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Abstract

This paper demonstrates the use of regression tree
models to predict the number of faults in a software
module based on the software complexity metrics�
prior to the testing phase� which can help in channel�
ing the validation and testing e�orts in a productive
direction� We also compare the regression tree model�
ing technique with the fault density technique which
is a very commonly used approach to predict the num�
ber of faults�

�� Introduction

The production of modern computer software is one of
the most complex and unpredictable activities in the
industry� Software is a crucial part of many critical
applications and certifying software integrity is abso�
lutely essential� It is no longer acceptable to post�
pone the assurance of software quality until prior to
a product�s release� Delaying corrections until testing
and operational phases can lead to higher costs� and
it may be too late to improve the software product
signi�cantly�

A software failure is a manifestation of a fault�
which is a defect in the executable software product�
It is an old programming saw that ��� of the faults
are found in 	�� of the software code� i�e�� a rela�
tively small number of modules in a set of modules
constituting a software product contain a dispropor�
tionate number of errors� A major portion of the e�ort
expended in developing computer software is associ�
ated with program testing� The ���	� rule described

�This work was done while the �rst author was a summer

intern at Bell Labs�� Lucent Technologies

above suggests that applying equal testing and veri�
�cation e�ort to all the modules of a software prod�
uct is not very e
cient� Scheduling and resource con�
straints often require testing to be conducted in such a
manner that maximum number of faults are revealed
in a minimum amount of time� Recent research in
the �eld of computer program reliability has been di�
rected towards the identi�cation of software modules
that are likely to be fault�prone� based on product
and�or process�related metrics� prior to the testing
phase� Software metrics represent quantitative de�
scription of program attributes and have been shown
to be very closely related to the distribution of faults in
the program modules�
� �� ���� Early identi�cation of
fault�prone modules in the life�cycle can help in chan�
neling the program testing and veri�cation e�orts in
the productive direction�

Several di�erent techniques have sought to de�
velop a predictive relationship between software met�
rics and the classi�cation of the module into fault�
prone and non fault�prone categories� These tech�
niques include discriminant analysis��� ���� classi�ca�
tion trees��	�� pattern recognition �Optimal Set Re�
duction �OSR���	� �� and neural networks���� His�
torical data from the past software development and
maintenance scenarios are used to develop these pre�
dictive models� and then these quantitative models are
used to provide insight and control into managing sim�
ilar software projects� by identifying the troublesome
modules earlier in the life�cycle of the software prod�
uct� Most of these techniques however are classi�ca�
tion models and they partition the modules into two
categories viz� fault�prone and not fault�prone� Re�
gression models have also been used in the context of
software engineering���� �
�� though not very exten�
sively� In this paper we explore regression tree models
to predict the number of errors in a software module
using the software metrics� The regression tree model



provides for a �ner classi�cation than that provided by
the classi�cation models� We compare the predictions
of the regression tree model with that of the fault den�
sity model which is one of the most commonly used
techniques to predict the number of faults in a soft�
ware product�

The rest of the paper is organized as follows� In
Section 	 we describe the tree modeling procedure�
Section � discusses the application of the algorithm
described in Section 	� Section 
 compares the pre�
dictive performance of the tree modeling and the fault
density procedures� and Section � presents conclusions
based on the analysis of data�

� �� Tree�based Modeling�

The use of tree�based models is an attractive way to
encapsulate the knowledge of the experts and to aid in
decision making� It is an exploratory technique used
to uncover structure in the data� and it provides an al�
ternative to linear and additive models for regression
problems and to linear logistic and additive logistic
models for classi�cation problems� It originated from
the search for alternative techniques to classical sta�
tistical models like linear regression which are highly
unstable in the event of correlation between the vari�
ables� and hence were unsuitable to analyze the data
in social sciences� where data are often characterized
by complicated and unexplained irregularities����

��� Tree construction algorithm

The tree modeling approach is a goal oriented statisti�
cal technique which consists of recursive partitioning
of the variable space using binary splits� The depen�
dent variable or the response variable �usually denoted
by y� in this context consists of the number of faults
in a software module and the set of classi�cation� pre�
dictor or independent variables �usually denoted by
x� consists of the various software complexity met�
rics for the module� The algorithm attempts to par�
tition the predictor variable space into homogeneous
regions such that within each region the distribution
of the response variable conditional to the predictor
variables f�yjx�� is independent of the predictor vari�
ables �x������

At each step� the tree�construction algorithm
searches through all possible binary splits of all the
predictor variables until the overall deviance� i�e�� the
sum of the deviances for each subset is minimized�
The algorithm then begins the search again for the
next binary split� reconsidering all the variables un�
til the next binary split is made� and so on� Thus
the tree�construction method uses a one�step looka�
head� i�e�� it chooses the next split by minimizing the
deviance for that split� without making an e�ort to
optimize the performance of the entire tree which is

an NP�complete problem�

This can be viewed as estimating a step function
� �x�� which is related to a primary parameter in the
conditional distribution of yjx� The likelihood func�
tion provides the basis for choosing partitions� De�
viance �likelihood ratio statistic� is used to determine
which partition of a node is �most likely� given the
data�

The model used for regression trees is based on
the Gaussian distribution consisting of the following
stochastic component

yi � N ��i� �
�� ���

and the structural component

�i � � �xi� �	�

The deviance function for an observation is de�ned
as

D��i� yi� � �yi � �i�
� ���

which is minus twice the log�likelihood scaled by a
factor of ��� where �� is assumed to be a constant for
all i�

The mean parameter � is a constant for all the ob�
servations at a given node� The minimum�deviance
estimate of �� denoted by ��� is given by the average
of all observations in that node�

The deviance of a node is de�ned as the sum of the
deviances of all observations that belong to that node
and is given by

D���� y� �
X

j

D���� yj� �
�

where j is the number of observations in the node�
If all the y�s belonging to a node are the same� �the
node is known as a pure node in this case�� then the
deviance is identically equal to zero� The deviance in�
creases from this minimum value as y�s deviate from
the ideal� In order to reduce the deviance of a given
node� a binary split partitions the node into two chil�
dren nodes� The deviance of a node is then com�
pared to the deviance of the candidate children nodes�
that allow for di�erent means in the left and the right
nodes� The deviance of the candidate nodes is given
by

D� ��L� ��R� y� �
X

L

D� ��L� yj� �
X

R

D� ��R� yj� ���

where ��L is mean of the left node� and ��R is mean
of the right node�

The change of deviance between the parent node
and the children nodes is given by



�D � D���� y� �D� ��L� ��R� y� ���
The split that maximizes the change of deviance�

called as the goodness�of��t� is the one that is chosen
at a given node�

Thus the nodes become more and more homoge�
neous as the splitting progresses� In the limiting case�
the tree can have as many number of terminal nodes
as the observations� In reality� this is far too many and
the tree construction process is normally terminated
based on some stopping rule� The stopping rule con�
trols the granularity of the tree model and usually de�
pends on the number of cases reaching each leaf� Tree
construction can be stopped based on the cardinality
threshold Tc� i�e�� leaf node is smaller than some ab�
solute minimum size� or by determining whether the
leaf is homogeneous enough i�e�� the deviance is less
than the some small percentage �about ��� of the de�
viance of the root node� also known as the homogene�
ity threshold Th���� �
�� The size of the tree is de�ned
as the number of terminal nodes in the tree�

Intuitively� the algorithm uses a learning set of data
to construct a regression tree which is used as a pre�
dicting device� Each terminal node in the tree repre�
sents a partition or a subset of the data that is homoge�
neous with respect to the dependent variable� The pre�
dicted value of the dependent variable is the average
of all the observations in the node� In the present con�
text� the tree�modeling procedure attempts to identify
the modules with the same number of errors� and thus
have the same degree of fault�proneness�

��� Pruning

The stopping rules described above tend to grow a tree
that is too elaborate and has over�t the learning data
set to a certain degree� Pruning provides the equiva�
lent of variable selection in linear regression� and de�
termines a nested sequence of subtrees of the given tree
by recursively snipping o� the least important splits�
where the importance is given by the cost�complexity
measure as follows�

R��T �� � R�T � � �size�T �� ���
where R��T �� is the deviance of the subtree T �

for the cost�complexity parameter �� and size�T �� is
the number of terminal nodes in the tree T �� Cost�
complexity pruning determines the subtree T � that
minimizes the deviance R��T �� over all subtrees of the
tree T for a given ��

The cost�complexity pruning generally prunes par�
titions with minimal gains in deviance reduction� since
it is assumed that these partitions add little informa�
tion or insight� so that the more signi�cant partitions
can be highlighted� which enables the understanding of
the relationships between the response and predictor
variables� However� in some cases� partitions which
may not contribute heavily to the reduction in the
overall deviance may have some practical signi�cance
and add insight based on semantic� contextual or en�
vironmental information� Pruning of partitions thus
should be done indiscriminately�
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Figure �� Schematic of ���fold Cross Validation

��� Cross�Validation

Cross�validation is used to evaluate the predictive per�
formance of the regression tree and also helps to deter�
mine the degree of pruning in the absence of a separate
validation data set� The idea of cross validation is that
the data are divided into two mutually exclusive sets�
viz�� learning sample and test sample� The learning
sample is used to grow the tree and then the test sam�
ple is used to evaluate the tree sequence� Deviance is
used as the measure to assess the performance of the
prediction rule in predicting the number of errors for
the test sample for di�erent tree sizes� To reduce the
sampling error in constructing the learning and the
test samples ���fold cross validation is used� In case
of ���fold cross validation� the training set is split into
�� equally sized parts� � of which are used to grow the
tree and then the tree is evaluated using the ��th set�
The learning sample which consists of � sets can be
constructed in �� di�erent ways� Figure � shows the
schematic of ���fold cross validation�

In Figure � Si denotes the test sample i and Li de�
notes the corresponding learning sample� Let N �Si�
denote the number of modules in the test sample Si�
and N �Li� denote the number of modules in the learn�
ing sample Li� If N is the total number of modules in
the data set� we have

N �Si� � b
N

��
c � N �Li� � N�b

N

��
c i � �� � � � � ��

���
The deviance for �� fold cross validation denoted

by DT is given by

DT �
��X

i��

Di � Di �

b N
��

cX

j��

�yij � �yij�
� ���

The deviance obtained from cross validation is plot�
ted against the number of terminal nodes in the tree
�tree size�� and the number of nodes for which the
deviance is minimum is determined� A tree of size
suggested by cross�validation can then be grown and
used as a predicting device without a signi�cant loss
in performance�



�� Data Analysis

The data used for an application of tree modeling rep�
resents the results of an investigation of software for
a Medical Imaging System �MIS�� The total system
consisted of about 
��� modules amounting to about

������ lines of code written in Pascal� FORTRAN�
assembler and PL�M� A random sample of about ���
modules� from the ones written in Pascal and FOR�
TRAN was selected for analysis� These ��� mod�
ules consisted of approximately 
����� lines of code�
The software had been developed over a period of �ve
years� and had been in commercial use at several hun�
dred sites for a period of three years����

The number of changes made to the executable
code of the module� documented by Change Reports
�CRs� is an indicator of the software development ef�
fort� There is a one�to�one correspondence between
the CRs and the number of faults found� In addition
to the change data� the following �� software complex�
ity metrics were developed for each of the modules�

� Total lines of code �TC�

� Number of code lines �CL�

� Number of characters �Cr�

� Number of comments �Cm�

� Comment characters �CC�

� Code characters �Co�

� Halstead�s Program Length �N �� where N � N��
N� and N� represents a total operator count and
N� represents a total operand count����

� Halstead�s Estimate of Program Length Metric
�Ne�� where Ne � �� log

�
�� � �� log

�
��� and

�� and �� represent the unique operator and the
operand count respectively����

� Jensen�s Estimate of Program Length Metric
�JE�� where JE � log

�
�� � log

�
�� ���

� McCabe�s Cyclomatic Complexity Metric �M��
where M � e � n � 	� and e is the number of
edges in a control !ow graph representation of a
program with n nodes���

� Belady�s Bandwidth Metric �BW�� where

BW �
�

n

X

i

iLi ����

and Li represents the number of nodes at level i
in a nested control !owgraph of n nodes���� This
metric indicates the average level of nesting or
width of the control !owgraph representation of
the program�

|

Number of Terminal Nodes = 24

Figure 	� Dendrogram for ��� programs
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Figure �� Reduction in deviance with number of ter�
minal nodes

Figure 	 shows the dendrogram created when the
tree construction algorithm was applied to the ���
programs� Binary splitting on the variables contin�
ues till the number of terminal nodes in the tree is
	
� The lengths of the branches is proportional to the
reduction in the overall deviance� thus the �rst binary
split contributes to the greatest reduction in the over�
all deviance and the reduction in the overall deviance
reduces for the subsequent splits�

Figure � shows the reduction in overall deviance
with sequential splitting� The deviance for the root
node �i�e�� before any splits are made� is 
	� 	��� and
it decreases as the complexity of the tree increases�

Figure 
 shows the results of cross validation� A
test sample of �� modules was randomly selected from
the ��� modules� and the remaining ��� modules were
used to construct the tree� The deviance of �� pro�
grams was then obtained for trees of di�erent sizes�
This process was repeated �� times with a di�erent set
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Figure 
� Results of Cross�validation

of �� programs each time� and deviances correspond�
ing to the same number of nodes is accumulated� The
�gure shows that the minimum deviance is obtained
for a tree size of � nodes�

The original tree was snipped down to � nodes as
suggested by cross validation and is shown in Figure
�� The �rst split occurs on the number of comments�
those modules with the number of comments less than

��� and those with the number of comments greater
than 
���� For the left child of the root node� the next
split occurs on the number of code characters� the
modules with number of code characters less than ����
and the ones with number of code characters more
than ����� The splitting process continues� visiting all
variables each time a split is made until all the mod�
ules are divided into six partitions with predicted CRs
������� ������ �	���� 	���
�� 
������ ������� based on
only 
 variables� viz�� Number of Comments� Number
of Code Characters� Total Lines of Code and Belady�s
bandwidth metric� with a standard deviation of �����
��	�� ���	� ����� 	��� and 	��� respectively�

�� Comparative Performance of Tree
Modeling and Fault Density�

A common practice today is to predict the number of
CRs based on fault density� which is de�ned as follows�

FD �
TCR

TL
����

where FD is the fault density of the software sys�
tem� TCR is the total number of CRs in the software
system and TL is the total number of lines in the soft�
ware system�

The fault density for the Medical Imaging System
was computed to be ������
�
� The number of CRs
predicted for a module i is given by

CRi � NLi � FD ��	�
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Figure �� Pruned Tree with six terminal nodes

where CRi is the predicted number of Change Re�
ports in module i� and NLi is the number of lines in
module i�

There are two types of errors that can be made in
the prediction� A Type I error is when more faults
are predicted than were actually observed� A Type
II error is when fewer faults are predicted than were
actually observed� Of the two types of errors� Type
II error has more serious implications� since a product
would seem better than it actually is� and testing ef�
fort would not be directed where it would be needed
most�

The minimum of the observed CRs is � and the
maximum is ��� Because of the large variation in the
number of observed CRs� the modules are classi�ed
into �� bins depending upon the number of CRs at�
tributed to them� Thus modules with CRs in the range
of ��� belong to bin �� ����� belong to bin 	 and so on�
Every module belongs to two bins� one corresponding
to the observed number of CRs and the other corre�
sponding to the predicted number of CRs� A Type
I misclassi�cation occurs when a module actually be�
longs to bin k� when it is predicted to belong to bin j�
where j � k� Type II misclassi�cation occurs when a
module belongs to bin k and is predicted to belong to
bin j� where j � k�

The overall deviance obtained by the tree modeling
procedure is �������� whereas the overall deviance ob�
tained by the fault density approach is �������� Type
I misclassi�cation rate for the tree modeling proce�
dure is ����� and for the fault density procedure is
about ����� Type II misclassi�cation rate for the tree
modeling procedure is about ���� and for the fault
density procedure is about ����� The overall misclas�
si�cation rate is �
���� and 	���� for the tree mod�
eling and fault density techniques respectively� These
results indicate that the tree modeling approach gives



considerable improvement over the fault density ap�
proach�

The pruned tree approach with six terminal nodes�
as suggested by cross�validation was then used as a
predicting device� The Type II misclassi�cation rate
in this case is �	��
� and the deviance is �
�����
�
This result also shows an improvement over the fault
density approach�

The regression tree approach can also be used to
classify the modules into fault�prone and non fault�
prone categories� A decision rule can be established
which classi�es the module as fault�prone if the pre�
dicted number of faults is greater than a certain num�
ber a� The choice of a determines the misclassi�cation
rate� Modules with very small number of changes are
clearly non fault�prone� where as modules with rela�
tively large number of changes are clearly fault�prone�
The same data set has been analyzed using discrimi�
nant analysis���� with a view to identifying fault�prone
and non fault�prone programs� In this analysis� the
modules with number of CRs in the range of ��� have
been discarded� Note that in case of the regression
tree modeling it is not necessary to discard the mod�
ules with an intermediate number of changes�

�� Conclusions

There is a lot of information to be extracted from soft�
ware metrics� and the regression tree modeling is an
e�ective way to analyze data� to understand the in�
volved relationships among data attributes� to iden�
tify the troublesome modules� and thus take remedial
actions before it is too late� The results presented in
the tree�form are intuitive� aid decision making and
are easy to use� Interesting subsets of modules can be
identi�ed along with their characteristics by following
the path from the subset to the root of the tree� The
technique is fairly robust to the presence of outliers� is
stable with highly uncorrelated data� and can handle
missing values� Thus it provides an e�ective way to
predict software quality� This technique also enjoys
lower misclassi�cation rate and deviance as compared
to the commonly used fault density procedure to pre�
dict the number of faults in software modules�
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