
CEG3420 L05.1 Spring 2016

CENG 3420
Computer Organization and Design

Lecture 05: ALU Review

Bei Yu

CEG3420 L05.2 Spring 2016

q 32-bit signed numbers (2’s complement):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...

0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...

1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

q What if the bit string represented addresses?
● need operations that also deal with only positive (unsigned)

integers

maxint

minint

MIPS Representations

CEG3420 L05.3 Spring 2016

q Negating a two's complement number –
complement all the bits and then add a 1
● remember: “negate” and “invert” are quite different!

q Converting n-bit numbers into numbers with more
than n bits:
● MIPS 16-bit immediate gets converted to 32 bits for

arithmetic
● sign extend - copy the most significant bit (the sign bit)

into the other bits
0010 -> 0000 0010
1010 -> 1111 1010

● sign extension versus zero extend (lb vs. lbu)

Two's Complement Operations

CEG3420 L05.4 Spring 2016

Design the MIPS Arithmetic Logic Unit (ALU)
q Must support the Arithmetic/Logic

operations of the ISA
add, addi, addiu, addu

sub, subu

mult, multu, div, divu
sqrt

and, andi, nor, or, ori, xor, xori

beq, bne, slt, slti, sltiu, sltu

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

q With special handling for
● sign extend – addi, addiu, slti, sltiu

● zero extend – andi, ori, xori
● Overflow detected – add, addi, sub

CEG3420 L05.5 Spring 2016

MIPS Arithmetic and Logic Instructions

R-type:

I-Type:

31 25 20 15 5 0

op Rs Rt Rd funct

op Rs Rt Immed 16

Type op funct

ADDI 001000 xx

ADDIU 001001 xx

SLTI 001010 xx

SLTIU 001011 xx

ANDI 001100 xx

ORI 001101 xx

XORI 001110 xx

LUI 001111 xx

Type op funct

ADD 000000 100000

ADDU 000000 100001

SUB 000000 100010

SUBU 000000 100011

AND 000000 100100

OR 000000 100101

XOR 000000 100110

NOR 000000 100111

Type op funct

000000 101000

000000 101001

SLT 000000 101010

SLTU 000000 101011

000000 101100

CEG3420 L05.6 Spring 2016

Design Trick: Divide & Conquer
q Break the problem into simpler problems, solve

them and glue together the solution
q Example: assume the immediates have been

taken care of before the ALU
● now down to 10 operations
● can encode in 4 bits

0 add

1 addu

2 sub

3 subu

4 and

5 or

6 xor

7 nor

a slt

b sltu

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

CEG3420 L05.7 Spring 2016

q Just like in grade school (carry/borrow 1s)
0111 0111 0110

+ 0110 - 0110 - 0101

q Two's complement operations are easy
● do subtraction by negating and then adding

0111 -> 0111
- 0110 -> + 1010

q Overflow (result too large for finite computer word)
● e.g., adding two n-bit numbers does not yield an n-bit number

0111
+ 0001

Addition & Subtraction

1101 0001 0001

0001 1 0001

1000

CEG3420 L05.8 Spring 2016

Building a 1-bit Binary Adder

S = A xor B xor carry_in
carry_out = A&B | A&carry_in | B&carry_in

(majority function)

q How can we use it to build a 32-bit adder?

q How can we modify it easily to build an adder/subtractor?

A B carry_in carry_out S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

1 bit
Full
Adder

A

B
S

carry_in

carry_out

CEG3420 L05.9 Spring 2016

Building 32-bit Adder

1-bit
FA

A0

B0
S0

c0=carry_in

c1

1-bit
FA

A1

B1
S1

c2

1-bit
FA

A2

B2
S2

c3

c32=carry_out

1-bit
FA

A31

B31
S31

c31

. .
 .

q Just connect the carry-out of
the least significant bit FA to the
carry-in of the next least
significant bit and connect . . .

q Ripple Carry Adder (RCA)
l advantage: simple logic, so small

(low cost)

l disadvantage: slow and lots of
glitching (so lots of energy
consumption)

CEG3420 L05.10 Spring 2016

Glitch
q Glitch: invalid and unpredicted output that can be read

by the next stage and result in a wrong action
q Example: Draw the propagation delay

CEG3420 L05.11 Spring 2016

Glitch in RCA
A B carry_in carry_out S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

1-bit
FA

A0

B0
S0

c0=carry_in

c1

1-bit
FA

A1

B1
S1

c2

1-bit
FA

A2

B2
S2

c3

c32=carry_out

1-bit
FA

A31

B31
S31

c31

. .
 .

CEG3420 L05.12 Spring 2016

But What about Performance?
q Critical path of n-bit ripple-carry adder is n*CP

q Design trick – throw hardware at it (Carry
Lookahead)

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0

A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1

A2

B2
1-bit
ALU

Result2

CarryIn2

CarryOut2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

CEG3420 L05.13 Spring 2016

A 32-bit Ripple Carry Adder/Subtractor

q Remember 2’s
complement is just

l complement all the bits

l add a 1 in the least
significant bit

A 0111 -> 0111
B - 0110 -> +

1-bit
FA S0

c0=carry_in

c1

1-bit
FA S1

c2

1-bit
FA S2

c3

c32=carry_out

1-bit
FA S31

c31

. .
 .

A0

A1

A2

A31

B0

B1

B2

B31

add/sub

B0

control
(0=add,1=sub) B0 if control = 0

!B0 if control = 1

0001

1001
1

1 0001

CEG3420 L05.14 Spring 2016

A Simple ALU Cell with Logic Op Support

1-bit
FA

carry_in

carry_out

A

B

add/subt

add/subt

result

op

CEG3420 L05.15 Spring 2016

Modifying the ALU Cell for slt

1-bit
FA

A

B

result

carry_in

carry_out

add/subt op

add/subt

less

0

1

2

3

6

7

CEG3420 L05.16 Spring 2016

Overflow Detection
q Overflow occurs when the result is too large to

represent in the number of bits allocated
● adding two positives yields a negative
● or, adding two negatives gives a positive
● or, subtract a negative from a positive gives a negative
● or, subtract a positive from a negative gives a positive

q On your own: Prove you can detect overflow by:
● Carry into MSB xor Carry out of MSB

1

1

1 10

1

0

1

1

0

0 1 1 1

0 0 1 1+

7

3

0

1

– 6

1 1 0 0

1 0 1 1+

–4

– 5

71

0

CEG3420 L05.17 Spring 2016

q More complicated than addition
● Can be accomplished via shifting and adding

0010 (multiplicand)
x_1011 (multiplier)
0010
0010 (partial product

0000 array)
0010

00010110 (product)

q Double precision product produced
q More time and more area to compute

Multiplication

CEG3420 L05.18 Spring 2016

Add and Right Shift Multiplier Hardware

multiplicand

32-bit ALU

multiplier Control

add
shift
right

product

CEG3420 L05.19 Spring 2016

Add and Right Shift Multiplier Hardware

multiplicand

32-bit ALU

multiplier Control

add
shift
right

product

0 1 1 0 = 6

0 0 0 0 0 1 0 1 = 5
add 0 1 1 0 0 1 0 1

0 0 1 1 0 0 1 0
add 0 0 1 1 0 0 1 0

0 0 0 1 1 0 0 1
add 0 1 1 1 1 0 0 1

0 0 0 1 1 1 1 0
add 0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

= 30

CEG3420 L05.20 Spring 2016

q Multiply (mult and multu) produces a double
precision product
mult $s0, $s1 # hi||lo = $s0 * $s1

● Low-order word of the product is left in processor register
lo and the high-order word is left in register hi

● Instructions mfhi rd and mflo rd are provided to
move the product to (user accessible) registers in the
register file

MIPS Multiply Instruction

0 16 17 0 0 0x18

q Multiplies are usually done by fast, dedicated
hardware and are much more complex (and slower)
than adders

CEG3420 L05.21 Spring 2016

Division
q Division is just a bunch of quotient digit guesses

and left shifts and subtracts

dividend
divisor

partial
remainder
array

quotientn
n

remainder
n

0 0 0

0

0

0

CEG3420 L05.22 Spring 2016

Example: Division
q Dividing 1001010 by 1000

CEG3420 L05.23 Spring 2016

q Divide generates the reminder in hi and the
quotient in lo
div $s0, $s1 # lo = $s0 / $s1

hi = $s0 mod $s1

● Instructions mflo rd and mfhi rd are provided to
move the quotient and reminder to (user accessible)
registers in the register file

MIPS Divide Instruction

q As with multiply, divide ignores overflow so
software must determine if the quotient is too
large. Software must also check the divisor to
avoid division by 0.

op rs rt rd shamt funct

CEG3420 L05.24 Spring 2016

A Simple Shifter

Ai

Ai-1

Bi

Bi-1

Right Leftnop

Bit-Slice i

...

CEG3420 L05.25 Spring 2016

Representing Big (and Small) Numbers
q What if we want to encode the approx. age of the

earth?
4,600,000,000 or 4.6 x 109

or the weight in kg of one a.m.u. (atomic mass unit)
0.0000000000000000000000000166 or 1.6 x 10-27

There is no way we can encode either of the above in
a 32-bit integer.

q Floating point representation (-1)sign x F x 2E

● Still have to fit everything in 32 bits (single precision)

s E (exponent) F (fraction)
1 bit 8 bits 23 bits

● The base (2, not 10) is hardwired in the design of the FPALU
● More bits in the fraction (F) or the exponent (E) is a trade-off

between precision (accuracy of the number) and range (size of
the number)

CEG3420 L05.26 Spring 2016

Exception Events in Floating Point
q Overflow (floating point) happens when a positive

exponent becomes too large to fit in the exponent
field

q Underflow (floating point) happens when a negative
exponent becomes too large to fit in the exponent
field

s E (exponent) F (fraction)
1 bit 11 bits 20 bits

F (fraction continued)
32 bits

qOne way to reduce the chance of underflow or overflow is
to offer another format that has a larger exponent field

● Double precision – takes two MIPS words

