CENG 3420 Computer Organization and Design Lecture 05: ALU Review

Bei Yu

香港中文大學 The Chinese University of Hong Kong

CEG3420 L05.1

MIPS Representations

□ 32-bit signed numbers (2's complement):

```
0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000_{two} = 0_{ten}
maxint
1111 \ 1111_{two} = + 2,147,483,647_{ten}
0111
   1111 1111 1111 1111 1111
           0000 \ 0000 \ 0000 \ 0000_{two} = -2,14 \overline{k},483,648_{ten}
1000
   0000 0000
1000 0000 0000 0000 0000 0000 0000 0001_{two} = -2,147 \times 483,647_{ten}
                    0000 \ 0000 \ 0010_{two} = -2,147,483,646_{ten}
1000 0000 0000 0000 0000
                                            minint
1111 \ 1110_{two} = - 2_{ten}
1111
    1111
       1111
            1111 1111 1111
            1111 1111 1111 1111 1111_{two} = -1_{ten}
1111
    1111 1111
```

What if the bit string represented addresses?

need operations that also deal with only positive (unsigned) integers

CEG3420 L05.2

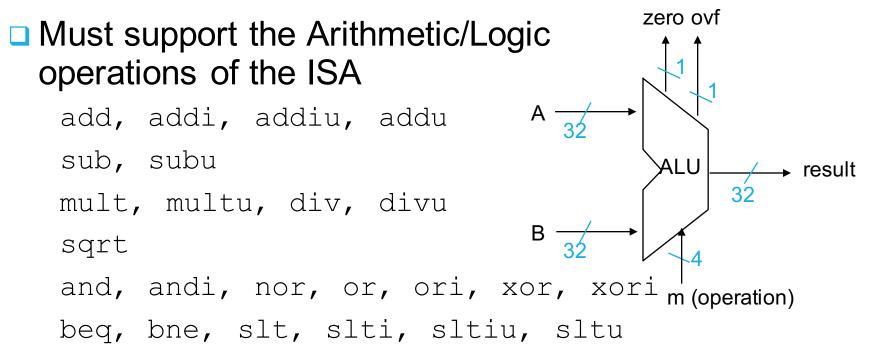
Two's Complement Operations

- Negating a two's complement number complement all the bits and then add a 1
 - remember: "negate" and "invert" are quite different!
- Converting n-bit numbers into numbers with more than n bits:
 - MIPS 16-bit immediate gets converted to 32 bits for arithmetic
 - sign extend copy the most significant bit (the sign bit) into the other bits

0010 -> 0000 0010 1010 -> 1111 1010

• sign extension versus zero extend (lb vs. lbu)

Design the MIPS Arithmetic Logic Unit (ALU)



With special handling for

- sign extend addi, addiu, slti, sltiu
- > zero extend andi, ori, xori
- Overflow detected add, addi, sub

MIPS Arithmetic and Logic Instructions

	31	25	20	15		5 0
R-type:	ор	Rs	Rt	Rd		funct
I-Type:	ор	Rs	Rt	In	nmed 10	6

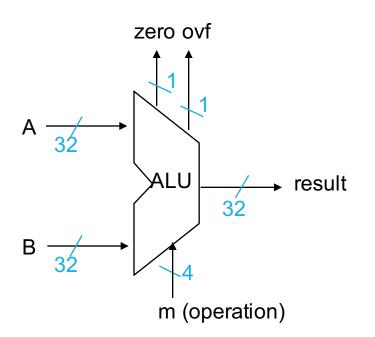
Туре	ор	funct
ADDI	001000	хх
ADDIU	001001	XX
SLTI	001010	XX
SLTIU	001011	хх
ANDI	001100	хх
ORI	001101	XX
XORI	001110	XX
LUI	001111	xx

Туре	ор	funct
ADD	000000	100000
ADDU	000000	100001
SUB	000000	100010
SUBU	000000	100011
AND	000000	100100
OR	000000	100101
XOR	000000	100110
NOR	000000	100111

Туре	ор	funct
	000000	101000
	000000	101001
SLT	000000	101010
SLTU	000000	101011
	000000	101100

Design Trick: Divide & Conquer

- Break the problem into simpler problems, solve them and glue together the solution
- Example: assume the immediates have been taken care of before the ALU
 - now down to 10 operations
 - can encode in 4 bits



0	add
1	addu
2	sub
3	subu
4	and
5	or
6	xor
7	nor
а	slt
b	sltu

Addition & Subtraction

Just like in grade school (carry/borrow 1s)

-		
0111	0111	0110
+ 0110	- 0110	- 0101
1101	0001	0001

Two's complement operations are easy

do subtraction by negating and then adding

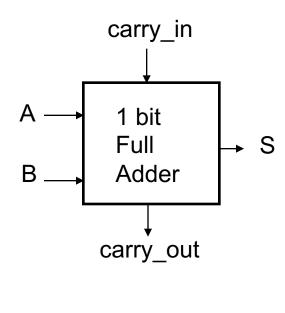
0111	->	0111
- 0110	->	+ 1010
0001		1 0001

Overflow (result too large for finite computer word)

- e.g., adding two n-bit numbers does not yield an n-bit number
 0111
 - + 0001

1000

Building a 1-bit Binary Adder



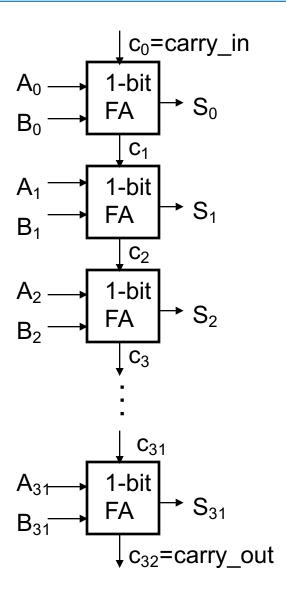
Α	В	carry_in	carry_out	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

S = A xor B xor carry_in carry_out = A&B | A&carry_in | B&carry_in (majority function)

□ How can we use it to build a 32-bit adder?

How can we modify it easily to build an adder/subtractor?

CEG3420 L05.8



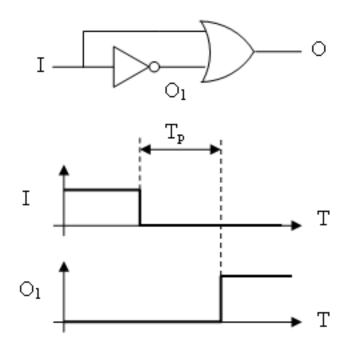
Just connect the carry-out of the least significant bit FA to the carry-in of the next least significant bit and connect ...

Ripple Carry Adder (RCA)

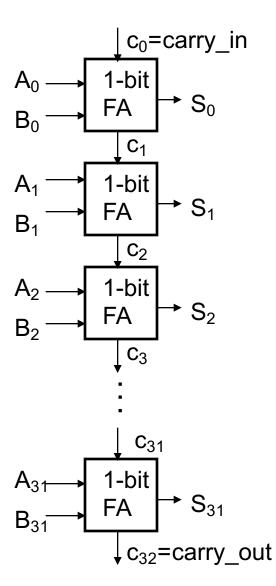
- advantage: simple logic, so small (low cost)
- disadvantage: slow and lots of glitching (so lots of energy consumption)

Glitch

- Glitch: invalid and unpredicted output that can be read by the next stage and result in a wrong action
- **Example:** Draw the propagation delay



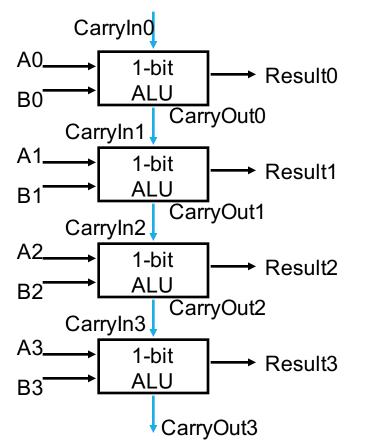
Glitch in RCA



Α	В	carry_in	carry_out	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

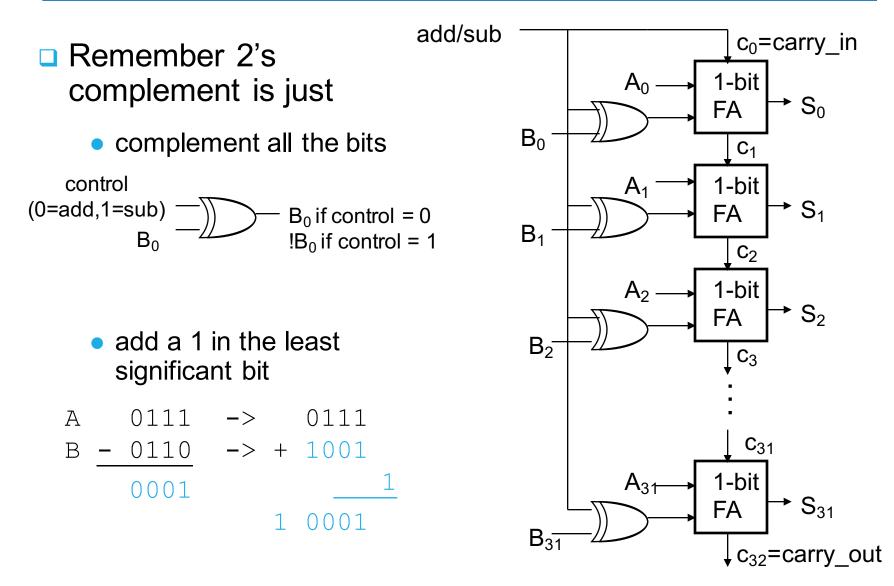
But What about Performance?

Critical path of n-bit ripple-carry adder is n*CP

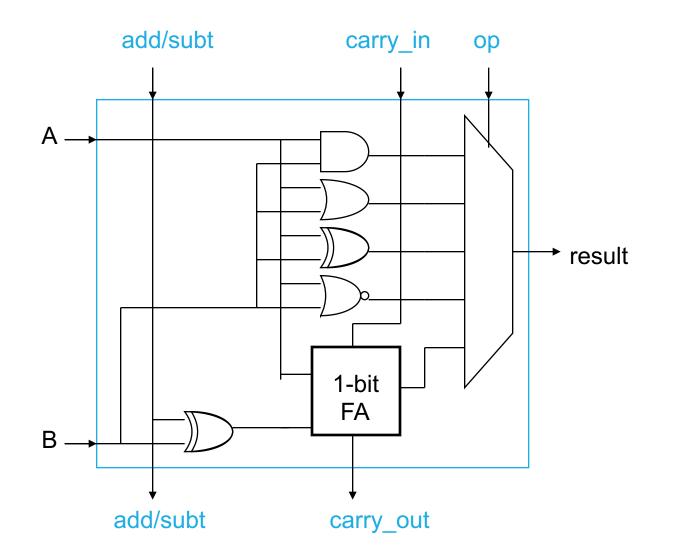


Design trick – throw hardware at it (Carry Lookahead)

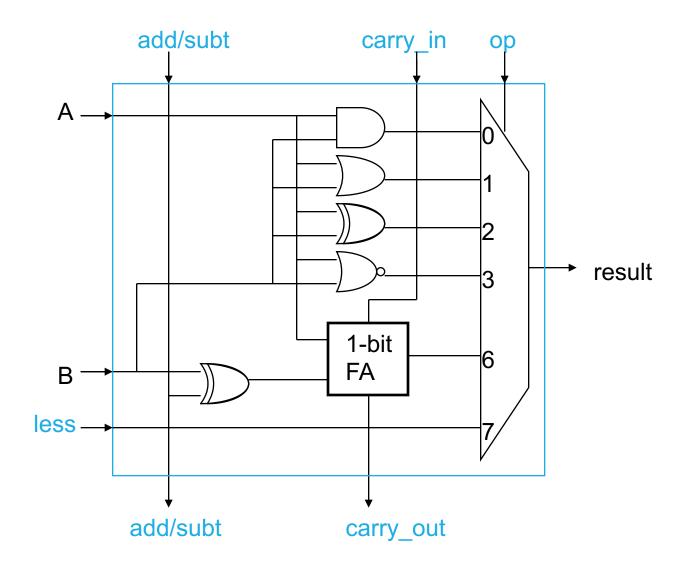
A 32-bit Ripple Carry Adder/Subtractor



A Simple ALU Cell with Logic Op Support



Modifying the ALU Cell for slt



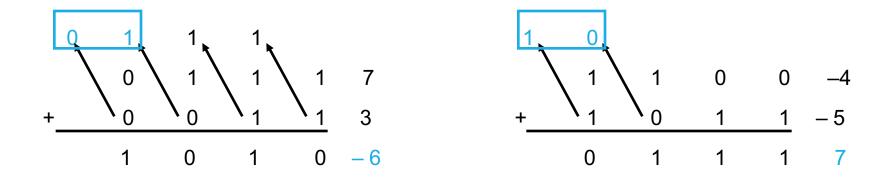
Overflow Detection

Overflow occurs when the result is too large to represent in the number of bits allocated

- adding two positives yields a negative
- or, adding two negatives gives a positive
- or, subtract a negative from a positive gives a negative
- or, subtract a positive from a negative gives a positive

□ On your own: Prove you can detect overflow by:

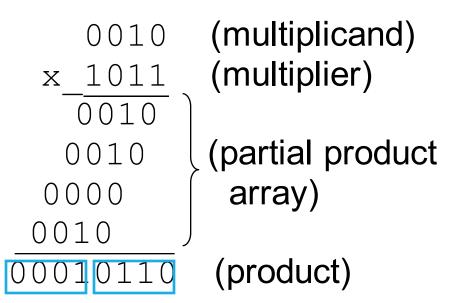
Carry into MSB xor Carry out of MSB



Multiplication

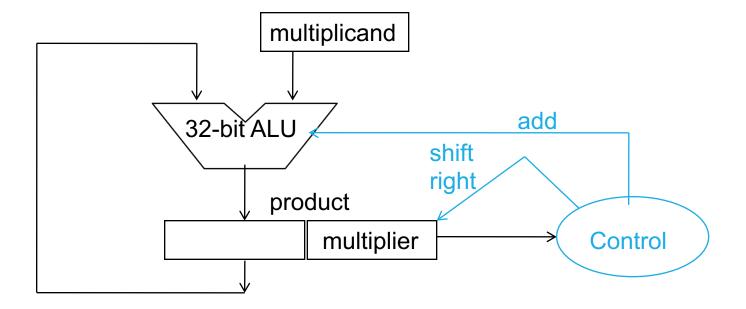
More complicated than addition

Can be accomplished via shifting and adding

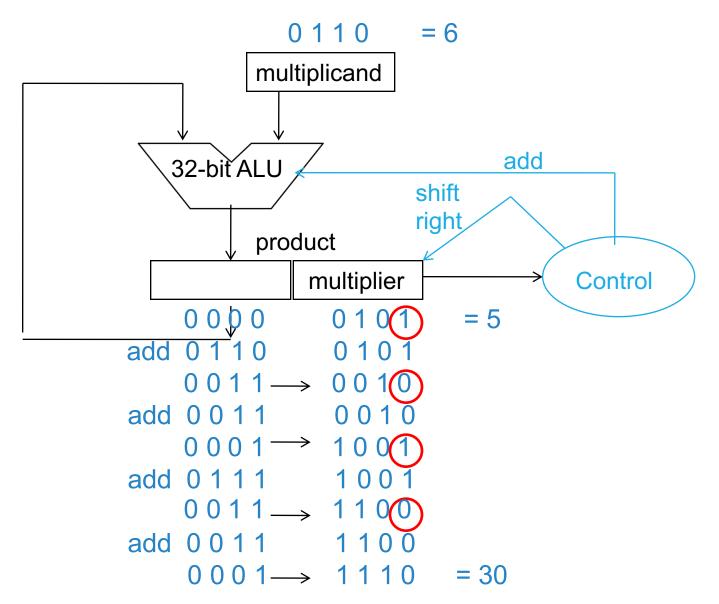


Double precision product produced
 More time and more area to compute

Add and Right Shift Multiplier Hardware



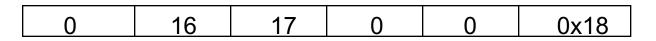
Add and Right Shift Multiplier Hardware



MIPS Multiply Instruction

Multiply (mult and multu) produces a double precision product

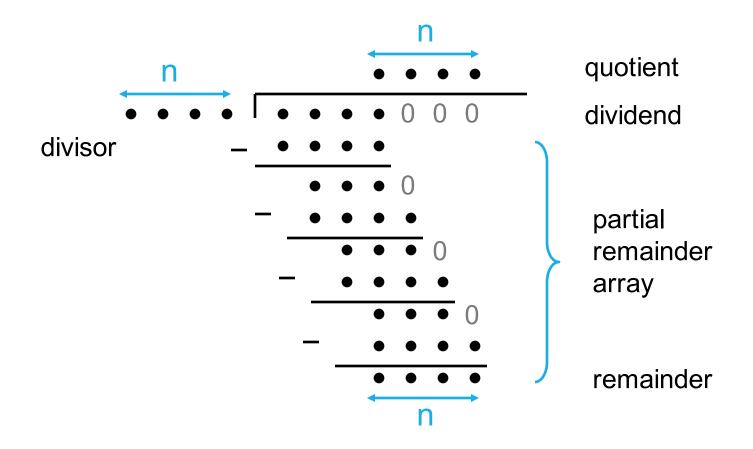
mult \$s0, \$s1 # hi||lo = \$s0 * \$s1



- Low-order word of the product is left in processor register
 lo and the high-order word is left in register hi
- Instructions mfhi rd and mflo rd are provided to move the product to (user accessible) registers in the register file
- Multiplies are usually done by fast, dedicated hardware and are much more complex (and slower) than adders

Division

Division is just a *bunch* of quotient digit guesses and left shifts and subtracts



Example: Division

Dividing 1001010 by 1000

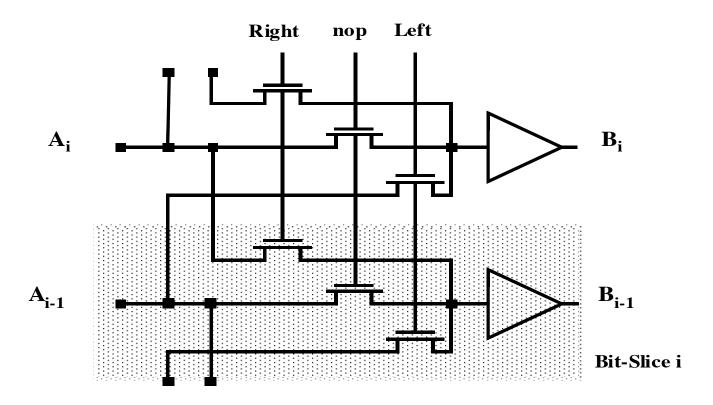
MIPS Divide Instruction

- Divide generates the reminder in hi and the quotient in 10
 - div \$s0, \$s1 # lo = \$s0 / \$s1

hi = \$s0 mod \$s1

op rs	rt	rd	shamt	funct
-------	----	----	-------	-------

- Instructions mflo rd and mfhi rd are provided to move the quotient and reminder to (user accessible) registers in the register file
- As with multiply, divide ignores overflow so software must determine if the quotient is too large. Software must also check the divisor to avoid division by 0.



...

Representing Big (and Small) Numbers

What if we want to encode the approx. age of the earth?

4,600,000,000 or 4.6 x 10⁹

There is no way we can encode either of the above in a 32-bit integer.

□ Floating point representation (-1)^{sign} x F x 2^E

• Still have to fit everything in 32 bits (single precision)

;	s	Ε (exponent)	F (fract	ion)
1 b	oit		8 bits	23 bits	

• The base (2, not 10) is hardwired in the design of the FPALU

 More bits in the fraction (F) or the exponent (E) is a trade-off between precision (accuracy of the number) and range (size of the number)

Exception Events in Floating Point

- Overflow (floating point) happens when a positive exponent becomes too large to fit in the exponent field
- Underflow (floating point) happens when a negative exponent becomes too large to fit in the exponent field

□One way to reduce the chance of underflow or overflow is to offer another format that has a larger exponent field

Double precision – takes two MIPS words

