
CENG3420 Computer Organization and Design
Lab 1-2: System calls and recursions

Wen Zong

Department of Computer Science and Engineering
The Chinese University of Hong Kong

wzong@cse.cuhk.edu.hk

Overview

Review of function calls
Save register to stack
Recursive function call

Appendix

Save register to stack I

A subroutine fun a can also call another subroutine fun b. When
fun a calls fun b using jal fun b, $ra is overwritten to the address
returning to fun a.

$ra overwritten example

fun_a: ins 0

ins 1

jal fun_b # $ra will store addess of ins 2

ins 2

jr $ra # hope to return to fun_a’s caller

fun_b: ins 3

jr $ra # return to fun_a

$ra needs to be saved to stack, and becomes like this:

Save register to stack II

save $ra

fun_a: addi $sp, -4 # allocate space in stack

sw 0($sp), $ra # save $ra value

ins 0

ins 1

jal fun_b # $ra will store addess of ins 2

ins 2

lw $ra, 0($sp) # restore $ra value

add $sp, 4 # free stack space

jr $ra # return to fun_a’s caller

fun_b: ins 3

jr $ra # return to fun_a

Save register to stack III

Similarly we can save other registers to stack by allocating more
spaces in stack.
Register are divided to saved register group $s0 - $s7 and
temporary register group $t0 - $t7. By convention, caller expects
callee to save the saved register group but does not expect
temporary register to be saved.

Recursion

Recursion is a function call to itself which is a special case of
mentioned nested function call. It usually works in a divide and
conquer manner.
The same with nested function call, in recursive functions, register
contents that is useful after a subroutine call should be saved to
stack since they may be modified by subroutines.

Recurion example I

Factorial can be computed recursively fact(n) = n ∗ fact(n − 1).
When the sub-problem f (n − 1) is solved, we can multiply it by n
to get the result of current problem f (n). When writting the
assembly code we should save the register that contians this n
which is $a0 in this example.

Factorials

Recurion example II

fact: addi $sp, $sp, -8 #adjust stack pointer

sw $ra, 4($sp) #save return address

sw $a0, 0($sp) #save argument n

slti $t0, $a0, 1 #test for n < 1

beq $t0, $zero, L1 #if n >=1, go to L1

addi $v0, $zero, 1 #else return 1 in $v0

addi $sp, $sp, 8 #adjust stack pointer

jr $ra #return to caller

L1: addi $a0, $a0, -1 #n >= 1, so decrement n

jal fact #call fact with (n-1)

#this is where fact returns

bk_f: lw $a0, 0($sp) #restore argument n

lw $ra, 4($sp) #restore return address

addi $sp, $sp, 8 #adjust stack pointer

mul $v0, $a0, $v0 #$v0 = n * fact(n-1)

jr $ra

Stack behavior during fact() call I

Suppose we call fact(3) in main function, the stack will grow like
this after recursive function calls.

ret add in main
$a0 (=3) in fact(3)

bk f
$a0 (=2) in fact(2)

bk f
$a0 (=1) in fact(1)

bk f
$a0 (=0) in fact(0)

Stack behavior during fact() call II

In fact(0), it won’t invoke fact() anymore and sets $v0 = 1 and
returns. The stack will shrink backwards to merge the solutions.
When fact(0) returns, the stack looks like this,

ret add in main
$a0 (=3)

bk f
$a0 (=2)

bk f
$a0 (=1) at bk f , $v0 = 1

The program continues to execute code at label bk f , which
mulitplies $a0 with $v0 and then return to caller.

Stack behavior during fact() call III

After fact(1) returns to fact(2), the stack content is:

ret add in main
$a0 (=3)

bk f
$a0 (=2) at bk f , $v0 = 1

After fact(2) returns to fact(3), the stack content is:

ret add in main
$a0 (=3) at bk f , $v0 = 2

fact(3) will return to the its caller the main function and the result
is stored in $v0 register.

Exercises

Write a Quicksort function using MIPS assembly language. We
provide a c++ version of the Quicksort function, and you need to
translate it to MIPS assembly. The array is declared in the data
segment with name array. The starting code looks like this:

.data

array: .word -1 22 8 35 5 4 11 2 1 78

.text

main: la $a0, array

li $a1, 0

li $a2, 9

jal qsort

li $v0, 10

syscall

qsort: ...

Overview

Review of function calls
Save register to stack
Recursive function call

Appendix

The ideal of Quicksort

Quicksort is a divide and conquer algorithm. Quicksort first divides
a large array into two smaller sub-arrays: the low elements and the
high elements. Quicksort can then recursively sort the sub-arrays.
The steps are:

1. Pick an element, called a pivot, from the array.

2. Partitioning: reorder the array so that all elements with values
less than the pivot come before the pivot, while all elements
with values greater than the pivot come after it (equal values
can go either way). After this partitioning, the pivot is in its
final position. This is called the partition operation.

3. Recursively apply the above steps to the sub-array of elements
with smaller values and separately to the sub-array of
elements with greater values. The base case of the recursion
is arrays of size zero or one, which never need to be sorted.

C++ implementation of Quicksort I

void quickSort(int arr[], int left, int right) {

int i = left, j = right;

int tmp;

int pivot = arr[(left + right) / 2];

/* partition */

while (i <= j) {

while (arr[i] < pivot)

i++;

while (arr[j] > pivot)

j--;

if (i <= j) {

tmp = arr[i];

arr[i] = arr[j];

arr[j] = tmp;

C++ implementation of Quicksort II

i++;

j--;

}

};

/* recursion */

if (left < j)

quickSort(arr, left, j);

if (i < right)

quickSort(arr, i, right);

}

	Main Talk
	Review of function calls
	Save register to stack
	Recursive function call

	Appendix

