
CEG3420 L07.1 Spring 2016

CENG 3420
Computer Organization and Design

Lecture 07: Pipeline Review

Bei Yu

CEG3420 L07.2 Spring 2016

Review: Single Cycle Disadvantages & Advantages
q Uses the clock cycle inefficiently – the clock cycle

must be timed to accommodate the slowest instr
● especially problematic for more complex instructions like

floating point multiply

q May be wasteful of area since some functional units
(e.g., adders) must be duplicated since they can
not be shared during a clock cycle

but
q It is simple and easy to understand

Clk

lw sw Waste

Cycle 1 Cycle 2

CEG3420 L07.3 Spring 2016

The Five Stages of Load Instruction

q IF: Instruction Fetch and Update PC

q ID: Registers Fetch and Instruction Decode

q EX: Execute R-type; calculate memory address

q MEM: Read/write the data from/to the Data Memory

q WB: Write the result data into the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IF ID EX MEM WBlw

CEG3420 L07.4 Spring 2016

Single Cycle versus Pipeline

lw IF ID EX MEM WB
Pipeline Implementation (CC = 200 ps):

IF ID EX MEM WBsw

IF ID EX MEM WBR-type

Clk

Single Cycle Implementation (CC = 800 ps):

lw sw Waste

Cycle 1 Cycle 2

q To complete an entire instruction in the pipelined case
takes 1000 ps (as compared to 800 ps for the single
cycle case). Why ?

q How long does each take to complete 1,000,000 adds ?

400 ps

CEG3420 L07.5 Spring 2016

MIPS Pipeline Datapath Additions/Mods
q State registers between each pipeline stage to isolate them

IF:IFetch ID:Dec EX:Execute MEM:
MemAccess

WB:
WriteBack

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX EX/MEM

MEM/WB

System Clock

CEG3420 L07.6 Spring 2016

Graphically Representing MIPS Pipeline

q Can help with answering questions like:
● How many cycles does it take to execute this code?
● What is the ALU doing during cycle 4?
● Is there a hazard, why does it occur, and how can it be fixed?

A
LUIM Reg DM Reg

CEG3420 L07.7 Spring 2016

Other Pipeline Structures Are Possible
q What about the (slow) multiply operation?

● Make the clock twice as slow or …
● let it take two cycles (since it doesn’t use the DM stage)

A
LUIM Reg DM Reg

MUL

A
LUIM Reg DM1 RegDM2

q What if the data memory access is twice as slow as
the instruction memory?
● make the clock twice as slow or …
● let data memory access take two cycles (and keep the same

clock rate)

CEG3420 L07.8 Spring 2016

Why Pipeline? For Performance!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Once the
pipeline is full,
one instruction

is completed
every cycle, so

CPI = 1

Time to fill the pipeline

CEG3420 L07.9 Spring 2016

Can Pipelining Get Us Into Trouble?
q Yes: Pipeline Hazards

● structural hazards:
- a required resource is busy

● data hazards:
- attempt to use data before it is ready

● control hazards:
- deciding on control action depends on previous instruction

q Can usually resolve hazards by waiting
● pipeline control must detect the hazard
● and take action to resolve hazards

CEG3420 L07.10 Spring 2016

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

Resolve Structural Hazard 1

Reading data from
memory

Reading instruction
from memory

q Fix with separate instr and data memories (I$ and D$)

CEG3420 L07.11 Spring 2016

Resolve Structural Hazard 2

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Fix register file
access hazard by
doing reads in the
second half of the
cycle and writes in

the first half

add $1,

add $2,$1,

clock edge that controls
register writing

clock edge that controls
loading of pipeline state
registers

CEG3420 L07.12 Spring 2016

Data Hazards

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9
A

LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Dependencies backward in time cause hazards

q Read After Write (RAW) data hazard

CEG3420 L07.13 Spring 2016

Data Hazards: Register Usage

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Dependencies backward in time cause hazards

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

q Read After Write (RAW) data hazard

CEG3420 L07.14 Spring 2016

Data Hazards: Load Memory

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9
A

LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Dependencies backward in time cause hazards

q Load-use data hazard

CEG3420 L07.15 Spring 2016

stall

stall

Resolve Data Hazards 1: Insert Stall

I
n
s
t
r.

O
r
d
e
r

add $1,

A
LUIM Reg DM Reg

sub $4,$1,$5

and $6,$1,$7

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Can fix data
hazard by

waiting – stall –
but impacts CPI

CEG3420 L07.16 Spring 2016

Resolve Data Hazards 2: Forwarding

I
n
s
t
r.

O
r
d
e
r

add $1,

A
LUIM Reg DM Reg

sub $4,$1,$5

and $6,$1,$7
A

LUIM Reg DM Reg

A
LUIM Reg DM Reg

Fix data hazards
by forwarding

results as soon as
they are available
to where they are

needed

xor $4,$1,$5

or $8,$1,$9

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

CEG3420 L07.17 Spring 2016

Resolve Data Hazards 2: Forwarding

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Fix data hazards
by forwarding

results as soon as
they are available
to where they are

needed
A

LUIM Reg DM Reg

A
LUIM Reg DM Reg

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

CEG3420 L07.18 Spring 2016

Forwarding Illustration

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$7,$1

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

EX forwarding MEM forwarding

Green line: conceptual forwarding
Blue line: real forwarding path (from registers to ALU input)

CEG3420 L07.19 Spring 2016

Yet Another Complication!

I
n
s
t
r.

O
r
d
e
r

add $1,$1,$2

A
LUIM Reg DM Reg

add $1,$1,$3

add $1,$1,$4

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Another potential data hazard can occur when there is a
conflict between the result of the WB stage instruction
and the MEM stage instruction – which should be
forwarded?

CEG3420 L07.20 Spring 2016

Yet Another Complication!

I
n
s
t
r.

O
r
d
e
r

add $1,$1,$2

A
LUIM Reg DM Reg

add $1,$1,$3

add $1,$1,$4

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Another potential data hazard can occur when there is a
conflict between the result of the WB stage instruction
and the MEM stage instruction – which should be
forwarded?

CEG3420 L07.21 Spring 2016

Memory-to-Memory Copies

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)
A

LUIM Reg DM Reg

sw $1,4($3)

A
LUIM Reg DM Reg

q For loads immediately followed by stores (memory-to-
memory copies) can avoid a stall by adding forwarding
hardware from the MEM/WB register to the data memory
input.
● Would need to add a Forward Unit and a mux to the MEM stage

CEG3420 L07.22 Spring 2016

Forwarding with Load-use Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

A
LUIM Reg DM Reg

A
LUIM Reg DM

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Regsub $4,$1,$5

CEG3420 L07.23 Spring 2016

Forwarding with Load-use Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

A
LUIM Reg DM Reg

A
LUIM Reg DM

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Will still need one stall cycle even with forwarding

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

sub $4,$1,$5

CEG3420 L07.24 Spring 2016

stall

Forwarding with Load-use Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9
A

LUIM Reg DM Reg
A

LUIM Reg DM

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Will still need one stall cycle even with forwarding

CEG3420 L07.25 Spring 2016

Control Hazards
q When the flow of instruction addresses is not sequential

(i.e., PC = PC + 4); incurred by change of flow instructions
● Unconditional branches (j, jal, jr)
● Conditional branches (beq, bne)
● Exceptions

q Possible approaches
● Stall (impacts CPI)
● Move decision point as early in the pipeline as possible, thereby

reducing the number of stall cycles
● Delay decision (requires compiler support)
● Predict and hope for the best !

q Control hazards occur less frequently than data hazards,
but there is nothing as effective against control hazards as
forwarding is for data hazards

CEG3420 L07.26 Spring 2016

flush

Control Hazards 1: Jumps Incur One Stall

I
n
s
t
r.

O
r
d
e
r

j

j target
A

LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Fortunately, jumps are very infrequent – only 3% of the
SPECint instruction mix

q Jumps not decoded until ID, so one flush is needed
● To flush, set IF.Flush to zero the instruction field of the

IF/ID pipeline register (turning it into a nop)

Fix jump
hazard by
waiting –

flushA
LUIM Reg DM Reg

CEG3420 L07.27 Spring 2016

Control Hazards 2: Branch Instr

I
n
s
t
r.

O
r
d
e
r

lw

Inst 4

Inst 3

beq

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Dependencies backward in time cause hazards

CEG3420 L07.28 Spring 2016

flush

flush

flush

One Way to “Fix” a Branch Control Hazard

I
n
s
t
r.

O
r
d
e
r

beq

A
LUIM Reg DM Reg

beq target

A
LUIM Reg DM Reg

A
LUInst 3 IM Reg DM

Fix branch
hazard by
waiting –

flush – but
affects CPI

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

CEG3420 L07.29 Spring 2016

flush

Another Way to “Fix” a Branch Control Hazard

I
n
s
t
r.

O
r
d
e
r

beq

beq target

A
LUIM Reg DM Reg

Inst 3

A
LUIM Reg DM

Fix branch
hazard by
waiting –

flush

A
LUIM Reg DM Reg

q Move branch decision hardware back to as early in
the pipeline as possible – i.e., during the decode cycle

A
LUIM Reg DM Reg

CEG3420 L07.30 Spring 2016

Scheduling Branch Delay Slots

q A is the best choice, fills delay slot and reduces IC

q In B and C, the sub instruction may need to be copied, increasing IC

q In B and C, must be okay to execute sub when branch fails

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then

delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3
if $1=0 then

sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

CEG3420 L07.31 Spring 2016

Flushing with Misprediction (Not Taken)

4 beq $1,$2,2I
n
s
t
r.

O
r
d
e
r

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg8 sub $4,$1,$5

q To flush the IF stage instruction, assert IF.Flush to
zero the instruction field of the IF/ID pipeline register
(transforming it into a nop)

CEG3420 L07.32 Spring 2016

flush

Flushing with Misprediction (Not Taken)

4 beq $1,$2,2I
n
s
t
r.

O
r
d
e
r

A
LUIM Reg DM Reg

16 and $6,$1,$7

20 or r8,$1,$9

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg8 sub $4,$1,$5

q To flush the IF stage instruction, assert IF.Flush to
zero the instruction field of the IF/ID pipeline register
(transforming it into a nop)

CEG3420 L07.33 Spring 2016

Static Branch Prediction, con’t
q Resolve branch hazards by assuming a given outcome

and proceeding

2. Predict taken – predict branches will always be taken
● Predict taken always incurs one stall cycle (if branch

destination hardware has been moved to the ID stage)
● Is there a way to “cache” the address of the branch target

instruction ??

q As the branch penalty increases (for deeper pipelines),
a simple static prediction scheme will hurt performance.
With more hardware, it is possible to try to predict
branch behavior dynamically during program execution

3. Dynamic branch prediction – predict branches at run-
time using run-time information

CEG3420 L07.34 Spring 2016

Dynamic Branch Prediction
q A branch prediction buffer (aka branch history table

(BHT)) in the IF stage addressed by the lower bits of the
PC, contains bit(s) passed to the ID stage through the
IF/ID pipeline register that tells whether the branch was
taken the last time it was execute
● Prediction bit may predict incorrectly (may be a wrong prediction

for this branch this iteration or may be from a different branch
with the same low order PC bits) but the doesn’t affect
correctness, just performance

- Branch decision occurs in the ID stage after determining that the
fetched instruction is a branch and checking the prediction bit(s)

● If the prediction is wrong, flush the incorrect instruction(s) in
pipeline, restart the pipeline with the right instruction, and invert
the prediction bit(s)

- A 4096 bit BHT varies from 1% misprediction (nasa7, tomcatv) to
18% (eqntott)

CEG3420 L07.35 Spring 2016

Branch Target Buffer
q The BHT predicts when a branch is taken, but does not

tell where its taken to!
● A branch target buffer (BTB) in the IF stage caches the branch

target address, but we also need to fetch the next sequential
instruction. The prediction bit in IF/ID selects which “next”
instruction will be loaded into IF/ID at the next clock edge

- Would need a two read port
instruction memory

q If the prediction is correct, stalls can be avoided no matter
which direction they go

● Or the BTB can cache the
branch taken instruction while the
instruction memory is fetching the
next sequential instruction

Read
Address

Instruction
Memory

PC

0

BTB

CEG3420 L07.36 Spring 2016

1-bit Prediction Accuracy
q A 1-bit predictor will be incorrect twice when not taken

q For 10 times through the loop we have a 80% prediction
accuracy for a branch that is taken 90% of the time

● Assume predict_bit = 0 to start (indicating
branch not taken) and loop control is at
the bottom of the loop code

1. First time through the loop, the predictor
mispredicts the branch since the branch is
taken back to the top of the loop; invert
prediction bit (predict_bit = 1)

2. As long as branch is taken (looping),
prediction is correct

3. Exiting the loop, the predictor again
mispredicts the branch since this time the
branch is not taken falling out of the loop;
invert prediction bit (predict_bit = 0)

Loop: 1st loop instr
2nd loop instr

.

.

.
last loop instr
bne $1,$2,Loop
fall out instr

CEG3420 L07.37 Spring 2016

2-bit Predictors
q A 2-bit scheme can give 90% accuracy since a prediction

must be wrong twice before the prediction bit is changed

Predict
Taken

Predict
Not Taken

Predict
Taken

Predict
Not Taken

Taken
Not taken

Not taken

Not taken

Not taken
Taken

Taken

Taken

Loop: 1st loop instr
2nd loop instr

.

.

.
last loop instr
bne $1,$2,Loop
fall out instr

CEG3420 L07.38 Spring 2016

2-bit Predictors
q A 2-bit scheme can give 90% accuracy since a prediction

must be wrong twice before the prediction bit is changed

Predict
Taken

Predict
Not Taken

Predict
Taken

Predict
Not Taken

Taken
Not taken

Not taken

Not taken

Not taken

Taken
Taken

Taken

Loop: 1st loop instr
2nd loop instr

.

.

.
last loop instr
bne $1,$2,Loop
fall out instr

wrong on loop
fall out

0

1 1

right 9 times

right on 1st

iteration
0

q BHT also
stores the
initial FSM
state

1011

01
00

