for automatic language understanding techniques
for processing and analyzing In addition to huge volume of data,
informal and noisy social media messages make it extremely
time-consuming for human editors to make annotations, which is
the basis of many supervised learning models, such as sentiment
classification, question answering. So how can we process and
distill useful information from such huge volume of unlabeled
data, is an important problem this thesis focuses on.
Open domain. Social media platforms are typically open-
domain, which exhibit a rich variety of information sources. Peo-
ple with various interests keep posting, commenting, and sharing
messages with a wide variety of topics, including entertainment,
politics, social events, science, business, etc. In domain-specific
corpus, where pre-defined schemes and hand-crafted features are
designed to boost the performance of tasks, such as task-oriented
chatbot, medical QA. In comparison, social media text is open-
domain, it is hard to incorporate the domain-specific knowledge,
such as knowledge base and hand-crafted features. Therefore, It
requires us to develop fully data-driven methods that can handle
such open domain social media text.
Although social media text data have the above challenges,
there still existing lots of automatic methods with the help
the advance of natural language understating techniques. Topic
modeling, is one of the most famous and widely used techniques
for understanding the social media text among them. Topic
modeling can automatically cluster the massive and diverse
social media text without any annotation according to the
latent topics they belong to. Topic modeling is typically the
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first step for many language understanding tasks, such as text
classification and text summarization. However, topic modeling
for social media text is another challenging task. Conventional
topic modeling methods, such as LDA [8] and pLSA [41],
can work very well in formal and well-edited text, but their
performance drop sharply when facing short and noisy social
media text.
Social media also provide abundant non-content information,
which is helpful for understanding the semantic meaning of
social media messages. For example, Twitter has a clear
conversation structure information, indicating who replies to
who. Such structure information is commonly used to study the
interaction of social behaviors, which can help us to enrich the
contextual information of each social media message. Therefore,
if we can organize social media messages into the tree structure
conversations, the data sparsity issue can be alleviated. Towards
key focus understanding of a conversation, previous work has
shown the benefits of discourse analysis [70, 72, 102], which
shapes how messages interact with each other forming the
discussion flow. Discourse, such as contrast, elaboration, state-
ment, is originally defined to capture the semantic or pragmatic
relation between sentences in a document. Recent study about
discourse has involved identifying performative function (e.g.,
“question”, “response”) of each utterance in dialogue, i.e.,
dialogue acts, as the shallow conversation structure [25, 124].
Due to the short nature of social media text, each message
in conversation may only contain one type of discourse, such
as “statement”, “comment”, which capture the illocutionary
meanings of an utterance. Table 1.2 gives an snippet of
Twitter conversation. As we can see, message M2 questions the
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M1: Louisiana flood victims praise Donald Trump for visiting damaged areas!
M2: Total time: 49 seconds helping for photo op. Also Playdoh, damn helpful in a flood.
M3: food water hygiene supply's Play Dough was for kids obvious the kids all in shelter 
from flood have no toys duh
M4: Maybe he can bring you some punctuation
M5:😂funny all Libs do that when they have no answer they correct grammar ~fail~ this 
is Twitter not school

Table 1.2: A snippet of Twitter conversation about Trump visiting Louisiana
flood victims.

statement of “Louisiana flood victims praise Donald Trump”
posted by M1 through emphasizing “Total time: 49 seconds”.
Message M3 gives a comment of M2’s viewpoint, by saying
“Play Dough was for kids”. M4 and M5 are arguments about
the punctuation. We can find that there is a clear discourse
flow that carries the conversation forward in the above example,
via making a statement, posting a question, giving a comment,
and so on so forth. Therefore, discourse structure embedded in
the social media conversation can usefully reflect salient topics
raised in the discussion process.
The research of this thesis comprises three parts. In the first
part, we focus on the study of unsupervised modeling social
media conversation. Specifically, we explore the joint effect of
modeling latent topics and discourse by utilizing the microblog
conversation structure information. In the second part, we
focus on the fundamental social media text understanding
technique, short text classification. In particular, we propose
to incorporate the latent topic representations indicative of
class labels into neural classifier. In the third part, we focus
on a more challenging task, exploring the reasons behind the
persuasiveness of online argumentation.
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1.2 Thesis Contributions

In this thesis, we make contributions to the understanding of
social media text in the following ways:

1. Joint modeling of topics and discourse in microblog
conversations

Microblog conversation is ubiquitous in social media plat-
form (e.g., Twitter, Weibo). We present an unsupervised
neural network framework for jointly modeling topic con-
tent and discourse behaviors in microblog conversations. In
particular, we propose a neural model to discover word clus-
ters indicating what a conversation concerns (i.e., topics)
and those reflecting how participants voice their opinions
(i.e., discourse). Extensive experiments on Twiiter conver-
sation dataset show that our model can generate coherent
topics and meaningful discourse roles. Furthermore, Our
model can be easily extended with other neural network
architectures (such as CNN) to present better performance
with end-to-end joint training.

2. Short text classification for social media messages

Short text classification is one the most fundamental tech-
niques for automatic social media text understanding. Due
to data sparsity nature of social media messages, conven-
tional classifier designed for formal and well-edited text
work poorly facing such short text messages. To address
this issue, we propose topic memory networks for short
text classification with a novel topic memory mechanism to
encode latent topical representations. Compared with ex-
isting work where most previous efforts focus on extending
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features with external knowledge or pre-trained topics, our
model jointly explores topic inference and text classification
with memory networks in an end-to-end manner. Extensive
experiments on four benchmark outperforms state-of-the-
art models on short text classification, meanwhile generates
coherent topics.

3. Automatically identifying key factors of persuasive-
ness in online argumentation

Online argumentation mining is a growing field in social
media text understanding. Most of the previous work
focuses on crafting hand-made features to predict which
side is more convincing. However, such a task has proven
to be hard, and the prediction results are just slightly better
than random guess [126]. Here we take a step further
and presents a study that automatically analyzes the key
factors in argument persuasiveness, beyond simply predict-
ing who will win the debate. We propose a novel neural
model which is able to dynamically track the changes of
latent topics and discourse in argumentative conversations,
allowing the investigation of their roles in influencing the
outcomes of persuasion. We carry out extensive exper-
iments on argumentative conversations from both social
media and supreme court. The results show that our model
can effectively identify persuasive arguments, significantly
outperforming state-of-the-art methods on both datasets.
We also draw some findings from our empirical results,
which will help people better engage in future persuasive
conversations.
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1.3 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2

In this chapter, we give a systematic review of the back-
ground knowledge and related work on latent variable
modeling and natural language understanding for social
media. First, we briefly introduce social media text data
with a focus on its characteristics and applications. Then
we review topic modeling, one of most Representative
latent variable modeling methods for text data, including
conventional topic models, topic modeling on social media
text, and neural topic modeling. After that, we introduce
discourse analysis, with a focus on the role of discourse
in social media conversation. Finally, we review the
task of natural language understanding for social media,
providing the related work of short text classification and
argumentation mining.

• Chapter 3

This chapter presents an unsupervised neural network
framework for jointly modeling topic content and dis-
course behavior in microblog conversations, with the aim
to automatically analysis what a conversation is talking
about and how the opinion is voiced in each message.
To be specific, section 3.1 introduces social media and
the motivation of understanding of microblog conversation.
Section 3.2 presents our unsupervised neural framework
that can joint exploration of word clusters to represent
topic and discourse in microblog conversations. Evaluation
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results are presented is Section 3.4. Finally, we conclude
this chapter in Section 3.5.

• Chapter 4

In this chapter, we focus on the fundamental language
understanding technique for social media text, short text
classification, and propose a novel topic memory mecha-
nism to encode latent topic representations indicative of
class labels, which outperforms the state-of-the-art short
text classifier. Section 4.1 present the motivation and
intuition of our short text classifier. Section 4.2 describe our
topic memory networks, consisted of neural topic model,
topic memory mechanism, and neural network classifier.
We evaluate the performance of topic memory networks in
Section 4.4, and conclude this chapter in Section 4.5.

• Chapter 5

In this chapter, we focus on the online argumentation
and present a novel study that automatically analyzes
the key factors in argument persuasiveness, beyond simply
predicting who will win the debate. More specifically, Sec-
tion 5.1 introduce the motivation of analysis the key factors
of persuasiveness in argumentation process. We briefly
describe our data and problem formulation in Section 5.2.
In Section 5.3, We propose a novel neural model which is
able to dynamically track the changes of latent topics and
discourse in argumentative conversations. We evaluate the
proposed model in Section 5.5 and draw some insights from
our empirical results in Section 5.6.

• Chapter 6
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The last chapter summarizes this thesis and provides some
potential future directions for social media text understand-
ing that deserve for further exploration.

2 End of chapter.



Chapter 2

Background Review

This chapter briefly reviews some background knowledge and
related work of our research. First, we provide the background
knowledge about social media text data. Then we explain the
two basic techniques this thesis focuses on, topic modeling in
Section 2.2 and discourse analysis in Section 2.3. Next, we
describe the natural language understanding for social media
text in Section 2.4, including two tasks: text classification in
Section 2.4.1, and argumentation mining in Section 2.4.2.

2.1 Social Media Text Data

Social media such as microblog, online forum, multimedia
sharing sites, are extensively used in our daily, playing an
important role for people to communicate breaking news, voice
opinions, participate in events, and connect to each other from
anywhere, at anytime. Social media is an important traffic
channel for current web applications, accounts for 60% of top
10 sites according to the statistics from RankRanger 1 as shown
in Table 2.1. These social media provide rich information of

1https://www.rankranger.com/top-websites

13

https://www.rankranger.com/top-websites
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Rank Website Rank Website
1 Wikipedia 6 Imdb
2 Twitter 7 Apple
3 Google 8 Amazon
4 Youtube 9 Merriam-webster
5 Facebook 10 Instagram

Table 2.1: Internet Traffic Report by RankRanger on August 3rd, 2019.
Social media websites are in boldface.

people interaction and collective behavior, thus have attracted
widespread attention in sociology, psychology, business, political
science, computer science, economics, and other social and other
disciplines.
The rapid growth of social media leads to large quantity of user-
created text. For example, there are 500 million tweets sent
each day on Twitter, that means 5,787 tweets generated per
second 2. Figure 2.1 gives an example of Twitter messages about
Donald Trump visiting Louisiana flood victims. Compared with
traditional text data from news article or well-edited books,
social media text is typically short in length. The average
length of a tweet is 28 characters, and most Facebook posts are
within 40-80 characters [2]. Moreover, social media messages
are typically informal and full of noise. Because most of social
media messages are composed in mobile devices, it is common
that people write messages with syntax errors, abbreviations,
and slang, as shown in Figure 2.1. As a result, there are
very limited textual features for understanding the meaning of
social media messages without giving the context information.
Another feature of social media text is the abundant non-text
information, which is helpful for understanding the semantic

2https://blog.hootsuite.com/twitter-statistics/

https://blog.hootsuite.com/twitter-statistics/
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Figure 2.1: Example Twitter messages about Trump visiting Louisiana flood
victims.

meaning of social media messages. For example, people tend
to incorporate images and video in their messages for better
engagement of other uses. There is also a clear conversation
structure information, indicating who replies to who. Such non-
text information is commonly used to study the interaction of
social behaviors, which can help us to enrich the contextual
information of social media messages.
Social media text provides large volume of social conversations
and user interactions. A wide range of real-life applications are
built on social media text data, for example, breaking event
detection [74, 100, 138], real-time sentiment analysis [117, 132],
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user profiling [22, 139], advertising [67] and social chatbot [114].

2.2 Topic Modeling

Topic model has achieved huge success in lots of areas in the last
decades. It can automatically discover the pattern of words in
the document, indicating the word clusters as the latent “topic”
representations from texts. We brief introduce Latent Dirichlet
Allocation (LDA) in Section 2.2.1. Then we will discuss the
topic modeling in social media text in Section 2.2.2. At last, we
will introduce the latest neural network based topic modeling in
Section 2.2.3.

2.2.1 Conventional Topic Modeling

Topic modeling provides an effective way to analyse large scale
of unlabeled text data. One of the most well-known topic models
is Latent Dirichlet Allocation (LDA) [13].
The assumption of LDA is that each document is a mixture of
topics, where a topic is a probabilistic distribution over words.
In other words, LDA is a generative model, which specifies a
probabilistic procedure for reconstructing the document. The
generation procedure can be described as a writer to compose a
story. The writing procedure is the repeat of the following steps:
(1) The writer picks a topic z from the topic mixture θd of the
document d. (2) from the word mixture βz of topic z, the writer
picks a word w and write it down.
LDA model each document d as a mixture of latent topics θd,
following a multinomial distribution, each latent topic describes
a multinomial distribution βz over word vocabulary. The param-
eters of the multinomial for topics have a Dirichlet prior [13].
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Figure 2.2: A graphical model representation of LDA.

Figure 2.2 shows the overall graphical representation of LDA.
Therefore, the above writing process can be formulated into the
following form:
For each document d:
• Draw a topic mixture θd ∼ Dirichlet(α)
• For each word wd,n in d:

– Draw a topic zd,n ∼Multinomial(θd)
– Draw a word wd,n ∼Multinomial(βzd,n

)
In the above generative process, the only observed variable are
the given collection of words in documents, others are latent
variables (θ and β) and hyper parameters (α). In order to
estimate the latent variables and hyper parameters, we need
to maximize the probability of seeing these words in documents
W as follows:

p(W |α, β) =
D∏
d=1

∫
p(θd|α)

Nd∏
n=1

∑
zd,n

p(zd,n)p(wd,n|zd,n, β)dθd (2.1)

where D is the number of documents, Nd is number of words
in document d. The variables θd are document-level variables,
sampled in each document. zd,n ,wd,n are word-level variables,
sampled for each word in each document.
LDA is an excellent tool for the modeling distribution of
potential topics for large corpora. Therefore, it is able to identify
sub-topic in the text documents composed of many patents
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Figure 2.3: Top: 15 most probable words for four selected topics. Bottom:
a text document with words colored according to which topic they belong
to. [13]

and represents each patent in a series of subject distributions.
Figure 2.3 gives an example of what LDA can learn from text
document. By using LDA, we can discover the hidden topics
given set of documents. Here, each document is then treated as
a probability distribution for a set of topics, and each topic is a
probability distribution of for a set of words.
Typically, there are two ways for estimating the parameters of
LDA, variational EM [13] and Gibbs sampling [122].
• Variational EM, is a type of Expectation-Maximization
algorithm of variational inference. EM is a powerful method
for estimating the parameter of graphical model in an
unsupervised way. However, in LDA, the calculation of
integral of marginal likelihood is intractable, variational
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EM uses a parametric approximation (e.g. mean-field)
to the posterior distributions and the latent variables.
Therefore, the objection of Variational EM is to optimize
the fit of variational approximation to the true posterior
via KL-divergence. This method is also applied to solve the
parameter inference in LDA-alike topic models [9, 23, 167].
• Gibbs sampling, is a Monte Carlo Markov-chain approach
to generate a sample from a joint distribution, which is
widely used in parameter estimation of topic models. Since
LDA has the probabilistic conjugated pair in generative
process, that is (α, θ). People also parameterize the
topic word mixture β into the conjugated form (β, φ),
by treating the topic word mixtures as φ, and β as the
prior. Therefore, an efficient form of Gibbs sampling,
collapsed Gibbs sampling, can be performed in LDA. When
the Markov chain converges, we can infer the multinomial
from the state of sampled latent variables. More details
about conjugacy of Dirichlet and multinomial distributions,
and the collapsed Gibbs sampling can be found in Mark
Steyvers’s tutorial [122].

LDA is a springboard for topic modeling, and lots of re-
searches have proposed methods which are extended from LDA,
such as Correlated Topic Model (CTM) [11], Author-Topic
Model [111], Dynamic Topic Model [12], and Relational Topic
Models (RTM) [23] etc. Besides "topic" modeling, it has
also inspired modeling discourse [109] and sentiment [73] in
unsupervised or weak supervised way, which is the foundation
work of Chapter 3. In particular, Ritter [109] proposed to model
the discourse structure of conversation through Hidden Markov
Model (HMM). But none of them consider the joint effect of
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topic and hard to be extended to other tasks, such as text
classification, which is an issue that Chapter 3 tackles.

2.2.2 Topic Modeling in Social Media Text

Despite of the huge success achieved by the springboard topic
models (e.g., pLSA [41] and LDA [13]), and their extensions [8,
111], the applications of these models have been limited to
formal and well-edited documents, such as news reports [8] and
scientific articles [111], attributed to their reliance on document-
level word collocations. When processing social media texts,
such as the messages on microblogs, it is likely that the
performance of these models will be inevitably compromised,
due to the severe data sparsity issue and informal texts.
To deal with such an issue, many prior work focuses on how
to enrich the context of short messages. To this end, biterm
topic model (BTM) [148] extends a message into a biterm set
with all combinations of any two distinct words appearing in the
message. On the contrary, our model allows the richer context in
a conversation to be exploited, where word collocation patterns
can be captured beyond a short message. In addition, there
are many methods employing some heuristic rules to aggregate
short messages into long pseudo-documents, such as those based
on authorship [43, 165], that is aggregating the posts of the
same user. However, such heuristic aggregation is something
unnatural in social media scenario. For example, one person
might has multiple interest covering a wide range of topics,
or express distinct writing style in different time. Ramage
et al. [106] and Mehrotra et al. [84] propose the aggregation
strategy based on hashtags. However, there are just a small
portion of Twitter messages that containing a hashtag, their
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performance is inevitably compromised for the messages with
the topics irrelevant to any hashtag, and this is very common in
the social media, cause topics keep changing rapidly.
In another line of the research, many previous efforts incorporate
the external representations, such as word embeddings and
knowledge base. In particular, Nguyen et al. [91], Shi et al. [113]
and Li et al. [68] propose to incorporate word embedding pre-
trained on large-scale high-quality resources into conventional
Dirichlet multinomial topic model and jointly model. For
example, Latent Feature Dirichlet Mixture Model (LF-DMM)
use the assumption of short text topic model DMM, all the
words in a document share the same topic. Based on which,
LF-DMM use a Bernoulli distribution as a latent factor to
determine whether the Dirichlet moltinomial or latent feature
(i.e., word embedding) component will be used to generate each
word in document. Song et al. [115], Yang et al. [149], and
He et al. [46] propose to use knowledge base to improve the
performance of topic modeling, for example joint model the topic
and entity in knowledge graph. Such kind of external knowledge
based topic modeling require large-scale high-quality external
resources, which is domain specific. Since the content of social
media is keeping changing, innovative knowledge emerging every
day, it is hard to maintain an up-to-date external knowledge
resources.

2.2.3 Neural Topic Model

Recently, there are several attempts to attack the inference
problem of topic model based on neural networks and neural
variational inference. Miao et al. [88] introduced Neural Vari-
ational Document Model (NVDM) based on variational auto-
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encoder (VAE) [62], which mapping the bag-of-words to a latent
Gaussian distribution over topics. The topic-word distribution
in NVDM is implicitly attained by averaging over the logit space
of reconstruction network. Miao et al. [87] extended NVDM
by proposing a family of priors: Gaussian Softmax, Gaussian
Stick-Breaking and Recurrent Stick-Breaking constructions to
parameterize topic distributions. Srivastava et al. [118] also
proposed VAE-style neural variational inference method, called
Autoencoding Variational Inference For Topic Models (AVITM).
AVITM simulates the original LDA formulation by approximat-
ing the Dirichlet prior using a Gaussian and explicitly captures
the topic assignments.
Before introducing the neural topic model, we would like the re-
visit the optimization objective and variational inference method
of LDA. The basic idea of variational inference is to obtain an
adjustable lower bound on the log likelihood. By introducing a
variabional distribution q(θ, z), we can bound the log likelihood
of a document w by using Jensen’s inequality. We have:

log p(w|α, β) = log
∫ ∑

z
p(θ, z,w|α, β)dθ

= log
∫ ∑

z

p(θ, z,w|α, β)q(θ, z)
q(θ, z) dθ

≥
∫ ∑

z
q(θ, z) log p(θ, z,w|α, β)dθ

−
∫ ∑

z
q(θ, z) log q(θ, z)dθ

=Eq[log p(θ, z,w|α, β)]− Eq[log q(θ, z)].

(2.2)

We now have a lower bound on the log likelihood, which is
called evidence lower bound (ELBO), denoted as LELBO. It
can be easily verified that the diffenece of log p(w|α, β) of the
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Equation 2.2 and LELBO is the KL divergence between the varia-
tional posterior distribution and the true posterior distribution.
Therefore, the optimization problem is to maximize:

LELBO = log p(w|α, β)−DKL[q(θ, z)||p(θ, z|w, α, β)] (2.3)

Since the exact inference is intractable in LDA, a popular
approximation for the efficient parameter inference for LDA
is mean field variational inference, which breaks the coupling
between θ and z. This results an approximate variational
posterior q(θ, z) = q(θ) ∏

Nd
q(zd,n). The detail of mean field

variational inference for LDA can be found in Blei’s paper [9].
In neural topic model (NTM), with the help of neural variational
inference, we can formulate topic model as variational auto-
encoder framework, and directly solve the optimization problem
of LELBO in topic model. In particular, we assume the latent
variables in topic model as z, and the prior over the la-
tent variables is an isotropic multivariate Gaussian distribution
p(z) = N (z; 0, I). The variational approximate posterior is a
multivariate Gaussian with a diagonal covariance matrix:

log q(z|w) = logN (z;µ, σ2) (2.4)
where µ and σ2 are the mean and variance of the posterior
distribution. Here we can rewire the ELBO as:

LELBO = 0.5
K∑
k=1

(1 + log(σ2
k)− µ2

k − σ2
k) + 1

Nd

Nd∑
n=1

log p(wd,n|zd)

(2.5)
where K is number of topics, zd = µ+σ � ε, and ε ∼ N (0, I).
The latent variables in NTM, such as µ and σ can be inferred via
an encoding network and decoder network for p(wd,n|zd) part.
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Figure 2.4: A graphical model representation of NTM.

NTM have a very similar generative process to LDA, as follow-
ing:
For each document d:
• Draw latent variable z ∼ N (µ,σ2)
• θ = softmax(fθ(z))
• For each word wd,n in d:

– β = softmax(fφ(θ))
– Draw word wd,n ∼Multinomial(β)

NTM bring severals benefits when comparing with conventional
topic models. (1) From the overview of graphical model
representation of NTM, as shown in Figure. 2.4, NTM belongs
to the probabilistic model, which enable the intractability of
latent topic just like LDA. (2) The optimization of NTM can
be solve by back-propagation, without introducing mean field
assumption, which is easy to implement and more accurate than
inference for conventional topic models. (3) NTM is neural
network based model, enabling flexibility and extensible to other
neural network structure. We extend the idea of NTM in
Chapter 3, and use it to joint model topics and discourse for
social media conversation.

2.3 Discourse Analysis

Discourse is the language signal reflecting semantic relations of
the textual units and the architecture of dialog structure. We
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review the prior research on conventional discourse analysis in
Section 2.3.1 and discourse roles in conversation structure in
Section 2.3.2.

2.3.1 Traditional View of Discourse

People have long realized that a coherent document, which
gives readers continuity of senses [29] with the absence of non-
sequiturs and gaps, is not simply a collection of independent
sentences. The study of discourse can even be traced back to
ancient Greece [6]. Hovy and Marier [44] depict the modern
concept of discourse as the a structured collection of clauses,
act as the connections between text units.
Rhetorical structure theory (RST) [81] is one of the most
influential discourse theories, providing a systematic way for
analyzing the natural text. According to its assumption, a co-
herent document can be represented by a hierarchical structure,
consisted of different levels of units (e.g., relations, schemas,
schema applications and structure). In particular, the most
fundamental structural pattern defined by RST is the relations
of the adjacent two text spans. Relations in RST, such as
“backgound”, “evidence”, and “elaboration”, is the specific
asymmetric roles for one text unit to another.
Based on RST, early work employs manually pre-defined rules
for automatic discourse analysis [83, 127]. With the appearing of
large-scale discourse corpus, e.g., RST corpus [19], Graph Bank
corpus [144], and Penn Discourse Treebank (PDTB) [101], peo-
ple began to exploit supervised learning and data-driven based
methods for discourse prediction or parsing [34, 57, 75, 116] and
representative learning [50, 69].
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2.3.2 Discourse Role in Conversation

With the development of Internet, our way of communication
has been revolutionized by online social media platforms, e.g.,
discussion form, microblog. The flourish of social media bring
a constant flood of information exchange, leads to a huge
quantity of daily conversations among them. There is an
increasing demand for automatically analysis the social media
conversation. Although RST has been proved to be useful in
analysis the formal and well-edited documents, discourse parsing
on conversations is still a challenging problem [97], due to the
complex structure and informal language. Previous research
efforts mainly focus on the detection of dialogue acts (DA),
which is defined in [124] as the shallow discourse role that cap-
tures illocutionary meanings of an utterance, e.g., “statement”,
“question”, “agreement”, etc. Automatic dialogue act taggers
have been conventionally trained in a supervised way with pre-
defined tag inventories and annotated data [25, 51, 123, 124].
However, the definition of DA is generally domain-specific and
manually crafted by experts. The data annotation process
is slow and expensive so that results in the limitation of
available data for training DA classifiers. These issues become
increasingly severe with the arrival of the Internet era where
new domains of conversations and new types of dialogue act
tags are boomed [56, 109]. For this reason, researchers have
proposed unsupervised or weakly supervised dialogue act taggers
that identify the discourse roles based on probabilistic graphical
models [26, 51, 56, 109, 164].
For example, Ritter et al [109] is the first to study the unsu-
pervised modeling of discourse in twitter conversation. They
propose a probabilistic graphical model that model the topic
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and discourse jointly. More specifically, they use hidden Markov
model (HMM) to model the discourse sequence in utterance-
level, model topic via LDA in conversation level. An latent
factor with Bernoulli distribution is to control the current word
generated from topic or discourse. Similar to the word cluster
discovered by topic model, their model can also capture the
indicative words cluster of discourse.
Although such latent discourse variables have been studied in
previous work [51, 56, 109, 164], none of them explores the effects
of latent discourse on the identification of conversation topic,
which is a gap our work in Chapter 3 fills in.

2.4 Social Media Text Understanding

It has been long pointed out that a machine that can understand
natural language, such as answers a question, executes com-
mands, and accepts interactive information, is the core symbol of
artificial intelligence (AI) [142]. Natural language understanding
(NLU) is an important sub-field of natural language processing,
with a wide range applications, such as question answering,
text categorization, automated reasoning. Recently, with the
development of social media, understanding the explosive social
media text has received lots of research and commercial inter-
ests. Herein, we will introduce two applications of social media
text understand, short text classification in Section 2.4.1 and
argumentation mining in Section 2.4.2.

2.4.1 Short Text Classification

Social media such as Twitter and Weibo, have word limitation
for each message. For example in Twitter, users are restricted to
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post each tweet within limited 140 characters length. However
the most common length of twitter is less than 30 characters,
because most of users type their message through mobile phone.
As a result, such short messages have become increasingly
important in social media applications and there is a pressing
need for analyzing and processing such short text. Among those
techniques, text classification is a critical and fundamental one
proven to be useful in various downstream applications, such as
text summarization [45], recommendation [161], and sentiment
analysis [24].
Although many classification models like support vector ma-
chines (SVMs) [136] and recently popular neural networks [58,
60, 146] have demonstrated their success in processing formal
and well-edited texts, such as news articles [162], their per-
formance is inevitably compromised when directly applied to
short and informal online texts. This inferior performance is
attributed to the severe data sparsity nature of short texts,
which results in the noisy and limited features available for
classifiers [99].
Most previous work focuses on alleviating the severe sparsity
issues in short texts [148]. Some previous efforts encode
knowledge from external resource [54, 78, 79, 133]. For example
in [133], an external concept knowledge base trained from a
large-scale of corpus, is utilized to obtain the relevant concepts
of the short text message. For some specific classification
tasks, such as sentiment analysis, manually-crafted features
are designed to fit the target task [52, 94], which requires
feature engineering process and thus hard to ensures its general
applicability to diverse classification scenarios. There also
exists work using representation learned from the internal text
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structure (e.g., topic modeling). For example, pre-trained topic
mixtures are leveraged as part of features fro training the short
text classifier [24, 99, 107].
Recent research effort has focused on exploiting word embed-
dings or deep models for short text classification, due to the
success of neural networks in many NLP tasks, such as semantic
parsing and sequence labeling [17, 63, 148]. For example,
Lee et al. [66] incorporate the preceding short texts based on
recurrent neural network and convolutional neural network for
classification. dos Santos et al. [31] exploit both character-level
and sentence-level information. However, their work ignore the
latent topics inherent from short texts, which could enrich the
implicit representation of short text, and our work in Chapter
5 try to fill this gap by incorporating corpus-level implicit
representation into a neural network framework for short text
classification.

2.4.2 Argumentation Mining

Computational argumentation mining is a fast developing sub-
field in neural language understanding. Early work mainly
focus on argumentation extraction, e.g., extract argumentation
from legal text [89] and news [95], detecting argumentation
structure, e.g., premise and conclusion [95, 120]. With the
popularity of social media, online forum, such as idebate3 and
changemyview4 provide a convenient platform for people to en-
gage in argumentation. Researches have been paying increasing
attention to analysis the argumentation in the online forum, for
example, identification of convincing arguments [37, 137] and

3idebate.org
4reddit.com/cmv

idebate.org
reddit.com/cmv
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viewpoints [39, 55] from social media discussions [126]. In this
line, many existing studies focus on crafting hand-made fea-
tures [126, 137], such as wordings and topic strengths [134, 158],
semantic and syntactic rules [40, 98], participants’ personal-
ity [131], argument interactions and structure [92], and so
forth. These methods, however, require labor-intensive feature
engineering process, and hence have limited generalization abil-
ities to new domains. Recently, there have been some neural
frameworks proposed to model the argument interactions and
persuasiveness [39, 49, 55]. However, there is very few work
that study the challenging problem, what changes the opinion
holder’s mind and how it happens during the argumentative
conversation, which our work in Chapter 4 focuses on.

2 End of chapter.



Chapter 3

Joint Modeling of Topics and
Discourse in Microblog
Conversations

This chapter presents an unsupervised framework for jointly
modeling topic content and discourse behaviors in microblog
conversations. Concretely, we propose a neural model to
discover word clusters indicating what a conversation concerns
(i.e., topics) and those reflecting how participants voice their
opinions (i.e., discourse). A key finding is that joint modeling
of topics and discourse can yield both coherent topics and
meaningful discourse behaviors. Also, out topic and discourse
representations can benefit the classification of microblog mes-
sages, especially when they are jointly trained with the classifier.
The main points of this chapter are as follows. (1) It proposes an
unsupervised neural network built upon topic, enabling the joint
exploration of word clusters to represent topic and discourse in
microblog conversations. (2) It conducts an extensive empirical
study on two large-scale Twitter datasets. (3) It presents how to
extend the proposed network by easily combining with existing
neural models for end-to-end training, such as CNN.

31
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3.1 Introduction

The last decade has witnessed the revolution of communication,
where the “kitchen table conversations" have been expanded
to public discussions on online platforms. As a consequence,
in our daily life, the exposure to new information and the
exchange of personal opinions have been mediated through
microblogs, one popular online platform genre [7]. The flour-
ish of microblogs has also led to the sheer quantity of user-
created conversations emerging every day, exposing individuals
to superfluous information. Facing such unprecedented number
of conversations relative to limited attention of individuals, how
shall we automatically extract the critical points and make sense
of these microblog conversations?
Towards key focus understanding of a conversation, previous
work has shown the benefits of discourse structure [70, 72, 102],
which shapes how messages interact with each other forming
the discussion flow and can usefully reflect salient topics raised
in the discussion process. After all, the topical content of a
message naturally occurs in context of the conversation discourse
and hence should not be modeled in isolation. On the other
way around, the extracted topics can reveal the purpose of
participants and further facilitate the understanding of their
discourse behaviors [102].
To illustrate how the topics and discourse interplay in a conver-
sation, Figure 3.1 displays a snippet of Twitter conversation. As
can be seen, the content words reflecting the discussion topics
(such as “supreme court” and “gun rights”) appear in context of
the discourse flow, where participants carry the conversation
forward via making a statement, giving a comments, asking
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...
M1 [Statement]: Just watchedHRC openly
endorse a gun-control measure which will
fail in front of the Supreme Court. This
is a train wreck.
M2 [Comment]: People said the same thing
about Obama, and nothing took place.
Gun laws just aren’t being enforced like
they should be. :/
M3 [Question]: Okay, hold up. What do you
think I’m referencing here? It’s not what
you’re talking about.
M4 [Agreement]: Thought it was about gun
control. I’m in agreement that gun rights
shouldn’t be stripped.
...

Figure 3.1: A Twitter conversation snippet about the gun control issue in
U.S. Topic words reflecting the conversation focus are in boldface. The
italic words in [] are our interpretations of the messages’ discourse roles.
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a question, and so forth. Motivated by such observation, we
assume that a microblog conversation can be decomposed into
two crucially different components: one for topical content and
the other for discourse behaviors. Here, the topic components
indicate what a conversation is centered around and reflect the
important discussion points put forward in the conversation
process. The discourse components signal the discourse roles
of messages, such as making a statement, asking a question,
and other dialogue acts [56, 109], which further shape the
discourse structure of a conversation.1 To distinguish the above
two components, we examine the conversation contexts and
identify two types of words: topic words, indicating what
a conversation focuses on, and discourse words, reflecting
how the opinion is voiced in each message. For example, in
Figure 3.1, the topic words “gun” and “control” indicate the
conversation topic while the discourse word “what” and “?”
signal the question in M3.
Concretely, we propose a neural framework with the topic model
fashion, enabling the joint exploration of word clusters to rep-
resent topic and discourse in microblog conversations. Different
from the prior models trained on annotated data [70, 102], our
model is fully unsupervised, not dependent on annotations for
either topics or discourse, which ensures its immediate applica-
bility in any domain or language. Moreover, taking advantages
of the recent advances in neural topic models [87, 119], we
are able to approximate Bayesian variational inference without
requiring model-specific derivations, while most existing mod-
els [4, 56, 70, 72, 109] require the expertise involved to customize

1In this thesis, the discourse role refers to a certain type of dialogue act (e.g., statement
or question) for each message. And the discourse structure refers to some combination of
discourse roles in a conversation.
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model inference algorithms. In addition, the neural nature of
our model enables the end-to-end training of topic and discourse
representations with other neural models for diverse tasks.
For model evaluation, we conduct an extensive empirical study
on two large-scale Twitter datasets. The intrinsic results show
that our model can produce latent topics and discourse roles
with better interpretability than the state-of-the-art models
from previous studies. The extrinsic evaluations on a tweet
classification task exhibit our ability to capture useful represen-
tations for microblog messages. Particularly, our model enables
the easy combination and the end-to-end training with other
neural models, such as CNN, which is shown to perform better in
classification than the pipeline approach without joint training.

3.2 Our Neural Model for Topics and Dis-
course in Conversations

This section introduces our neural model that jointly explores
latent representations for topics and discourse in conversations.2
We first present an overview of our model in Section 3.2.1, fol-
lowed by the model generative process and inference procedure
in Section 3.2.2 and 3.2.3, respectively.

3.2.1 Model Overview

In general, our model aims to learn coherent word clusters that
reflect the latent topics and discourse roles embedded in the
microblog conversations. To this end, we distinguish two latent
components in the given collection: topics and discourse, each

2The code of our model will be released on Github after the anonymous review process.
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Figure 3.2: The architecture of our neural framework that jointly models
latent topics and latent discourse.

represented by a certain type of word distribution (distributional
word cluster). Specifically, at the corpus level, we assume there
are K topics, represented by φTk , (k = 1, 2, . . . , K), and D

discourse roles, captured with φDd , (d = 1, 2, . . . , D). φT and
φD are all multinomial word distributions over the vocabulary
size V . Inspired by the neural topic models in [87], our model
encodes topic and discourse distributions (φT and φD) as latent
variables in a neural network and learns the parameters via back
propagation.
Before touching the details of our model, we first describe
how we formulate the input. On microblogs, as a message
might have multiple replies, messages in an entire conversation
can be organized as a tree with replying relations [70, 72].
Though the recent progress in recursive models allows the
representation learning from the tree-structured data, previous
studies have pointed out that, in practice, sequence models serve
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as a more simple yet robust alternative [71]. In this work,
we follow the common practice in most conversation modeling
research [56, 109, 164] to take a conversation as a sequence of
turns. To this end, each conversation tree is flattened into root-
to-leaf paths. Each one of such paths is hence considered as a
conversation instance, and a message on the path corresponds
to a conversation turn [21, 53, 151].
The overall architecture of our model is shown in Figure 3.2.
Formally, we formulate a conversation c as a sequence of
messages (x1,x2, . . . ,xMc

), where Mc denotes the number of
messages in c. In the conversation, each message x, named as
the target message, is fed into our model sequentially. Here we
process the target message x as the bag-of-words (BoW) term
vector xBoW ∈ RV , following the bag-of-words assumption in
most topic models [8, 87]. The conversation, c, where the target
message x is involved, is considered as the context of x. It is
also encoded in the BoW form (denoted as cBoW ∈ RV ) and fed
into our model. In doing so, we ensure the context of the target
message is incorporated while learning its latent representations.
Following the previous practice in neural topic models [87, 119],
we employ the variational auto-encoder (VAE) [62] to resemble
the data generative process via two steps. First, given the target
message x and its conversation c, our model converts them into
two latent variables: topic variable z and discourse variable d.
Then, using the intermediate representations captured by z and
d, we reconstruct the target message, x′.

3.2.2 Generative Process

In this section, we first describe the two latent variables in our
model: the topic variable z and the discourse variable d. Then,
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we present our data generative process from the latent variables.

Latent Topics. For latent topic learning, we examine the
main discussion points in the context of a conversation. Our
assumption is that messages in the same conversation tend to
focus on similar topics [72, 156]. Concretely, we define the latent
topic variable z ∈ RK at the conversation level and generate the
topic mixture of c, denoted as a K-dimentional distribution θ,
via a softmax construction conditioned on z [87].

Latent Discourse. For modeling the discourse structure
of conversations, we capture the message-level discourse roles
reflecting the dialogue acts of each message, as is done in [109].
Concretely, given the target message x, we employ a D-
dimensional one-hot vector to represent the latent discourse vari-
able d, where the high bit indicates the index of discourse that
can best express x’s discourse role. In the generative process,
d is drawn from a multinomial distribution with parameters
estimated from the input data.

Data Generative Process As mentioned previously, our entire
framework is based on VAE, which consists of an encoder and
a decoder. The encoder maps a given input into latent topic
and discourse representations and the decoder reconstructs the
original input from the latent representations. In the following,
we first describe the decoder followed by the encoder.
In general, our decoder is learned to reconstruct the words in the
target message x (in the BoW form) from the latent topic z and
latent discourse d. We show the generative story that reflects
the reconstruction process below:
• Draw the latent topic z ∼ N (µ,σ2)
• c’s topic mixture θ = softmax(fθ(z))
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• Draw the latent discourse d ∼Multi(π)
• For the n-th word in x

– βn = softmax(fφT (θ) + fφD(d))
– Draw the word wn ∼Multi(βn)

where f∗(·) is a neural perceptron, with a linear transformation
of inputs activated by a non-linear transformation. Here we
use rectified linear units (ReLUs) [90] as the activate functions.
In particular, the weight matrix of fφT (·) (after the softmax
normalization) is considered as the topic-word distributions φT .
The discourse-word distributions φD are similarly obtained from
fφD(·).
For the encoder, we learn the parameters µ, σ, and π from the
input xBoW and cBoW (the BoW form of the target message and
its conversation), following the formula below:

µ = fµ(fe(cBoW )), logσ = fσ(fe(cBoW ))
π = softmax(fπ(xBoW ))

(3.1)

3.2.3 Model Inference

For the objective function of our entire framework, we take three
aspects into account: the learning of latent topics and discourse,
the reconstruction of the target messages, and the separation of
topic-associated words and discourse-related words.

Learning Latent Topics and Discourse. For learning the
latent topics/discourse in our model, we employ the variational
inference [10] to approximate posterior distribution over the
latent topic z and the latent discourse d given all the training
data. To this end, we maximize the variational lower bound Lz
for z and Ld for d, each defined as following:
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Lz = Eq(z | c)[p(c | z)]−DKL(q(z | c) || p(z))
Ld = Eq(d |x)[p(x |d)]−DKL(q(d |x) || p(d))

(3.2)

q(z | c) and q(d |x) are approximated posterior probabilities
describing how the latent topic z and the latent discourse d
are generated from the data. p(c | z) and p(x |d) represent the
corpus likelihoods conditioned on the latent variables. p(z)
follows the standard normal prior N (0, I) and p(d) is the
uniform distribution Unif(0, 1). DKL refers to the Kullback-
Leibler divergence that ensures the approximated posteriors to
be close to the true ones. Due to the space limitation, we leave
out the derivation details and refer the readers to [87].

Reconstructing target messages. From the latent variables
z and d, the goal of our model is to reconstruct the target
message x. The corresponding learning objective is to maximize
Lx defined as:

Lx = Eq(z |x)q(d | c)[log p(x | z,d)] (3.3)

Here we design Lx to ensure that the learned latent topics and
discourse can reconstruct x.

Distinguishing Topics and Discourse. Our model aims
to distinguish word distributions for topics (φT ) and discourse
(φD), which enables topics and discourse to capture different
information in conversations. Concretely, we employ the mutual
information, given below, to measure the mutual dependency
between the latent topics z and the latent discourse d. 3

3The distributions in Eq. 3.4 are all conditional probability distributions given the
target message x and its conversation c. We omit the conditions for simplicity.
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Eq(z)q(d)[log p(z,d)
p(z)p(d)] (3.4)

Eq. 3.4 can be further derived as the Kullback-Leibler di-
vergence of the conditional distribution, p(d | z), and marginal
distribution, p(d). The derived formula, defined as the mutual
information loss (LMI) and shown in Eq. 3.5, is used to map z
and d into the separated semantic space.

LMI = Eq(z)[DKL(p(d | z)||p(d))] (3.5)

We can hence minimize LMI for guiding our model to separate
word distributions that represent topics and discourse.

The Final Objective. To capture the joint effects of the
learning objectives described above (Lz, Ld, Lx, and LMI), we
design the final objective function for our entire framework as
following:

L = Lz + Ld + Lx − λLMI (3.6)

where the hyperparameter λ is the trade-off parameter for
balancing between the MI loss (LMI) and the other learning
objectives. By maximizing the final objective L via back
propagation, the word distributions of topics and discourse can
be jointly learned from microblog conversations.4

4To smooth the gradients in implementation, for z ∼ N (µ,σ), we apply the
reparameterization on z [62, 108], and for d ∼Multi(π), we adopt the Gumbel-Softmax
trick [48, 80].



CHAPTER 3. JOINT MODELING OF TOPICS AND DISCOURSE 42

3.3 Experimental Setup

In this section, we describe how we set up the experiment for
model evaluation.

3.3.1 Data Collection

For our experiments, we collected two microblog conversation
datasets from Twitter. One is released by the TREC 2011
microblog track (henceforth TREC), containing conversations
concerning a wide rage of topics.5 The other is crawled from
January to June 2016 with Twitter streaming API6 (henceforth
TWT16, short for Twitter 2016), following the way of building
TREC dataset. During this period, there are a large volume
of discussions centered around U.S. presidential election. In
addition, for both datasets, we apply Twitter search API7 to
retrieve the missing tweets in the conversation history, as the
Twitter streaming API (used to collect both datasets) only
returns sampled tweets from the entire pool.
The statistics of the two experiment datasets are shown in
Table 3.1. For model training and evaluation, we randomly
sampled 80%, 10%, and 10% of the data to form the training,
development, and test set, respectively.

3.3.2 Data Preprocessing

We preprocessed the data with the following steps. First,
non-English tweets were filtered out. Then, hashtags, men-

5http://trec.nist.gov/data/tweets/
6https://developer.twitter.com/en/docs/tweets/filter-realtime/

api-reference/post-statuses-filter.html
7https://developer.twitter.com/en/docs/tweets/search/api-reference/

get-savedsearches-show-id.

http://trec.nist.gov/data/tweets/
https://developer.twitter.com/en/docs/tweets/filter-realtime/api-reference/post-statuses-filter.html
https://developer.twitter.com/en/docs/tweets/filter-realtime/api-reference/post-statuses-filter.html
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-saved searches-show-id.
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-saved searches-show-id.
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Datasets # of Avg msgs Avg words |Vocab|convs per conv per msg
TREC 116,612 3.95 11.38 9,463
TWT16 29,502 8.67 14.70 7,544

Table 3.1: Statistics of the two datasets containing Twitter conversations.

tions (@username), and links were replaced with generic tags
“HASH”, “MENT”, and “URL”, respectively. Next, the natural
languge toolkit (NLTK) was applied for tweet tokenization.8
After that, all letters were normalized to lower cases. Finally,
words occurred less than 20 times were filtered out from the
data.

3.3.3 Parameter Setting

To ensure comparable results with [72] (the prior work focusing
on the same task as ours), in the topic coherence evaluation, we
follow their setting to report the results under two sets of K
(the number of topics): K = 50 and K = 100, and with the
number of discourse roles (D) set to 10. The parameter analysis
of K and D will be further presented in Section 3.4.5. For all
the other hyper-parameters, we tuned them on development set
by grid search. The trade-off parameter λ (defined in Eq. 3.6),
balancing the MI loss and the other objective functions, is set
to 0.01. In model training, we use Adam optimizer [61] and run
100 epochs with early stop strategy adopted.

3.3.4 Baselines

In topic modeling experiments, we consider the five topic
model baselines treating each tweet as a document: LDA [8],

8https://www.nltk.org/

https://www.nltk.org/
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BTM [148], LF-LDA, LF-DMM [91], and NTM [87]. In particu-
lar, BTM and LF-DMM are the state-of-the-art topic models for
short texts. BTM explores the topics of all word pairs (biterms)
in each message to alleviate data sparsity in short texts. LF-
DMM incorporates word embeddings pre-trained on external
data to expand semantic meanings of words, so does LF-LDA.
In Nguyen et al. (2015)[91], LF-DMM, based on one-topic-
per-document Dirichlet Multinomial Mixture (DMM) [93], was
reported to perform better than LF-LDA, based on LDA. For
LF-LDA and LF-DMM, we use GloVe Twitter embeddings [96]
as the pre-trained word embeddings.9
For the discourse modeling experiments, we compare our results
with LAED [164], a VAE-based representation learning model
for conversation discourse. In addition, for both topic and
discourse evaluation, we compare with Li et al.[72], a recently
proposed model for microblog conversations, where topics and
discourse are jointly explored with a non-neural framework.
Besides the existing models from previous studies, we also
compare with the variants of our model that only models
topics (henceforth Topic only) or discourse (henceforth Disc
only). Our joint model of topics and discourse is referred to as
Topic+Disc.
In the preprocessing process for the baselines, we removed
stop words and punctuation for topic models unable to learn
discourse representations following the common practice in
previous work [148, 87]. For the other models, stop words and
punctuation were retained in the vocabulary considering their
usefulness as discourse indicators [72].

9https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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3.4 Experimental Results

In this section, we first report the topic coherence results in
Section 3.4.1, followed by a discussion in Section 3.4.2 comparing
the latent discourse roles discovered by our model with the
manually annotated dialogue acts. Then, we study whether
we can capture useful representations for microblog messages
in a tweet classification task (in Section 3.4.3). A qualitative
analysis, showing some example topics and discourse roles, is
further provided in Section 3.4.4. Finally, in Section 3.4.5, we
provide more discussions on our model.

3.4.1 Topic Coherence

For the topic coherence, we adopt the Cv scores measured via
the open-source Palmetto toolkit as our evaluation metric.10 Cv
scores assume that the top N words in a coherent topics (ranked
by likelihood) tend to co-occur in the same document and have
shown comparable evaluation results to human judgments [110].
Table 3.2 shows the average Cv scores over the produced topics
given N = 5 and N = 10. The values range from 0.0 to 1.0 and
higher scores indicate better topic coherence. We can observe
that:

•Models assuming a single topic for each message do
not work well. It has long been pointed out that the one-
topic-per-message assumption (each message contains only one
topic) helps topic models alleviate the data sparsity issue in
short texts on microblogs [72, 91, 105, 165]. However, we observe
contradictory results since both LF-DMM and [72], following
this assumption, achieve generally worse performance than the

10https://github.com/dice-group/Palmetto

https://github.com/dice-group/Palmetto
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Models K = 50 K = 100
TREC TWT16 TREC TWT16

Baselines
LDA 0.467 0.454 0.467 0.454
BTM 0.460 0.461 0.466 0.463
LF-DMM 0.456 0.448 0.463 0.466
LF-LDA 0.470 0.456 0.467 0.453
NTM 0.478 0.479 0.482 0.443
Li et al. [72] 0.463 0.433 0.464 0.435
Our models
Topic only 0.478 0.482 0.481 0.471
Topic+Disc 0.485 0.487 0.496 0.480

Table 3.2: Cv coherence scores for latent topics produced by different models.
The best result in each column is highlighted in bold. Our joint model
Topic+Disc achieves significantly better coherence scores than all the
baselines (p < 0.01, paired test).

other models. This might be attributed to the large-scale data
used in our experiments (each dataset has over 250K messages
as shown in Table 3.1), which potentially provide richer word co-
occurrence patterns and thus partially alleviate the data sparsity
issue.

• Pre-trained word embeddings do not bring benefits.
Comparing LF-LDA with LDA, we found that they give similar
coherence scores. This shows that with sufficiently large training
data, with or without using the pre-trained word embeddings do
not make any difference in the topic coherence results.

• Neural models perform better than non-neural base-
lines. When comparing the results of neural models (NTM
and our models) with the other baselines, we find the former
yield topics with better coherence scores in most cases.

• Modeling topics in conversations is effective. Among
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Models Purity Homogeneity VI
Baselines
LAED 0.505 0.022 6.418
Li et al. [72] 0.511 0.096 5.540
Our models
Disc only 0.510 0.112 5.532
Topic+Disc 0.521 0.142 5.097

Table 3.3: The purity, homogeneity, and variation of information (VI) scores
for the latent discourse roles measured against the human-annotated dialogue
acts. For purity and homogeneity, higher scores indicate better performance,
while for VI scores, lower is better. In each column, the best results are in
boldface. Our joint model Topic+Disc significantly outperforms all the
baselines (p < 0.01, paired t-test).

neural models, we found our models outperform NTM (without
exploiting conversation contexts). This shows that the conver-
sations provide useful context and enables more coherent topics
to be extracted from the entire conversation thread instead of a
single short message.

•Modeling topics together with discourse helps produce
more coherent topics. We can observe better results with
the joint model Topic+Disc in comparison with the variant
considering topics only. This shows that Topic+Disc, via
the joint modeling of topic- and discourse-word distributions
(reflecting non-topic information), can better separate topical
words from non-topical ones, hence resulting in more coherent
topics.

3.4.2 Discourse Interpretability

In this section, we evaluate whether our model can discover
meaningful discourse representations. To this end, we train
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the comparison models for discourse modeling on the TREC
dataset and test the learned latent discourse on a benchmark
dataset released by [21]. The benchmark dataset consists of
2, 217 microblog messages forming 505 conversations collected
from Mastodon11, a microblog platform exhibiting Twitter-like
user behaviors [21]. For each message, there is a human-assigned
discourse label, selected from one of the 15 dialogue acts, such
as question, answer, disagreement, etc.
For discourse evaluation, we measure whether the model-produced
discourse assignments are consistent with the human-annotated
dialogue acts. Hence following Zhao et al. (2018)[164], we
assume that an interpretable latent discourse role should cluster
messages labeled with the same dialogue act. Therefore, we
adopt purity [82], homogeneity [112], and variation of informa-
tion (VI) [35, 86] as our automatic evaluation metrics. Here, we
set D = 15 to ensure the number of latent discourse roles to
be the same as the number of manually-labeled dialogue acts.
Table 3.3 shows the comparison results of the average scores
over the 15 latent discourse roles. Higher values indicate better
performance for purity and homogeneity, while for VI, lower is
better.
It can be observed that our models exhibit generally better
performance, showing the effectiveness of our framework in in-
ducing interpretable discourse roles. Particularly, we observe the
best results achieved by our joint model Topic+Disc, which is
learned to distinguish topic- and discourse-words, important in
recognizing indicative words to reflect latent discourse.
To further analyze the consistency of varying latent discourse
roles (produced by our Topic+Disc model) with the human-

11https://mastodon.social

https://mastodon.social
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I: statement, D: disagreement, S: suggest, A: agreement, Q:
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Figure 3.3: A heatmap showing the alignments of the latent discourse
roles and human-annotated dialogue act labels. Each line visualizes the
distribution of messages with the corresponding dialogue act label over
varying discourse roles (indexed from 1 to 15), where darker colors indicate
higher values.

labeled dialogue acts, Figure 3.3 displays a heatmap, where each
line visualizes how the messages with a dialogue act distribute
over varying discourse roles. It is seen that among all dialogue
acts, our model discovers more interpretable latent discourse
for “greetings”, “thanking”, “exclamation”, and “offer”, where
most messages are clustered into one or two dominant discourse
roles. It may be because these dialogue acts can be relatively
easier to detect based on their associated indicative words, such
as the word “thanks” for “thanking”, and the word “wow” for
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“exclamation”.

3.4.3 Message Representations

To further evaluate our ability to capture effective representa-
tions for microblog messages, we take tweet classification as
an example and test the classification performance with the
topic and discourse representations as features. Here the user-

Models TREC TWT16
Acc Avg F1 Acc Avg F1

Baselines
BoW 0.120 0.026 0.132 0.030
LDA 0.128 0.041 0.146 0.046
BTM 0.123 0.035 0.167 0.054
LFDMM 0.158 0.072 0.162 0.052
NTM 0.138 0.042 0.186 0.068
Our model 0.259 0.180 0.341 0.269

Table 3.4: Evaluation of tweet classification results in accuracy (Acc) and
average F1 (Avg F1). Representations learned by various models serve as
the classification features. For our model, both the topic and discourse
representations are fed into the classifier.

generated hashtags capturing the topics of online messages
are used as the proxy class labels [70, 154]. We construct
the classification dataset from TREC and TWT16 with the
following steps. First, we removed the tweets without hashtags.
Second, we ranked hashtags by their frequencies. Third, we
manually removed the hashtags that are not topic-related (e.g.
“#fb” for indicating the source of tweets from Facebook),
and combined the hashtags referring to the same topic (e.g.
“#DonaldTrump” and “#Trump”). Finally, we selected the top
50 frequent hashtags, and all tweets containing these hashtags
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as our classification dataset. Here, we simply use the support
vector machines (SVMs) as the classifier, since our focus is to
compare the representations learned by various models.
Table 3.4 shows the classification results of accuracy and average
F1 on the two datasets with the representations learned by
various models serving as the classification features. We observe
that our model outperforms other models with a large margin.
The possible reasons are two folds. First, our model derives
topics from conversation threads and thus potentially yields
better message representations. Second, the discourse represen-
tations (only produced by our model) are indicative features for
hashtags, because users will exhibit various discourse behaviors
in discussing diverse topics (hashtags). For instance, we observe
prominent “argument” discourse from tweets with “#Trump”
and “#Hillary”, attributed to the controversial opinions to the
two candidates in the 2016 U.S. presidential election.

3.4.4 Example Topics and Discourse Roles

We have shown that jointly modeling of topics and discourse
presents superior performance on quantitative measure. In
this section, we qualitatively analyze the interpretability of our
outputs via analyzing the word distributions of some example
topics and discourse roles.

Example Topics. Table 3.5 lists the top 10 words of some
example latent topics discovered by various models from the
TWT16 dataset. According to the words shown, we can
interpret the extracted topics as “gun control”. We observe that
LDA wrongly includes off-topic word “flag”. From the outputs
of BTM, LF-DMM, Li et al., 2018 [72], and our Topic only
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LDA :::::::
people trump police violence gun death
protest guns flag shot

BTM gun guns
::::::
people police wrong right

:::::
think law

agree black

LF-DMM gun police black
::::
said

:::::::
people guns killing ppl

amendment laws

Li et al. [72] wrong don trump gun
:::::::::::
understand laws agree

guns
::::::
doesn

:::::
make

NTM gun
::::::::::::
understand

:::
yes guns world dead

::::
real

discrimination trump silence

Topic only shootings gun guns cops charges control
:::::
mass

commit
::::::
know agreed

Topic+Disc guns gun shootings chicago shooting cops
firearm criminals commit laws

Table 3.5: Top 10 representative words of example latent topics discovered
from the TWT16 dataset. We interpret the topics as “gun control” by the
displayed words.

::::::::::
Non-topic

:::::::
words are wave-underlined and in blue, while

off-topic words are underlined and in red.
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variant, though we do not find off-topic words, there are some
non-topic words, such as “said” and “understand”.12 The output
of our Topic+Disc model appears to be the most coherent,
with words such as “firearm” and “criminals” included, which
are clearly relevant to “gun control”. Such results indicate
the benefit of examining the conversation contexts and jointly
exploring topics and discourse in them.

Example Discourse Roles. To qualitatively analyze whether
our Topic+Disc model can discover interpretable discourse
roles, we select the top 10 words from the distributions of
some example discourse roles and list them in Table 3.6. It
can be observed that there are some meaningful word clusters
reflecting varying discourse roles found without any supervision.
Interestingly, we observe that the latent discourse roles from
TREC and TWT16, though learned separately, exhibit some
notable overlap in their associated top 10 words, except for
“argument”, represented by very different words. The reason
is that TWT16 contains a large volume of arguments centered
around candidate Clinton and Trump, resulting in the frequent
appearance of words like “he” and “she”.

3.4.5 Further Discussions

In this section, we further present more discussions on our joint
model: Topic+Disc .

Parameter Analysis. Here we study the two important hyper-
parameters in our model, the number of topics (K) and the
number of discourse roles (D). In Figure 3.4, we show the Cv

12Non-topic words do not clearly indicate the corresponding topic, while off-topic words
are more likely to appear in other topics.
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Table 3.6: Top 10 representative words of example discourse roles learned
from TREC and TWT16. The discourse roles of the word clusters are
manually assigned according to their associated words.

topic coherence given varying K in (a) and the homogeneity
measure given varying D in (b). As can be seen, the curves
corresponding to the performance on topics and discourse are
not monotonic. In particular, better topic coherence scores are
achieved given relatively larger topic numbers for TREC with
the best result observed at K = 80. On the contrary, the
optimum topic number for TWT16 is K = 20, while increasing
the number of topics results in worse Cv scores in general. This
may be attributed to the relatively centralized topic concerning
U.S. election in the TWT16 corpus. For discourse homogeneity,
the best result is achieved given D = 15, with same the number
of manually annotated dialogue acts in the benchmark.
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Figure 3.4: (a) The impact of topic numbers. The horizontal axis: the
number of topics; The vertical axis: the Cv topic coherence. (b) The impact
of discourse numbers. The horizontal axis: the number of discourse; The
vertical axis: the homogeneity measure.

Case Study. To further understand why our model learns
meaningful representations for topics and discourse, we present
a case study based on the example conversation shown in Figure
3.1. Specifically, we visualize the topic words (with p(w | z) >
p(w |d)) in red and the rest words in blue to indicate discourse.
Darker red indicates the higher topic likelihood (p(w | z)) while
darker blue shows the higher discourse likelihood (p(w |d)). The
results are shown in Figure 3.5. We can observe that topic and
discourse words are well separated by our model, which explains
why it can generate high-quality representations for both topics
and discourse.

Model Extensibility. Recall that in the Introduction, we
have mentioned that our neural-based model has an advantage
to be easily combined with other neural network architectures
and allows for the joint training of both models. Here we
take message classification (with the setting in Section 3.4.3)
as an example, and study whether joint training our model
with convolutional neural network (CNN) [60], the widely-used
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Figure 3.5: Visualization of the topic-discourse assignment of a twitter
conversion from TWT16. The annotated blue words are pone to be discourse
words, and the red are topic words. The shade is indicating the confidence
of current assignment.

model on short text classification, can bring benefits to the
classification performance. We set the embedding dimension to
200, with random initialization. The results are shown in Table
3.7, where we observe that joint training our model and the
classifier can successfully boost the classification performance.

Error Analysis. We further analyze the errors in our outputs.
For topics, taking a closer look at their word distributions,
we found that our model sometimes mix sentiment words with
topic words. For example, among the top 10 words of a topic
“win people illegal americans hate lt racism social tax wrong”,
there are words “hate” and “wrong”, expressing sentiment rather
than conveying topic-related information. This is due to the
prominent co-occurrences of topic words and sentiment words in
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Models TREC TWT16
Acc Avg F1 Acc Avg F1

CNN only 0.199 0.167 0.334 0.311
Separate-Train 0.284 0.270 0.391 0.390
Joint-Train 0.297 0.286 0.428 0.413

Table 3.7: Accuracy (Acc) and average F1 (Avg F1) on tweet classification
(hashtags as labels). CNN only: CNN without using our representations.
Seperate-Train: CNN fed with our pre-trained representations. Joint-Train:
Joint training CNN and our model.

our data, which results in the similar distributions for topics and
sentiment. Future work could focus on the further separation of
sentiment and topic words.
For discourse, we found that our model can induce some dis-
course roles beyond the 15 manually defined dialogue acts in the
Mastodon dataset [21]. For example, as shown in Table 3.6, our
model discover the “quotation” discourse from both TREC and
TWT16, which is however not defined in the Mastodon dataset.
This perhaps should not be considered as an error. We argue
that it is not sensible to pre-define a fixed set of dialogue acts for
diverse microblog conversations due to the rapid change and a
wide variety of user behaviors in social media. Therefore, future
work should involve a better alternative to evaluate the latent
discourse without relying on manually defined dialogue acts. We
also notice that our model sometimes fails to identify discourse
behaviors requiring more in-depth semantic understanding, such
as sarcasm, irony, and humor. This is because our model detects
latent discourse purely based on the observed words, while the
detection of sarcasm, irony, or humor requires deeper language
understanding, which is beyond the capacity of our model.
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3.5 Summary

We have presented a neural framework that jointly explores
topic and discourse from microblog conversations. Our model,
in an unsupervised manner, examines the conversation contexts
and discovers word distributions that reflect latent topics and
discourse roles. Results from extensive experiments show that
our model can generate coherent topics and meaningful discourse
roles. In addition, our model can be easily combined with
other neural network architectures (such as CNN) and allows
for joint training, which has presented better message classifi-
cation results compared to the pipeline approach without joint
training. Further discussion have shown the effectiveness of such
representations for message classification, especially with joint
training with CNN-based classifiers. Moreover, the source code
of the proposed neural network is released for further study.

2 End of chapter.



Chapter 4

Topic Memory Networks for
Short Text Classification

Many classification models work poorly on short segments of
text due to data sparseness. To address this issue, in this
chapter, we propose topic memory networks for short text classi-
fication with a novel topic memory mechanism to encode latent
topical representations. Compared with existing work where
most previous efforts focus on extending features with external
knowledge or pre-trained topics, our model jointly explores topic
inference and text classification with memory networks in an
end-to-end manner. The main points of this chapter are as
follows. (1) It presents the design of a topic memory network
for short text classification. (2) It conducts experiments on four
benchmark datasets for performance evaluation. (3) It further
presents the analysis on generating coherent topics based on the
proposed network. (4) It implements and open-source releases
the model.

59
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4.1 Introduction

Short texts have become an important form for individuals to
voice opinions and share information on online platforms. A
large body of daily-generated contents, such as tweets, web
search snippets, news feeds, and forum messages, have far
outpaced the reading and understanding capacity of individuals.
As a consequence, there is a pressing need for automatic
language understanding techniques for processing and analyzing
such texts [163]. Among those techniques, text classification is
a critical and fundamental one proven to be useful in various
downstream applications, such as text summarization [45],
recommendation [161], and sentiment analysis [24].
Although many classification models like support vector ma-
chines (SVMs) [136] and neural networks [58, 60, 146] have
demonstrated their success in processing formal and well-edited
texts, such as news articles [162], their performance is inevitably
compromised when directly applied to short and informal online
texts. This inferior performance is attributed to the severe
data sparsity nature of short texts, which results in the limited
features available for classifiers [99]. To alleviate the data spar-
sity problem, some approaches exploit knowledge from external
resources like Wikipedia [54] and knowledge bases ([78, 133]).
These approaches, however, rely on a large volume of high-
quality external data, which may be unavailable to some specific
domains or languages ([68]).
To illustrate the difficulties in classifying short texts, we take
the tweet classification in Table 4.1 as an example. In the test
instance S, only given the 11 words it contains, it is difficult
to understand why its label is New.Music.Live. Without richer
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Training instances
R1: [SuperBowl] I’ll do anything to see the
Steelers win.
R2: [New.Music.Live] Please give wrist-
bands, she have major Bieber Fever.
Test instance
S: [New.Music.Live] I will do anything for
wristbands, gonna tweet till I win.

Table 4.1: Tweet examples for classification. Ri denotes the i-th training
instance; S denotes a test instance. [class] is the ground-truth label. Bold
words are indicative of an instance’s class label.

context, classifiers are likely to classify S into the same category
as the training instance R1, which happens to share many words
with S, in spite of the different categories they belong to,1
rather than R2, which only shares the word “wristbands” with
S. Under this circumstance, how might we enrich the context
of these short texts? If looking at R2, we can observe that
the semantic meaning of “wristbands” can be extended from
its co-occurrence with “Bieber”, which is highly indicative of
New.Music.Live.2 Such relation can further help in recognizing
the word “wristbands” to be important when classifying the test
instance S.
Motivated by the above-mentioned observations, we present
a novel neural framework, named as topic memory networks
(TMN), for short text classification that does not rely on exter-
nal knowledge. Our model can identify the indicative words for
classification, e.g., “wristbands” in S, via jointly exploiting the

1R1 is about SuperBowl, the annual championship game of the National Football
League. R2 and S are both about New.Music.Live, the flagship live music show.

2Justine Bieber was on New.Music.Live in 2011. There was a business activity for this
event that gave free wristbands to fans if they supported Bieber on Twitter.
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document-level word co-occurrence patterns, e.g., “wristbands”
and “Bieber” in R2. To be more specific, built upon the
success of neural topic models [87, 118], our model is capable of
discovering latent topics3, which can capture the co-occurrence
of words in document level. To employ the latent topics for short
text classification, we propose a novel topic memory mechanism,
which is inspired by memory networks [36, 140], that allows
the model to put attention upon the indicative latent topics
useful to classification. With such corpus-level latent topic
representations, each short text instance is enriched, which thus
helps alleviate the data sparsity issues.
In prior research, though the effects of topic models for short
text classification have been explored [99, 107], existing methods
tend to use pre-trained topics as features. To the best of our
knowledge, our model is the first to encode latent topic represen-
tations via memory networks for short text classification, which
allows joint inference of latent topics.
To evaluate our model, we experiment and compare it with
existing methods on four benchmark datasets. Experimental
results indicate that our model outperforms state-of-the-art
counterparts on short text classification. The quantitative
and qualitative analysis illustrate the capability of our model
in generating topic representations that are meaningful and
indicative of different categories.

3 Latent topics are the distributional clusters of words that frequently co-occur in some
of the instances instead of widely appearing throughout the corpus [14].
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Figure 4.1: The overall framework of our topic memory networks. The dotted
boxes from left to right show the neural topic model, the topic memory
mechanism, and the classifier. Here the classifier allows multiple options and
the details are left out.

4.2 Topic Memory Networks

In this section, we describe our topic memory networks (TMN),
whose overall architecture is shown in Figure 4.1. There are
three major components: (1) a neural topic model (NTM) to
induce latent topics (described in Section 4.2.1), (2) a topic
memory mechanism that maps the inferred latent topics to
classification features (described in Section 4.2.2), and (3) a
text classifier, which produces the final classification labels
for instances. These three components can be updated si-
multaneously via a joint learning process, which is introduced
in Section 4.2.3. In particular, for the classifier, our TMN
framework allows the combination of multiple options, e.g., CNN
and RNN, which can be determined by the specific application
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Figure 4.2: Topic memory network with three hops.

scenario.
Formally, given X = {x1,x2, . . . ,xM} as the input with M

short text instances, each instance x is processed into two
representations: bag-of-words (BoW) term vector xBoW ∈ RV

and word index sequence vector xSeq ∈ RL, where V is the
vocabulary size and L is the sequence length. xBoW is fed into
the neural topic model to induce latent topics. Such topics are
further matched with the embedded xSeq to learn classification
features in the topic memory mechanism. Then, the classifier
concatenates the representations produced by the topic memory
mechanism and the embedded xSeq to predict the classification
label y for x.

4.2.1 Neural Topic Model

Our topic model is inspired by neural topic model (NTM) [87,
118] that induces latent topics in neural networks. NTM is
based on variational auto-encoder (VAE) [62], involved with a
continuous latent variable z as an intermediate representation.
Here in NTM, the latent variable z ∈ RK , where K denotes the
number of topics. In the following, we describe the generation
and the inference of the model in turn.
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NTM Generation. Similar to LDA-style topic models, we as-
sume x having a topic mixture θ represented as aK-dimensional
distribution, which is generated via Gaussian softmax construc-
tion [87]. Each topic k is represented by a word distribution φk
over the vocabulary. Specifically, the generation story for x is:
• Draw latent variable z ∼ N (µ,σ2)
• θ = softmax(fθ(z))
• For the n-th word in x:

– Draw word wn ∼ softmax(fφ(θ))
where f∗(·) is a neural perceptron that linearly transforms
inputs, activated by a non-linear transformation. Here we use
rectified linear units (ReLUs) [90] as activate functions. The
prior parameters of z, µ and σ, are estimated from the input
data and defined as:

µ = fµ(fe(xBoW )), logσ = fσ(fe(xBoW )) (4.1)

Note that NTM is based on VAE, where an encoder estimates
the prior parameters and a decoder describes the generation
story. Compared with the basic VAE, NTM includes the addi-
tional distributional vectors θ and φ, which can yield latent topic
representations and thus ensuring their better interpretability in
learning process [87].

NTM Inference. In NTM, we use variational inference [10]
to approximate a posterior distribution over z given all the
instances. The loss function of NTM is defined as

LNTM = DKL(q(z) || p(z |x))− Eq(z)[p(x | z)] (4.2)

the negative of variational lower bound, where q(z) is a standard
Normal prior N (0, I). p(z |x) and p(x | z) are probabilities to
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describe encoding and decoding processes, respectively.4 Due
to the space limitation, we leave out the derivation details and
refer the readers to [87].

4.2.2 Topic Memory Mechanism

We exploit a topic memory mechanism to map the latent topics
produced by NTM (described in Section 4.2.1) to the features
for classification. Inspired by memory networks [125, 140], we
design two memory matrices, a source memory S and a target
memory T , both of which are in K ×E size (K for the number
of topics and E for the pre-defined size of word embeddings). S
and T are produced by two ReLU-actived neural perceptrons,
both taking the topic-word weight matrix W φ ∈ RK×V as
inputs. Recall that in NTM, we use fφ(·) to compute the
word distributions given θ. W φ is the kernel weight matrix
of fφ(·), whereW φ

k,v represents the importance of the v-th word
in reflecting the k-th topic. Assuming U as the embedded xSeq
(word sequence form of x), in source memory, we compute the
match between the k-th topic and the embedding of the l-th
word in xSeq by

P k,l = sigmoid(Ws[Sk;U l] + bs) (4.3)

where [x; y] denotes the merge of x and y, and we use concate-
nation operation here [32, 24]. Ws and bs are parameters to be
learned. To further combine the instance-topic mixture θ with
P , we define the integrated memory weights as

ξk = θk + γ
∑
l

P k,l (4.4)

4In implementation, to smooth the gradients, we apply reparameterization on z
following previous work [62, 108].
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where γ is the pre-defined coefficient. Then, in target memory,
via weighting target memory matrix T with ξ, we obtain the
output representation R of the topic memory mechanism:

Rk = ξkT k (4.5)

The concatenation of R and U (embedded xSeq) further serves
as the features for classification.
In particular, similar to the memory networks in prior re-
search [24, 125], our model can be extended to handle multiple
computation layers (hops). As shown in Figure 4.2, each hop
contains a source matrix and a target matrix, and different hops
are stacked following the way presented in [125].

4.2.3 Joint Learning

The entire TMN model integrates the three modules in Fig-
ure 4.1, i.e., the neural topic model, the topic memory mecha-
nism, and the classifier, which can be updated simultaneously
in one framework. In doing so, we jointly tackle topic modeling
and classification, and define the loss function of the overall
framework to combine the two effects as following:

L = LNTM + λLCLS (4.6)

where LNTM represents the loss of NTM and LCLS is the cross
entropy reflecting classification loss. λ is the trade-off parameter
controlling the balance between topic model and classification.
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4.3 Experiment Setup

4.3.1 Datasets

We conduct experiments on four short text datasets, namely,
Snippets, TagMyNews, Twitter, and Weibo. Their details are
described as follows.

Snippets. This dataset contains Google search snippets re-
leased by [99]. There are eight ground-truth labels, e.g., health
and sport.

TagMyNews. We use the news titles as instances from the
benchmark classification dataset released by [130].5 This
dataset contains English news from really simple syndication
(RSS) feeds. Each news feed (with its title) is annotated with
one from seven labels, e.g., sci-tech.

Twitter. This dataset is used to evaluate tweet topic classifi-
cation, which is built on the dataset released by TREC2011
microblog track.6 Following previous settings [68, 148], hash-
tags, i.e., user-annotated topic labels in each tweet such as
“#Trump” and “#SuperBowl”, serve as our ground-truth class
labels. Specifically, we construct the dataset with the following
steps. First, we remove the tweets without hashtags. Second,
we rank hashtags by their frequencies. Third, we manually
remove the hashtags that cannot mark topics, such as “#fb” for
indicating the source of tweets from Facebook, and combine the
hashtags referring to the same topic, such as “#DonaldTrump”

5http://acube.di.unipi.it/tmn-dataset/
6http://trec.nist.gov/data/tweets

http://acube.di.unipi.it/tmn-dataset/
http://trec.nist.gov/data/tweets
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Dataset # of # of Avg len Vocab sizelabels docs per doc
Snippets 8 12,332 17 7,334
TagMyNews 7 32,567 8 9,433
Twitter 50 15,056 5 6,962
Weibo 50 21,944 6 10,121

Table 4.2: Statistics of the experimental datasets. Labels refers to class
labels. Avg len per doc refers to the average count of words in each document
instance.

and “#Trump”. Finally, we select the top 50 frequent hashtags,
and all tweets containing these hashtags.

Weibo. To evaluate our model on a different language other
than English, we employ a Chinese dataset with short segments
of text for topic classification. This dataset is released by [70]
with a collection of messages posted in June 2014 on Weibo, a
popular Twitter alike platform in China.7 Similar to Twitter,
Weibo allows up to 140 Chinese characters in its messages.
In this Weibo dataset, each Weibo message is labeled with a
hashtag as its category, and there are 50 distinct hashtag labels
in total, following the same procedure performed for the Twitter
dataset.
Table 4.2 shows the statistic information of the four datasets.
Each dataset is randomly split into 80% for training and 20%
for test. 20% of randomly selected training instances are used
to form development set. We preprocess our English datasets,
i.e., Snippets, TagMyNews, and Twitter, with gensim tokenizer8

for tokenization. As to the Chinese Weibo dataset, we use
7The original dataset contains conversations to enrich the context of Weibo posts, which

are not considered here.
8https://radimrehurek.com/gensim/utils.html

https://radimrehurek.com/gensim/utils.html
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FudanNLP toolkit [104]9 for word segmentation. In addition,
for each dataset, we maintain a vocabulary built based on the
training set with removal of stop words10 and words occurring
less than 3 times. The inputs of topic models xBoW are
constructed based on this vocabulary following common topic
model settings [14, 88]. Differently, we use the raw word
sequence (without words removal) for the inputs of classification
xSeq as is done in previous work of text classification [60, 77].

4.3.2 Model Settings

We use pre-trained embeddings to initialize all word embed-
dings. For Snippets and TagMyNews datasets, we use pre-
trained GloVe embeddings [96]11. For Twitter and Weibo
datasets, we pre-train embeddings on large-scale external data
with 99M tweets and 467M Weibo messages, respectively. For
the number of topics, we follow previous settings [28, 30, 148] to
set K = 50. For all the other hyperparameters, we tune them
on the development set by grid search. For our classifier, we
employ CNN in experiment because of its better performance in
short text classification than its counterparts such as RNN [133].
The hidden size of CNN is set as 500. The dimension of
word embedding E = 200. γ = 0.8 for trading off θ and
P , and λ = 1.0 for controlling the effects of topic model and
classification. In the learning process, we run our model for 800
epochs with early-stop strategy applied [20].

9https://github.com/FudanNLP/fnlp
10https://radimrehurek.com/gensim/parsing/preprocessing.html
11http://nlp.stanford.edu/data/glove.6B.zip (200d)

https://github.com/FudanNLP/fnlp
https://radimrehurek.com/gensim/parsing/preprocessing.html
http://nlp.stanford.edu/data/glove.6B.zip
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4.3.3 Comparison Models

For comparison, we consider a weak baseline of majority vote,
which assigns the major class labels in training set to all test
instances. We further compare with the widely-used baseline
SVM+BOW, SVM with unigram features [136]. We also
consider other SVM-based baselines: SVM+LDA, SVM+BTM,
SVM+NTM, whose features are topic distributions for instances
learned by LDA [14], BTM [148], and NTM [87], respectively.
In particular, BTM is one of the state-of-the-art topic models
for short texts. To compare with neural classifiers, we test
bidirectional long short-term memory with attention (AttBiL-
STM) [160] and convolutional neural network (CNN) classifiers
[60]. No topic representation is encoded in these two classifiers.
We also compare with the state-of-the-art short-text classifier
CNN+TEWE [107], i.e., CNN classifier with topic-enriched
word embeddings (TEWE), where the word embeddings are
enriched by pre-trained NTM-inferred topic models. Moreover,
to investigate the effectiveness of our proposed topic memory
mechanism, we compare with CNN+NTM, which concatenates
the representations learned by CNN and topics induced by NTM
as classification features. In addition, we compare with our vari-
ant, TMN (Separate TM Inference), where topics are induced
separately before classification, and only used for initializing
the topic memory. To be consistent, our model with a joint
learning process for topic modeling and classification, described
in Section 4.2.3, is named as TMN (Joint TM Inference). Note
that the comparison CNN-based models share the same settings
as our model, and the hidden size for each direction of BiLSTM
is set to 100.
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Models Snippets TagMyNews Twitter Weibo
Acc Avg F1 Acc Avg F1 Acc Avg F1 Acc Avg F1

Comparison models
Majority Vote 0.202 0.068 0.247 0.098 0.073 0.010 0.102 0.019
SVM+BOW [136] 0.210 0.080 0.259 0.058 0.070 0.009 0.116 0.039
SVM+LDA [14] 0.689 0.694 0.616 0.593 0.159 0.111 0.192 0.147
SVM+BTM [148] 0.772 0.772 0.686 0.677 0.232 0.164 0.331 0.277
SVM+NTM [87] 0.779 0.776 0.664 0.654 0.261 0.177 0.379 0.348
AttBiLSTM [157] 0.943 0.943 0.838 0.828 0.375 0.348 0.547 0.547
CNN [60] 0.944 0.944 0.843 0.843 0.381 0.362 0.553 0.550
CNN+TEWE [107] 0.944 0.944 0.846 0.846 0.385 0.368 0.537 0.532
CNN+NTM 0.945 0.945 0.844 0.844 0.382 0.365 0.556 0.556
Our models
TMN (Separate TM Inference) 0.961 0.961 0.848 0.847 0.394 0.386 0.568 0.569
TMN (Joint TM Inference) 0.964 0.964 0.851 0.851 0.397 0.375 0.591 0.589

Table 4.3: Comparisons of accuracy (Acc) and average F1 (Avg F1) on four
benchmark datasets. Our TMN, either with separate or joint TM inference,
performs significantly better than all the comparisons (p < 0.05, paired t-
test).

4.4 Experimental Results

4.4.1 Classification Comparison

Table 4.3 shows the comparison on classification results, where
the accuracy and average F1 scores on different classes labels
are reported. We have the following observations.

• Topic representations are indicative features. On all four
datasets, simply by combining topic representations into fea-
tures, SVM models produce better results than the models
without exploiting topic features (i.e., SVM+BOW). This ob-
servation indicates that latent topic representations captured at
corpus level are helpful to alleviate the data sparsity problem in
short text classification.
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Model Snippets TagMyNews Twitter
LDA 0.436 0.449 0.436
BTM 0.435 0.463 0.435
NTM 0.463 0.468 0.463
TMN 0.487 0.499 0.468

Table 4.4: CV coherence scores for topics generated by various models.
Higher is better. The best result in each column is in bold.

• Neural network models are effective. It is seen that neural
models based on either CNN or AttBiLSTM yield better results
than SVM. This observation shows the effectiveness of represen-
tation learning in neural networks for short texts.

• CNN serves as a better classifier for short texts than AttBiL-
STM. In comparison of CNN and AttBiLSTM without taking
topic features, we observe that CNN yields generally better
results on all the four datasets. This is consistent with the
discovery in [133], where CNN can better encode short texts
than sequential models.

• Topic memory is useful to classification. By exploring topic
representations in memory mechanisms, our TMN model, in-
ferring topic models either separately or jointly with classifica-
tion, significantly outperform the best comparison models on
each of the four datasets. Particularly, when compared with
CNN+TEWE and CNN+NTM, both concatenating topics as
part of the features, the results yielded by TMN are better.
This demonstrates the effectiveness of topic memory to learn
indicative topic representations for short text classification.
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• Jointly inferring latent topics is effective to text classification.
In comparison between two TMN variants, TMN (Joint TM

Inference) produces better classification results, though large
margin improvements are not observed on the three English
datasets, i.e., TagMyNews, Snippets, and Twitter. This may
be because the classifiers do not rely too much on high-quality
latent topics, since other features may be sufficient to indicate
the labels, e.g., word positions in the instance. As a result,
better topic models, learned via jointly induced with classifi-
cation, may not provide richer information for classification.
Nevertheless, we notice that on Chinese Weibo dataset, the
jointly trained topic model improves the accuracy and average
F1 by 2.3% and 2.0%, respectively. It may result from the
prevalence of word order misuse in informal Weibo messages.
This mis-order phenomenon is common in Chinese and generally
does not affect understanding. The rich information conveyed by
Chinese characters are capable of indicating semantic meanings
of words even without correct orders [103, 135]. As a result,
the CNN classifier, which encodes orders of words, may also
bring such mis-order noise to classification. For these instances
with mis-ordered words, a better topic model that learns text
instances as unordered words, provides useful representations
that compensate the loss of information in word orders and in
turn improves the performance of text classification.

4.4.2 Topic Coherence Comparison

In Section 4.4.1, we find that TMN can significantly outperform
comparison models on short text classification. In this section,
we study whether jointly learning topic models and classification
can be helpful in producing coherent and meaningful topics.
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LDA
mubarak

:::::
bring

::::
run obama democ-

racy speech
:::::::
believe regime power

bowl

BTM
mubarak egypt push internet peo-
ple government

:::::::
phone hosni

:::::
need

son

NTM
mubarak people egyptian egypt
::::
stay

::::::::::
tomorrow protest news

::::::
phone protester

TMN
mubarak protest protester tahrir
square egyptian al jazeera repo
cairo

Table 4.5: Top 10 representative terms of the sample latent topics discovered
by various topic models from Twitter dataset. We interpret the topics
as “Egyptian revolution of 2011” according to their word distributions.
::::::::::
Non-topic

:::::::
words are wave-underlined and in blue, and off-topic words are

underlined and in red.

We use the CV metric [110] computed by Palmetto toolkit12 to
evaluate the topic coherence, which has been shown to give the
closest scores to human evaluation compared to other widely-
used topic coherence metrics like NPMI [16]. Table 4.4 shows the
comparison results of LDA, BTM, NTM, and TMN on the three
English datasets.13 Note that we do not report CV scores for
Chinese Weibo dataset as the Palmetto toolkit cannot process
Chinese topics.
As can be seen, TMN yields higher CV scores by large margins
than all others in comparison. This indicates that jointly explor-
ing classification would be effective in producing coherent topics.
The reason is that the supervision from classification labels can

12https://github.com/dice-group/Palmetto
13Without otherwise indicated, TMN is used as a short form for TMN (Joint TM

Inference).

https://github.com/dice-group/Palmetto
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# of Hops Snippets TagMyNews Twitter Weibo
TMN-1H 0.958 0.841 0.382 0.568
TMN-2H 0.964 0.843 0.383 0.578
TMN-3H 0.962 0.845 0.384 0.581
TMN-4H 0.961 0.846 0.389 0.582
TMN-5H 0.960 0.851 0.397 0.591
TMN-6H 0.958 0.848 0.388 0.579

Table 4.6: The impact of the # of hops on accuracy.

guide unsupervised topic models in discovering meaningful and
interpretable topics. We also observe that NTM produces better
results than LDA and BTM, which implies the effectiveness of
inducing topic models by neural networks.
To further analyze the quality of yielded topics, Table 4.5 shows
the top 10 words of the sample latent topics reflecting “Egyptian
revolution of 2011” discovered by various models. We find that
LDA yields off-topic word “bowl”. For the results of BTM and
NTM, though we do not find off-topic words, non-topic words
like “need” and “stay” are included.14 The topic generated by
TMN appears to be the best, which presents indicative words
like “tahrir” and “cairo”, for the event.

4.4.3 Results with Varying Hyperparameters

We further study the impact of two important hyperparameters
in TMN, i.e., the hop number and the topic number, which will
be discussed in turn.

Impact of Hop Numbers. Recall that Figure 4.2 shows the
capacity of TMN in combining multiple hops. Here we analyze

14Off-topic words are more likely to be interpreted to reflect other topics. Non-topic
words cannot clearly indicate the corresponding topic.
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the effects of hop numbers on the accuracy of TMN. Table 4.6
reports the results, where NH refers to using N hops (N =
1, 2, ..., 6). As can be seen, generally, TMN with 5 hops achieves
the best accuracy on most datasets except for Snippets dataset.
We also observe that, although within a particular range, more
hops can produce better accuracy, the increasing trends are
not always monotonic. For example, TMN-6H always exhibits
lower accuracy than TMN-5H. This observation implies that
the overall representation ability of TMN is enhanced as the
increasing complexity of the model via combining more hops.
However, this enhancement will reach saturation when the hop
number exceeds a threshold, which is 5 hops for most datasets
in our experiment.

Impact of Topic Numbers. Figure 4.3 shows the accuracy of
TMN and CNN+TEWE (the best comparison model in Table
4.3) given varying K, the number of topics on TagMyNews
and Twitter datasets.15 As we can see, the curves of all the
models are not monotonic and the best accuracy is achieved
given a particular number of topics, e.g., K=50 for TMN on
TagMyNews dataset. When comparing different curves, we
observe that TMN yields consistently better accuracy than
CNN+TEWE, a comparison model shown in Table 4.3, which
demonstrates the robust performance of TMN over varying
number of topics.

4.4.4 A Case Study on Topic Memory

Section 4.4.1 demonstrates the effectiveness of using topic mem-
ory on short text classification. To further understand why,

15We observe similar distributions on Snippets and Weibo.
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Figure 4.3: The impact of topic numbers, where the horizontal axis shows
the number of topics and the vertical axis shows the accuracy.

in this section, we use the test instance S in Table 4.1 to
analyze what the information captured by topic memory is
indicative of class labels. Recall that the label of S, which
should be New.Music.Live, can be indicated by containing word
“wristbands” and the collocation of “wristbands” and “Bieber”
in training instance R2 labeled New.Music.Live. Figure 4.4 shows
the heatmaps of the weight matrix P in topic memory and the
topic mixture θ captured by NTM for instance S. As can be seen,
the top 3 words for the latent topic with the largest value in θ are
“bieber”, “justine”, and “tuesday”, which can effectively indicate
the class label of S to be New.Music.Live because Justine Bieber
was there on Tuesday. Interestingly, S contains none of the top
three words. The latent semantic relations of S and these words
are purely uncovered by the co-occurrence of words in S with
other instances in the corpus, which further shows the benefit of
using latent topics for alleviating the sparsity in short texts. We
also observe that topic memory learns different representations
for topical word “wristband”, highly indicating instance label,
and background words, such as “i” and “for”. This explains
why topic memory is effective to classification.
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4.4.5 Error Analysis

In this section, we take our classification results on TagMyNews
dataset as an example to analyze our errors. We observe that
one major type of incorrect prediction should be ascribed to
the polysemy phenomenon. For example, the instance “NBC
gives ‘the voice’ post super bowl slot” should be categorized as
entertainment. However, failing to understand the particular
meaning of “the voice” here as the name of a television singing
competition, our model mistakenly categorizes this instance as
sport because of the occurrence “super bowl”. In future work, we
would exploit context-sensitive topical word embeddings [143],
which is able to distinguish the meanings of the same word
in different contexts. Another main error type comes from
the failure to capture phrase-level semantics. Taking “On the
merits of face time and living small” as an example, without
understanding “face time” as a phrase, our model wrongly
predicts its category as business instead of its correct label as
sci_tech. Such errors can be reduced by enhancing our NTM to
phrase discovery topic models [38, 76], which is worthy exploring
in future work.

4.5 Summary

In this chapter, we have presented topic memory networks that
exploit corpus-level topic representations with a topic memory
mechanism for short text classification. The model alleviates
data sparsity issues via jointly learning latent topics and text
categories. Empirical comparisons with state-of-the-art models
on four benchmark datasets have demonstrated the validity
and effectiveness of our model, where better results have been
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achieved on both short text classification and topic coherence
evaluation.

2 End of chapter.



Chapter 5

The Roles of Dynamic Topics
and Discourse in
Argumentation Process

This chapter presents a study that automatically analyzes the
key factors in argument persuasiveness, beyond simply predict-
ing who will win the debate. The key notion is that we propose
a novel neural model which is able to dynamically track the
changes of latent topics and discourse in argumentative conver-
sations, allowing the investigation of their roles in influencing
the outcomes of persuasion. The main points of this chapter
are as follows. (1) It presents a novel neural model that can
analyze the changes of both topics and discourse in argumen-
tative conversations. (2) It conducts extensive experiments on
argumentative conversations on both social media and supreme
court. (3) It presents the effects of topics and discourse on
persuasiveness, and achieves that they are both useful. (4) It
draws some findings from our empirical results, which will help
people better engage in future persuasive conversations.

82
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5.1 Introduction

In our current world with full of uncertainty, arguments play a
central role in making decisions, constructing knowledge, and
bringing truths and better ideas to life [55]. The understanding
of these argumentation processes will help individuals better
engage with conflicting stances and open up their minds to
pros and cons [65]. It collides different ideas to form thoughts
and knowledge, contributing to advance science and society
forward [141]. However, making sense of argumentative con-
versations is a daunting task for human readers, mostly due to
the varied viewpoints and evidence continuously put forward
and the complicated interaction structure therein; not to men-
tion huge volume of data containing argumentation processes
appeared on online platforms every day.
We hence study how to automatically understand argumenta-
tion processes, predicting who will persuade whom and figuring
out why it happens. To date, much progress made in persuasive-
ness prediction has focused on individual arguments, the word-
ings therein [37, 137] and how they locally connect with other
arguments [40, 49]. On the contrary, we examine the context
and the dynamic progress of argumentative conversations, which
is beyond the studies of argument-level persuasiveness. Some
research works analyze argument interactions [39, 55, 126, 134]
to predict who will win. Most of them focus on the outcome
of argumentation instead of diving deep into the persuasion
process. The latter, however, is arguably the essence of ar-
gumentation, revealing how participants collaborate to reshape
and refine ideas.
In light of these missing points, we track the argumentation
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...
A1 [Evidence]: ... There is research that indicates
“that those who spoke two or more languages had
significantly better cognitive abilities compared to what
would have been expected from their baseline test.”
〈url〉. ... Another study found that “ the language-
learning participants ended up with increased density
in their grey matter and that their white matter tissue
had been strengthened. ” 〈url〉
A2 [Metaphor ]: The common comparison is made to
learning music, as /u/awesomeosprey has pointed out.
I did some research into the matter. It seems that
learning a musical instrument does have long-lasting
benefits (〈url〉) that relate to “higher-order aspects of
cognition.”
...
A4 [Reference] ... But a quick search and I have other
sources: 〈digit〉 〈url〉, 〈digit〉 〈url〉, 〈digit〉 〈url〉. The
most interesting study is this one (〈url〉), but I can’t
find a complete version of it, sorry. /n/nNote: Study
〈digit〉 has an exceptionally small sample size. It’s still
interesting reading.

Figure 5.1: A ChangeMyView conversation snippet of challengers’ arguments
against “learning a second language isn’t worth it anymore for most people”
(raised by an opinion holder). The red and italic words indicate the key points
resulting in the challengers’ victory. The words in [] are our interpretations
of the arguments’ discourse styles.
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process and explicitly explore the dynamic patterns of what
a discussion is centered around (henceforth topics) and how
the participants voice their opinion in arguments (henceforth
discourse), as well as how they affect the persuasion results.
To illustrate the interplay of topics and discourse in argument
persuasiveness, Figure 5.1 shows a Reddit conversation snippet
from ChangeMyView subreddit.1 It is formed with challengers’
arguments against “learning a second language isn’t worth it for
most people anymore”, which was raised by an opinion holder.
It is seen that the challengers successfully persuaded the opinion
holder to change their view in the aforementioned example.
The probable reasons are two fold. First, there are strong
evidences (reflected by topic words) put forward, such as the
research findings on cognitive abilities. Second, they deploy
skillful debating styles (captured by discourse words), such as
the metaphors with learning music (in A2) and the reference to
external information (in A4).
Motivated with these observations, we propose a novel neural
framework that explicitly models how the change of discussion
topic and discourse styles affect persuasion effectiveness. Our
model first explores latent topic and discourse in arguments with
word clusters. Furthermore, it tracks topic change and discourse
flow in argumentation processes and automatically interpret the
key factors indicating the success or failure of the persuasion.
Coupling the advantages of neural topic models [87, 152, 155]
and dynamic memory networks [64, 147, 159], we are able to
explore dynamic topic and discourse representations indicative
of persuasiveness in an end-to-end manner with the persuasion

1On ChangeMyView (https://www.reddit.com/r/changemyview/), an opinion
holder first raises a viewpoint, followed by challengers’ arguments attempting to change
the opinion holder’s mind.

https://www.reddit.com/r/changemyview/
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outcome prediction. To the best of our knowledge, we are the
first to explicitly model topics and discourse in argumentation
processes, and investigate how they contribution to argument
persuasiveness.
We carry out extensive experiments on argumentative con-
versations from both social media and supreme court. The
results show that our model can effectively identify persuasive
arguments, significantly outperforming state-of-the-art methods
on both datasets. For example, we achieve 83.3% accuracy
when predicting winners in supreme court debates, compared
with 63.1% obtained by logistic regression without explicitly ex-
ploring dynamic topics and discourse features in argumentation
processes. Based on the produced topics and discourse, we fur-
ther analyze how they affect persuasiveness. It is indicated that
topics (such as evidence and viewpoints) statistically contribute
more on persuasion success while skillful discourse style may
sometimes lead to victory. In addition, we summarize the key
findings from our empirical results, which will help individuals
better engage in future persuasions.

5.2 Problem and Data Description

In this section, we first introduce how we formulate our problem,
followed by a description about data collection and analysis.

Problem Formulation. As discussed above, our work studies
argument persuasiveness, which however relies on subjective
judgement. After all, human performance on persuasiveness
judgement is still close to random guess [126]. We hence adopt
the pairwise comparison settings following [126] to take a pair of
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Datasets # of # of # of avg. words vocab sizemoots convs turns per turn
CMV 2,396 10,341 39,644 96.2 13,541
Court 204 655 17,599 46.1 6,260

Table 5.1: Statistics of the ChangeMyView (CMV) and the Supreme Court
(Court) datasets. Here a moot refers to an original post in CMV and a case
in Court.

persuasion conversations as input. Our goal is to analyze the key
factors in their argumentation processes and predict which one
has a better chance to win. Furthermore, to ensure the input
pair to be comparable, its two conversations should be under
the same discussion subject (i.e., moot). For example, in court
debate, we take arguments from both sides concerning the same
case as input.

Data Description. Our problem setting can be fit in various
applications to learn what a good persuasion should be. Here
we conduct our study on two scenarios — social media argu-
ments, which tend to use colloquial and informal languages,
and supreme court debates, exhibiting a more formal language
style. The social media arguments are from the ChangeMyView
subreddit, where the participants engaged in discussion both
attempting to change opinion holder’s view. We aim to predict
which conversation has a better chance to achieve a ∆, awarded
by opinion holders to indicate successful persuasion. For the
supreme court debates, we aim to predict whether the petitioner
or respondent will win the case, given their corresponding
conversational exchanges with the justices.
The ChangMyView social media dataset (henceforth CMV) is
built based on a corpus released by [126] with argumentative
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conversations held from Jan 2013 to May 2015. Each discussion
in CMV can be organized in tree structure with in-reply-to
relations, its root is an original post with opinion holder’s view.
When formulating our pairwise input, we extract two conversa-
tion paths, one awarded with ∆ and other not.2 Following [126],
we also make filtering to acquire high quality arguments when
constructing our dataset.
For the supreme court debate dataset (abbreviated as Court),
it is gathered by [27] with U.S. supreme court dialogues.3 Here
given the arguments delivered by both sides’ lawyers to justices,
we predict the one more likely to win justices’ favor. The
statistics of our two datasets are shown in Table 5.1. As can
be seen from Table 5.1, there are more conversations in CMV
than Court. However, the Court debates involve more turns
(26.9 vs. 3.8 turns on average per conversation). It might be
because court debates usually result in a back-and-forth fashion
while social media discussions may end soon.
Here we do not feed the words either form opinion holder
or justices to avoid their possible influence on persuasiveness
computing. It allows us to focus on linguistic features in
participants’ arguments that lead to good persuasion. Besides,
in doing so, our setting can be adapted to scenarios without the
third-party engagement (e.g., opinion holders and justices).

2In this chapter, without otherwise specified a conversation is used as the short form
of a conversation path on ChangeMyView.

3http://www.supremecourt.gov/oral_arguments/

http://www.supremecourt.gov/oral_arguments/
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5.3 DTDMN: Dynamic Topic-Discourse Mem-
ory Networks for Persuasiveness

This section presents our model that predicts persuasiveness,
and dynamically discovers the key topic and discourse factors
therein to explain the reasons behind. Our model, named as
dynamic topic-discourse memory networks (DTDMN), consists
of three modules — one to learn latent topic and discourse
factors from each argument (henceforth argument factor
encoder), one to explore the change of topic and discourse
factors in argumentation flows (henceforth dynamic process
encoder), and the last one to identify the more persuasive
conversation from the input pair (henceforth persuasiveness
predictor). The model architecture is shown in Figure 5.2 with
an overview presented in Section 5.3.1. Then in Section 5.3.2,
5.3.3 and 5.3.4, we describe our three modules in turn, followed
by our our learning objective discussed in Section 5.3.5.

5.3.1 Model Overview

As described in Section 5.2, our model takes pairwise con-
versations as input. In training, we feed 〈C+;C−〉 into our
model, where C+ is a positive instance referring to a persuasive
conversation. Likewise, C−, the negative instance, denotes a
failed persuasion. During the testing, given two conversations,
our model will recognize the one which is more persuasive. Each
conversationC is formed with a sequence of argumentative turns
(henceforth arguments): C = 〈x1, . . . ,xT 〉, where T denotes
the number of arguments in C.
For the t-th argument xt, we capture argument-level representa-
tions, zt ∈ RK for topic factor and dt ∈ RD for discourse factor,
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Figure 5.2: The architecture of our dynamic topic-discourse memory net-
works (DTDMN) for persuasiveness prediction.

from the input of bag-of-words vector xtBoW ∈ RV , where K
and D is the number of topics and discourse, respectively, V is
the vocabulary size. Then, zt and dt are fed into the dynamic
memory, together with the word index sequence xtSeq ∈ RL,
to update the memory state, where L is the sequence length.
The output of the dynamic memory network is used to predict
the persuasiveness score y for each conversation, where higher
scores indicate better persuasiveness. Our training target is to
have y+ > y− for C+ and C−.
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5.3.2 Argument Factor Encoder

This section presents how we capture topic and discourse factors
at the argument level. The superscript t is omitted for simplicity.
As mentioned in Section 5.3.1, we employ latent variables z for
argument topic factor representation, and d for discourse. The
modeling process is inspired by [153] and based on variational
auto-encoder (VAE) [62] to reconstruct a given argument in the
BoW form, xBoW , conditioned on z and d. Here z is the topic
mixture and d is a one-hot vector denoting the discourse style.4
Specifically, the generation process for each word wn ∈ xBoW is
defined as:

ε ∼ N (µ,σ2), z = softmax(fz(ε)), d ∼Multi(π),
βn = softmax(fφT (z) + fφD(d)), wn ∼Multi(βn),

(5.1)

where f∗(·) is a neural perceptron that linearly transforms
inputs. For both latent topic and discourse factors, we employ
word distributions to represent them. Here we consider the
weight matrix of fφT (·) (after the softmax normalization) as
topic-word distributions, φT . Likewise, fφD(·)’s weight matrix
is used to compute the discourse-word distributions, φD.
For the other parameters µ, σ, and π, they can be learned from
the input xBoW following the formula below:

µ = fµ(tanh(fe(xBoW ))), logσ = fσ(tanh(fe(xBoW )))
π = softmax(fπ(xBoW )).

(5.2)

5.3.3 Dynamic Process Encoder

Based on the topic and discourse factors learned at the argument
level, here we discuss how to capture their dynamic patterns

4We follow the setting of [153], and apply Gumbel-Softmax relaxation for d.
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in the persuasion process. Our dynamic process encoder is
inspired by dynamic memory network (DMN) [64, 147, 159]
and topic memory mechanism [155], where we capture the
indicative dynamic topic and discourse factors to interpret why
a conversation can result in successful persuasion.
To be more specific, memory weight wt ∈ R(K+D) is defined as
the concatenation of latent aspects zt and dt:

wt = [zt;dt] (5.3)

where [·; ·] represents the concatenation. Once we have the
memory weight, DTDMN will retrieve and update the memory
according to the memory weight and input argument. Here we
employ an attentive RNN to encode the the index sequence
vector input xtSeq into the hidden state H t. Similar to [159],
we employ a forget gate to erase the retrieved memory. The
erase vector is denoted as et ∈ RE, where E is the dimension
of memory embeddings. Afterwards, an augment gate is used
to strengthen the retrieved memory. The augment vector is
denoted as at ∈ RE. The overall update formulae for episodic
memory are:

M t
i = M t−1

i [1− wt
ie
t] + wt

ia
t

et = sigmoid(fe(Et)), at = tanh(fa(Et))
(5.4)

where M t
i ∈ RE is the i-th row of the memory matrix M t, 1 is

a row-vector of all 1s. The read content rt ∈ RE of the episodic
memory M t is the weighted sum of the memory matrix:

rt =
K+D∑
i=1

wt
iM

t
i (5.5)
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5.3.4 Persuasiveness Predictor

For each conversation, DTDMN summarizes the read contents
of all the arguments in a conversation {rt}, t = 1, . . . , T into r
via an attentive RNN. Then we map r to a score y via a neural
perceptron layer.

y = fr(r) (5.6)

5.3.5 Learning Objective

Argument Factor Learning. To model topic and discourse fac-
tors, in learning, we maximize the variational lower bound Lz
for z and Ld for d. The corresponding functions are defined as:

Lz = Eq(z |x)[p(x | z)]−DKL(q(z |x) || p(z))
Ld = Eq(d |x)[p(x |d)]−DKL(q(d |x) || p(d))

(5.7)

where p(z) is the standard normal prior N (0, I) and p(d) the
uniform distribution Unif(0, 1). q(z |x) and q(d |x) are pos-
terior probabilities to approximate how z and d are generated
from the arguments. p(x | z) and p(x |d) represent the corpus
likelihoods conditioned on these topic and discourse factors.
The overall argument factor learning objective is to maxmize:

LFactor = Lz + Ld + Lx − λLMI (5.8)

where Lx is for reconstructing the argument x from z and d,
LMI is the mutual information (MI) penalty. The hyperparam-
eter λ is the trade-off parameter for balancing between the LMI

and the other learning objectives. We leave out the details and
refer the readers to [153].

Persuasiveness Prediction Learning. In our setting, we aim to
identify which conversation is more persuasive given an input
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of two conversations. Therefore, our goal is to have C+ scored
higher than C−. We apply the pairwise cross-entropy loss to
maximize the score margin of y+ and y− for C+ and C−, which
is equivalent to minimize:

LPred = log(1 + exp(y− − y+)) (5.9)

Overall learning Objective. The three components of our model
can be jointly optimized by minimizing the following objective
function:

L = LPred −
∑
t

(LtFactor) (5.10)

where LtFactor is for argument level.

5.4 Experimental Setup

Data Preprocessing. We randomly split the dataset with 80%
for training and 20% for test. Then, 20% of the training
data is randomly selected for validation. For preprocessing,
we take the the following steps. First, non-English terms were
filtered out. Then, quotations, digits and links were replaced
with generic tags ‘〈quote〉’, ‘〈digit〉’, and ‘〈url〉’, respectively.
Next, we employed the natural language toolkit (NLTK) for
tokenization5. After that, all letters were converted to lowercase.
Finally, words occurred less than 10 times were filtered out from
the data.

Parameter Setting. We use Gated Recurrent Unit (GRU) as
the RNN cell. The hidden size of GRU is set to 512 with the
word dropout rate of 0.2. The dimensions of word embeddings
and memory embeddings are both set to 200. λ = 0.01 following

5https://www.nltk.org/

https://www.nltk.org/
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the setting of [153] for balancing the MI loss. For all the other
hyperparameters, we tune them on the development set by grid
search. Optimization is performed using Adam [61]. In the
learning process, we alternatively update the parameters of the
argument factor encoder and the rest of our model. We run our
model for 80 epochs with early-stop strategy applied [20].

Comparison Baselines. LR-Tfidf [126] uses logistic regres-
sion with Bag-of-Words features in the pairwise pervasiveness
prediction tasks, achieving good performance when compared
with most of the handcrafted features. Here we implemented
logistic regression with Tfidf-weighted n-grams features. Similar
to [126], we adopt `1 regularization on the training stage to avoid
overfitting. Joint topic-discourse model (JTDM) extracts topics
and discourse features in an unsupervised way and can be used
to place our argument factor encoder. We use the mean of each
argument’s topic-discourse mixture as the feature of an input
conversation without considering the dynamics. Hierarchical
attention recursive neural network (HAtt-RNN) [150] uses bi-
directional GRU as sequence encoder, including two levels of
attention mechanisms (i.e., word level and argument level) while
constructing the representation of a conversation. Dynamic
memory network (DMN) [64] is a neural sequence model that
can encode the contextual history into the episodic memory com-
ponent. Dynamic key-value memory network (DKVMN) [159]
improves upon DMN using one static matrix as key to compute
the memory reading weights and one dynamic matrix as value
for updating the memory states.
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Models CMV Court
Acc. F1 Acc. F1

Baselines
LR-Tfidf 0.571 0.727 0.631 0.773
JTDM 0.615 0.762 0.642 0.782
HAtt-RNN 0.828 0.890 0.559 0.717
DMN 0.858 0.893 0.662 0.755
DKVMN 0.896 0.911 0.726 0.841
Our models
w/o topic 0.871 0.931 0.797 0.887
w/o discourse 0.922 0.959 0.821 0.902
w/o memory 0.885 0.918 0.761 0.864
full model 0.939 0.968 0.833 0.909

Table 5.2: Pairwise classification results on persuasiveness prediction. Best
results in bold. Our full model achieves significantly better results than
all the baselines (p < 0.01, paired test).

5.5 Experimental Results

This section presents the how models perform on persuasiveness
prediction. The further discussions on the effects of topics and
discourse will be given in Section 5.6.

5.5.1 Persuasiveness Prediction Comparison

We follow Tan et al. [126] to conduct pairwise classification. For
the CMV dataset, we predict which conversation can win ∆, and
for the Court dataset, which side will win the case. In Table 5.2,
we report the pairwise accuracy and F1 scores. For our models,
we also display results without considering topic, discourse, and
memory structures, respectively. It is observed that:
• Topic and discourse factors are useful. By exploiting
pre-learned latent topic and discourse factors, JTDM outper-
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forms LR-Tfidf baseline on both datasets. It even performs
better than HAtt-RNN on Court debates. This observation
implies that topic and discourse factors can be indicative of
persuasiveness arguments.
• Neural models generally outperform the non-neural
baselines. This indicates that neural models are able to learn
deep persuasiveness features. We also find that the improvement
upon non-neural models is less significant on the Court dataset
compared to CMV. This may be partly attributed to the sparse
training instances in the Court dataset as shown in Table
5.1, which may result in overfitting. Nevertheless, our models
can well alleviate such sparsity and achieve significantly better
performance on both datasets.
•Processing modeling is important to predict argument
persuasiveness. We observe that LR-Tfidf and JTDM,
with only word features encoded, perform worse compared to
other methods that explore dynamic patterns in argumentation
process. This shows that persuasion outcomes are also depen-
dent on a dynamic process beyond word features.
• Dynamic memory mechanism is effective. Our full
model obtains better results than its w/o memory variant.
Also, DMN and DKVMN outperform other baselines without
dynamic memory mechanism. The above observations indicate
that dynamic memory mechanism can help to capture indicative
signals from the persuasion progress.
• Both dynamic topic and discourse factors contribute
to argument persuasiveness. It is observed that our full
model achieves better results than the w/o topic and w/o
discourse ablation, which considers only dynamic discourse or
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topic factors. Though the slightly better performance of w/o
discourse than w/o topic shows that topic factors might
contribute more to argument persuasiveness, coupling the topics
and discourse exhibiting the best performance.

5.5.2 Parameter Analysis

Here we study how the two important hyper-parameters in our
model, the number of topics (K) and the number of discourse
roles (D) affect our model performance. In Figure 5.3, we show
the persuasiveness prediction accuracy given varying K in (a)
and varying D in (b).
As can be seen, for both topic and discourse, the curves
corresponding model performance are not monotonic. In partic-
ular, better accuracies are achieved given relatively larger topic
numbers for CMV with the best result observed at K = 50.
While for Court, the optimum topic number is K = 20. This
may be due to the relatively more centralized topics in Court
debates, whereas wider range of topics discussed in social media,
CMV. For discourse, we observed a similar trend in both CMV
and Court datasets. The best score is achieved when D = 10
for CMV and D = 8 for Court dataset. This implies that the
discourse styles used in both CMV and Court are somewhat
limited. We will later summarize the discourse styles useful to
persuasiveness in Section 5.6.2.

5.6 Discussion on Topics and Discourse

In Section 5.5, we show the superior performance of our proposed
model on persuasiveness prediction. Here we investigate the
reasons behind.
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Figure 5.3: The impact of topic number (a) and discourse number (b) on
our model for persuasiveness prediction. For both (a) and (b), the blue and
solid line shows the results on CMV with left vertical axis, and the red and
dashed line Court with the right vertical axis.

5.6.1 Analysis of the Persuasiveness Process

As discussed before, our output can be used to figure out
what results in a good persuasion. Here we take the CMV
conversation in Figure 5.1 as an example to look into its
persuasion process. Recall that the challengers put forward
viewpoints centered around “the advantage to learn a second
language", and they successfully change the opinion holder’s
mind with good arguments delivered. In Figure 5.4(a), we
visualize the dynamic memory weights wt (see Eq. 5.3) for each
turn. It is observed that our model highlights the ‘cognition’
topic factor, which suggests the cognitive research evidence (e.g.,
learning a musical instrument) might help challengers win. For
discourse, the model highlights latent factors represented by
words like ‘〈url〉’, ‘〈digits〉’, and ‘more’. This shows effective
discourse styles, such as reference to external URLs (‘〈url〉’)
and statistics (‘〈digits〉’), may also play an important role in
persuasiveness.
To further study how each topic and discourse alone contributes
to this example’s persuasion, we disable the effects from other
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topics and discourse via masking wt, and map the prediction
score y in Eq. 5.6 to [0, 1] range. We visualize the prediction
scores in Figure 5.4(b) to depict the effect of persuasiveness
from each topic and discourse. We observe that the “cognition”
topic is still highlighted for all turns. It implies our model
still recognize this topic to be important, without taking the
discourse effects into account. For discourse, we notice that the
reference and statistics behaviors considered useful for the first
few turns, whose impacts however later changed to be negative.
It might be because people tend to be tired of excessive URL
links and statistics without providing more insightful opinions
or content.

5.6.2 Roles of Topics and Discourse

In Section 5.5.1, we have shown that topics contribute slightly
more on persuasiveness than discourse. Here we further analyze
their roles in affecting persuasion outcome and similar trends
are observed on both datasets. Due to space limitation, we only
discuss the results on CMV dataset.
To investigate topic effects, we follow [134] to identify strong
argument topics when the topic likelihood is larger than a pre-
defined threshold (set to 0.2 here).6 Then in Figure 5.5(a)
we show how the number of strong argument topics distribute
on winning arguments compared with the losing ones. For
discourse, we show the discourse factor distribution on winning
and losing arguments in Figure 5.5(b). Here we display the
discourse factors with our interpretations on the discourse styles

6To set the threshold, we first sample 100 arguments and manually align them to the
strongly related latent topic. Then we set the threshold resulting in the smallest errors
compared with human annotations.
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according to their word distributions. In the following we discuss
the findings from topic and discourse in turn.

Topics. As can be seen in Figure 5.5(a), the winning side tends
to put forward fewer topics in the argumentative process. This
indicates that strong and focused argument points are better
than diverse topics, since arguing with too many perspectives
might overwhelm the opinion holder, which may lead to the
persuasion failure.

Discourse. From Figure 5.5(b), we can see discourse styles vary
in their contributions on the persuasiveness results. Specifically,
personal pronoun and numbers are more likely to appear in the
winning side than the losing side. Their positive effects have
also been previously reported [126, 134]. Moreover, we find that
conjunction, though not widely used, is obviously more endorsed
by winning sides. The benefit of conjunction may result from
the better logic it renders. For the losing side, they are more
in favor of the quotation discourse, which is used in CMV to
quote and attack others’ weak points. People may dislike such
criticism, which renders the negative impact on persuasiveness.

5.6.3 Implications

From this work, we distill some general suggestions on argumen-
tation which are beyond specific task and approach.
1) Topics are more important than discourse styles. In
an argumentative conversation, opponents attempt to establish
the validity of two positions by convincing each other and trying
to win points in the debate [121]. Our study shows that topics
contribute slightly more on persuasiveness than discourse. This
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Figure 5.5: Distributions of winning and losing persuasion over the number
of strong argument topics involved in (a) and varying discourse factors in
(b). For (b), we display the discourse factors with our interpretation on
them (“conj.”-conjunction, “quot.”-quotation mark, “cont.”-contrast, “pron.”-
personal pronoun, and “num.”-number). Two-sided Mann-Whitney rank test
shows that the two distributions shown here are significantly different for
both sides (p < 0.01).

phenomenon has also been mentioned by [129], where they find
that discourse strategy is not the dominant factor in the debate:
Topicality must be considered.
2) Strong and focused argument points are better than
diverse topics. Strong arguments which are well-supported
with evidence and/or reasoning, generally deliver more persua-
sive messages to audience. Our study reveals that successful
argumentation usually convey fewer and focused topics. Diverse
topics could only distract audience and expose more vulnerable
points to the opponent.
3) Well organize the points and address them in a
modest and concrete way. Discourse Argument discourse
represents the cultural and situational realities of human rea-
soning, and is more sensitive to audience in conversational
debates [33]. [5] also claims that argumentativity constitutes
an inherent feature of discourse.
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5.7 Summary

In this chapter, we propose to dynamically track both topics and
discourse factors in conversational argumentation for persuasive-
ness prediction. The proposed neural model not only identifies
persuasive arguments more accurately, but also provides insights
into the usefulness of topics and discourse for a successful
persuasion. The findings concluded in this chapter can facilitate
future argument persuasiveness analysis.

2 End of chapter.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The growing popularity of social media results in large volume
of user-created text data. Understanding such social media text
data is very important and critical to many real-life applications,
e.g., event detection, user profiling. However, analyzing such
large volume of short and noisy text data is very challenging for
many language understanding tasks. In this thesis, we propose
to model the latent topics and discourse on social media text
in an unsupervised way. By modeling the latent variables, we
design models for two social media text understating tasks, short
text classification and argumentation mining, and demonstrate
their superior performance when compared with conventional
methods.
In particular, in Chapter 3, we presented a neural framework
that jointly explores topic and discourse from microblog con-
versations. Our model, in an unsupervised manner, examines
the conversation contexts and discovers word distributions that
reflect latent topics and discourse roles. Results from extensive
experiments show that our model can generate coherent topics

105
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and meaningful discourse roles. In addition, our model can be
easily combined with other neural network architectures (such as
CNN) and allows for joint training, which has presented better
message classification results compared to the pipeline approach
without joint training.
In Chapter 4, we present topic memory networks that ex-
ploit corpus-level topic representations with a topic memory
mechanism for short text classification. The model alleviates
data sparsity issues via jointly learning latent topics and text
categories. Empirical comparisons with state-of-the-art models
on four benchmark datasets have demonstrated the validity
and effectiveness of our model, where better results have been
achieved on both short text classification and topic coherence
evaluation.
In Chapter 5, we propose a neural model to dynamically extract
and track both topics and discourse factors in conversational ar-
gumentation for persuasiveness prediction. The proposed neural
model not only identifies persuasive arguments more accurately,
but also provides insights into the usefulness of topics and
discourse for a successful persuasion. The findings concluded
can facilitate future argument persuasiveness analysis.
In summary, we design novel techniques to automatically anal-
ysis social media text by modeling the latent topic and latent
discourse. We are the first to leverage neural network to jointly
model topics and discourse in conversation, in an unsupervised
manner. Our method can be generalizable, for example in
short text classification without the conversation information,
our integration model demonstrates a superior performance by
exploiting corpus-level topic representations. Moreover, our
method can be extensible, for example in the challenging task of
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persuasiveness tracing. The integration model can dynamically
extract and track both topics and discourse factors in conversa-
tional argumentation for persuasiveness prediction, and achieve
a significant performance gain compared with previous methods.

6.2 Future Work

System reliability management via automatic runtime data
analysis has been widely studied in recent years, and it is a
promising research topic. Although we have proposed a number
of novel techniques that advance the state-of-the-art solutions,
there are still many interesting research directions which are
considered as future work.

6.2.1 Joint Modeling Topic, Discourse and Sentiment
in Microblog Conversation

Sentiment analysis aims to study the sentiment polarity, such
as “positive” or “negative”, over a piece of text. Sentiment
analysis has lots of applications in social media, such as pub-
lic opinion tracing and user profiling. Traditional sentiment
analysis heavily relies on high-quality labeled corpus, which is
not always easy to obtain and often domain-specific in practical
applications. Much work has been done for addressing the above
issues through unsupervised or weak-supervised modeling for
sentiment analysis in various granularity (e.g., word/phrase,
aspect, sentence and document) [128, 59, 18]. Intuitively,
sentiment polarities are not independent with the topics and
discourse in the message. For example, the adjective word
“wonderful”, typically thought as positive orientation, might
have negative orientation in messages about Trump with sar-
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casm tone. Therefore, jointly modeling sentiment with topics
and discourse in microblog conversation can bring benefits for
understanding both factors.
To fill the gap, we plan to explore joint modeling topic,
discourse, and sentiment in microblog conversation in an unsu-
pervised neural framework. We will try to design a mechanism
that can separate the representation of sentiment, topics, and
discourse in an unsupervised framework. We can also incorpo-
rate the conversation tree and hashtag into our framework for
better modeling the latent variables. For the evaluation, we
can use the SemEval dataset, which provides large quantity of
labeled sentiment orientation Twitter messages.

6.2.2 Unsupervised Microblog Conversation Summa-
rization

Text summarization techniques have been widely applied to
many real-life applications, like Baidu Baike 1. With the
flourish of social media, microblog such as Twitter, Weibo,
has become an important channel for people to acquire the
latest information. For users of microblog, there is a pressing
need for automatically summarizing the key points of microblog
conversations. However, due to the data sparsity issues and the
lack of ground-truth labeled data of social media text, most of
the existing summarization system works poorly for microblog
messages.
Previous work for unsupervised text summarization employs
graph-based or integer programming methods to maximize the
“coverage” of original text [85, 145], which did not consider the
semantic effects of topics and discourse in microblog conver-

1baike.baidu.com

baike.baidu.com
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sation. In our future work, we will explore the unsupervised
microblog conversation summarization through modeling latent
topics and discourse.

6.2.3 Topic and Discourse-Aware Social Chatbot

Nowadays, there is a surgent interest in developing intelligent
open-domain dialog systems, i.e., social chatbot, due to the
availability of large volume of conversational data and advanced
neural network techniques. Commercial social chatbots, such
as Microsoft XiaoIce, Amazon Alexa, have attracted millions
of users and can converse with users on various topics for
hours [114]. However, developing neural-based social chatbot
still faces the challenges of understanding users’ intentions and
providing interactive responses [47]. In this thesis, we build
up model that can captures topic and discourse representations
embedded in conversations, which is useful for developing social
chatbots [166]. By explicitly modeling “what you say” and “how
you say”, our model can be adapted to track the change of topics
and user behaviors in conversation context, helpful to determine
“what to say and how to say” in the next turn.

2 End of chapter.
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