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Abstract

This paper demonstrates the use of regression tree
models to predict the number of faults in a software
module based on the software complexity metrics,
prior to the testing phase, which can help in channel-
ing the validation and testing efforts in a productive
direction. We also compare the regression tree model-
ing technique with the fault density technique which
is a very commonly used approach to predict the num-
ber of faults.

1. Introduction

The production of modern computer software is one of
the most complex and unpredictable activities in the
industry. Software is a crucial part of many critical
applications and certifying software integrity i1s abso-
lutely essential. It is no longer acceptable to post-
pone the assurance of software quality until prior to
a product’s release. Delaying corrections until testing
and operational phases can lead to higher costs, and
it may be too late to improve the software product
significantly.

A software failure is a manifestation of a fault,
which is a defect in the executable software product.
It is an old programming saw that 80% of the faults
are found in 20% of the software code, i.e., a rela-
tively small number of modules in a set of modules
constituting a software product contain a dispropor-
tionate number of errors. A major portion of the effort
expended in developing computer software is associ-
ated with program testing. The 80-20 rule described
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above suggests that applying equal testing and veri-
fication effort to all the modules of a software prod-
uct is not very efficient. Scheduling and resource con-
straints often require testing to be conducted in such a
manner that maximum number of faults are revealed
in a minimum amount of time. Recent research in
the field of computer program reliability has been di-
rected towards the identification of software modules
that are likely to be fault-prone, based on product
and/or process-related metrics, prior to the testing
phase. Software metrics represent quantitative de-
scription of program attributes and have been shown
to be very closely related to the distribution of faults in
the program modules[4, 5, 11]. Early identification of
fault-prone modules in the life-cycle can help in chan-
neling the program testing and verification efforts in
the productive direction.

Several different techniques have sought to de-
velop a predictive relationship between software met-
rics and the classification of the module into fault-
prone and non fault-prone categories. These tech-
niques include discriminant analysis[1, 10], classifica-
tion trees[12], pattern recognition (Optimal Set Re-
duction (OSR))[2, 1] and neural networks[8]. His-
torical data from the past software development and
maintenance scenarios are used to develop these pre-
dictive models, and then these quantitative models are
used to provide insight and control into managing sim-
ilar software projects, by identifying the troublesome
modules earlier in the life-cycle of the software prod-
uct. Most of these techniques however are classifica-
tion models and they partition the modules into two
categories viz. fault-prone and not fault-prone. Re-
gression models have also been used in the context of
software engineering[13, 14], though not very exten-
sively. In this paper we explore regression tree models
to predict the number of errors in a software module
using the software metrics. The regression tree model



provides for a finer classification than that provided by
the classification models. We compare the predictions
of the regression tree model with that of the fault den-
sity model which is one of the most commonly used
techniques to predict the number of faults in a soft-
ware product.

The rest of the paper is organized as follows: In
Section 2 we describe the tree modeling procedure.
Section 3 discusses the application of the algorithm
described in Section 2, Section 4 compares the pre-
dictive performance of the tree modeling and the fault
density procedures, and Section b presents conclusions
based on the analysis of data.

1 2. Tree-based Modeling.

The use of tree-based models is an attractive way to
encapsulate the knowledge of the experts and to aid in
decision making. It is an exploratory technique used
to uncover structure in the data, and it provides an al-
ternative to linear and additive models for regression
problems and to linear logistic and additive logistic
models for classification problems. It originated from
the search for alternative techniques to classical sta-
tistical models like linear regression which are highly
unstable in the event of correlation between the vari-
ables, and hence were unsuitable to analyze the data
in social sciences, where data are often characterized
by complicated and unexplained irregularities[3].

2.1 Tree construction algorithm

The tree modeling approach is a goal oriented statisti-
cal technique which consists of recursive partitioning
of the variable space using binary splits. The depen-
dent variable or the response variable (usually denoted
by y) in this context consists of the number of faults
in a software module and the set of classification, pre-
dictor or independent variables (usually denoted by
z) consists of the various software complexity met-
rics for the module. The algorithm attempts to par-
tition the predictor variable space into homogeneous
regions such that within each region the distribution
of the response variable conditional to the predictor
variables f(y|z), is independent of the predictor vari-

ables (z)[15].

At each step, the tree-construction algorithm
searches through all possible binary splits of all the
predictor variables until the overall deviance, i.e., the
sum of the deviances for each subset is minimized.
The algorithm then begins the search again for the
next binary split, reconsidering all the variables un-
til the next binary split is made, and so on. Thus
the tree-construction method uses a one-step looka-
head, i.e., it chooses the next split by minimizing the
deviance for that split, without making an effort to
optimize the performance of the entire tree which is

an NP-complete problem.

This can be viewed as estimating a step function
7(x), which is related to a primary parameter in the
conditional distribution of y|z. The likelihood func-
tion provides the basis for choosing partitions. De-
viance (likelihood ratio statistic) is used to determine
which partition of a node is “most likely” given the
data.

The model used for regression trees is based on
the Gaussian distribution consisting of the following
stochastic component

yi ~ N(pi, 0%) (1)
and the structural component
pi = (i) (2)
The deviance function for an observation is defined
as
D(pas yi) = (yi — Nz’)z (3)

which is minus twice the log-likelihood scaled by a
factor of o2, where ¢? is assumed to be a constant for

all 7.

The mean parameter p is a constant for all the ob-
servations at a given node. The minimum-deviance
estimate of y, denoted by fi, is given by the average
of all observations in that node.

The deviance of a node is defined as the sum of the
deviances of all observations that belong to that node
and is given by

D(p,y) = ZD(ﬂ, Y;) (4)

where j is the number of observations in the node.
If all the y’s belonging to a node are the same, (the
node is known as a pure node in this case), then the
deviance 1s identically equal to zero. The deviance in-
creases from this minimum value as y’s deviate from
the ideal. In order to reduce the deviance of a given
node, a binary split partitions the node into two chil-
dren nodes. The deviance of a node is then com-
pared to the deviance of the candidate children nodes,
that allow for different means in the left and the right
nodes. The deviance of the candidate nodes is given

by
D(ir, kir;y) = Y D(in;ys) + Y D(priy;)  (5)

where pi7 1s mean of the left node, and pg is mean
of the right node.

The change of deviance between the parent node
and the children nodes is given by



AD = D(j, y) — Dy, pir; y) (6)

The split that maximizes the change of deviance,

called as the goodness-of-fit, 1s the one that is chosen
at a given node.

Thus the nodes become more and more homoge-
neous as the splitting progresses. In the limiting case,
the tree can have as many number of terminal nodes
as the observations. In reality, this is far too many and
the tree construction process is normally terminated
based on some stopping rule. The stopping rule con-
trols the granularity of the tree model and usually de-
pends on the number of cases reaching each leaf. Tree
construction can be stopped based on the cardinality
threshold T, i.e., leaf node is smaller than some ab-
solute minimum size, or by determining whether the
leaf is homogeneous enough i.e., the deviance is less
than the some small percentage (about 1%) of the de-
viance of the root node, also known as the homogene-
ity threshold 73[13, 14]. The size of the tree is defined
as the number of terminal nodes in the tree.

Intuitively, the algorithm uses a learning set of data
to construct a regression tree which is used as a pre-
dicting device. Each terminal node in the tree repre-
sents a partition or a subset of the data that is homoge-
neous with respect to the dependent variable. The pre-
dicted value of the dependent variable is the average
of all the observations in the node. In the present con-
text, the tree-modeling procedure attempts to identify
the modules with the same number of errors, and thus
have the same degree of fault-proneness.

2.2 Pruning

The stopping rules described above tend to grow a tree
that is too elaborate and has overfit the learning data
set to a certain degree. Pruning provides the equiva-
lent of variable selection in linear regression, and de-
termines a nested sequence of subtrees of the given tree
by recursively snipping off the least important splits,
where the importance 1s given by the cost-complexity
measure as follows:

Ro(T") = R(T) + asize(T") (7)

where R, (T") is the deviance of the subtree T

for the cost-complexity parameter «, and size(7") is

the number of terminal nodes in the tree 77. Cost-

complexity pruning determines the subtree 7" that

minimizes the deviance R, (7") over all subtrees of the
tree T' for a given «a.

The cost-complexity pruning generally prunes par-
titions with minimal gains in deviance reduction, since
it 1s assumed that these partitions add little informa-
tion or insight, so that the more significant partitions
can be highlighted, which enables the understanding of
the relationships between the response and predictor
variables. However, in some cases, partitions which
may not contribute heavily to the reduction in the
overall deviance may have some practical significance
and add insight based on semantic, contextual or en-
vironmental information. Pruning of partitions thus
should be done indiscriminately.
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Figure 1: Schematic of 10-fold Cross Validation

2.3 Cross-Validation

Cross-validation is used to evaluate the predictive per-
formance of the regression tree and also helps to deter-
mine the degree of pruning in the absence of a separate
validation data set. The idea of cross validation is that
the data are divided into two mutually exclusive sets,
viz., learning sample and test sample. The learning
sample is used to grow the tree and then the test sam-
ple is used to evaluate the tree sequence. Deviance is
used as the measure to assess the performance of the
prediction rule in predicting the number of errors for
the test sample for different tree sizes. To reduce the
sampling error in constructing the learning and the
test samples 10-fold cross validation is used. In case
of 10-fold cross validation, the training set is split into
10 equally sized parts, 9 of which are used to grow the
tree and then the tree is evaluated using the 10th set.
The learning sample which consists of 9 sets can be
constructed in 10 different ways. Figure 1 shows the
schematic of 10-fold cross validation.

In Figure 1 S; denotes the test sample ¢ and L; de-
notes the corresponding learning sample. Let N(S;)
denote the number of modules in the test sample S;,
and N(L;) denote the number of modules in the learn-
ing sample L;. If NV is the total number of modules in
the data set, we have

N

& N(L) = N-lg5

|i=1,...,10
(8)

The deviance for 10 fold cross validation denoted
by Dr is given by

N(s) = 5]

10 L {5
Dr=YD; & Di=Y (s;—u) (9
i=1 Jj=1

The deviance obtained from cross validation is plot-
ted against the number of terminal nodes in the tree
(tree size), and the number of nodes for which the
deviance i1s minimum is determined. A tree of size
suggested by cross-validation can then be grown and
used as a predicting device without a significant loss
in performance.



3. Data Analysis

The data used for an application of tree modeling rep-
resents the results of an investigation of software for
a Medical Tmaging System (MIS). The total system
consisted of about 4500 modules amounting to about
400,000 lines of code written in Pascal, FORTRAN,
assembler and PL/M. A random sample of about 390
modules, from the ones written in Pascal and FOR-
TRAN was selected for analysis. These 390 mod-
ules consisted of approximately 40,000 lines of code.
The software had been developed over a period of five
years, and had been in commercial use at several hun-
dred sites for a period of three years[8].

The number of changes made to the executable
code of the module, documented by Change Reports
(CRs) is an indicator of the software development ef-
fort. There is a one-to-one correspondence between
the CRs and the number of faults found. In addition
to the change data, the following 11 software complex-
1ty metrics were developed for each of the modules:

e Total lines of code (TC)

e Number of code lines (CL)
e Number of characters (Cr)

e Number of comments (Cm)
e Comment characters (CC)

e Code characters (Co)

e Halstead’s Program Length (N), where N = N+
Ny and Nj represents a total operator count and
Ny represents a total operand count[6].

e Halstead’s Estimate of Program Length Metric
(Ne), where Ne = nlogym + n2logs n2, and
71 and 7, represent the unique operator and the
operand count respectively[6].

e Jensen’s Estimate of Program Length Metric
(JE), where JE = log, m1! + log, 12! [7]

e McCabe’s Cyclomatic Complexity Metric (M),
where M = e — n + 2, and e is the number of
edges in a control flow graph representation of a
program with n nodes[9]

e Belady’s Bandwidth Metric (BW), where

1
BW = -5 iL; 1
W nZz (10)

K3

and L; represents the number of nodes at level ¢
in a nested control flowgraph of n nodes[7]. This
metric indicates the average level of nesting or
width of the control flowgraph representation of
the program.

Number of Terminal Nodes = 24
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Figure 2: Dendrogram for 390 programs
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Figure 3: Reduction in deviance with number of ter-
minal nodes

Figure 2 shows the dendrogram created when the
tree construction algorithm was applied to the 390
programs. Binary splitting on the variables contin-
ues till the number of terminal nodes in the tree is
24. The lengths of the branches is proportional to the
reduction in the overall deviance, thus the first binary
split contributes to the greatest reduction in the over-
all deviance and the reduction in the overall deviance
reduces for the subsequent splits.

Figure 3 shows the reduction in overall deviance
with sequential splitting. The deviance for the root
node (i.e., before any splits are made) is 42,200, and
it decreases as the complexity of the tree increases.

Figure 4 shows the results of cross validation. A
test sample of 39 modules was randomly selected from
the 390 modules, and the remaining 351 modules were
used to construct the tree. The deviance of 39 pro-
grams was then obtained for trees of different sizes.
This process was repeated 10 times with a different set



Deviance vs. Number of Terminal Nodes for Cross-Validation
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Figure 4: Results of Cross-validation

of 39 programs each time, and deviances correspond-
ing to the same number of nodes is accumulated. The
figure shows that the minimum deviance is obtained
for a tree size of 6 nodes.

The original tree was snipped down to 6 nodes as
suggested by cross validation and is shown in Figure
5. The first split occurs on the number of comments:
those modules with the number of comments less than
48.5 and those with the number of comments greater
than 48.5. For the left child of the root node, the next
split occurs on the number of code characters: the
modules with number of code characters less than 1358
and the ones with number of code characters more
than 1358. The splitting process continues, visiting all
variables each time a split is made until all the mod-
ules are divided into six partitions with predicted CRs
(3.103, 7.699, 12.50, 20.540, 40.170, 50.170) based on
only 4 variables, viz., Number of Comments, Number
of Code Characters, Total Lines of Code and Belady’s
bandwidth metric, with a standard deviation of 3.77,
6.21, 7.52, 9.85, 2.59 and 21.8 respectively.

4. Comparative Performance of Tree
Modeling and Fault Density.

A common practice today is to predict the number of
CRs based on fault density, which is defined as follows:

TCR
FD=—+ 11
I (11)
where FD is the fault density of the software sys-
tem, TCR is the total number of CRs in the software
system and TL is the total number of lines in the soft-
ware system.

The fault density for the Medical Imaging System
was computed to be 0.05639464. The number of CRs
predicted for a module 7 is given by

CR;=NL;*FD (12)

Number of Terminal Nodes = 6
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Figure 5: Pruned Tree with six terminal nodes

where C'R; is the predicted number of Change Re-
ports in module ¢, and N L; is the number of lines in
module i.

There are two types of errors that can be made in
the prediction. A Type I error is when more faults
are predicted than were actually observed. A Type
IT error is when fewer faults are predicted than were
actually observed. Of the two types of errors, Type
IT error has more serious implications, since a product
would seem better than it actually is, and testing ef-
fort would not be directed where it would be needed
most.

The minimum of the observed CRs is 0 and the
maximum is 98. Because of the large variation in the
number of observed CRs, the modules are classified
into 10 bins depending upon the number of CRs at-
tributed to them. Thus modules with CRs in the range
of 0-9 belong to bin 1, 10-19 belong to bin 2 and so on.
Every module belongs to two bins, one corresponding
to the observed number of CRs and the other corre-
sponding to the predicted number of CRs. A Type
I misclassification occurs when a module actually be-
longs to bin k, when it is predicted to belong to bin j,
where j > k. Type Il misclassification occurs when a
module belongs to bin £ and is predicted to belong to
bin j, where j < k.

The overall deviance obtained by the tree modeling
procedure is 9660.35, whereas the overall deviance ob-
tained by the fault density approach is 19933.6. Type
I misclassification rate for the tree modeling proce-
dure is 6.16% and for the fault density procedure is
about 7.5%. Type II misclassification rate for the tree
modeling procedure is about 8.7% and for the fault
density procedure is about 13.1% The overall misclas-
sification rate is 14.86% and 20.6% for the tree mod-
eling and fault density techniques respectively. These
results indicate that the tree modeling approach gives



considerable improvement over the fault density ap-
proach.

The pruned tree approach with six terminal nodes,
as suggested by cross-validation was then used as a
predicting device. The Type Il misclassification rate
in this case is 12.04% and the deviance is 14058.34.
This result also shows an improvement over the fault
density approach.

The regression tree approach can also be used to
classify the modules into fault-prone and non fault-
prone categories. A decision rule can be established
which classifies the module as fault-prone if the pre-
dicted number of faults is greater than a certain num-
ber a. The choice of a determines the misclassification
rate. Modules with very small number of changes are
clearly non fault-prone, where as modules with rela-
tively large number of changes are clearly fault-prone.
The same data set has been analyzed using discrimi-
nant analysis[10] with a view to identifying fault-prone
and non fault-prone programs. In this analysis, the
modules with number of CRs in the range of 0-9 have
been discarded. Note that in case of the regression
tree modeling it is not necessary to discard the mod-
ules with an intermediate number of changes.

5. Conclusions

There is a lot of information to be extracted from soft-
ware metrics, and the regression tree modeling is an
effective way to analyze data, to understand the in-
volved relationships among data attributes, to iden-
tify the troublesome modules, and thus take remedial
actions before it 1s too late. The results presented in
the tree-form are intuitive, aid decision making and
are easy to use. Interesting subsets of modules can be
identified along with their characteristics by following
the path from the subset to the root of the tree. The
technique is fairly robust to the presence of outliers, is
stable with highly uncorrelated data, and can handle
missing values. Thus it provides an effective way to
predict software quality. This technique also enjoys
lower misclassification rate and deviance as compared
to the commonly used fault density procedure to pre-
dict the number of faults in software modules.
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